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Abstract

Although sequence-to-sequence models often001
achieve good performance in semantic parsing002
for i.i.d. data, their performance is still inferior003
in compositional generalization. Several data004
augmentation methods have been proposed to005
alleviate this problem. However, prior work006
only leveraged superficial grammar or rules007
for data augmentation, which resulted in lim-008
ited improvement. We propose to use subtree009
substitution for compositional data augmenta-010
tion, where we consider subtrees with similar011
semantic functions as exchangeable. Our exper-012
iments showed that such augmented data led013
to significantly better performance on SCAN014
and GEOQUERY, and reached new SOTA on015
compositional split of GEOQUERY.016

1 Introduction017

Semantic parsing transforms natural language ut-018

terances to formal language. Because meaning rep-019

resentations or programs are essentially composi-020

tional, semantic parsing is an ideal testbed for com-021

positional generalization. Although neural seq2seq022

models could achieve state-of-the-art performance023

in semantic parsing for i.i.d. data, they failed at024

compositional generalization due to lack of reason-025

ing ability. That is, they do not generalize well to026

formal language structures that were not seen at027

training time. For example, a model that observes028

at training time the questions “What is the popula-029

tion of the largest state?” and “What is the largest030

city in USA?” may fail to generalize to questions031

such as “What is the population of the largest city032

in USA?”. This leads to large performance drops033

on data splits designed to measure compositional034

generalization (compositional splits), in contrast to035

the generalization abilities of humans.036

To improve compositional generalization in se-037

mantic parsing (compositional semantic parsing),038

prior work focused on incorporating inductive bi-039

ases directly to models or data augmentation. From040

the model perspective, some work used neural- 041

symbolic models (Chen et al., 2020), generated 042

intermediate discrete structures (Herzig and Be- 043

rant, 2020; Zheng and Lapata, 2020), or conducted 044

meta-learning (Lake, 2019). From the data perspec- 045

tive, Jia and Liang (2016) proposed to recombine 046

data with simple synchronous context-free gram- 047

mar (SCFG), despite not for compositional gener- 048

alization. Andreas (2019) used some simple rules 049

for data augmentation, where tokens with the same 050

context were considered as exchangeable. Such 051

techniques are still limited since they only lever- 052

aged superficial grammars or rules, and failed when 053

there are linguistically rich phrases or clauses. 054

To fill this gap, we propose to augment the train- 055

ing data of semantic parsing with diverse compo- 056

sitional examples based on induced or annotated 057

(semantic and syntactic) trees. Specifically, we 058

propose to exchange subtrees where roots have 059

similar meaning functions. Since we consider all 060

hierarchies in all trees, deep structures and complex 061

phrases or clauses are considered for data augmen- 062

tation, which is key for compositional generaliza- 063

tion. For instance, in Figure 1, if we exchange sub- 064

trees with “largest” as meaning function of its root, 065

composition of “population of the” and “largest 066

city in the smallest state in the USA” results in a 067

new augmented structure “population of the largest 068

city in the smallest state in the USA”. Although 069

certain substructure substitution methods were ex- 070

plored in other NLP tasks (Shi et al., 2021), subtree 071

substitution with fine-grained meaning functions 072

has been under-explored. Our experiments showed 073

that such augmented data led to significantly better 074

performance on SCAN (Lake and Baroni, 2018) 075

and GEOQUERY, and reached new SOTA on com- 076

positional split of GEOQUERY. 077

2 Methods 078

Span trees Suppose training set is {(xi, zi)}Ni=1, 079

where xi is a natural language utterance and zi is 080

the corresponding program. An utterance x can be 081
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Figure 1: Subtree substitution results in an augmented example. Natural Language: What is the population of the
largest city in the smallest state in the USA ? Formal Language: answer ( population_1 ( largest (
city ( loc_2 ( smallest ( state ( loc_2 ( countryid ( usa ) ) ) ) ) ) ) ) ).

mapped to a span tree T , such that program(T )= z,082

where the deterministic function program(·) maps083

span trees to programs (Herzig and Berant, 2020).084

As shown in Figure 1, a span tree T is a tree085

where each node covers a span (i, j) with tokens086

xi:j = (xi, xi+1, · · · , xj). A span subtree can be087

viewed as a mapping from every span (i, j) to a088

single category c ∈ C, where C is a set of domain-089

specific categories representing domain constants,090

which include entities (e.g. countryid#usa in Figure091

1) and predicates (e.g. loc_2 in Figure 1). The final092

program can be computed from the span tree deter-093

ministically by the function program(·). Concretely,094

program(T ) iterates over the nodes in T bottom-up,095

and generates a program zi:j for each node cover-096

ing the span (i, j). For a terminal node, zi:j = c.097

For an internal node, zi:j is determined by com-098

posing the programs of its children, zi:s and zs:j099

where s is the split point. As in Combinatory Cate-100

gorical Grammar, composition is simply function101

application, where a domain-specific type system102

is used to determine which child is the function and103

which is the argument. Span trees can be induced104

by a hard-EM algorithm or semi-automatically an-105

notated. We refer the reader to Herzig and Berant106

(2020) to see how to obtain span-trees.107

2.1 Subtree Substitution (SUBS)108

As shown in Figure 1, we consider span subtrees109

with similar semantic functions as exchangeable.110

Formally, func(·) maps a subprogram to a semantic111

category, and subtrees with the same semantic cat-112

RIGHT AROUNDRIGHT

LSTM 0.00 1.00 (2800 updates)
LSTM + SUBS 1.00 1.00 (800 updates)

Table 1: Accuracy of diagnostic experiments on SCAN.

egories have similar semantic functions. For two 113

data points (x1, z1) and (x2, z2), if func(z1i1:j1) = 114

func(z2i2:j2), we obtain a new augmented (x′, z′): 115

x′ = x1:i1 + x2i2:j2 + x1j1:, z
′ = z1\z1i1:j1/z

2
i2:j2 116

Definition of func(·) may vary in different dataset. 117

One straightforward way is to extract the outside 118

predicate in zi:j as its semantic category, which is 119

used on GEOQUERY, such as func(largest ( 120

state ( all ) ) )) = largest. 121

2.2 Semantic Parsing 122

After getting augmented data by subtree substi- 123

tution, we then combine augmented data and the 124

original training data to train a seq2seq semantic 125

parser, where we choose LSTM models with atten- 126

tion (Luong et al., 2015) and copying mechanism 127

(Gu et al., 2016), or pretrained BART (Lewis et al., 128

2020) as the seq2seq model architecture. 129

3 Experiments and Results 130

Dataset We first use SCAN (Lake and Baroni, 2018) 131

as a diagnostic dataset to test the performance 132

of subtree substitution in compositional semantic 133

parsing. SCAN is a synthetic dataset, which con- 134

sists of simple English commands paired with se- 135

quences of discrete actions. We use the program 136

2



Question Query

Herzig and Berant (2020) 0.78 0.59

LSTM 0.75 0.58
+ SCFG (Jia et al., 2016) 0.80 0.68
+ GECA (Andreas, 2019) 0.77 0.60
+ SUBS (ours, induced tree) 0.79 0.70
+ SUBS (ours, gold tree) 0.81 0.79

BART 0.91 0.85
+ SUBS (ours, induced tree) 0.91 0.85
+ SUBS (ours, gold tree) 0.93 0.88

Table 2: Exact-match accuracy on i.i.d. (Question) and
compositional (Query) splits of GEOQUERY dataset.

version of Herzig and Berant (2020). For instance,137

“run right after jump” corresponds to the pro-138

gram “i_after ( i_run ( i_right ) ,139

i_jump )”. Also, semi-automatically annotated140

span trees from Herzig and Berant (2020) are used141

for subtree substitution. To test compositional se-142

mantic parsing, we use the Primitive right (RIGHT)143

and Primitive around right (AROUNDRIGHT) com-144

positional splits from Loula et al. (2018), where145

templates of the form Primitive right and Primi-146

tive around right (respectively) appear only in the147

test set. In these templates, Primitive stands for148

jump, walk, run, or look. For simplicity, func(·)149

is defined only on i_right and i_left, where150

func(i_right) = func(i_left) = direction.151

That is, all “i_right” and “i_left” appear as152

leaf nodes in span trees and they are exchangeable.153

We use GEOQUERY dataset to test the perfor-154

mance of subtree substitution in both i.i.d. and155

compositional generalization for semantic parsing.156

GEOQUERY contains 880 questions about US geog-157

raphy (Zelle and Mooney, 1996). Following Herzig158

and Berant (2020), we use the variable-free FunQL159

formalism from Kate et al. (2005). The i.i.d. split160

(Question), which is randomly sampled from the161

whole dataset, contains 513/57/256 instances for162

train/dev/test set. The compositional split (Query)163

contains 519/54/253 examples for train/dev/test set,164

where templates created by anonymizing entities165

are used to split the dataset, to make sure that all166

examples sharing a template are assigned to the167

same set (Finegan-Dollak et al., 2018). As for168

span trees, we use semi-automatically annotated169

span trees (gold tree) released by Herzig and Be-170

rant (2020). Alternatively, we use the span trees171

induced by Herzig and Berant (2020)’s span-based172

semantic parsing, without any human labour.173

3.1 Diagnostic Results 174

Results of diagnostic experiments on SCAN dataset 175

are shown in Table 1, where we use LSTM parser 176

without data augmentation as the baseline. We can 177

see that on the RIGHT split, LSTM seq2seq seman- 178

tic parser could only achieve zero exact-match ac- 179

curacy without any data augmentation techniques, 180

which means that the model’s compositional gen- 181

eralizibility on the RIGHT split is very poor. After 182

adding our augmented data with subtree substitu- 183

tion, we achieve an exact-match accuracy of 100%. 184

Actually, we got 6660 augmented examples besides 185

the original 12180 training examples. Among all 186

augmented examples, 3351 examples are in the 187

test set, which means 74.87% of 4476 test exam- 188

ples are recovered by subtree substitution. On the 189

AROUNDRIGHT split, using LSTM seq2seq seman- 190

tic parser could already achieve 100% exact-match 191

accuracy, which means that the model learned from 192

Primitive right and Primitive opposite right gen- 193

eralize to Primitive around right well in our pro- 194

gram format “i_primitive ( i_around ( 195

i_right ) )”. After adding our augmented ex- 196

amples, the parser converged to 100% exact-match 197

accuracy faster, where our method requires around 198

800 updates to converge while baseline model re- 199

quires 2800 updates with the same batch size 64. 200

3.2 Main Results 201

Table 2 shows the results of experiments on GEO- 202

QUERY dataset, where we examined both seq2seq 203

LSTM and BART parsers. LSTM and BART 204

parsers without any data augmentation are simplest 205

baselines. We also compare with other two data 206

augmentation methods as additional baselines, re- 207

combining data with simple SCFG (Jia and Liang, 208

2016) or using simple rules for Good Enough Data 209

Augmentation (GECA) (Andreas, 2019), which 210

were proven useful for compositional semantic 211

parsing. We can see that on the Question split, 212

adding augmented data from (gold) subtree sub- 213

stitution leads to improvements for both LSTM 214

and BART seq2seq models, suggesting that subtree 215

substitution as data augmentation helps i.i.d gener- 216

alization for semantic parsing. On the Query split, 217

(gold) subtree substitution achieves more substan- 218

tial improvements over seq2seq baseline models 219

(absolute 21% and 3% improvements of the exact- 220

match accuracy for LSTM and BART respectively), 221

achieving state-of-the-art results. Moreover, our 222

methods are also better than the two data augmen- 223

tation baselines. Therefore, subtree substitution 224
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training instances augmented instances avg att l max att l avg prg l max prg l

GECA 519 804 8.85 18 15.96 29
SUBS 519 29039 10.43 26 19.33 43

avg seg l max seg l avg att seg l max att seg l avg prg seg l max prg seg l

GECA 1.93 4 - - - -
SUBS 5.99 25 3.98 13 8.01 25

Table 3: Complexity of augmented examples on the Query split of GEOQUERY dataset, which is measured by
maximal (max) and average (avg) lengths (l) of exchanged segments (seg) and resulted utterances(att)/programs(prg).

50 100 200 519

BART 0.64 0.72 0.79 0.85
BART + SUBS 0.67 0.79 0.85 0.88

Table 4: Effect of numbers of training examples on composi-
tional split of GEOQUERY.

is a simple yet effective compositional data aug-225

mentation method for compositional semantic pars-226

ing. With (induced) subtree substitution, SUBS still227

achieves improvements for LSTM models. Our228

SUBS could outperform Herzig and Berant (2020),229

although our induced tree are based on their model.230

That said, incorporating inductive biases to data231

and then to the model (seq2seq model finetuning)232

could achieve superior performance than directly233

incorporating inductive biases to model via latent234

variables (Herzig and Berant, 2020).235

Analysis of Augmented Data We further examine236

why subtree substitution could achieve much better237

performance by analyzing its augmented data. As238

shown in Table 3, GECA only identifies and ex-239

changes very simple structures, where the average240

and maximal length of exchanged segments are241

1.93 and 4. A closer look at these augmented data242

shows that nearly all of these segments are simple243

entities (e.g. STATE: “Illinois”, “Arizona” etc.)244

or other Nouns (e.g. “area”, “population” etc.).245

In contrast, subtree substitution can identify and246

exchange much more complex structures, where247

the average and maximal length of exchanged seg-248

ments are 5.99 and 25. For example, largest city249

in the smallest state in the USA and largest state250

are identified as exchangeable. As a result, sub-251

tree substitution could produce more complex ut-252

terance and program pairs, where the average and253

maximal length of these resulted utterances are254

10.43 and 26, compared with the average (8.53)255

and maximal (18) length of utterances returned by256

GECA. Moreover, subtree substitution could gen-257

erate much more augmented instances, because it258

can identify more complex structures besides those259

simple ones identified by GECA. Compared with 260

SCFG, SUBS could also identify complex struc- 261

tures automatically with subtrees, while SCFG only 262

handle simple phrases defined by rules. 263

Effect of Training Data Size Table 4 shows 264

that with more training examples, models’ perfor- 265

mances improve. In all settings, using (gold) sub- 266

tree substitution boosts the performance of BART. 267

When there are 100 and 200 training examples, the 268

improvement is more significant, demonstrating 269

the effectiveness of SUBS in the few-shot setting. 270

4 Related Work 271

Several data augmentation methods have been in- 272

troduced for (compositional) semantic parsing. Jia 273

and Liang (2016) recombined data by SCFG, and 274

Andreas (2019) used some simple rules to exchange 275

tokens with the same context. However, they lever- 276

aged only superficial grammars or rules, which 277

has limited capacity to identify complex structures. 278

Akyürek et al. (2020) learned to recombine and 279

resample data with a prototype-based generative 280

model, instead of using rules. Certain substructure 281

substitution methods have been explored for data 282

augmentation in other NLP tasks (Shi et al., 2021). 283

Dependency tree cropping and rotation within sen- 284

tence was used in low-resource language POS tag- 285

ging (Şahin and Steedman, 2019) and dependency 286

parsing (Vania et al., 2019). Dependency tree swap- 287

ping was explored in low-resource language depen- 288

dency parsing (Dehouck and Gómez-Rodríguez, 289

2020). However, subtree substitution with fine- 290

grained meaning functions has not been examined. 291

To the best of our knowledge, we are the first to 292

explore tree manipulation for semantic parsing. 293

5 Conclusion 294

This work proposed to use subtree substitution to 295

compositionally augment the data of semantic pars- 296

ing to help the compositional generalization. Our 297

method achieved significant improvements over 298

seq2seq models, other data augmentation methods 299

and span-based semantic parsing. 300
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A Training Details 388

We adapted OpenNMT (Klein et al., 2017) for 389

LSTM model with attention and copying mech- 390

anism, while used fairseq (Ott et al., 2019) to im- 391

plement BART model. 392

We manually tune the hyper-parameters. For 393

LSTM models, we use one-layer bidirectional 394

LSTM in the encoder side and one-layer unidirec- 395

tional LSTM in the decoder side. We use dropout 396

with 0.5 as dropout rate and Adam optimizer with 397

a learning rate of 0.001. We use MLP attention 398

and reuse attention scores as copying scores. On 399

GEOQUERY, the batch size is set to 1 sentence 400

without augmented data and set to 64 sentences 401

with augmented data. On SCAN, all batch sizes are 402

64 sentences. For BART models, we use BART 403

large models. We use Adam as optimizer with a 404

learning rate 1e-5. We use dropout and attention 405

dropout with 0.1 as dropout rate. Also, we use label 406

smoothing with a rate 0.1. Batch sizes are 1024 407
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tokens. Besides, we employ a weight-decay rate408

0.01. All the parameters are manually tuned based409

on the dev performance.410

We train all models on NVIDIA A100 SXM4 40411

GB GPU. We set the max training epoch to be 100412

and select the best performed epoch according to413

dev performance. Training process on each clause414

or whole sequence could be finished within 3 hours.415

For baselines with other data augmentation meth-416

ods, we reran GECA and SCFG on this FunQL for-417

malism of GEOQUERY and these splits with anno-418

tated span trees. That’s why our results are a little419

different from the reported results in the original420

paper. We got similar results with their source code421

and our code on our data, in order to make sure that422

there is no problem with our results and code.423

We got the same denotation accuracy as reported424

by Herzig and Berant (2020), but we reported exact-425

match accuracy on Table 2 for fair comparison.426
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