
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

A LEARN-TO-OPTIMIZE APPROACH FOR
COORDINATE-WISE STEP SIZES FOR QUASI-NEWTON
METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Tuning step sizes is crucial for the stability and efficiency of optimization algo-
rithms. While adaptive coordinate-wise step sizes have been shown to outperform
scalar step size in first-order methods, their use in second-order methods is still
under-explored and more challenging. Current approaches, including hypergradi-
ent descent and cutting plane methods, offer limited improvements or encounter
difficulties in second-order contexts. To address these limitations, we first con-
duct a theoretical analysis within the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
framework, a prominent quasi-Newton method, and derive sufficient conditions
for coordinate-wise step sizes that ensure convergence and stability. Building on
this theoretical foundation, we introduce a novel learn-to-optimize (L2O) method
that employs LSTM-based networks to learn optimal step sizes by leveraging
insights from past optimization trajectories, while inherently respecting the de-
rived theoretical guarantees. Extensive experiments demonstrate that our approach
achieves substantial improvements over scalar step size methods and hypergradi-
ent descent-based method, offering up to 4× faster convergence across diverse
optimization tasks.

1 INTRODUCTION

Step size is an essential hyperparameter in optimization algorithms. It determines the rate at which
the optimization variables are updated, and greatly influences the convergence speed and stability of
the optimization process. In first-order gradient-based optimization, how to choose an appropriate
step size is well studied: The step size is typically adjusted adaptively using past gradient informa-
tion such as in AdaGrad Duchi et al. (2011), RMSProp Hinton (2012), and Adam Kingma (2015) for
stochastic optimization tasks. These methods have demonstrated significant efficacy across a range
of machine learning applications by dynamically tailoring the update scale for each iteration.

Step size in second-order methods received much less attention thus far. Second-order methods
leverage the curvature information to adjust both the search direction and step size, offering faster
convergence in number of iterations, at the cost of high computational complexity in calculating
the Hessian (or its approximation) Wright (2006). A natural and common approach for step size
tuning here is line search, which iteratively adjusts a scalar step size along the descent direction
until certain conditions, such as the Armijo condition, are met Armijo (1966).

In contrast to scalar step size, we study the more general coordinate-wise step sizes (CWSS) in this
work, which allow for individual variables to have different step sizes. CWSS are beneficial since
different optimization variables may have different sensitivities to the step size; scalar step size is
obviously a special case. They have also been shown to improve convergence in first-order methods
Amid et al. (2022); Kunstner et al. (2023); Duchi et al. (2011).

In this work, we explore the impact of CWSS in the context of second-order methods, which remains
largely unexplored to our knowledge. We choose the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method Broyden (1965), one of the most widely used second-order optimization methods, as the
backbone method. BFGS belongs to the quasi-Newton family of methods that iteratively update an
approximation of the Hessian matrix using gradient information to reduce the complexity.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

We start our study by demonstrating that existing solutions to tune CWSS in first-order methods do
not work well in second-order contexts. The first such approach is hypergradient descent Maclaurin
et al. (2015); Massé & Ollivier (2015), which iteratively tunes step sizes using their gradients at
each BFGS step. We show empirically that it provides only marginal gains after the initial few steps
of BFGS. Moreover, cutting-plane techniques, which expand backtracking line search into multiple
dimensions, iteratively refine step sizes within feasible sets narrowed down by hypergradient-based
incisions Kunstner et al. (2023). This method essentially offers an approximation of the Hessian in a
first-order framework, thus complicating its direct application to second-order methods, in which
Hessian approximation is handled by BFGS update, and the step sizes are adjusted to improve
the Hessian approximation. Further, the intricate curvature within the Hessian presents additional
challenges in plane cutting.

Therefore, we explore the learn-to-optimize (L2O) paradigm Andrychowicz et al. (2016) in this
work. L2O replaces handcrafted rules with data-driven machine learning models that can adaptively
learn efficient strategies, tailoring optimization processes to specific problem structures Andrychow-
icz et al. (2016); Lv et al. (2017). L2O has shown promising results in first-order optimization
by predicting the optimal step sizes dynamically based on the current optimization state Liu et al.
(2023); Song et al. (2024).

The application of L2O in quasi-Newton methods presents challenges. Whereas in first-order ap-
proaches, the step size primarily regulates the update magnitude, in second-order methods, it also
affects the precision of Hessian approximations Wright (2006). This dual role adds complexities to
step size tuning. Consequently, the unconstrained exploration inherent in conventional L2O makes
convergence and stability harder to achieve within second-order L2O frameworks.

To address these challenges, we provide a theoretical analysis of coordinate-wise step sizes within
the BFGS framework. We begin by outlining essential theoretical requirements for effective CWSS,
aiming to ensure reliable optimization outcomes. These include achieving guaranteed convergence
to a solution, maintaining stable progress towards the optimum, and preserving the strong conver-
gence rates inherent to BFGS method. Guided by these foundational principles, we then derive a
set of sufficient conditions for the CWSS matrix. They effectively define a “safe operating region”,
steering the learning process away from potentially unstable or divergent behaviours for better effi-
ciency. While meeting these sufficient conditions ensures desirable properties like convergence, they
do not determine the optimal strategy for fastest progress. Our L2O approach is therefore designed
to learn the most effective step-size selection strategy within this theoretically defined safe region,
leveraging insights from past optimization trajectories to accelerate performance.

Specifically, we propose a customized L2O model, featuring a LSTM network, to generate CWSS
for BFGS method. Motivated by theoretical analysis, our model takes optimization variables, gra-
dients, and second-order search directions as input. Distinct from many first-order L2O approaches
that utilize longer unrolling horizons Liu et al. (2023), our model is trained with more frequent
parameter updates to better capture the immediate effects of step size tuning in the sensitive quasi-
Newton context. The training objective minimizes the expected objective value at the next iteration,
augmented by a regularization term designed to ensure the learned step sizes adhere to our theoreti-
cal conditions for stability and efficient convergence.

We summarize our key contributions as follows:

1. We are the first to investigate coordinate-wise step size tuning in the context of second-
order optimization methods, specifically the BFGS algorithm.

2. We establish theoretical foundation by deriving sufficient conditions for CWSS in the
BFGS algorithm, ensuring convergence and stability and forming the principled basis for
our L2O approach.

3. We propose a new L2O method to generate CWSS for the BFGS algorithm, integrating
both theoretical principles and adaptive learning to guide the optimization process.

4. We empirically demonstrate the significant advantages of our method through extensive ex-
periments on diverse optimization tasks, including classic optimization problems as well as
a more challenging neural network training scenario. Our approach consistently achieves
substantial speedups, delivering up to 4× faster convergence when compared to classic
backtracking line search and hypergradient descent methods. Notably, the performance ad-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

vantage of our method typically becomes more pronounced as the problem dimensionality
increases, highlighting its strong scalability. Furthermore, our method exhibits improved
stability, evidenced by lower variance in performance across multiple runs.

2 PRELIMINARIES

In this chapter, we introduce the basics of second-order optimization methods, with a focus on
BFGS. We show how step size tuning critically affects both the convergence and the quality of
Hessian approximations. Then we establish the key assumptions that will support our analysis of
CWSS in BFGS framework.

2.1 SECOND-ORDER METHODS

Second-order optimization methods, such as Newton’s method Atkinson (1991), utilize both gra-
dient and curvature information to find the minimum of an objective function. While first-order
methods typically achieve a sub-linear convergence rate Beck (2017), second-order methods gener-
ally exhibit a faster, superlinear convergence rate Wright (2006). In Newton’s method, the objective
function is locally approximated by a quadratic function around the current parameter vector xk:

g(y) ≈ f(xk) +∇f(xk)
T (y − xk) +

αk

2
(y − xk)

THk(y − xk), (1)

where Hk is the Hessian matrix and αk is the damped parameter. By minimizing the quadratic
approximation, the update rule for Newton’s method becomes Wright (2006):

xk+1 = xk − αkH
−1
k ∇f(xk). (2)

Computing the Hessian is quite expensive and often infeasible for large-scale problems Pearlmutter
(1994). Instead, quasi-Newton methods were proposed to approximate the Hessian to be more
affordable and scalable Dennis & Moré (1977); Broyden (1967). Generally, quasi-Newton methods
maintain an approximation of the Hessian matrix Bk ≈ Hk at each iteration, updating it with a rank
one or rank two term based on the gradient differences between two consecutive iterations Conn
et al. (1991); Broyden (1965). During this process, the Hessian approximation is restricted to follow
the secant equation Wright (2006):

Bk+1sk = yk, (3)

where sk = xk+1 − xk and yk = ∇f(xk+1) − ∇f(xk). In the most common BFGS method, the
Hessian approximation Bk is updated at each iteration using the formula:

Bk+1 = Bk − Bksks
T
kBk

sTkBksk
+

yky
T
k

yTk sk
. (4)

Although the enrollment of curvature information can greatly assist the optimization process, it
also makes the algorithm more sensitive to the step size selection Wills & Schön (2018). The step
size influences the update of the Hessian approximation, and an inappropriately large step can lead
to violations of the curvature condition yTk sk > 0, potentially resulting in an indefinite Hessian
approximation Wright (2006). The step size must balance between exploiting the current curvature
information (encoded in Bk) and allowing for sufficient exploration of the parameter space. This
balance is more delicate than in first-order methods due to the adaptive nature of the search direction.

2.2 ASSUMPTIONS

Our objective is to minimize the convex objective function f(x) over x ∈ Rn: minx∈Rn f(x). Our
analysis relies on the following standard assumptions regarding the objective function f and the
Hessian approximations Bk. These assumptions are common in optimization literature Song et al.
(2024); Liu et al. (2023); Wright (2006):

Assumption 1. The objective function f is L-smooth, meaning there exists a constant L such that:

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Assumption 2. The gradient ∇f(x) is differentiable in an open, convex set D in Rn, and ∇2f(x)
is continuous at the minimizer x∗ with ∇2f(x∗) being nonsingular.
Assumption 3. The Hessian approximation generated by BFGS method is positive definite. Fur-
thermore, there exists a constant M ≥ 1 such that:

cond(Bk) = λmax(Bk)/λmin(Bk) ≤ M, (6)
where λmin(Bk) and λmax(Bk) are the smallest and largest eigenvalues of Bk, respectively. By this
assumption we assume the Hessian approximation remain well-conditioned.
Assumption 4. The norm of update direction B−1

k ∇f(xk) is upper bounded by a constant R:

∥B−1
k ∇f(xk)∥ ≤ R. (7)

This is a standard assumption in the analysis of quasi-Newton methods, as B−1
k is maintained

bounded through stable Hessian approximations Broyden (1967), and gradients ∇f(xk) typically
diminish near optimal points, ensuring the update direction remains controlled.

3 COORDINATE-WISE STEP SIZES FOR BFGS

In this section, we first analyze the theoretical advantages of CWSS and then explore hypergradient
descent as a practical method for its tuning. However, the limited improvements achieved through
hypergradient descent reveal the challenges of finding effective CWSS, prompting us to consider
alternative approaches. We resort to L2O method that can directly learn the step sizes from data
derived from similar optimization problems. Building on this perspective, we establish sufficient
conditions for effective CWSS that ensure convergence and descent properties, thus laying a solid
foundation for learning-based approaches that can predict optimal step sizes efficiently during opti-
mization.

3.1 GAIN OF COORDINATE-WISE STEP SIZES

To illustrate the potential benefits of CWSS in the BFGS method, let us consider the theoretical
implications of relaxing the constraint of scalar step size. Assume we have identified an optimal
scalar step size, denoted by α∗

k, for the k-th iteration. If we allow the step size to be a diagonal
matrix Pk rather than a scalar, the optimality condition of α∗

k may no longer hold. To explore this,
we can set the coordinate-wise step sizes Pk as:

Pk = α∗
kI −

1

LR
vkB

−1
k ∇f(xk), (8)

where vk = diag(∇f(xk − α∗
kB

−1
k ∇f(xk))), L is the Lipschitz constant of ∇f and R is from

Assumption 4. This coordinate-wise step size Pk is theoretically guaranteed to perform better than
the scalar step size α∗

k:

f(xk − PkB
−1
k ∇f(xk)) ≤ f(xk − α∗

kB
−1
k ∇f(xk))

− 1

2LR
|∇f(xk − α∗

kB
−1
k ∇f(xk))⊙B−1

k ∇f(xk)|2.
(9)

This demonstrates that CWSS in the BFGS method can yield a more substantial decrease in the
objective function than a scalar step size. A more detailed analysis is provided in Appendix C.

3.2 NUMERICAL ANALYSIS OF COORDINATE-WISE STEP SIZE: A HYPERGRADIENT
DESCENT METHOD

Building upon section 3.1, we investigate hypergradient descent on coordinate-wise step size matrix
Pk. The update rule with CWSS takes the form:

xk+1 = xk − PkB
−1
k ∇f(xk). (10)

We initialize P 0
k as the identity matrix I and then perform hypergradient descent on Pk using the

gradient of f(xk+1) with respect to P i
k to obtain P i+1

k :

P i+1
k = P i

k − η
∂f(xk − P i

kB
−1
k ∇f(xk))

∂P i
k

, (11)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Objective value of the least square problem with hypergradient descent (HGD) on Pk for
different BFGS iterations.

HGD (i) 1 5 10 20
BFGS (k)

1 7.52938 6.32887 5.22274 4.32551
2 1.97834 1.95869 1.93509 1.89111
3 0.88499 0.88143 0.87703 0.86839
4 0.44807 0.44746 0.44670 0.44519
5 0.25669 0.25658 0.25644 0.25617

where η is the step size for the gradient descent on Pk. After T iterations, we employ PT
k in the

update rule 10.

We conduct experiments on the least squares problem to assess the effectiveness of hypergradi-
ent descent applied to Pk. Each BFGS iteration includes 20 steps of hypergradient descent, after
which the most recent Pk identified by hypergradient descent is used in BFGS update. Table 1
presents the experimental results, where each row shows the objective value within one BFGS iter-
ation across different hypergradient descent steps. The results demonstrate that while hypergradient
descent shows some improvement over standard BFGS, the benefits become increasingly marginal
as iterations progress. This implies that finding an effective Pk is inherently challenging.

This observation motivates exploring methods that can provide meaningful improvements without
incurring significant computational costs. This leads us to consider a question: Can we leverage the
patterns in optimization trajectories to generate effective step sizes directly? In many optimization
scenarios, similar patterns of gradients and Hessian approximations may warrant similar step size
adjustments. If these patterns could be learned from data, we might be able to bypass the iterative
computation entirely. L2O has shown strong potential in capturing complex patterns and relation-
ships, making it suitable for tasks like predicting step sizes based on optimization state features Liu
et al. (2023). By leveraging a neural network, L2O could potentially map the current optimization
state to CWSS directly. This approach would allow immediate predictions of effective step sizes
without iterative refinement. Before detailing our L2O model, we first establish theoretical condi-
tions for CWSS in BFGS to ensure desirable properties like convergence and stability, which will
guide our L2O design.

3.3 SUFFICIENT CONDITIONS FOR COORDINATE-WISE STEP SIZES WITH THEORETICAL
GUARANTEE

Effective CWSS are crucial for ensuring that each BFGS iteration leads towards a solution. Rather
than allowing the L2O model to determine these step sizes arbitrarily, which could lead to unpre-
dictable behavior, we aim to unbox this process through theoretical guidance. This section lays the
groundwork by identifying sufficient conditions that CWSS must satisfy for provable convergence
and stability. By establishing these foundational principles, we provide a systematic basis for con-
straining and guiding L2O, ensuring adaptive step-size mechanisms enhance BFGS while preserving
its desirable characteristics.

To ensure CWSS are theoretically sound and practically beneficial, we propose the following re-
quirements:

1. (Convergence Guarantee) The generated sequence xk converges to one of the local mini-
mizers of f .

2. (Stability Guarantee) Each update moves towards the minimizer.

3. (Convergence Rate Guarantee) The method achieves superlinear convergence.

The first requirement, ensuring the generated sequence converges to a local minimizer, establishes
a fundamental guarantee of reliable final outcomes, extending the concept of Fixed Point Encod-
ing Ryu & Yin (2022). The second requirement, instead, shifts focus to the optimization process
itself, emphasizing directional accuracy to ensure stable progress by mandating that each update con-
sistently moves towards the minimizer, thereby preventing detours or excessive zigzagging. Finally,
the third requirement addresses convergence speed, aiming to preserve the characteristic superlinear

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

convergence rate of the BFGS method Wright (2006), a key advantage we seek to maintain within
our L2O framework.

We now present three theorems that provide sufficient conditions for coordinate-wise step sizes to
satisfy the proposed requirements. The proofs are provided in Appendix A.

Theorem 1. Let {xk} be the sequence generated by equation 10. If the coordinate-wise step size
Pk satisfies

∥Pk∥2 ≤ α

L∥B−1
k ∥2

(12a)

∥P−1
k ∥2 ≤

∥B−1
k ∇f(xk)∥2

β∇f(xk)⊤B
−1
k ∇f(xk)

(12b)

for certain 0 < α < 2 and β > 0, where L is the Lipschitz constant of gradients and Bk is
the approximate Hessian generated by BFGS, then the sequence of gradients converges to zero:
limk→∞ ∥∇f(xk)∥2 = 0.

Remark. Theorem 1 establishes sufficient conditions for gradient convergence while maintaining
substantial implementation flexibility. The theorem’s bounds on Pk are particularly accommodat-
ing: the lower bound of its minimal eigenvalue is allowed to be close to zero through appropriate
selection of β, while setting α near 2 allows the upper bound of the maximal eigenvalue to approach
2/(L∥B−1

k ∥2), which remains strictly less than 2.

Theorem 1 suggests a pragmatic simplification: constraining the elements of the coordinate-wise
step size to the interval between 0 and 2 should be sufficient for practical implementations. More-
over, theorem 1 indicates that Pk should be computed as a function of both the gradient ∇f(xk) and
Hessian approximation Bk, as evidenced by the presence of both gradient and Hessian information
in bounds. Notably, these results extend beyond convex optimization, requiring only L-smoothness
of the objective function rather than convexity.

Theorem 2. Let f : Rn → R be a twice continuously differentiable convex function that has
Lipschitz continuous gradient with L > 0. Let x∗ denote the unique minimizer of f . Suppose that
{Bk} is a sequence of approximate Hessians such that they are uniformly lower bounded: γI ⪯ Bk,
for certain constant γ > 0. Let {Pk} be a sequence of diagonal matrices with entries pk,i satisfying:

0 < pk,i ≤
2γ

L
, (13)

Define the iterative sequence {xk} by equation 10. Then, the sequence {xk} satisfies:

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥.

Remark. Since Bk captures the average Hessian behavior between consecutive points xk−1 and
xk, its eigenvalues lie within the bounds of ∇2f(x), yielding γ ≤ L. This relationship reveals
that the seemingly restrictive upper bound 2γ

L for pk,i simplifies to 2. This aligns with Theorem
1, as both theorems suggest the coordinate-wise step sizes should lie within the interval between 0
and 2. However, theorem 2 makes an additional assumption of convexity, which enables a stronger
guarantee, i.e., each iteration strictly decreases the distance to the optimum.

The theorem can be reduced to classical optimization methods in certain scenarios. For instance, set-
ting Bk = I and Pk = αI with α ≤ 2/L yields the standard gradient descent method with constant
step size. Moreover, the proof of theorem 2 indicates that optimal Pk values should minimize the
spectral radius of Tk = I − PkB

−1
k Hk. As the algorithm progresses (k → ∞), Bk approaches Hk,

suggesting that Pk should converge to the identity matrix. This convergence behavior is formally
established in the subsequent theorem.

Theorem 3. Let x∗ be a local minimizer where the Hessian matrix, A ≡ ∇2f(x∗), is symmetric
and positive definite. Assume that the Hessian is Lipschitz continuous in a neighborhood of x∗, i.e.,
there exist constants K > 0 and p ∈ (0, 1] such that for all x in this neighborhood: ∥∇2f(x) −
A∥ ≤ K∥x − x∗∥p. If the sequence {xk} generated by equation 10 converges to x∗ such that
the summability condition

∑∞
k=0 ∥xk − x∗∥p < ∞ is satisfied, and if the sequence of coordinate-

wise step size matrices {Pk} converges to the identity matrix I , then {xk} converges to x∗ Q-
superlinearly.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 3 provides crucial insight into the asymptotic behavior of coordinate-wise step sizes. When
the iterates are far from the optimum, coordinate-wise step sizes can accelerate convergence by
adapting to the local geometry of the objective function. However, as the algorithm approaches
the optimum, the BFGS method naturally provides increasingly accurate Hessian approximations.
At this stage, additional coordinate-wise scaling becomes unnecessary and could potentially inter-
fere with the superlinear convergence properties of BFGS. It suggests that adaptive schemes for Pk

should be designed to gradually reduce their influence as the optimization progresses, eventually
allowing the natural BFGS updates to dominate near the optimum.

4 L2O MODEL

Building on the theoretical foundations established in the previous section, we now present our L2O
model for CWSS tuning in BFGS optimization. Our design is guided by the derived theoretical
conditions to ensure stability and convergence, while leveraging neural networks to adapt to the
local optimization geometry.

We propose an L2O method using an LSTM (Long Short-Term Memory) network to predict
coordinate-wise step sizes Liu et al. (2023). The architecture is structured as follows:

hk, ok = LSTM(xk,∇f(xk), B
−1
k ∇f(xk), hk−1, ϕLSTM),

pk = MLP(ok, ϕMLP),

Pk = diag(2σ(pk)),

where, hk is the LSTM hidden state, initialized randomly for the first iteration, and ok is the em-
bedding output from the LSTM network. The parameters of the LSTM and MLP (Multi-Layer
Perceptron) networks are denoted by ϕLSTM and ϕMLP, respectively.

A key aspect of our model’s design is the enforcement of theoretically-informed bounds on the
predicted step sizes. As established in Theorem 1 and 2, specific bounds on Pk are sufficient to
guarantee convergence properties. Ideally, these theorems suggest bounds dependent on quantities
like the Lipschitz constant L or the Hessian conditioning γ. However, these parameters are often
unknown or computationally prohibitive to estimate accurately during optimization. Consequently,
as a practical and robust simplification suggested by the remarks , we constrain the elements of
Pk to lie within the interval between 0 and 2. This a deliberate design choice to prioritize robust
convergence. By using a scaled sigmoid activation function to enforce range, we compel our L2O
agent to operate within a region that is guaranteed to be stable for any function according to our
analysis. While this constraint on the sufficient conditions may limit discovering a more aggressive,
potentially faster-converging step-size policy, it is a crucial trade-off. Our design explicitly priori-
tizes stability to prevent catastrophic failures and ensure our method is reliable across a wide range
of problems. Within this theoretically-defined safe operating region, the L2O model is then tasked
with learning the more nuanced, data-driven strategy for selecting optimal CWSS that accelerate
convergence.

To enhance scalability and parameter efficiency, we employ a coordinate-wise LSTM approach,
where the same network is shared across all input coordinates, as suggested in Andrychowicz et al.
(2016); Lv et al. (2017). This design allows the L2O method to adapt to problems of varying
dimensionality without an increase in the number of parameters.

Training Process The L2O model is trained on datasets of diverse optimization problems, al-
lowing it to learn common structures and behaviors. The training process involves using the L2O
model to solve these problems while simultaneously updating its own parameters. For each training
instance, an optimization trajectory is generated starting from a random initial point x0. At each iter-
ation k of this trajectory, the L2O model predicts the step size Pk, which is used to compute the next
iterate xk+1. Immediately after this step, the network’s parameters (ϕLSTM and ϕMLP) are updated
via backpropagation based on the resulting objective value f(xk+1). This meta-update treats the
optimizer’s state—including the gradient ∇f(xk) and the search direction B−1

k ∇f(xk)—as fixed
inputs. The gradient for the update flows from the loss back through the predicted step size Pk into
the network parameters. Unlike many first-order L2O methods that rely on longer unrolling horizons
Andrychowicz et al. (2016); Song et al. (2024); Lv et al. (2017), our model updates its parameters
after every single optimization step. We deliberately use this frequent, single-step update strategy

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20 40 60 80
Iteration k

10 15

10 12

10 9

10 6

10 3

100

Ob
je

ct
iv

e

Least Square
BFGS-HGD
BFGS-LS
BFGS-L2O

Figure 1: Least Squares.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Iteration k

0.04

0.1

0.5

1.0

Ob
je

ct
iv

e

Logistic Regression
BFGS-HGD
BFGS-LS
BFGS-L2O

Figure 2: Logistic Regression.

0 25 50 75 100 125 150 175 200
Iteration k

10 11

10 9

10 7

10 5

10 3

10 1

101

Tr
ai

ni
ng

 L
os

s

Simple CNN Training

SGD
BFGS-LS
BFGS-L2O
adam
Shampoo

Figure 3: Simple CNN.

0 10 20 30 40 50
Iteration k

101

2 × 101

Ob
je

ct
iv

e

Log-sum-exp,d = 100
BFGS-HGD
BFGS-LS
BFGS-L2O

0 20 40 60 80 100 120
Iteration k

101

2 × 101

3 × 101

Ob
je

ct
iv

e

Log-sum-exp,d = 250
BFGS-HGD
BFGS-LS
BFGS-L2O

0 20 40 60 80 100 120 140 160
Iteration k

101

2 × 101

3 × 101

4 × 101

Ob
je

ct
iv

e

Log-sum-exp,d = 500
BFGS-HGD
BFGS-LS
BFGS-L2O

Figure 4: Log-sum-exp functions with different dimensions.
because it is uniquely suited to the quasi-Newton context. In this setting, the step size Pk has a sen-
sitive, dual impact: it simultaneously influences both the next iterate xk+1 and the updated Hessian
approximation Bk+1. The immediate feedback provided by single-step updates is critical for the
L2O model to effectively learn this complex relationship.

The loss function for training the L2O model is designed to minimize the objective function value
at the next iteration, augmented by a regularization term:

min
ϕLSTM,ϕMLP

Ef∼F [f(xk+1)] + λ∥Pk − I∥2F (14)

where F represents the distribution of optimization problems used for training and λ is the regular-
ization parameter. The regularization term ensures that as we approach the optimum, the coordinate-
wise step sizes converge toward an identity matrix, aligning with the insight from Theorem 3.

In BFGS method, the step size can be viewed as a correction to the Hessian approximation. In early
optimization stages, the objective value primarily drives the loss function, and the Hessian approx-
imation may lack precision. Thus, an adaptive CWSS is necessary to enhance the accuracy of the
Hessian approximation based on the current state. However, as the optimization nears convergence,
the Hessian approximation becomes more accurate, shifting the influence on the loss function to the
regularization term. At this point, the CWSS converge to the identity matrix, as further corrections
to the Hessian approximation are no longer required.

5 EXPERIMENTS

We employed the Adam optimizer as our meta-optimizer to train our L2O model. For classic op-
timization problems, the training dataset consisted of 32,000 optimization problems with randomly
sampled parameters, while a separate test dataset of 1,024 optimization problems was used for eval-
uation. Our L2O method (BFGS-L2O) was benchmarked against two baselines: Backtracking line
search (BFGS-LS) and hypergradient descent (BFGS-HGD). All methods were tuned by experi-
menting with various parameter settings, and the best-performing configurations were selected for
comparison. More details are provided in Appendix B.

Least Squares Problems We first evaluate our L2O method on the classic least squares problems.
The objective function is defined as: minx f(x) =

1
2∥Ax− b∥2, where A ∈ R250×500 and b ∈ R500

are randomly generated using a Gaussian distribution.

Figure 1 presents the convergence behavior for the least squares problems, where the optimization
process was terminated when the gradient norm fell below 10−10. As depicted in the figure, BFGS-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Wall-clock time analysis for the log-sum-exp problem (d = 500).
Method Runtime per iteration (s) Total time to convergence (s)
BFGS-L2O (ours) 0.109 5.79
BFGS-LS 0.174 45.11
BFGS-HGD 0.089 23.90

HGD offers a marginal improvement over BFGS-LS. In contrast, our proposed BFGS-L2O method
demonstrates a significant reduction in convergence iterations. The nearly linear trajectory (on a log-
scale for the objective value) of our BFGS-L2O method is consistent with superlinear convergence.

Logistic Regression Problems Next, we considered logistic regression problems for binary clas-
sification. The objective function is given by: minx f(x) = 1

m

∑m
i=1[bi log(h(a

T
i x)) + (1 −

bi) log(1 − h(aTi x))] + ρ∥x∥22, where m = 500, {(ai, bi) ∈ R250 × {0, 1}}mi=1 are randomly
generated, h(z) = 1

1+e−z is the sigmoid function.

Figure 2 illustrates the performance on logistic regression problems. While BFGS-HGD achieves
a slightly lower objective function value than BFGS-LS during the initial iterations , both base-
line methods exhibit similar overall convergence iteration counts, reaching the plateau around 15
iterations. In contrast, our proposed BFGS-L2O method shows notably faster convergence and con-
sistently maintains a lower objective function value throughout the optimization process.

Log-Sum-Exp Problems For the log-sum-exp function, the objective function is: minx f(x) =

log
(∑m

i=1 e
aT
i x−bi

)
, where m = 500, {(ai, bi) ∈ Rd × R}mi=1.

Figure 4 displays the results for log-sum-exp problems across different dimensions (d=100,250,500),
revealing a clear trend: as dimensionality increases, the performance advantage of our BFGS-L2O
method becomes more pronounced. For d = 500, BFGS-L2O converges in approximately 40 itera-
tions, while the baselines take around 150-160 iterations—a nearly 4-fold improvement. In addition,
our method achieves consistently tighter variance across all dimensions, indicating greater stability.
To confirm these gains translate to practical speedups and address the computational overhead of
our L2O model, we performed a wall-clock time analysis for the d = 500 case. As shown in Ta-
ble 2, the per-iteration runtime of BFGS-L2O is competitive, confirming the LSTM’s overhead is
minimal. Crucially, the drastic reduction in iterations results in a total convergence time that is
4.1x faster than BFGS-HGD and 7.8x faster than BFGS-LS. This analysis validates that our method
delivers substantial real-world performance gains.

Simple CNN Training To assess the performance of our method on a more complex, non-convex
optimization problem, we trained a simple CNN on the MNIST dataset. The detail setting can
be found in appendix B. It is worth noting that while second-order methods like BFGS are less
commonly employed for training deep neural networks due to computational costs and challenges
with sophisticated landscapes, our aim here is specifically to test the adaptability and robustness of
BFGS-L2O under such complex, stochastic conditions. To provide a more comprehensive compar-
ison, we benchmarked our method against not only BFGS-LS and SGD but also the widely-used
first-order optimizer, Adam Kingma (2015), and a modern quasi-Newton method, Shampoo Gupta
et al. (2018). The training loss curves are presented in Figure 3. In this challenging scenario, our
proposed BFGS-L2O method demonstrates substantially superior performance. In stark contrast,
Shampoo’s convergence stalled early at a high loss value, failing to effectively optimize the net-
work on this task. These results highlight the efficiency and stability of our approach, even in a
high-dimensional, non-convex setting where traditional and modern baselines struggle.

6 CONCLUSIONS

This work investigated the application of coordinate-wise step sizes in the BFGS method. Through
theoretical and numerical analyses, we examined the associated benefits and complexities. We rig-
orously derived sufficient conditions for coordinate-wise step size designed to enhance convergence
properties. Building on this theoretical foundation, we developed a L2O model that effectively
predicts these step sizes. Experimental results demonstrate that our proposed L2O approach signifi-
cantly outperforms standard baseline methods in both convergence speed and stability.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement We have made a concerted effort to ensure the reproducibility of our
work. For our theoretical contributions, all key assumptions are explicitly stated in Section 2.2 , and
we provide detailed, step-by-step proofs for all theorems in Appendix A. To facilitate the reproduc-
tion of our empirical results, Appendix B offers a comprehensive description of the experimental
setup. This includes details on the computational environment, L2O model training hyperparam-
eters, the exact procedures for dataset generation, the specific configurations used for all baseline
methods, and the complete architecture of the CNN model used in our non-convex experiment.

REFERENCES

Ehsan Amid, Rohan Anil, Christopher Fifty, and Manfred K Warmuth. Step-Size Adaptation Using
Exponentiated Gradient Updates. arXiv preprint arXiv:2202.00145, 2022.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to Learn by Gradient Descent by Gradient
Descent. In NeurIPS, volume 29, 2016.

Larry Armijo. Minimization of Functions Having Lipschitz Continuous First Partial Derivatives.
Pacific Journal of Mathematics, 16(1):1–3, 1966.

Kendall Atkinson. An Introduction to Numerical Analysis. John wiley & sons, 1991.

Amir Beck. First-Order Methods in Optimization. SIAM, 2017.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge university press, 2004.

Charles G Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations.
Mathematics of Computation, 19(92):577–593, 1965.

Charles G Broyden. Quasi-Newton Methods and Their Application to Function Minimisation.
Mathematics of Computation, 21(99):368–381, 1967.

Andrew R Conn, Nicholas IM Gould, and Ph L Toint. Convergence of Quasi-Newton Matrices
Generated by the Symmetric Rank One Update. Mathematical Programming, 50(1):177–195,
1991.

John E Dennis and Jorge J Moré. A Characterization of Superlinear Convergence and Its Application
to Quasi-Newton Methods. Mathematics of Computation, 28(126):549–560, 1974.

John E Dennis, Jr and Jorge J Moré. Quasi-Newton Methods, Motivation and Theory.
SIAM Review, 19(1):46–89, 1977.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Journal of Machine Learning Research, 12(7), 2011.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned Stochastic Tensor Opti-
mization, March 2018. URL http://arxiv.org/abs/1802.09568. arXiv:1802.09568
[cs].

Geoffrey Hinton. Neural Networks for Machine Learning, Lecture 6, 2012.

Diederik P Kingma. Adam: A Method for Stochastic Optimization. In ICLR, 2015.

Frederik Kunstner, Victor Sanches Portella, Mark Schmidt, and Nicholas Harvey. Searching for
Optimal Per-Coordinate Step-Sizes with Multidimensional Backtracking. In NeurIPS, volume 36,
pp. 2725–2767, 2023.

Jialin Liu, Xiaohan Chen, Zhangyang Wang, Wotao Yin, and HanQin Cai. Towards Constituting
Mathematical Structures for Learning to Optimize. In ICML, pp. 21426–21449. PMLR, 2023.

Kaifeng Lv, Shunhua Jiang, and Jian Li. Learning Gradient Descent: Better Generalization and
Longer Horizons. In ICML, pp. 2247–2255. PMLR, 2017.

10

http://arxiv.org/abs/1802.09568

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-Based Hyperparameter Optimiza-
tion through Reversible Learning. In ICML, pp. 2113–2122, 2015.

Pierre-Yves Massé and Yann Ollivier. Speed Learning on the Fly. arXiv preprint arXiv:1511.02540,
2015.

Barak A Pearlmutter. Fast Exact Multiplication by the Hessian. Neural Computation, 6(1):147–160,
1994.

Anton Rodomanov and Yurii Nesterov. Greedy Quasi-Newton Methods with Explicit Superlinear
Convergence. SIAM Journal on Optimization, 31(1):785–811, 2021.

Ernest K Ryu and Wotao Yin. Large-Scale Convex Optimization: Algorithms & Analyses via Monotone Operators.
Cambridge University Press, 2022.

Qingyu Song, Wei Lin, Juncheng Wang, and Hong Xu. Towards Robust Learning to Optimize with
Theoretical Guarantees. In CVPR, pp. 27498–27506, 2024.

Adrian Wills and Thomas Schön. Stochastic Quasi-Newton with Adaptive Step Lengths for Large-
Scale Problems. arXiv preprint arXiv:1802.04310, 2018.

Stephen J Wright. Numerical Optimization, 2006.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A PROOFS

A.1 PROOF OF THEOREM 1

Proof. Consider a quadratic function

Q(x) = f(y) +∇f(y)⊤(x− y) +
α

2
(x− y)⊤BkP

−1
k (x− y). (15)

Basically, we use this quadratic function as a local approximation of f(x) around y, and we think
the minimum of this quadratic function is a better solution than y. This can work only if Q(x) is an
overestimation of f(x). Indeed, we can show that:

Q(x)

= f(y) +∇f(y)⊤(x− y) +
α

2
(x− y)⊤BkP

−1
k (x− y)

≥ f(y) +∇f(y)⊤(x− y) +
α

2

1

∥B−1
k ∥2∥Pk∥2

∥x− y∥22

≥ f(y) +∇f(y)⊤(x− y) +
L

2
∥x− y∥2

≥ f(x),

where the second inequality uses the condition ∥Pk∥2 ≤ α
L∥B−1

k ∥2
and the third uses the assumption

of L-smoothness.

Plugging x = y − PkB
−1
k ∇f(y) into the inequality, we get the Armijo condition:

f(y)− (1− α

2
)∇f(y)⊤PkB

−1
k ∇f(y) ≥ f(y − PkB

−1
k ∇f(y)). (16)

Let xk = y and xk+1 = y − PkB
−1
k ∇f(y), we have

f(xk+1) ≤ f(xk)− (1− α

2
)∇f(xk)

⊤PkB
−1
k ∇f(xk)

≤ f(xk)− (1− α

2
)β

(∇f(xk)
⊤B−1

k ∇f(xk))
2

∥Bk∇f(xk)∥22

= f(xk)− (β − αβ

2
) cos2 θk∥∇f(xk)∥22,

where θk is the angle between ∇f(xk) and B−1
k ∇f(xk). In the second inequality, we use the

condition that λmax(Pk) ≥ β
∇f(xk)

TB−1
k ∇f(xk)

∥B−1
k ∇f(xk)∥2

2

.

Following the proof of Theorem 3.2 in Wright (2006), summing over all iterations, we have:

f(xk+1) ≤ f(x0)− (β − αβ

2
)

k∑
i=0

cos2 θi∥∇f(xi)∥2. (17)

Note that f(x0) − f(xk+1) is lower-bounded by 0 and upper-bounded by f(x0). Hence when k
approaches infinity, we have:

k∑
i=0

cos2 θi∥∇f(xi)∥22 < ∞, (18)

which implies

cos2 θk∥∇f(xk)∥22 → 0. (19)

1

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Since ∥Bk∥2∥B−1
k ∥2 < M ,

cos θk =
∇f(xk)

⊤B−1
k ∇f(xk)

∥∇f(xk)∥2∥B−1
k ∇f(xk)∥2

≥
λmin
B−1

k

∥∇f(xk)∥22
λmax
B−1

k

∥∇f(xk)∥22

=
1/∥Bk∥2
∥B−1

k ∥2

>
1

M
.

Then we have
lim
k→∞

∥∇f(xk)∥2 = 0. (20)

A.2 PROOF OF THEOREM 2

Proof. Let ek = xk − x∗ denote the difference between the current iterate and the minimizer. We
can write the update rule as:

ek+1 = ek − PkB
−1
k ∇f(xk). (21)

Using the mean value theorem for vector-valued functions, We can write the gradient as:

∇f(xk) = ∇f(xk)−∇f(x∗)

=

∫ 1

0

∇2f(x∗ + tek)ekdt

= Hkek

where:

Hk =

∫ 1

0

∇2f(x∗ + tek)dt. (22)

Since f is L-smooth , we have:
∇2f(x) ⪯ LI.

Note that Hk is nothing else but the average of the Hessian matrix along the line segment between
x∗ and xk. Then we have:

Hk ⪯ LI.

Substitute ∇f(xk) = Hkek into the error update, we have:

ek+1 = ek − PkB
−1
k Hkek

= (I − PkB
−1
k Hk)ek.

Consider the matrix Tk = I−PkB
−1
k Hk, we will analyze the spectral radius of it. The upper bound

of the eigenvalue of Tk is 1, since Pk is a diagonal matrix with positive entries pk,i, and B−1
k and

Hk are positive definite matrices. The lower bound of the eigenvalue of Tk is:

λmin(Tk) = 1− λmax(Pk)λmax(B
−1
k)λmax(Hk)

≥ 1− 2γ

L

L

γ
= −1

Hence the spectral radius of Tk is less than 1. Then we have:

∥ek+1∥2 ≤ ∥Tk∥2∥ek∥2 ≤ ∥ek∥2. (23)

2

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.3 PROOF OF THEOREM 3

Proof. The proof is structured as follows. First, we state the necessary and sufficient condition
for Q-superlinear convergence from Dennis & Moré (1974), adapted to our update rule. We then
decompose this condition into two terms. The remainder of the proof is dedicated to showing that
each of these terms converges to zero under our assumptions.

A foundational result from the Theorem 2.2 in Dennis & Moré (1974) states that an iterative method
of the form xk+1 = xk − (Beff

k)−1∇f(xk) converges Q-superlinearly to x∗ if and only if:

lim
k→∞

∥(Beff
k −A)sk∥
∥sk∥

= 0 (24)

where sk = xk+1 − xk. In our framework, the update step is given by sk = −PkB
−1
k ∇f(xk). This

implies that our effective Hessian is Beff
k = BkP

−1
k . Thus, to prove Q-superlinear convergence, we

must demonstrate that:

lim
k→∞

∥(BkP
−1
k −A)sk∥
∥sk∥

= 0 (25)

We add and subtract Bk inside the norm and apply the triangle inequality:

∥(BkP
−1
k −A)sk∥ = ∥(BkP

−1
k −Bk +Bk −A)sk∥

≤ ∥Bk(P
−1
k − I)sk∥+ ∥(Bk −A)sk∥

Dividing by ∥sk∥ (for k large enough such that xk ̸= x∗), we get:

∥(BkP
−1
k −A)sk∥
∥sk∥

≤
∥Bk(P

−1
k − I)sk∥
∥sk∥

+
∥(Bk −A)sk∥

∥sk∥
(26)

The proof of equation 25 reduces to showing that both terms on the right-hand side of equation 26
converge to zero.

The first term is bounded as follows:

∥Bk(P
−1
k − I)sk∥
∥sk∥

≤ ∥Bk∥∥P−1
k − I∥ (27)

By the theorem’s assumption, limk→∞ Pk = I . Since matrix inversion is a continuous operation on
the space of invertible matrices, this implies limk→∞ P−1

k = I−1 = I . Therefore, limk→∞ ∥P−1
k −

I∥ = 0.

Furthermore, the sequence {∥Bk − A∥M} converges, as shown in the proof of Proposition 4. This
implies that {∥Bk −A∥M} is bounded, and consequently, the sequence of matrix norms {∥Bk∥} is
also bounded. Since we have the product of a bounded sequence and a sequence converging to zero,
the first term converges to zero:

lim
k→∞

∥Bk(P
−1
k − I)sk∥
∥sk∥

= 0 (28)

For the second term, we now show that limk→∞
∥(Bk−A)sk∥

∥sk∥ = 0. This relies on the properties of
the BFGS update formula itself. We define a weighted matrix norm ∥Q∥M = ∥MQM∥F , where
M = A−1/2 and ∥ · ∥F is the Frobenius norm. We carry out the proof process by splitting it into
several lemmas.

Lemma 1. Let Ēk be a symmetric matrix and s̄k be a non-zero vector. Let Ēquad
k+1 be the updated

error matrix from the BFGS formula in the ideal quadratic case (i.e., where ȳk = s̄k). Then:

∥Ēquad
k+1∥

2
F = ∥Ēk∥2F − ∥Ēks̄k∥2

∥s̄k∥2
(29)

3

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Proof. The proof relies on geometric properties of the update. Let Ps =
s̄k s̄

T
k

∥s̄k∥2 be the orthogonal

projector onto the span of s̄k. One can show that the updated error matrix Ēquad
k+1 has two key proper-

ties: (1) it annihilates the step direction, Ēquad
k+1s̄k = 0, and (2) its action on the subspace orthogonal

to s̄k is the same as the old error matrix, Ēquad
k+1(I − Ps) = Ēk(I − Ps). Using the Pythagorean

theorem for the Frobenius norm, we have:

∥Ēquad
k+1∥

2
F = ∥Ēquad

k+1Ps∥2F + ∥Ēquad
k+1(I − Ps)∥2F

= 0 + ∥Ēk(I − Ps)∥2F = ∥Ēk∥2F − ∥ĒkPs∥2F

The result follows from noting that ∥ĒkPs∥2F = ∥Ēk s̄k∥2

∥s̄k∥2 .

Lemma 2. Let Ēk+1 = Ēquad
k+1 +∆k, where ∆k is the perturbation arising from the non-quadratic

term ϵ̄k = ȳk − s̄k. Under the theorem’s assumptions, for sufficiently large k, there exists a constant
C > 0 such that:

∥∆k∥F ≤ C
∥ϵ̄k∥
∥s̄k∥

(30)

Proof. The perturbation is given by ∆k = Ēk+1 − Ēquad
k+1. From the BFGS update formula, this

simplifies to:

∆k =
ȳkȳ

T
k

ȳTk s̄k
− s̄ks̄

T
k

∥s̄k∥2
(31)

Substitute ȳk = s̄k + ϵ̄k. The denominator becomes ȳTk s̄k = ∥s̄k∥2 + ϵ̄Tk s̄k. As k → ∞,
∥ϵ̄k∥/∥s̄k∥ → 0, so for large k, we have |ϵ̄Tk s̄k| ≤ ∥ϵ̄k∥∥s̄k∥ ≤ 1

2∥s̄k∥
2. This guarantees the

denominator is positive and bounded below by 1
2∥s̄k∥

2.

Using a common denominator, the numerator of ∆k is ∥s̄k∥2(s̄k + ϵ̄k)(s̄k + ϵ̄k)
T − (∥s̄k∥2 +

ϵ̄Tk s̄k)s̄ks̄
T
k . Expanding and simplifying yields:

Num(∆k) = ∥s̄k∥2(s̄k ϵ̄Tk + ϵ̄ks̄
T
k + ϵ̄k ϵ̄

T
k)− (ϵ̄Tk s̄k)s̄ks̄

T
k (32)

Taking the Frobenius norm and using the triangle inequality:

∥Num(∆k)∥F ≤ ∥s̄k∥2(2∥s̄k∥∥ϵ̄k∥+ ∥ϵ̄k∥2) + ∥ϵ̄k∥∥s̄k∥∥s̄k∥2 = 3∥s̄k∥3∥ϵ̄k∥+O(∥ϵ̄k∥2)

Dividing the bound on the numerator by the lower bound on the denominator gives:

∥∆k∥F ≤ 3∥s̄k∥3∥ϵ̄k∥+ . . .
1
2∥s̄k∥4

= 6
∥ϵ̄k∥
∥s̄k∥

+O

((
∥ϵ̄k∥
∥s̄k∥

)2
)

Since ∥ϵ̄k∥/∥s̄k∥ → 0, for some constant C, the bound holds.

Lemma 3. Under the theorem’s assumptions, for any symmetric matrix Bk, the updated matrix
Bk+1 satisfies:

∥Bk+1 −A∥M ≤
[
(1− αθ2k)

1/2 + C1σk

]
∥Bk −A∥M + C2σk (33)

for some positive constants C1, C2, where σk = max{∥xk+1 − x∗∥p, ∥xk − x∗∥p}, α ∈ (0, 1] is a
constant, and

θk =
∥M(Bk −A)sk∥F

∥Bk −A∥M∥M−1sk∥F
(34)

Proof. We start with the decomposition Ēk+1 = Ēquad
k+1 +∆k and take norms:

∥Ēk+1∥F ≤ ∥Ēquad
k+1∥F + ∥∆k∥F (35)

4

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Using Lemma 1, this becomes ∥Ēk+1∥F ≤ (1 − θ2k)
1/2∥Ēk∥F + ∥∆k∥F . From Lemma 2 and the

Lipschitz assumption (∥ϵ̄k∥/∥s̄k∥ ≤ const · σk), we get:

∥Ēk+1∥F ≤ (1− θ2k)
1/2∥Ēk∥F + Cσk (36)

Let ϕk = ∥Ēk∥F = ∥Bk −A∥M . We have shown ϕk+1 ≤ ϕk +Cσk. Since
∑

σk < ∞, it follows
that the sequence {ϕk} is bounded. Let P be an upper bound for {ϕk}. We can artificially introduce
a ϕk term. For any C1 > 0:

Cσk = C1σkϕk + (C − C1ϕk)σk (37)

The term (C−C1ϕk) is bounded, say by C ′
2, since ϕk is bounded. So, (C−C1ϕk)σk ≤ C ′

2σk. Let
C2 = max(C,C ′

2).

ϕk+1 ≤ (1− θ2k)
1/2ϕk + C1σkϕk + C2σk =

(
(1− θ2k)

1/2 + C1σk

)
ϕk + C2σk (38)

The value α from the original lemma statement can be taken as 1.

Lemma 4. Let {ϕk} and {δk} be sequences of non-negative numbers such that ϕk+1 ≤ (1+δk)ϕk+
δk and

∑∞
k=0 δk < ∞. Then the sequence {ϕk} converges.

Proof. We first show that {ϕk} is bounded. Let µm =
∏m−1

j=0 (1+δj). Since
∑

δj < ∞, the infinite
product

∏
(1+ δj) converges, which implies that the sequence of partial products {µm} is bounded.

Let µ = supm µm < ∞. From the given inequality, we have ϕk+1 ≤ (1 + δk)ϕk + δk. Dividing by
µk+1 = µk(1 + δk) gives:

ϕk+1

µk+1
≤ (1 + δk)ϕk

µk(1 + δk)
+

δk
µk+1

=
ϕk

µk
+

δk
µk+1

(39)

Since µk ≥ 1 for all k, we have µk+1 ≥ 1, and thus δk
µk+1

≤ δk. This yields:

ϕk+1

µk+1
≤ ϕk

µk
+ δk (40)

Summing this relation from k = 0 to m− 1:

ϕm

µm
≤ ϕ0

µ0
+

m−1∑
k=0

δk (41)

Since
∑

δk < ∞, the right-hand side is bounded by some constant C. Thus, ϕm ≤ µmC ≤ µC,
which shows that {ϕk} is a bounded sequence.

Now, we show that {ϕk} has a unique limit point. Let ϕinf = lim infk→∞ ϕk and ϕsup =
lim supk→∞ ϕk. By definition, ϕinf ≤ ϕsup. We must show ϕsup ≤ ϕinf . Unfolding the re-
currence for j steps from an index k gives:

ϕk+j ≤ ϕk

k+j−1∏
i=k

(1 + δi) +

k+j−1∑
i=k

δi

k+j−1∏
l=i+1

(1 + δl) (42)

Taking the limit superior as j → ∞ on both sides:

ϕsup ≤ ϕk

∞∏
i=k

(1 + δi) +

∞∑
i=k

δi

∞∏
l=i+1

(1 + δl) (43)

This inequality holds for all k. Now, we take the limit inferior as k → ∞. Since
∑

δk < ∞, we
have limk→∞

∏∞
i=k(1 + δi) = 1 and limk→∞

∑∞
i=k δi = 0. This yields:

ϕsup ≤ (lim inf
k→∞

ϕk) · 1 + 0 = ϕinf (44)

Since ϕsup ≤ ϕinf and ϕinf ≤ ϕsup, we must have ϕsup = ϕinf . Therefore, the sequence {ϕk}
converges.

5

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Proposition 4. Under the theorem’s assumptions, limk→∞
∥(Bk−A)sk∥

∥sk∥ = 0.

Proof. Let ϕk = ∥Bk−A∥M . The inequality from Lemma 3 is of the form ϕk+1 ≤ (1+C1σk)ϕk+
C2σk. Let δk = max{C1σk, C2σk}. Since

∑
σk < ∞, we have

∑
δk < ∞. The inequality can

be written as ϕk+1 ≤ (1 + δk)ϕk + δk. By Lemma 4, we conclude that the sequence of error norms
{∥Bk −A∥M} converges.

Using the inequality (1− x)1/2 ≤ 1− x/2 for x ∈ [0, 1], Lemma 3 gives:

∥Bk+1 −A∥M ≤
(
1− αθ2k

2

)
∥Bk −A∥M +O(σk) (45)

Rearranging the terms, we have:

αθ2k
2

∥Bk −A∥M ≤ (∥Bk −A∥M − ∥Bk+1 −A∥M) +O(σk) (46)

Summing both sides from k = 0 to N :

α

2

N∑
k=0

θ2k∥Bk −A∥M ≤ (∥B0 −A∥M − ∥BN+1 −A∥M) +

N∑
k=0

O(σk) (47)

As N → ∞, the right-hand side is bounded because {∥Bk − A∥M} converges and
∑

O(σk) is
finite. Thus, the series on the left must converge:

∞∑
k=0

θ2k∥Bk −A∥M < ∞ (48)

Since the series converges, its general term must approach zero: limk→∞ θ2k∥Bk − A∥M = 0. Let
L = limk→∞ ∥Bk −A∥M . We consider two cases for L.

• Case 1: L > 0. Since the sequence {∥Bk − A∥M} converges to a positive number, it is
bounded away from zero for large k. For the product θ2k∥Bk − A∥M to converge to zero,
we must have limk→∞ θ2k = 0, which implies limk→∞ θk = 0.

• Case 2: L = 0. In this case, limk→∞ ∥Bk −A∥M = 0.

From the definition of θk, we have ∥M(Bk − A)sk∥F = θk · ∥Bk − A∥M · ∥M−1sk∥F . By
equivalence of norms in finite-dimensional spaces, there exists a constant C such that:

∥(Bk −A)sk∥ ≤ C · θk · ∥Bk −A∥M · ∥sk∥
Dividing by ∥sk∥:

∥(Bk −A)sk∥
∥sk∥

≤ C · θk · ∥Bk −A∥M

We analyze the limit of the right-hand side. In Case 1 (L > 0), we have θk → 0 and ∥Bk −A∥M →
L (bounded). Thus the product converges to zero. In Case 2 (L = 0), we have ∥Bk − A∥M → 0
and θk is bounded (as 0 ≤ θk ≤ 1). Thus the product also converges to zero. In both possible cases,
the right-hand side converges to zero, which proves the proposition.

Finally, we have shown that both terms on the right-hand side of inequality equation 26 converge to
zero as k → ∞. This implies that the condition equation 25 is satisfied. Therefore, the sequence
{xk} converges to x∗ Q-superlinearly.

B DETAILED EXPERIMENTAL SETUP

This section provides supplementary details regarding our experimental settings, including the com-
putational environment, dataset generation procedures, L2O model training, baseline configurations,
and the specifics of the neural network training task.

6

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.1 COMPUTATIONAL ENVIRONMENT

Our experiments were conducted using Python 3.9 and PyTorch 1.12. The underlying system was
Ubuntu 18.04, equipped with an Intel Xeon Gold 5320 CPU and two NVIDIA RTX 3090 GPUs.

B.2 L2O MODEL TRAINING (BFGS-L2O)

The L2O parameters for our BFGS-L2O model were trained using Adam as the meta-optimizer. The
Adam learning rate was set to 1× 10−3, and we processed a batch size of 64 optimization problems
for each update. The L2O model underwent a total of 200 such training updates.

B.3 DATASETS FOR CLASSIC OPTIMIZATION PROBLEMS

For the classic optimization problems (Least Squares and Log-Sum-Exp), the L2O training dataset
consisted of 32,000 randomly generated problem instances. A separate test dataset of 1,024 in-
stances was used for evaluation. Specific parameter generation for each problem type is detailed
below.

Least Squares Problem The objective function is:

min
x

f(x) =
1

2
|Ax− b|2,

where A ∈ Rm×n and b ∈ Rn. For our experiments, we used m=250 and n=500. The elements of
A and b were randomly generated using a Gaussian distribution. Following the setup in Liu et al.
(2023) (from your main text), sparsity was introduced into A by setting 90% of its elements to zero.

Log-Sum-Exp Problem The objective function is:

min
x

f(x) = log

(
m∑
i=1

ea
T
i x−bi

)
,

where m = 500 (number of exponential terms). The vectors {(ai, bi) ∈ Rd×R}mi=1 were generated
following the dataset generation process described in Rodomanov & Nesterov (2021) to ensure
the optimal solution is x∗ = 0. We first generate auxiliary random vectors {âi}mi=1 by sampling
uniformly from the interval [0, 1]. We then generate {bi}mi=1 from the standard normal distribution.

Using these, we define an auxiliary function f̂(x) = log
(∑m

i=1 e
âT
i x−bi

)
. Finally, we set ai =

âi −∇f̂(0), ensuring that the optimal solution of f(x) is 0.

B.4 BASELINE METHOD CONFIGURATIONS

• BFGS-LS (BFGS with Backtracking Line Search): The step size was initialized to 1 at
each iteration. The backtracking line search iteratively scaled the step size by 0.8 until the
Armijo condition f(xk + αkdk) ≤ f(xk) + c1αk∇f(xk)

T dk is satisfied. Here dk is the
descent direction and c1 = 10−4.

• BFGS-HGD (BFGS with Hypergradient Descent): Within each BFGS iteration,
coordinate-wise step sizes Pk were initialized as the identity matrix and then refined by
performing 20 iterations of hypergradient descent with hyper step size η = 10−2.

B.5 SIMPLE CNN TRAINING DETAILS

The Convolutional Neural Network (CNN) used for the MNIST dataset experiments processes input
images of size 28×28×1. The architecture begins with a first convolutional layer applying 2 filters
with a 3×3 kernel, stride 1, and padding 1, followed by a ReLU activation, resulting in a 28×28×2
volume. This is then downsampled by a 2 × 2 max pooling layer with a stride of 2, producing a
14 × 14 × 2 volume. A second convolutional layer follows, applying 3 filters with a 3 × 3 kernel,
stride 1, and padding 1, again followed by ReLU activation, yielding a 14× 14× 3 volume. This is
further downsampled by a second 2× 2 max pooling layer with a stride of 2, resulting in a 7× 7× 3
volume. This output is then flattened into a vector of 147 features, which feeds into a fully connected
layer that produces 10 output units, corresponding to the logits for the 10 MNIST classes.

7

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C GAIN OF CWSS

To illustrate the potential benefits of CWSS in the BFGS method, let us consider the theoretical
implications of relaxing the constraint that step size should be a scalar. Assume we have identified
an optimal scalar step size, denoted by α∗

k, for the k-th iteration. Since the restriction of a convex
function to a line remains convex Boyd & Vandenberghe (2004), this optimal step size α∗

k satisfies:

d

dαk
f(xk+1)

∣∣∣∣
αk=α∗

k

=
d

dα∗
k

f(xk − α∗
kB

−1
k ∇f(xk))

=−∇f(xk − α∗
kB

−1
k ∇f(xk))

⊤B−1
k ∇f(xk)

=0.

(49)

When constrained to a scalar form, α∗
k guarantees optimality along the single search direction

B−1
k ∇f(xk). However, if we allow the step size to be a diagonal matrix Pk rather than a scalar,

the optimality condition of α∗
k may no longer hold. By extending to a coordinate-wise approach, we

aim to further minimize the objective function by adjusting each coordinate independently, which
can potentially achieve a lower function value than with α∗

k alone. To explore this, let Pk = α∗
kI ,

and consider the partial derivative of f(xk+1) with respect to Pk at this point:

∂

∂Pk
f(xk − PkB

−1
k ∇f(xk))

∣∣∣∣
Pk=α∗

kI

=

diag(−∇f(xk − α∗
kB

−1
k ∇f(xk))⊙B−1

k ∇f(xk)),

(50)

where ⊙ denotes the Hadamard (element-wise) product. Since B−1
k ∇f(xk) ̸= 0 , the derivative

in equation 50 equals zero only if ∇f(xk − α∗
kB

−1
k ∇f(xk)) = 0. Since the optimum does not

generally lie on the direction of B−1
k ∇f(xk), the dot product being zero in equation 49 does not

imply that the Hadamard product is also zero in equation 50. This observation suggests that even we
know the optimal scalar step size α∗, we can still find coordinate-wise step sizes that could achieve a
more effective descent. To determine suitable coordinate-wise step sizes, we employ hypergradient
descent. Defining g(p) = f(xk − p ⊙ B−1

k ∇f(xk)), where p is the diagonal of P ,we can analyze
the smoothness of g(p) as follows:

∥∇g(p1)−∇g(p2)∥
= ∥(∇f(xk − p1 ⊙B−1

k ∇f(xk))

−∇f(xk − p2 ⊙B−1
k ∇f(xk))∥

≤ L∥(p1 − p2)⊙B−1
k ∇f(xk)∥

≤ L∥B−1
k ∇f(xk)∥∥p1 − p2∥

≤ LR∥p1 − p2∥,

where L is the Lipschitz constant of ∇f and R is from assumption 4. This shows that g(p) is
LR-smooth. To explore this, we can set the coordinate-wise step sizes Pk as:

Pk = α∗
kI −

1

LR
vkB

−1
k ∇f(xk), (51)

where vk = diag(∇f(xk − α∗
kB

−1
k ∇f(xk))), L is the Lipschitz constant of ∇f and R is from

assumption 4. This coordinate-wise step size Pk is theoretically guaranteed to perform better than
the scalar step size α∗

k:

f(xk − PkB
−1
k ∇f(xk)) ≤ f(xk − α∗

kB
−1
k ∇f(xk))

− 1

2LR
|∇f(xk − α∗

kB
−1
k ∇f(xk))⊙B−1

k ∇f(xk)|2.
(52)

This demonstrates that CWSS in the BFGS method can yield a more substantial decrease in the
objective function than a scalar step size.

8

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D LIMITATIONS

Theory-Practice Gap and Practical Simplifications Our derivations rely on standard assump-
tions, such as the L-smoothness of the objective function and the existence of a well-conditioned
Hessian approximation. While common in optimization literature, these assumptions may not hold
for all practical scenarios, potentially impacting the direct applicability of our theoretical guarantees.
Furthermore, our theory provides bounds for CWSS that depend on problem-specific quantities like
Lipschitz constants or Hessian conditioning, which are often computationally infeasible to estimate
during optimization. To address this, our practical implementation simplifies these bounds by con-
straining the learned step sizes to the interval [0, 2]. This creates a ”safe operating region” that is
guaranteed to be stable. While this design choice prioritizes robust convergence, we acknowledge
it might preclude the discovery of a more aggressive, faster-converging step-size policy that could
exist outside these established bounds.

Scalability and Extension to Limited-Memory Methods A key limitation is the scalability of
our method’s backbone. This work is developed for the standard BFGS algorithm, which requires
storing and updating a dense Hessian approximation, incurring memory and computational costs of
O(d2) per step, where d is the number of parameters. This makes it prohibitive for extremely large-
scale models. A natural direction for future work is to adapt our L2O approach to memory-efficient
variants like L-BFGS. However, this extension is non-trivial, as our theoretical guarantees do not
directly transfer.

• Theorem 1 and 2 rely on the norms and eigenvalue bounds of the explicit Bk matrix, which
is never formed in the matrix-free L-BFGS algorithm.

• Theorem 3 guarantee of superlinear convergence is fundamentally tied to the full-memory
BFGS update and does not apply to L-BFGS, which typically exhibits a linear convergence
rate.

From a practical standpoint, our L2O model could be heuristically combined with L-BFGS by us-
ing the search direction computed by the L-BFGS two-loop recursion as an input. While this is
a promising practical direction, it would operate without the rigorous theoretical assurances estab-
lished in this paper. Therefore, developing a new theoretical framework to guarantee the stability
and convergence of a learned CWSS policy for L-BFGS remains a significant and important open
problem.

E LLM USAGE STATEMENT

We utilized a large language model (LLM) as an assistive tool in the preparation of this manuscript.
The LLM’s role was strictly limited to improving the clarity and readability of the text, including
tasks such as grammar correction, spelling checks, rephrasing for conciseness, and improving sen-
tence structure. The LLM was not used for any core research aspects, such as the ideation of the
method, the derivation of theoretical results, the design of experiments, or the analysis of the results.
The authors have reviewed all suggested edits and take full responsibility for all content presented
in this paper.

9

	Introduction
	Preliminaries
	Second-Order Methods
	Assumptions

	Coordinate-Wise Step Sizes for BFGS
	Gain of Coordinate-Wise Step Sizes
	Numerical Analysis of Coordinate-Wise Step Size: A Hypergradient Descent Method
	Sufficient Conditions for Coordinate-Wise Step Sizes with Theoretical Guarantee

	L2O Model
	Experiments
	Conclusions
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Detailed Experimental Setup
	Computational Environment
	L2O Model Training (BFGS-L2O)
	Datasets for Classic Optimization Problems
	Baseline Method Configurations
	Simple CNN Training Details

	Gain of CWSS
	Limitations
	LLM Usage Statement

