Under review as a conference paper at ICLR 2026

A LEARN-TO-OPTIMIZE APPROACH FOR
COORDINATE-WISE STEP SIZES FOR QUASI-NEWTON
METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tuning step sizes is crucial for the stability and efficiency of optimization algo-
rithms. While adaptive coordinate-wise step sizes have been shown to outperform
scalar step size in first-order methods, their use in second-order methods is still
under-explored and more challenging. Current approaches, including hypergradi-
ent descent and cutting plane methods, offer limited improvements or encounter
difficulties in second-order contexts. To address these limitations, we first con-
duct a theoretical analysis within the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
framework, a prominent quasi-Newton method, and derive sufficient conditions
for coordinate-wise step sizes that ensure convergence and stability. Building on
this theoretical foundation, we introduce a novel learn-to-optimize (L20) method
that employs LSTM-based networks to learn optimal step sizes by leveraging
insights from past optimization trajectories, while inherently respecting the de-
rived theoretical guarantees. Extensive experiments demonstrate that our approach
achieves substantial improvements over scalar step size methods and hypergradi-
ent descent-based method, offering up to 4x faster convergence across diverse
optimization tasks.

1 INTRODUCTION

Step size is an essential hyperparameter in optimization algorithms. It determines the rate at which
the optimization variables are updated, and greatly influences the convergence speed and stability of
the optimization process. In first-order gradient-based optimization, how to choose an appropriate
step size is well studied: The step size is typically adjusted adaptively using past gradient informa-
tion such as in AdaGrad|Duchi et al.| (201 1)), RMSProp Hinton| (2012), and Adam Kingmal(2015) for
stochastic optimization tasks. These methods have demonstrated significant efficacy across a range
of machine learning applications by dynamically tailoring the update scale for each iteration.

Step size in second-order methods received much less attention thus far. Second-order methods
leverage the curvature information to adjust both the search direction and step size, offering faster
convergence in number of iterations, at the cost of high computational complexity in calculating
the Hessian (or its approximation) [Wright (2006). A natural and common approach for step size
tuning here is line search, which iteratively adjusts a scalar step size along the descent direction
until certain conditions, such as the Armijo condition, are met /Armijo|(1966).

In contrast to scalar step size, we study the more general coordinate-wise step sizes (CWSS) in this
work, which allow for individual variables to have different step sizes. CWSS are beneficial since
different optimization variables may have different sensitivities to the step size; scalar step size is
obviously a special case. They have also been shown to improve convergence in first-order methods
Amid et al.|(2022); Kunstner et al.| (2023)); [Duchzi et al.|(2011)).

In this work, we explore the impact of CWSS in the context of second-order methods, which remains
largely unexplored to our knowledge. We choose the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method [Broyden| (1965)), one of the most widely used second-order optimization methods, as the
backbone method. BFGS belongs to the quasi-Newton family of methods that iteratively update an
approximation of the Hessian matrix using gradient information to reduce the complexity.

Under review as a conference paper at ICLR 2026

We start our study by demonstrating that existing solutions to tune CWSS in first-order methods do
not work well in second-order contexts. The first such approach is hypergradient descent Maclaurin
et al.| (2015); Massé & Ollivier| (2015), which iteratively tunes step sizes using their gradients at
each BFGS step. We show empirically that it provides only marginal gains after the initial few steps
of BFGS. Moreover, cutting-plane techniques, which expand backtracking line search into multiple
dimensions, iteratively refine step sizes within feasible sets narrowed down by hypergradient-based
incisions |Kunstner et al.|(2023)). This method essentially offers an approximation of the Hessian in a
first-order framework, thus complicating its direct application to second-order methods, in which
Hessian approximation is handled by BFGS update, and the step sizes are adjusted to improve
the Hessian approximation. Further, the intricate curvature within the Hessian presents additional
challenges in plane cutting.

Therefore, we explore the learn-to-optimize (L20) paradigm |Andrychowicz et al| (2016) in this
work. L20 replaces handcrafted rules with data-driven machine learning models that can adaptively
learn efficient strategies, tailoring optimization processes to specific problem structures|/Andrychow-
icz et al.|(2016); [ILv et al.| (2017). L20 has shown promising results in first-order optimization
by predicting the optimal step sizes dynamically based on the current optimization state Liu et al.
(2023)); |Song et al.[(2024).

The application of L20 in quasi-Newton methods presents challenges. Whereas in first-order ap-
proaches, the step size primarily regulates the update magnitude, in second-order methods, it also
affects the precision of Hessian approximations Wright (2006). This dual role adds complexities to
step size tuning. Consequently, the unconstrained exploration inherent in conventional L20 makes
convergence and stability harder to achieve within second-order L20 frameworks.

To address these challenges, we provide a theoretical analysis of coordinate-wise step sizes within
the BFGS framework. We begin by outlining essential theoretical requirements for effective CWSS,
aiming to ensure reliable optimization outcomes. These include achieving guaranteed convergence
to a solution, maintaining stable progress towards the optimum, and preserving the strong conver-
gence rates inherent to BFGS method. Guided by these foundational principles, we then derive a
set of sufficient conditions for the CWSS matrix. They effectively define a “safe operating region”,
steering the learning process away from potentially unstable or divergent behaviours for better effi-
ciency. While meeting these sufficient conditions ensures desirable properties like convergence, they
do not determine the optimal strategy for fastest progress. Our L20 approach is therefore designed
to learn the most effective step-size selection strategy within this theoretically defined safe region,
leveraging insights from past optimization trajectories to accelerate performance.

Specifically, we propose a customized L20 model, featuring a LSTM network, to generate CWSS
for BFGS method. Motivated by theoretical analysis, our model takes optimization variables, gra-
dients, and second-order search directions as input. Distinct from many first-order L20 approaches
that utilize longer unrolling horizons |[Liu et al.| (2023), our model is trained with more frequent
parameter updates to better capture the immediate effects of step size tuning in the sensitive quasi-
Newton context. The training objective minimizes the expected objective value at the next iteration,
augmented by a regularization term designed to ensure the learned step sizes adhere to our theoreti-
cal conditions for stability and efficient convergence.

We summarize our key contributions as follows:

1. We are the first to investigate coordinate-wise step size tuning in the context of second-
order optimization methods, specifically the BFGS algorithm.

2. We establish theoretical foundation by deriving sufficient conditions for CWSS in the
BFGS algorithm, ensuring convergence and stability and forming the principled basis for
our L20 approach.

3. We propose a new L20 method to generate CWSS for the BFGS algorithm, integrating
both theoretical principles and adaptive learning to guide the optimization process.

4. We empirically demonstrate the significant advantages of our method through extensive ex-
periments on diverse optimization tasks, including classic optimization problems as well as
a more challenging neural network training scenario. Our approach consistently achieves
substantial speedups, delivering up to 4x faster convergence when compared to classic
backtracking line search and hypergradient descent methods. Notably, the performance ad-

Under review as a conference paper at ICLR 2026

vantage of our method typically becomes more pronounced as the problem dimensionality
increases, highlighting its strong scalability. Furthermore, our method exhibits improved
stability, evidenced by lower variance in performance across multiple runs.

2 PRELIMINARIES

In this chapter, we introduce the basics of second-order optimization methods, with a focus on
BFGS. We show how step size tuning critically affects both the convergence and the quality of
Hessian approximations. Then we establish the key assumptions that will support our analysis of
CWSS in BFGS framework.

2.1 SECOND-ORDER METHODS

Second-order optimization methods, such as Newton’s method |Atkinson| (1991), utilize both gra-
dient and curvature information to find the minimum of an objective function. While first-order
methods typically achieve a sub-linear convergence rate Beck|(2017), second-order methods gener-
ally exhibit a faster, superlinear convergence rate Wright| (2006). In Newton’s method, the objective
function is locally approximated by a quadratic function around the current parameter vector xy:

ay,

9(y) = f(ex) + Vf(ee) (y — o) + 5 W= ax) " Hy(y —), (1
where Hj, is the Hessian matrix and oy is the damped parameter. By minimizing the quadratic
approximation, the update rule for Newton’s method becomes Wright| (2006)):

Tpp1 = T — apH; 'V f ().)

Computing the Hessian is quite expensive and often infeasible for large-scale problems [Pearlmutter,
(1994). Instead, quasi-Newton methods were proposed to approximate the Hessian to be more
affordable and scalable Dennis & Mor¢| (1977); Broyden|(1967). Generally, quasi-Newton methods
maintain an approximation of the Hessian matrix By, ~ Hj, at each iteration, updating it with a rank
one or rank two term based on the gradient differences between two consecutive iterations (Conn
et al.| (1991); Broyden| (1965)). During this process, the Hessian approximation is restricted to follow
the secant equation Wright| (2006):

Bri15k = Yk, 3)

where s = 1 — 2 and y, = Vf(2g+1) — Vf(2x). In the most common BFGS method, the
Hessian approximation By, is updated at each iteration using the formula:

Byskst B yryl
Brt1 =By — k k

“4)

T T, °
s}, Brsg Yi Sk

Although the enrollment of curvature information can greatly assist the optimization process, it
also makes the algorithm more sensitive to the step size selection Wills & Schonl (2018). The step
size influences the update of the Hessian approximation, and an inappropriately large step can lead
to violations of the curvature condition yi s; > 0, potentially resulting in an indefinite Hessian
approximation Wright| (2006). The step size must balance between exploiting the current curvature
information (encoded in Bj) and allowing for sufficient exploration of the parameter space. This
balance is more delicate than in first-order methods due to the adaptive nature of the search direction.

2.2 ASSUMPTIONS

Our objective is to minimize the convex objective function f(z) over z € R™: mingegn f(z). Our
analysis relies on the following standard assumptions regarding the objective function f and the
Hessian approximations Bj. These assumptions are common in optimization literature [Song et al.
(2024); IL1u et al.| (2023)); [Wright| (2006):

Assumption 1. The objective function f is L-smooth, meaning there exists a constant L such that:

IVf(z) = VIl < Lz -yl Q)

Under review as a conference paper at ICLR 2026

Assumption 2. The gradient V f(z) is differentiable in an open, convex set D in R™, and V? f(x)
is continuous at the minimizer x* with V2 f (z*) being nonsingular.

Assumption 3. The Hessian approximation generated by BFGS method is positive definite. Fur-
thermore, there exists a constant M > 1 such that:

COl’ld(Bk) =)\max(Bk)/Amin(Bk) S M7 (6)

where Amin(Br) and Amax (By) are the smallest and largest eigenvalues of By, respectively. By this
assumption we assume the Hessian approximation remain well-conditioned.

Assumption 4. The norm of update direction B, Ivf (xy) is upper bounded by a constant R:
1B 'V f ()| < R (7

This is a standard assumption in the analysis of quasi-Newton methods, as B, Yis maintained
bounded through stable Hessian approximations \Broyden|(1967), and gradients V f(xy) typically
diminish near optimal points, ensuring the update direction remains controlled.

3 COORDINATE-WISE STEP SI1ZES FOR BFGS

In this section, we first analyze the theoretical advantages of CWSS and then explore hypergradient
descent as a practical method for its tuning. However, the limited improvements achieved through
hypergradient descent reveal the challenges of finding effective CWSS, prompting us to consider
alternative approaches. We resort to L20 method that can directly learn the step sizes from data
derived from similar optimization problems. Building on this perspective, we establish sufficient
conditions for effective CWSS that ensure convergence and descent properties, thus laying a solid
foundation for learning-based approaches that can predict optimal step sizes efficiently during opti-
mization.

3.1 GAIN OF COORDINATE-WISE STEP SIZES

To illustrate the potential benefits of CWSS in the BFGS method, let us consider the theoretical
implications of relaxing the constraint of scalar step size. Assume we have identified an optimal
scalar step size, denoted by o, for the k-th iteration. If we allow the step size to be a diagonal
matrix Py, rather than a scalar, the optimality condition of «}, may no longer hold. To explore this,
we can set the coordinate-wise step sizes Py as:

* 1 —
P = oi I = 7By 'V f (), (8)

where vy = diag(V f(z), — ajB;, 'V f(xy))), L is the Lipschitz constant of V f and R is from
Assumption[d] This coordinate-wise step size P, is theoretically guaranteed to perform better than
the scalar step size a7

flxe — PeB 'V far)) < for — af By 'V f ()

1 ©)
= 5p IV (@r = i BV f (k) © BV f ()

This demonstrates that CWSS in the BFGS method can yield a more substantial decrease in the
objective function than a scalar step size. A more detailed analysis is provided in Appendix

3.2 NUMERICAL ANALYSIS OF COORDINATE-WISE STEP SIZE: A HYPERGRADIENT
DESCENT METHOD

Building upon section[3.1} we investigate hypergradient descent on coordinate-wise step size matrix
Py,. The update rule with CWSS takes the form:

Tpp1 = o — PuBy 'V f (k). (10)
We initialize P as the identity matrix I and then perform hypergradient descent on P, using the

gradient of f(zy1) with respect to P} to obtain P/

Of (x, — PiB 'V f (1))
opP; ’

Pt =Pi—n (11)

Under review as a conference paper at ICLR 2026

Table 1: Objective value of the least square problem with hypergradient descent (HGD) on P, for
different BFGS iterations.

HGD (i) 1 5 10 20
BFGS (k)
1 752938 632887 5.22274 4.32551
2 1.97834 195869 1.93509 1.89111
3 0.88499 0.88143 0.87703 0.86839
4 0.44807 0.44746 0.44670 0.44519
5 0.25669 0.25658 0.25644 0.25617

where 7) is the step size for the gradient descent on Py. After T iterations, we employ P! in the
update rule[I0}

We conduct experiments on the least squares problem to assess the effectiveness of hypergradi-
ent descent applied to Pj. Each BFGS iteration includes 20 steps of hypergradient descent, after
which the most recent P, identified by hypergradient descent is used in BFGS update. Table [I]
presents the experimental results, where each row shows the objective value within one BFGS iter-
ation across different hypergradient descent steps. The results demonstrate that while hypergradient
descent shows some improvement over standard BFGS, the benefits become increasingly marginal
as iterations progress. This implies that finding an effective P is inherently challenging.

This observation motivates exploring methods that can provide meaningful improvements without
incurring significant computational costs. This leads us to consider a question: Can we leverage the
patterns in optimization trajectories to generate effective step sizes directly? In many optimization
scenarios, similar patterns of gradients and Hessian approximations may warrant similar step size
adjustments. If these patterns could be learned from data, we might be able to bypass the iterative
computation entirely. L20 has shown strong potential in capturing complex patterns and relation-
ships, making it suitable for tasks like predicting step sizes based on optimization state features |Liu
et al.| (2023). By leveraging a neural network, L20 could potentially map the current optimization
state to CWSS directly. This approach would allow immediate predictions of effective step sizes
without iterative refinement. Before detailing our L20 model, we first establish theoretical condi-
tions for CWSS in BFGS to ensure desirable properties like convergence and stability, which will
guide our L20 design.

3.3 SUFFICIENT CONDITIONS FOR COORDINATE-WISE STEP S1ZES WITH THEORETICAL
GUARANTEE

Effective CWSS are crucial for ensuring that each BFGS iteration leads towards a solution. Rather
than allowing the L20 model to determine these step sizes arbitrarily, which could lead to unpre-
dictable behavior, we aim to unbox this process through theoretical guidance. This section lays the
groundwork by identifying sufficient conditions that CWSS must satisfy for provable convergence
and stability. By establishing these foundational principles, we provide a systematic basis for con-
straining and guiding L20, ensuring adaptive step-size mechanisms enhance BFGS while preserving
its desirable characteristics.

To ensure CWSS are theoretically sound and practically beneficial, we propose the following re-
quirements:

1. (Convergence Guarantee) The generated sequence xj, converges to one of the local mini-
mizers of f.

2. (Stability Guarantee) Each update moves towards the minimizer.

3. (Convergence Rate Guarantee) The method achieves superlinear convergence.

The first requirement, ensuring the generated sequence converges to a local minimizer, establishes
a fundamental guarantee of reliable final outcomes, extending the concept of Fixed Point Encod-
ing Ryu & Yin| (2022)). The second requirement, instead, shifts focus to the optimization process
itself, emphasizing directional accuracy to ensure stable progress by mandating that each update con-
sistently moves towards the minimizer, thereby preventing detours or excessive zigzagging. Finally,
the third requirement addresses convergence speed, aiming to preserve the characteristic superlinear

Under review as a conference paper at ICLR 2026

convergence rate of the BFGS method [Wright| (2006), a key advantage we seek to maintain within
our L20 framework.

We now present three theorems that provide sufficient conditions for coordinate-wise step sizes to
satisfy the proposed requirements. The proofs are provided in Appendix [A]

Theorem 1. Ler {x}} be the sequence generated by equation If the coordinate-wise step size
Py, satisfies

«
Pyl £ ———=— (12a)
1Pl = T,
B—l 2

= BV)T B,V S (o)
for certain 0 < a < 2 and B > 0, where L is the Lipschitz constant of gradients and By, is
the approximate Hessian generated by BFGS, then the sequence of gradients converges to zero:
limg o0 |V f(zg)]]2 = 0.

Remark. Theorem|l|establishes sufficient conditions for gradient convergence while maintaining
substantial implementation flexibility. The theorem’s bounds on Py are particularly accommodat-
ing: the lower bound of its minimal eigenvalue is allowed to be close to zero through appropriate
selection o ! B, while setting o near 2 allows the upper bound of the maximal eigenvalue to approach
2/(L|| B, " ||2), which remains strictly less than 2.

Theorem |I| suggests a pragmatic simplification: constraining the elements of the coordinate-wise
step size to the interval between 0 and 2 should be sufficient for practical implementations. More-
over, theorem|l|indicates that P, should be computed as a function of both the gradient V f(z;,) and
Hessian approximation By, as evidenced by the presence of both gradient and Hessian information
in bounds. Notably, these results extend beyond convex optimization, requiring only L-smoothness
of the objective function rather than convexity.

Theorem 2. Let f : R™ — R be a twice continuously differentiable convex function that has
Lipschitz continuous gradient with L > 0. Let x* denote the unique minimizer of f. Suppose that
{By} is a sequence of approximate Hessians such that they are uniformly lower bounded: vI < By,
Jfor certain constant vy > 0. Let { P, } be a sequence of diagonal matrices with entries py, ; satisfying:

2
0< prs < % (13)

Define the iterative sequence {x}} by equation[I0} Then, the sequence {x},} satisfies:
[@p1 — 2" < |lze — 27

Remark. Since By, captures the average Hessian behavior between consecutive points xi_q and
Ty, its eigenvalues lie within the bounds of V2f(x), yielding v < L. This relationship reveals
that the seemingly restrictive upper bound V for py.; simplifies to 2. This aligns with Theorem
[1] as both theorems suggest the coordinate- wzse step sizes should lie within the interval between 0
and 2. However, theorem 2| makes an additional assumption of convexity, which enables a stronger
guarantee, i.e., each iteration strictly decreases the distance to the optimum.

The theorem can be reduced to classical optimization methods in certain scenarios. For instance, set-
ting By, = I and P, = ol with o < 2/L yields the standard gradient descent method with constant
step size. Moreover, the proof of theorem@] indicates that optimal Py values should minimize the
spectral radius of T}, = I — P, B, LH,. As the algorithm progresses (k — c0), By, approaches Hj,,
suggesting that P should converge to the identity matrix. This convergence behavior is formally
established in the subsequent theorem.

Theorem 3. Let x* be a local minimizer where the Hessian matrix, A = V2 f(x*), is symmetric
and positive definite. Assume that the Hessian is Lipschitz continuous in a neighborhood of x*, i.e.,
there exist constants K > 0 and p € (0,1] such that for all x in this neighborhood: ||V?f(z) —
Al < K||lx — x*||P. If the sequence {x},} generated by equation |10| converges to x* such that
the summability condition Y.~ ||z — x*||P < oo is satisfied, and if the sequence of coordinate-
wise step size matrices { Py} converges to the identity matrix I, then {x} converges to x* Q-
superlinearly.

Under review as a conference paper at ICLR 2026

Theorem [3|provides crucial insight into the asymptotic behavior of coordinate-wise step sizes. When
the iterates are far from the optimum, coordinate-wise step sizes can accelerate convergence by
adapting to the local geometry of the objective function. However, as the algorithm approaches
the optimum, the BFGS method naturally provides increasingly accurate Hessian approximations.
At this stage, additional coordinate-wise scaling becomes unnecessary and could potentially inter-
fere with the superlinear convergence properties of BFGS. It suggests that adaptive schemes for Py
should be designed to gradually reduce their influence as the optimization progresses, eventually
allowing the natural BFGS updates to dominate near the optimum.

4 120 MODEL

Building on the theoretical foundations established in the previous section, we now present our L20
model for CWSS tuning in BFGS optimization. Our design is guided by the derived theoretical
conditions to ensure stability and convergence, while leveraging neural networks to adapt to the
local optimization geometry.

We propose an L20 method using an LSTM (Long Short-Term Memory) network to predict
coordinate-wise step sizes [Liu et al.|(2023)). The architecture is structured as follows:

hi, 0 = LSTM(z1,, V f (1), By 'V f (1), h—1, Prs™),
Pk = MLP(0g, dmLp),
Pk = dlag(2g(pk))a

where, hj is the LSTM hidden state, initialized randomly for the first iteration, and oy, is the em-
bedding output from the LSTM network. The parameters of the LSTM and MLP (Multi-Layer
Perceptron) networks are denoted by ¢rstv and ¢wmpp, respectively.

A key aspect of our model’s design is the enforcement of theoretically-informed bounds on the
predicted step sizes. As established in Theorem [I] and [2] specific bounds on P, are sufficient to
guarantee convergence properties. Ideally, these theorems suggest bounds dependent on quantities
like the Lipschitz constant L or the Hessian conditioning . However, these parameters are often
unknown or computationally prohibitive to estimate accurately during optimization. Consequently,
as a practical and robust simplification suggested by the remarks , we constrain the elements of
Py, to lie within the interval between O and 2. This a deliberate design choice to prioritize robust
convergence. By using a scaled sigmoid activation function to enforce range, we compel our L20
agent to operate within a region that is guaranteed to be stable for any function according to our
analysis. While this constraint on the sufficient conditions may limit discovering a more aggressive,
potentially faster-converging step-size policy, it is a crucial trade-off. Our design explicitly priori-
tizes stability to prevent catastrophic failures and ensure our method is reliable across a wide range
of problems. Within this theoretically-defined safe operating region, the L20 model is then tasked
with learning the more nuanced, data-driven strategy for selecting optimal CWSS that accelerate
convergence.

To enhance scalability and parameter efficiency, we employ a coordinate-wise LSTM approach,
where the same network is shared across all input coordinates, as suggested in|/Andrychowicz et al.
(2016); [Lv et al.| (2017). This design allows the L20 method to adapt to problems of varying
dimensionality without an increase in the number of parameters.

Training Process The L20 model is trained on datasets of diverse optimization problems, al-
lowing it to learn common structures and behaviors. The training process involves using the L20
model to solve these problems while simultaneously updating its own parameters. For each training
instance, an optimization trajectory is generated starting from a random initial point zy. At each iter-
ation k of this trajectory, the L20 model predicts the step size Py, which is used to compute the next
iterate xy1. Immediately after this step, the network’s parameters (¢ stm and ¢yppp) are updated
via backpropagation based on the resulting objective value f(zx+1). This meta-update treats the
optimizer’s state—including the gradient V f(;) and the search direction By 'V f ('})—as fixed
inputs. The gradient for the update flows from the loss back through the predicted step size P}, into
the network parameters. Unlike many first-order L20 methods that rely on longer unrolling horizons
Andrychowicz et al.| (2016); [Song et al.| (2024); [Lv et al.| (2017), our model updates its parameters
after every single optimization step. We deliberately use this frequent, single-step update strategy

Under review as a conference paper at ICLR 2026

Least Square 1o Logistic Regression Simple CNN Training
w] N\ —— BFGS-HGD —+— BFGS-HGD o ——
\ BFGS-LS 0s \ BFGS-LS LN R S RO
10 \.\\\' -+ BFGS-L20 o b -+~ BFGS-L20 A —— SGD
g N < S | BFGS-LS
5 10 N =1 o 10
S o N 9 2 N -+- BFGS-L20
a 10° N o £ 107 N < adam
o * © ° *f.~ shampoo
Loz o \ 0.1 F 10 = P
. = 1071
10-15 \\ \' e *‘
0 20 20 60 80 004 0.0 25 5.0 75 100 125 150 175 0 25 50 75 100 125 150 175 200
Iteration k Iteration k Iteration k
Figure 1: Least Squares. Figure 2: Logistic Regression. Figure 3: Simple CNN.
S0 Log-sum-exp,d = 100 Log-sum-exp,d = 250 Log-sum-exp,d = 500
x 1
—— BFGS-HGD | "' 4 —— BFGS-HGD | 4¥10'|¢ —+— BFGS-HGD
BFGS-LS \ BFGS-LS Ix10t “’ BFGS-LS
-+~ BFGS-L20 2x100 -k -+ BFGS-L20 \ -+ BFGS-L20
.GEJ g ‘\\‘\ _02) 2x10% \
© k9] 1) k9] \
@ 9] \ @ \
S 1 = \ oy \
o o o)
10! i \ 1
N 10! Y \
* \\ \ \\
B e e e e s
0 10 20 30 40 50 0 20 40 60 80 100 120 0 20 40 60 80 100 120 140 160
Iteration k Iteration k Iteration k

Figure 4: Log-sum-exp functions with different dimensions.
because it is uniquely suited to the quasi-Newton context. In this setting, the step size Py has a sen-
sitive, dual impact: it simultaneously influences both the next iterate x4 and the updated Hessian
approximation By ;. The immediate feedback provided by single-step updates is critical for the
L20 model to effectively learn this complex relationship.

The loss function for training the L20 model is designed to minimize the objective function value
at the next iteration, augmented by a regularization term:
: 2
min - Epoz[f(ze)] + M Pe — 17 (14)
¢LSTM7¢MLP

where F represents the distribution of optimization problems used for training and A is the regular-
ization parameter. The regularization term ensures that as we approach the optimum, the coordinate-
wise step sizes converge toward an identity matrix, aligning with the insight from Theorem 3]

In BFGS method, the step size can be viewed as a correction to the Hessian approximation. In early
optimization stages, the objective value primarily drives the loss function, and the Hessian approx-
imation may lack precision. Thus, an adaptive CWSS is necessary to enhance the accuracy of the
Hessian approximation based on the current state. However, as the optimization nears convergence,
the Hessian approximation becomes more accurate, shifting the influence on the loss function to the
regularization term. At this point, the CWSS converge to the identity matrix, as further corrections
to the Hessian approximation are no longer required.

5 EXPERIMENTS

We employed the Adam optimizer as our meta-optimizer to train our L20 model. For classic op-
timization problems, the training dataset consisted of 32,000 optimization problems with randomly
sampled parameters, while a separate test dataset of 1,024 optimization problems was used for eval-
uation. Our L20 method (BFGS-L20) was benchmarked against two baselines: Backtracking line
search (BFGS-LS) and hypergradient descent (BFGS-HGD). All methods were tuned by experi-
menting with various parameter settings, and the best-performing configurations were selected for
comparison. More details are provided in Appendix B

Least Squares Problems We first evaluate our L20 method on the classic least squares problems.
The objective function is defined as: min,, f(z) = || Az — b||?, where A € R?°0%%00 and p € R5%0
are randomly generated using a Gaussian distribution.

Figure [T presents the convergence behavior for the least squares problems, where the optimization
process was terminated when the gradient norm fell below 10710, As depicted in the figure, BFGS-

Under review as a conference paper at ICLR 2026

Table 2: Wall-clock time analysis for the log-sum-exp problem (d = 500).

Method Runtime per iteration (s) Total time to convergence (s)
BFGS-L20 (ours) 0.109 5.79
BFGS-LS 0.174 45.11
BFGS-HGD 0.089 23.90

HGD offers a marginal improvement over BEGS-LS. In contrast, our proposed BFGS-L20 method
demonstrates a significant reduction in convergence iterations. The nearly linear trajectory (on a log-
scale for the objective value) of our BFGS-L20 method is consistent with superlinear convergence.

Logistic Regression Problems Next, we considered logistic regression problems for binary clas-

sification. The objective function is given by: min, f(z) = L > [b;log(h(alz)) + (1 —
b;)log(1 — h(al'z))] + p||z||3, where m = 500, {(a;,b;) € R?° x {0,1}}", are randomly
generated, h(z) = H% is the sigmoid function.

Figure 2] illustrates the performance on logistic regression problems. While BFGS-HGD achieves
a slightly lower objective function value than BFGS-LS during the initial iterations , both base-
line methods exhibit similar overall convergence iteration counts, reaching the plateau around 15
iterations. In contrast, our proposed BFGS-L20 method shows notably faster convergence and con-
sistently maintains a lower objective function value throughout the optimization process.

Log-Sum-Exp Problems For the log-sum-exp function, the objective function is: min,, f(z) =
log (Z:’;l e“iTm_bi> , where m = 500, {(a;,b;) € R? x R}™ .

Figure[d]displays the results for log-sum-exp problems across different dimensions (d=100,250,500),
revealing a clear trend: as dimensionality increases, the performance advantage of our BFGS-L20
method becomes more pronounced. For d = 500, BFGS-L2O converges in approximately 40 itera-
tions, while the baselines take around 150-160 iterations—a nearly 4-fold improvement. In addition,
our method achieves consistently tighter variance across all dimensions, indicating greater stability.
To confirm these gains translate to practical speedups and address the computational overhead of
our L20 model, we performed a wall-clock time analysis for the d = 500 case. As shown in Ta-
ble [2} the per-iteration runtime of BFGS-L20 is competitive, confirming the LSTM’s overhead is
minimal. Crucially, the drastic reduction in iterations results in a total convergence time that is
4.1x faster than BFGS-HGD and 7.8x faster than BFGS-LS. This analysis validates that our method
delivers substantial real-world performance gains.

Simple CNN Training To assess the performance of our method on a more complex, non-convex
optimization problem, we trained a simple CNN on the MNIST dataset. The detail setting can
be found in appendix [B| It is worth noting that while second-order methods like BFGS are less
commonly employed for training deep neural networks due to computational costs and challenges
with sophisticated landscapes, our aim here is specifically to test the adaptability and robustness of
BFGS-L20 under such complex, stochastic conditions. To provide a more comprehensive compar-
ison, we benchmarked our method against not only BFGS-LS and SGD but also the widely-used
first-order optimizer, Adam [Kingmal (2015)), and a modern quasi-Newton method, Shampoo |Gupta
et al.[(2018)). The training loss curves are presented in Figure [3} In this challenging scenario, our
proposed BFGS-L20 method demonstrates substantially superior performance. In stark contrast,
Shampoo’s convergence stalled early at a high loss value, failing to effectively optimize the net-
work on this task. These results highlight the efficiency and stability of our approach, even in a
high-dimensional, non-convex setting where traditional and modern baselines struggle.

6 CONCLUSIONS

This work investigated the application of coordinate-wise step sizes in the BFGS method. Through
theoretical and numerical analyses, we examined the associated benefits and complexities. We rig-
orously derived sufficient conditions for coordinate-wise step size designed to enhance convergence
properties. Building on this theoretical foundation, we developed a L20 model that effectively
predicts these step sizes. Experimental results demonstrate that our proposed L20 approach signifi-
cantly outperforms standard baseline methods in both convergence speed and stability.

Under review as a conference paper at ICLR 2026

Reproducibility Statement We have made a concerted effort to ensure the reproducibility of our
work. For our theoretical contributions, all key assumptions are explicitly stated in Section[2.2], and
we provide detailed, step-by-step proofs for all theorems in Appendix [A] To facilitate the reproduc-
tion of our empirical results, Appendix [B| offers a comprehensive description of the experimental
setup. This includes details on the computational environment, L20 model training hyperparam-
eters, the exact procedures for dataset generation, the specific configurations used for all baseline
methods, and the complete architecture of the CNN model used in our non-convex experiment.

REFERENCES

Ehsan Amid, Rohan Anil, Christopher Fifty, and Manfred K Warmuth. Step-Size Adaptation Using
Exponentiated Gradient Updates. arXiv preprint arXiv:2202.00145, 2022.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to Learn by Gradient Descent by Gradient
Descent. In NeurIPS, volume 29, 2016.

Larry Armijo. Minimization of Functions Having Lipschitz Continuous First Partial Derivatives.
Pacific Journal of Mathematics, 16(1):1-3, 1966.

Kendall Atkinson. An Introduction to Numerical Analysis. John wiley & sons, 1991.

Amir Beck. First-Order Methods in Optimization. SIAM, 2017.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.

Charles G Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations.
Mathematics of Computation, 19(92):577-593, 1965.

Charles G Broyden. Quasi-Newton Methods and Their Application to Function Minimisation.
Mathematics of Computation, 21(99):368-381, 1967.

Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Convergence of Quasi-Newton Matrices
Generated by the Symmetric Rank One Update. Mathematical Programming, 50(1):177-195,
1991.

John E Dennis and Jorge] Moré. A Characterization of Superlinear Convergence and Its Application
to Quasi-Newton Methods. Mathematics of Computation, 28(126):549-560, 1974.

John E Dennis, Jr and Jorge J Moré. Quasi-Newton Methods, Motivation and Theory.
SIAM Review, 19(1):46-89, 1977.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine Learning Research, 12(7), 2011.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned Stochastic Tensor Opti-
mization, March 2018. URL http://arxiv.org/abs/1802.09568. arXiv:1802.09568
[cs].

Geoffrey Hinton. Neural Networks for Machine Learning, Lecture 6, 2012.
Diederik P Kingma. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

Frederik Kunstner, Victor Sanches Portella, Mark Schmidt, and Nicholas Harvey. Searching for
Optimal Per-Coordinate Step-Sizes with Multidimensional Backtracking. In NeurIPS, volume 36,
pp. 2725-2767, 2023.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, and HanQin Cai. Towards Constituting
Mathematical Structures for Learning to Optimize. In ICML, pp. 21426-21449. PMLR, 2023.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning Gradient Descent: Better Generalization and
Longer Horizons. In ICML, pp. 2247-2255. PMLR, 2017.

10

http://arxiv.org/abs/1802.09568

Under review as a conference paper at ICLR 2026

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-Based Hyperparameter Optimiza-
tion through Reversible Learning. In ICML, pp. 2113-2122, 2015.

Pierre-Yves Massé and Yann Ollivier. Speed Learning on the Fly. arXiv preprint arXiv:1511.02540,
2015.

Barak A Pearlmutter. Fast Exact Multiplication by the Hessian. Neural Computation, 6(1):147-160,
1994.

Anton Rodomanov and Yurii Nesterov. Greedy Quasi-Newton Methods with Explicit Superlinear
Convergence. SIAM Journal on Optimization, 31(1):785-811, 2021.

Ernest K Ryu and Wotao Yin. Large-Scale Convex Optimization: Algorithms & Analyses via Monotone Operators.
Cambridge University Press, 2022.

Qingyu Song, Wei Lin, Juncheng Wang, and Hong Xu. Towards Robust Learning to Optimize with
Theoretical Guarantees. In CVPR, pp. 27498-27506, 2024.

Adrian Wills and Thomas Schon. Stochastic Quasi-Newton with Adaptive Step Lengths for Large-
Scale Problems. arXiv preprint arXiv:1802.04310, 2018.

Stephen J Wright. Numerical Optimization, 2006.

11

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 PROOF OF THEOREMII]

Proof. Consider a quadratic function

Qx) = f(y) + VW) (¢ —y) + 5@ —y) BPy (~). (1)

Basically, we use this quadratic function as a local approximation of f(x) around y, and we think
the minimum of this quadratic function is a better solution than y. This can work only if Q(x) is an
overestimation of f(z). Indeed, we can show that:

Q)
=) + VW) (@~ y) + G o) BP @~)
1

«
> fy) + VY (@ —y)+ §m”$ —yl3
> f0)+ VW) (@~ 9) + 2 e~ ol
> f(x),

where the second inequality uses the condition || Pg||2 < ﬁm and the third uses the assumption

of L-smoothness.

Plugging v = y — P, B;; vy (y) into the inequality, we get the Armijo condition:

I) = (1= VW) BV () > [y~ BB V(). (16)

Letzj, = yand w511 =y — Py B}, 'V f(y), we have

F@n) < fan) = (1= SV @) PuBy V()

a, (Vf(xe) By 'V f ()
< flax) =1 -3)8 ||BkVJf($k)||5
af

= flar) = (B - 7)0082 Ok IV f ()13,

where 0y, is the angle between V f(zy) and By, 'V f(x5). In the second inequality, we use the

T np—1
condition that Apax (Pr) > 8 Vfu(g;) 1 5 ;(Tj)ﬁl(;k)

Following the proof of Theorem 3.2 in Wright (2006)), summing over all iterations, we have:

k
Fli) < Fwo) — (8= 22)Y cos? 0V f () a7)
=0

Note that f(z¢) — f(xk+1) is lower-bounded by 0 and upper-bounded by f(xo). Hence when k
approaches infinity, we have:

k
z:cos2 0; |V £ ()15 < o0, (18)
i=0
which implies
cos” O ||V f(zx) |3 — 0. (19)

Under review as a conference paper at ICLR 2026

Since || Bk ||2|| By |2 < M,

Vf ()" B, 'V f ()
IV F(@i)ll2)| By 'V f ()2

Xon |V £ ()

>_"k 00000000
NV f () |15
k

_ 1/IBile
s
1

> 5

cos b, =

Then we have
Jim [V £(zx)]> = 0. (20)

A.2 PROOF OF THEOREM[2|

Proof. Let e, = x;, — x* denote the difference between the current iterate and the minimizer. We
can write the update rule as:
—1
€k+1 = €k _PkBk Vf(xk) (21)

Using the mean value theorem for vector-valued functions, We can write the gradient as:

Vf(zr) = Vf(zr) = Vf(z")

1
:/ V2f(1'*—|—t6k)€kdt
0

= Hpey
where:)
H;, = / VQf(a:* + teg)dt. (22)
0
Since f is L-smooth , we have:
V2f(x) < LI.

Note that Hy, is nothing else but the average of the Hessian matrix along the line segment between
x* and x. Then we have:

Hy, < LI.
Substitute V f(x) = Hyey into the error update, we have:
ert1 = ex — PuBy ' Hie
= (I — P.B;, ' Hy)ey,.

Consider the matrix T, = I — P B, ! H;,, we will analyze the spectral radius of it. The upper bound

of the eigenvalue of T}, is 1, since P is a diagonal matrix with positive entries py, ;, and B,;l and
H;, are positive definite matrices. The lower bound of the eigenvalue of T}, is:

Amzn(Tk) =1-)\maz(Pk)Amaz(B]Zl)/\maz(Hk)

>1- 2%% =-1
Hence the spectral radius of T} is less than 1. Then we have:
lertallz < I Tkll2llexll2 < llex 2. (23)
O

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM[3]

Proof. The proof is structured as follows. First, we state the necessary and sufficient condition
for Q-superlinear convergence from Dennis & Mor¢| (1974), adapted to our update rule. We then
decompose this condition into two terms. The remainder of the proof is dedicated to showing that
each of these terms converges to zero under our assumptions.

A foundational result from the Theorem 2.2 inDennis & More€| (1974)) states that an iterative method

of the form xy11 = x), — (B") =1V f(z},) converges Q-superlinearly to z* if and only if:

Bff — A
lim WBE = Asell _ 24)
k—o0 ||Sk||
where sy = x;+1 — xk. In our framework, the update step is given by s = kaBkﬂVf(xk). This

implies that our effective Hessian is Bsz = BrP, ! Thus, to prove Q-superlinear convergence, we
must demonstrate that:

-1
I(BP = A)sill _ 05

lim
k— o0 ||Sk||
We add and subtract By, inside the norm and apply the triangle inequality:
I(BePi = A)sill = [|(Be Pyt — Bi + By, — A)si|
< |IBr(Py ' = Dsill + By — A)sil|
Dividing by ||s|| (for k large enough such that zj, # z*), we get:
I(BePy ' = Asll _ 1Be(P " = Dsell | (B — A)si

< (26)
sl sl skl

The proof of equation 23] reduces to showing that both terms on the right-hand side of equation [26]
converge to zero.

The first term is bounded as follows:
[Br(Py = Dsi

skl

< [|Billll Pyt =1 27)

By the theorem’s assumption, limy_,, P, = I. Since matrix inversion is a continuous operation on
the space of invertible matrices, this implies limy_, o Py L= =1 = I. Therefore, limg_ o0 ||Pk_ -
I|| =0.

Furthermore, the sequence {|| By — Al|as} converges, as shown in the proof of Proposition 4] This
implies that {||Bx, — A||as} is bounded, and consequently, the sequence of matrix norms {||Bg||} is
also bounded. Since we have the product of a bounded sequence and a sequence converging to zero,
the first term converges to zero:

Bu(P -1
lim | Br. (P,)sk|| _0 (28)
k00 llskll

For the second term, we now show that limy_, W = 0. This relies on the properties of

the BFGS update formula itself. We define a weighted matrix norm ||Q||as = ||M QM ||, where
M = A=Y2 and || - || is the Frobenius norm. We carry out the proof process by splitting it into
several lemmas.

Lemma 1. Let £}, be a symmetric matrix and 3;, be a non-zero vector. Let EZ'ff‘f be the updated

error matrix from the BFGS formula in the ideal quadratic case (i.e., where i, = 51,). Then:

| Ex55]2

IEZSE = I1BklF — =
e I5x[>

(29)

Under review as a conference paper at ICLR 2026

=z =T
Proof. The proof relies on geometric properties of the update. Let Py = l‘s;% be the orthogonal
projector onto the span of 5. One can show that the updated error matrix Eg‘f‘li has two key proper-
quad —

ties: (1) it annihilates the step direction, £ e+15k = 0, and (2) its action on the subspace orthogonal
to 5y is the same as the old error matrix, E{\'{ (I — P;) = Ey(I — P,). Using the Pythagorean
theorem for the Frobenius norm, we have:
|BESIE = 1B P + | RS (T — Pl
=0+ [|Be(I = P)|F = | Eell7 — | ExPs || %
I Exsic |l

kSk|
2 O

”gk

The result follows from noting that || Ex, Ps||% =

Lemma 2. Let By 1 = E,fo + Ay, where Ay, is the perturbation arising from the non-quadratic
term €, = Y — Si. Under the theorem’s assumptions, for sufficiently large k, there exists a constant
C > 0 such that:

[[€xl
15kl

[Akllr <C (30)

Proof. The perturbation is given by Ay = Ep 1 — ng‘;. From the BFGS update formula, this
simplifies to:

L= RO Sk

urse skl

€1y

Substitute §, = 3; + €. The denominator becomes 37 5, = ||3||%> + €- 3. As k — oo,
lexll/lIsell — 0, so for large k, we have |ef 5k| < ||éllllsk|l < 3[5k/|?>. This guarantees the
denominator is positive and bounded below by 1 1|5 /.

Using a common denominator, the numerator of Ay, is ||5x||?(51 + €)(5r + &) — (|[5x||* +
€F'51,)515) . Expanding and simplifying yields:

Num(Ag) = ||5k||*(3kér + €Sy + €xey) — (€F 51)SkSh (32)
Taking the Frobenius norm and using the triangle inequality:

INum(Ag) |7 < (5%l 2l5kl1E]| + l€xl®) + el lSelll5el? = 315kl el + O(le 1)

Dividing the bound on the numerator by the lower bound on the denominator gives:

3|552 1€k + - - - é &l \?
oule < Bl voc ol o (1)
315kl 15| 15|
Since ||€||/||Sk|| — O, for some constant C, the bound holds. O

Lemma 3. Under the theorem’s assumptions, for any symmetric matrix By, the updated matrix
By 41 satisfies:

1Brsr — Allar < [(1— a02)/? + Crop] By — Allar + Caon (33)

for some positive constants C1, Ca, where o, = max{||xg+1 — «*||P, ||z — 2*||P}, « € (0,1] isa
constant, and
M(B, — A
1Br — Alla[|M =]| 7

Proof. We start with the decomposition Ej; = E‘Z‘fll + Ay, and take norms:

1Berillr < IESSF + [Aklle (35)

Under review as a conference paper at ICLR 2026

Using Lemmall] this becomes || Ej41]r < (1 — 07)"/2| Ex||r + || Ag||p. From Lemmal[2]and the
Lipschitz assumption (|| ||/[|5%|| < const - o), we get:

|Ers1llr < (1= 032 Ex||r + Coy, (36)

Let ¢y, = | Ex||7 = || Br — Al|ar. We have shown ¢y 1 < ¢ + Coy,. Since Y o1, < 00, it follows
that the sequence {¢y } is bounded. Let P be an upper bound for {¢y }. We can artificially introduce
a ¢y, term. For any C7 > 0:

Cop = Cropdr + (C — Crop)ox 37

The term (C — C ¢) is bounded, say by C%, since ¢y, is bounded. So, (C' — Cy ¢y)or, < Choy. Let
Cy = max(C, CY).

Gri1 < (1= 01) 201 + Crondn + Caop = (1= 092 4+ Cron) 61+ Cro (38)

The value « from the original lemma statement can be taken as 1. O

Lemma 4. Let {¢} and {01} be sequences of non-negative numbers such that ¢+1 < (1+0y) P+
b and Y7~ 0 < o0o. Then the sequence {¢y} converges.

Proof. We first show that {¢y.} is bounded. Let i, = [}, "(1+4;). Since 3 6; < oo, the infinite

product [[(1+4 6;) converges, which implies that the sequence of partial products {t,, } is bounded.
Let o = sup,,, 4m < oo. From the given inequality, we have ¢y 1 < (1 4 0x)¢px + J5. Dividing by
k1 = (Ll + dx) gives:

Prtr _ (L+0k)dr O _ Pk Ok

< = (39
Pt~ k(L4 0k) peer e et
Since py > . This yields:
b < b i (40)
Hr41 HE
Summing this relation from k£ = 0 to m — 1:
fm < £, Z 5 (1)

L

Since Y d; < oo, the right-hand side is bounded by some constant C. Thus, ¢,, < p,C < pC,
which shows that {¢} is a bounded sequence.

Now, we show that {¢;} has a unique limit point. Let ¢,y = liminfy .o ¢ and ¢y =
lim sup,_, o, ¢r. By definition, ¢jpr < Poup. We must show ¢gyp < ¢ipnp. Unfolding the re-
currence for j steps from an index k gives:

k+j—1 k+j—1 k+j-1
by <o [(1+6) Z & I a+a) (42)
i=k l=i+1

Taking the limit superior as 7 — co on both sides:

<z>sup<¢k1‘[1+6)+> 6] @+6) (43)
1=k 1=k l=i+1

This inequality holds for all k. Now, we take the limit inferior as £k — oco. Since) Ji < oo, we
have limy,_, o [[, (1 + 8;) = 1 and limy_,o0 > 5. ; = 0. This yields:

Gsup < (hm 1nf Or) - 1+0=ins (44)

Since ¢sup < Ging and Ging < Pgup, We must have g, = ¢inys. Therefore, the sequence {¢x}
converges. O

Under review as a conference paper at ICLR 2026

I(Bx—A)sill _
skl)

Proposition 4. Under the theorem’s assumptions, limy,_, o,
Proof. Let ¢, = || By — Al ;. The inequality from Lemmal[3|is of the form ¢41 < (1+Cioy)¢r+
Ca0y. Let 0 = max{Cioy, Caoy}. Since Y o < 00, we have Y §; < co. The inequality can
be written as ¢p+1 < (14 0x)Pr + k. By Lemma we conclude that the sequence of error norms
{||Bx — Al|as} converges.

Using the inequality (1 — 2)'/2 < 1 — z/2 for € [0, 1], Lemmal3| gives:

ab?
[Bus = Al < (1= 258} 150 = Al + (o) @)
Rearranging the terms, we have:
ab?
— 1Bk = Allar < (1Br = Allar = [|Brt1 = Allar) + O(o) (46)
Summing both sides from £ = 0 to V:
0o N
3 > 6071Br — Al < (I1Bo = Allwr — | Bysa — Alla) + Y Olow) A7)
k=0 k=0

As N — oo, the right-hand side is bounded because {|| By — Al/as} converges and Y O(oy) is
finite. Thus, the series on the left must converge:

ST G1IBy — Allar < o0 (48)
k=0

Since the series converges, its general term must approach zero: limy_,o0 03 || B — Al|am = 0. Let
L = limg 0 || Br — Al|as. We consider two cases for L.

» Case 1: L > 0. Since the sequence {|| By — A| s} converges to a positive number, it is
bounded away from zero for large k. For the product 62| By, — Al| s to converge to zero,
we must have limy_, oo 0% = 0, which implies limg_,, 0 = 0.

» Case 2: L = 0. In this case, limg_, || Bx — Al|p = 0.

From the definition of 6y, we have ||M(By — A)sillr = 0k - ||Bx — Allar - || M~ tsg]|#. By
equivalence of norms in finite-dimensional spaces, there exists a constant C' such that:
[(Br = A)skl| < C -0k - || Br — Allas - [|skll
Dividing by [|s]|:
(B — A)skl
sl
We analyze the limit of the right-hand side. In Case 1 (L > 0), we have 0, — 0 and || B — A||r»r —
L (bounded). Thus the product converges to zero. In Case 2 (L = 0), we have ||By — Aljps — 0

and 0y, is bounded (as 0 < 6 < 1). Thus the product also converges to zero. In both possible cases,
the right-hand side converges to zero, which proves the proposition. O

<C-0-||Br — Allm

Finally, we have shown that both terms on the right-hand side of inequality equation 26| converge to
zero as k — oco. This implies that the condition equation [25|is satisfied. Therefore, the sequence
{1} converges to x* Q-superlinearly. O

B DETAILED EXPERIMENTAL SETUP

This section provides supplementary details regarding our experimental settings, including the com-
putational environment, dataset generation procedures, L20 model training, baseline configurations,
and the specifics of the neural network training task.

Under review as a conference paper at ICLR 2026

B.1 COMPUTATIONAL ENVIRONMENT

Our experiments were conducted using Python 3.9 and PyTorch 1.12. The underlying system was
Ubuntu 18.04, equipped with an Intel Xeon Gold 5320 CPU and two NVIDIA RTX 3090 GPUs.

B.2 L20 MODEL TRAINING (BFGS-L20)

The L20 parameters for our BFGS-L20 model were trained using Adam as the meta-optimizer. The
Adam learning rate was set to 1 x 1073, and we processed a batch size of 64 optimization problems
for each update. The L20 model underwent a total of 200 such training updates.

B.3 DATASETS FOR CLASSIC OPTIMIZATION PROBLEMS

For the classic optimization problems (Least Squares and Log-Sum-Exp), the L20 training dataset
consisted of 32,000 randomly generated problem instances. A separate test dataset of 1,024 in-
stances was used for evaluation. Specific parameter generation for each problem type is detailed
below.

Least Squares Problem The objective function is:
1
min f(z) = §|Ax — b3

where A € R™*™ and b € R"™. For our experiments, we used m=250 and n=500. The elements of
A and b were randomly generated using a Gaussian distribution. Following the setup in|Liu et al.
(2023)) (from your main text), sparsity was introduced into A by setting 90% of its elements to zero.

Log-Sum-Exp Problem The objective function is:

mlnf = log <Z et Tbi)

where m = 500 (number of exponential terms). The vectors {(a;, b;) € R x R}, were generated
following the dataset generation process described in |Rodomanov & Nesterov| (2021) to ensure
the optimal solution is z* = 0. We first generate auxiliary random vectors {d;}!",; by sampling
uniformly from the interval [0, 1]. We then generate {b;}*, from the standard normal distribution.

Using these, we define an auxiliary function f(z) = log (Zm el o=bs) Finally, we set a; =

4; — V f(0), ensuring that the optimal solution of f(z) is 0.

B.4 BASELINE METHOD CONFIGURATIONS

* BFGS-LS (BFGS with Backtracking Line Search): The step size was initialized to 1 at
each iteration. The backtracking line search iteratively scaled the step size by 0.8 until the
Armijo condition f(xy, + apdy) < f(zx) + c1axV f(zx)Td}, is satisfied. Here dj, is the
descent direction and ¢; = 10~%.

* BFGS-HGD (BFGS with Hypergradient Descent): Within each BFGS iteration,
coordinate-wise step sizes Pj were initialized as the identity matrix and then refined by
performing 20 iterations of hypergradient descent with hyper step size n = 1072,

B.5 SIMPLE CNN TRAINING DETAILS

The Convolutional Neural Network (CNN) used for the MNIST dataset experiments processes input
images of size 28 x 28 x 1. The architecture begins with a first convolutional layer applying 2 filters
with a 3 x 3 kernel, stride 1, and padding 1, followed by a ReLLU activation, resulting in a 28 x 28 x 2
volume. This is then downsampled by a 2 X 2 max pooling layer with a stride of 2, producing a
14 x 14 x 2 volume. A second convolutional layer follows, applying 3 filters with a 3 x 3 kernel,
stride 1, and padding 1, again followed by ReLLU activation, yielding a 14 x 14 x 3 volume. This is
further downsampled by a second 2 x 2 max pooling layer with a stride of 2, resultingina 7 x 7 x 3
volume. This output is then flattened into a vector of 147 features, which feeds into a fully connected
layer that produces 10 output units, corresponding to the logits for the 10 MNIST classes.

Under review as a conference paper at ICLR 2026

C GAIN OF CWSS

To illustrate the potential benefits of CWSS in the BFGS method, let us consider the theoretical
implications of relaxing the constraint that step size should be a scalar. Assume we have identified
an optimal scalar step size, denoted by a7, for the k-th iteration. Since the restriction of a convex
function to a line remains convex Boyd & Vandenberghe| (2004), this optimal step size o, satisfies:

d
@f(xk+l) o
d
=G [(8n = LBV f(a)) (49)
=— Vf(xy — ajBy 'V(x) By 'V f(wk)

=0.

When constrained to a scalar form, «j guarantees optimality along the single search direction

B, v (zx). However, if we allow the step size to be a diagonal matrix P}, rather than a scalar,
the optimality condition of o, may no longer hold. By extending to a coordinate-wise approach, we
aim to further minimize the objective function by adjusting each coordinate independently, which
can potentially achieve a lower function value than with oj; alone. To explore this, let P, = a1,
and consider the partial derivative of f (1) with respect to Py, at this point:

8 —1 o
Tpkf(xk ~ BBV (@) Pr=ail B (50)

diag(=V [(. — ai By 'V [(21) OBV f (1)),
where © denotes the Hadamard (element-wise) product. Since B, 'V f(xr) # 0, the derivative

in equation |50 equals zero only if V f(zy — o} B, 'V f(2x)) = 0. Since the optimum does not

generally lie on the direction of B, v (z), the dot product being zero in equation 49| does not
imply that the Hadamard product is also zero in equation[50} This observation suggests that even we
know the optimal scalar step size o*, we can still find coordinate-wise step sizes that could achieve a
more effective descent. To determine suitable coordinate-wise step sizes, we employ hypergradient
descent. Defining g(p) = f(z — p ® B, 'V f(z1)), where p is the diagonal of P,we can analyze
the smoothness of g(p) as follows:

[Va(p1) — Va(p2)ll
=|(Vf(zr —p1 © By 'V f(xr))
= V(@ —p2 © By 'V f ()|
< Lil(p1 — p2) © By 'V f ()|

< L|IB 'V f(2)llllpy — poll
< LR||p1 — p2|l,

where L is the Lipschitz constant of V f and R is from assumption 4| This shows that g(p) is
L R-smooth. To explore this, we can set the coordinate-wise step sizes Py, as:

1 _
P, =l — ﬁkak 'V f(x), (51

where vy = diag(Vf(z, — afB;, 'V f(xy))), L is the Lipschitz constant of V f and R is from
assumption] This coordinate-wise step size Pj, is theoretically guaranteed to perform better than
the scalar step size a7

flay — PoB 'V f (k) < flan — ap By, 'V f ()

— ﬁ\w(m — B 'V f(xr)) © B 'V f ()2

(52)

This demonstrates that CWSS in the BFGS method can yield a more substantial decrease in the
objective function than a scalar step size.

Under review as a conference paper at ICLR 2026

D LIMITATIONS

Theory-Practice Gap and Practical Simplifications Our derivations rely on standard assump-
tions, such as the L-smoothness of the objective function and the existence of a well-conditioned
Hessian approximation. While common in optimization literature, these assumptions may not hold
for all practical scenarios, potentially impacting the direct applicability of our theoretical guarantees.
Furthermore, our theory provides bounds for CWSS that depend on problem-specific quantities like
Lipschitz constants or Hessian conditioning, which are often computationally infeasible to estimate
during optimization. To address this, our practical implementation simplifies these bounds by con-
straining the learned step sizes to the interval [0, 2]. This creates a ”safe operating region” that is
guaranteed to be stable. While this design choice prioritizes robust convergence, we acknowledge
it might preclude the discovery of a more aggressive, faster-converging step-size policy that could
exist outside these established bounds.

Scalability and Extension to Limited-Memory Methods A key limitation is the scalability of
our method’s backbone. This work is developed for the standard BFGS algorithm, which requires
storing and updating a dense Hessian approximation, incurring memory and computational costs of
O(d?) per step, where d is the number of parameters. This makes it prohibitive for extremely large-
scale models. A natural direction for future work is to adapt our L20 approach to memory-efficient
variants like L-BFGS. However, this extension is non-trivial, as our theoretical guarantees do not
directly transfer.

* Theorem[T|and2]rely on the norms and eigenvalue bounds of the explicit By, matrix, which
is never formed in the matrix-free L-BFGS algorithm.

* Theorem 3| guarantee of superlinear convergence is fundamentally tied to the full-memory
BFGS update and does not apply to L-BFGS, which typically exhibits a linear convergence
rate.

From a practical standpoint, our L20 model could be heuristically combined with L-BFGS by us-
ing the search direction computed by the L-BFGS two-loop recursion as an input. While this is
a promising practical direction, it would operate without the rigorous theoretical assurances estab-
lished in this paper. Therefore, developing a new theoretical framework to guarantee the stability
and convergence of a learned CWSS policy for L-BFGS remains a significant and important open
problem.

E LLM USAGE STATEMENT

We utilized a large language model (LLM) as an assistive tool in the preparation of this manuscript.
The LLM’s role was strictly limited to improving the clarity and readability of the text, including
tasks such as grammar correction, spelling checks, rephrasing for conciseness, and improving sen-
tence structure. The LLLM was not used for any core research aspects, such as the ideation of the
method, the derivation of theoretical results, the design of experiments, or the analysis of the results.
The authors have reviewed all suggested edits and take full responsibility for all content presented
in this paper.

	Introduction
	Preliminaries
	Second-Order Methods
	Assumptions

	Coordinate-Wise Step Sizes for BFGS
	Gain of Coordinate-Wise Step Sizes
	Numerical Analysis of Coordinate-Wise Step Size: A Hypergradient Descent Method
	Sufficient Conditions for Coordinate-Wise Step Sizes with Theoretical Guarantee

	L2O Model
	Experiments
	Conclusions
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Detailed Experimental Setup
	Computational Environment
	L2O Model Training (BFGS-L2O)
	Datasets for Classic Optimization Problems
	Baseline Method Configurations
	Simple CNN Training Details

	Gain of CWSS
	Limitations
	LLM Usage Statement

