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Fig. 1: DexWild enables dexterous policies to generalize to new objects, scenes, and embodiments. This is achieved by leveraging large-scale,
real-world human embodiment data collected in many scenes and co-trained with a smaller robot embodiment dataset for grounding.

Abstract—Large-scale, diverse robot datasets have emerged as
a promising path toward enabling dexterous manipulation policies
to generalize to novel environments, but acquiring such datasets
presents many challenges. While teleoperation provides high-
fidelity datasets, its high cost limits its scalability. Instead, what if
people could use their own hands, just as they do in everyday life,
to collect data? In DexWild, a diverse team of data collectors uses
their hands to collect hours of interactions across a multitude
of environments and objects. To record this data, we create
DexWild-System, a low-cost, mobile, and easy-to-use device. The
DexWild learning framework co-trains on both human and robot
demonstrations, leading to improved performance compared to
training on each dataset individually. This combination results in
robust robot policies capable of generalizing to novel environments,
tasks, and embodiments with minimal additional robot-specific
data. Experimental results demonstrate that DexWild significantly
improves performance, achieving a 68.5% success rate in unseen
environments—nearly four times higher than policies trained
with robot data only—and offering 5.8× better cross-embodiment
generalization. Video results, codebases, and instructions at https:
//dexwild.github.io

I. INTRODUCTION

Roboticists have long dreamed to build robots with human-
like dexterity and adaptability. Recent advances in large
language and vision-language models have shown the power
of scaling with vast datasets [53, 51, 3, 24, 48], but robotics
still lacks large, diverse datasets needed to train foundation
models.

Teleoperation provides high-quality action data for policy
learning [8, 21, 54], but scaling it to diverse environments is
difficult due to physical constraints and operator requirements.
Internet-scale video offers visual diversity [15, 10], yet suffers
from noisy hand tracking and lacks structured, task-relevant
annotations [18, 1, 40]. More accurate datasets exist [60, 2],
but they fall short in environmental diversity.

To address these gaps, some efforts use wearable grippers to
map human hand motions to robots [7], but these setups are
cumbersome and constrained to a specific embodiment. Others
leverage gloves or dexterous hands [55], but do not scale to
in-the-wild settings.

In this paper, we present DexWild, a system that enables
effective learning of robust dexterous manipulation policies
through co-training on human and robot demonstrations. Our
key contributions include:

1) Scalable Data Collection System: A novel human-
embodiment DexWild-System that enables untrained op-
erators to quickly collect 9,290 demonstrations across
93 diverse environments, achieving 4.6× speedup over
conventional robot-based methods

2) Efficient Co-training Framework: An approach that
optimally combines human and robot demonstrations,
significantly improving policy generalization to achieve
68.5% success rate in novel environments, nearly four
times higher than robot-only policies.

https://dexwild.github.io
https://dexwild.github.io
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Fig. 2: Left: DexWild efficiently capture high-fidelity data using an individual’s own hands across various environments. Right: Robot hands
are equipped with cameras aligned with the human cameras. We test DexWild on two distinct robot hands and robot arms.

3) Strong Cross Embodiment and Cross Task Perfor-
mance: Our data collection system combined with our
co-training framework achieves of 5.8× improvement in
cross-embodiment transfer over baselines and effective
skill transfer across tasks.

II. DEXWILD

We introduce DexWild-System, a user-friendly, high-fidelity
platform for efficiently gathering natural human hand demon-
strations across diverse real-world settings. Compared to
traditional teleoperation-based approaches, DexWild-System
enables 4.6× faster data acquisition at scale.

Building on this system, we propose DexWild, an imitation
learning framework that co-trains on large-scale DexWild-
System human demonstrations alongside a small number of
robot demonstrations. Figure 1 displays our high level approach.

A. Data Collection System

A scalable data collection system for dexterous robot learning
must enable natural, efficient, and high-fidelity collection across
diverse environments. To this end, we design DexWild-System:
a portable, user-friendly system that captures human dexterous
behavior with minimal setup and training. We aim to create an
intuitive hardware interface that mirrors how humans naturally
interact with the world.

DexWild-System is designed around three core objectives:

• Portability: Allow rapid, large-scale data collection
across diverse environments without requiring complex
calibration procedures.

• High Fidelity: Accurately capture fine-grained hand and
environment interactions essential for training precise
dexterous policies.

• Embodiment-Agnostic: Enable seamless retargeting from
human demonstrations to a wide variety of robot hands.

Portability:

DexWild-System is lightweight, compact, and can be set up
in minutes, making it suitable for untrained users in diverse
real-world settings. As shown in Figure 2, it consists of
three components: a tracking camera for wrist pose, a battery-
powered mini-PC, and a custom pod with a motion-capture
glove and palm-mounted cameras.

Unlike traditional motion capture setups [60, 13, 4, 52]
that require calibrated, fixed infrastructure, DexWild-System is
calibration-free and works in any environment. This is made
possible by using a relative state-action representation, allowing
free placement of the tracking camera (e.g., egocentric or
exocentric).

High Fidelity:
Despite its portability, DexWild-System captures rich, accu-

rate data. We combine motion-capture gloves for precise hand
tracking with ArUco-based wrist tracking to avoid failures
common in SLAM-based approaches under occlusion or sparse
features.

Stereo palm cameras provide high-quality, wide-FOV visual
input with minimal motion blur. Their placement enables
policies to rely solely on onboard views, removing dependence
on static external cameras.

Embodiment-Agnostic:
To ensure compatibility with future robots, we align both

observation and action spaces between humans and robots. The
palm cameras are positioned to minimize hand visibility and
focus on the environment, with mirrored placements between
human and robot hands (Figure 5), enabling consistent visual
representations across embodiments.

For actions, we follow prior work [17, 44] and retarget
human fingertip motions to robot hand kinematics, enabling
generalization across hardware platforms.

B. Training Data Modalities and Preprocessing

Generalization in dexterous manipulation requires both
scale and embodiment grounding. With this goal, DexWild
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Fig. 3: How does co-training help with scaling up in the wild performance? We evaluate our policy across three scenarios: (a) In-Domain
scenes where robot training data was collected but with novel objects, (b) In-the-Wild scenes present in DexWild but not in robot data, and
(c) In-the-Wild Extreme scenes absent from both datasets. Displayed ratio is Robot:Human.

collects two complementary datasets: a large-scale human
demonstration dataset DH using DexWild-System and a smaller
teleoperated robot dataset DR. Human data is easy to collect
in the wild and offers task diversity but lacks embodiment
alignment. Robot data provides grounding in the robot’s
observation and action spaces but is limited in scale. We co-
train policies using a fixed human-to-robot data ratio (wh, wr)
to balance diversity and embodiment grounding for robust
deployment.

At each iteration, we sample transitions xh and xr from
DH and DR based on the co-training weights. Each transition
xi includes:

• Observation oi: Two synchronized palm images (Ipinky ,
Ithumb) and a sequence of relative end-effector displace-
ments ∆pi,∆pi−step, ...,∆pi−H over horizon H .

• Action ai:i+n−1: A chunk of n actions, where each ai
is a 26D vector—9D for relative end-effector pose (3D
position + 6D orientation) and 17D for robot finger joints.

For bimanual tasks, observations and actions are duplicated,
and the inter-hand pose is appended to facilitate coordination.

While our retargeting procedure brings human and robot
trajectories into a shared action space, a few additional steps
are necessary to make the human and robot datasets compatible
for joint training:

• Action Normalization: Human and robot actions are
normalized separately to correct distribution mismatches.

• Demo Filtering: A heuristic-based pipeline removes low-
quality human demos, improving dataset quality without
manual labeling.

C. Policy Training

Through the careful design of our hardware, observation, and
action interfaces, we are able to train dexterous robot policies
using a simple behavior cloning (BC) objective [31, 37, 36]. To
effectively learn from our multimodal, diverse data, our training
pipeline leverages large-scale pre-trained visual encoders and
shows strong performance across different policy architectures.

Visual Encoder: DexWild’s visual diversity—across scenes,
objects, and lighting—requires robust representations. We use a
pre-trained Vision Transformer (ViT), which has been shown to

outperform ResNet-based encoders in in-the-wild manipulation
tasks [16, 23].

Policy Class: We adopt a diffusion policy [6], which better
models the multi-modal action distributions arising from diverse
human demonstrations than transformer-based alternatives [59].
This is especially important for dexterous tasks with varied
strategies from different data collectors.

Our training procedure is outlined in Algorithm 1. We also
find that tuning the human-to-robot data ratio significantly
impacts real-world generalization (Section IV-A).

III. EXPERIMENTS

A. Scaling up Data Collection

We constructed two datasets through our collection efforts:
DH (human-collected data) and DR (robot-collected data). The
human dataset DH comprises 9,290 demonstrations across five
tasks. The robot dataset DR includes 1,395 demonstrations.
Robot data was collected using an xArm and LEAP hand V2
Advanced. Our training and test objects are detailed in Figure
8 and a detailed breakdown of task dataset sizes in Appendix
VI-E

B. Evaluation Tasks

We evaluate our approach on five diverse manipulation
tasks, each designed to assess specific aspects of dexterous
manipulation. Success requires the policy to adapt to varying
object properties, environmental conditions, and task constraints.
A task visualization is provided in Figure 6 and full task
specifications including scoring criteria are provided in Ap-
pendix VI-C.

C. Evaluation Environments

For robot experiments, unless explicitly mentioned, xArm
and LEAP hand V2 Advanced [38, 41] was used. We evaluate
our approach across three scenarios:

1) In-Domain: Environments where robot training data was
collected, testing with novel objects

2) In-the-Wild: Environments present in DexWild but absent
from robot training data

3) In-the-Wild Extreme: Unseen environments absent from
both datasets.
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Fig. 4: Left: Cross-Task Performance – Evaluating DexWild on the pour task using robot data exclusively from the spray task. Middle:
Cross-Embodiment Performance – Testing DexWild policy on the Original LEAP hand and a Franka robot arm. Right: Scaling Performance
– Demonstrating improved DexWild performance as dataset size increases. Displayed ratio is Robot:Human.

IV. ANALYSIS AND RESULTS

A. Zero Shot In the Wild Policies w/ DexWild

DexWild enables strong policy generalization in novel
scenes. We evaluate policy performance across increasing
environment novelty. Robot-only policies perform well in-
domain (64.7%) but drop sharply in-the-wild (28.5%) and in
extreme settings (22.0%), suggesting overfitting. Human-only
policies generalize visually and perform reasonable actions
but lack embodiment grounding, yielding poor manipulation
success (e.g., 7.3% in-the-wild).

Co-training with a 1:2 robot-to-human ratio combines the
strengths of both, achieving:

1) In Domain: 79.8% vs. 64.7% (robot-only)
2) In-the-wild: 75.1% vs. 28.5% (robot-only)
3) In-the-wild Extreme: 62.7% vs. 22.0% (robot-only)
DexWild extends to complex bimanual coordination tasks.

DexWild generalizes to bimanual coordination, achieving 68.1%
success vs. 13% for robot-only policies in in-the-wild extreme
settings.

B. Robust Cross-Task and Cross-Embodiment Generalization

DexWild enables transfer of low-level skills across tasks.
We evaluate cross-task generalization on the pouring task,
using no robot pouring data. Instead, we co-train with human
pouring and robot spraying. The resulting policy achieves 94%
success in extreme settings—vs. 0% (robot-only) and 11%
(human-only).

DexWild enables transfer across robot embodiments.
DexWild supports cross-platform reuse of DexWild data:

1) Cross-arm: 37.5% success on Franka from xArm (vs. 4.5
2) Cross-hand: 65.3% on LEAP Hand v1 from v2 (vs. 13.3
These results, shown in Figure 4, demonstrate that DexWild

is an efficient and general framework for dexterous policy
learning on many robots.

C. Scalability of DexWild

Policy performance scales with dataset size. Policy success
improves with larger human datasets—rising from 28.7% (20%

data) to 67.8% (100% data), with sharp gains between 25–50%,
suggesting a critical threshold. No plateau is observed yet,
indicating more data would likely further improve performance
(Fig. 4).

DexWild-System enables fast and scalable data collection.
Given the observed benefits of scaling, we evaluate the data
collection efficiency of DexWild-System via a comparative user
study measuring demonstrations per hour. DexWild-System
achieves 201 demos/hour—4.6× faster than Gello (43/hr) and
close to bare-hand collection—across five tasks (Fig. 9). Key
advantages over Gello include:

1) Haptic feedback: Since users use their own hands, they
can feel the object they are touching.

2) Scene reset: Much faster to reset scene using your hands.
3) Hardware setup overhead: DexWild-System can be set

up in minutes in new environments

V. CONCLUSION AND LIMITATIONS

We introduce DexWild, a scalable framework for learning
dexterous manipulation policies that generalize to tasks, en-
vironments, and robot embodiments. At the core is DexWild-
System, a portable, human-centric data collection device that
accelerates dataset creation (4.6× faster than robot teleop).
Using a co-training approach, we combine large-scale human
demonstrations with limited robot data to achieve strong
generalization—reaching 68.5% success in unseen environ-
ments, nearly 4× better than robot-only training. DexWild ’s
embodiment-agnostic design also enables effective transfer
across tasks and hardware platforms.

While promising, DexWild still relies on some robot data for
embodiment grounding. Future work could explore improved
retargeting or online adaptation to reduce this dependence.
Additionally, the lack of recovery examples in human demos
limits robustness, and our vision-kinematics-only setup may
underperform in contact-rich tasks—both could benefit from
adding error cases or tactile feedback.

Overall, DexWild highlights the potential of large-scale
human data for enabling general-purpose, dexterous robot
policies in the real world.
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VI. APPENDIX

A. Related Works

Generalization for Imitation Learning
Learning generalizable policies for robot manipulation has
seen rapid progress, driven largely by advances in visual
representation learning and imitation learning from large-scale
datasets. On the visual side, embodied representation learning
has benefited from egocentric datasets such as Ego4D [15] and
EPIC-KITCHENS [10], with recent methods [27, 11, 47, 39]
leveraging these datasets to train scalable visual encoders.
However, these approaches still require substantial downstream
robot demonstrations to train control policies.

In parallel, robot-only demonstration datasets have grown
significantly in scale and diversity [21, 8, 54], fueling research
in behavior cloning and enabling generalist policy architec-
tures [49, 8, 22]. While these policies show impressive per-
formance across many tasks, they often struggle to generalize
to unseen object categories, scene layouts, or environmental
conditions [25]. This lack of robustness remains a key limitation
of current systems.
Data Generation for Robot Manipulation
Overcoming the robot data bottleneck has become a central
challenge in robot learning.

One approach leverages internet videos to extract action
information. Several works, such as VideoDex [40] and HOP
[42], utilize large scale human videos to learn an action prior
through retargeting, which they use to bootstrap policy training.
Others, such as LAPA [57], use unlabelled videos to generate
latent action representations that can be used for downstream
tasks. While these video-based schemes enjoy vast visual
diversity, they typically fall short at capturing the precise, low-
level motor commands needed for real-world manipulation.

Simulation enables rapid generation of action data at scale.
However, creating diverse, realistic environments for many
tasks and addressing the sim-to-real gap is challenging. Recent
successes in transferring manipulation policies from simulation
[43] have been confined to tabletop settings and lack the
generalization needed for deployment in diverse environments.

Direct teleoperation on physical robots yields the highest
fidelity, but scales poorly. Recent works have shown impressive
dexterity and efficient learning in fixed scenarios [59, 56, 41,
19], yet collecting enough demonstrations to generalize across
diverse scenes quickly becomes prohibitively expensive.

Recently, there has been a growing body of work that utilizes
purpose-collected high quality human embodiment data without
the tedious teleoperation. We discuss these approaches in the
next section.
Human Action Tracking Systems
In order to acquire high-quality data from human motions,
accurate hand and wrist tracking is of paramount importance.
To bypass the complexities of hand pose estimation, several
works equip users with handheld robot grippers [7, 12, 46].
While this approach simplifies retargeting, it constrains users
to the specific morphology of the robot gripper, limiting the
diversity of captured behavior. Moreover, many of these systems

Robot

Human

Fig. 5: DexWild aligns the visual observations between humans and
robots to bridge the embodiment gap. This incentivizes the model to
learn a task-centric rather than embodiment-centric representation.

rely on SLAM-based wrist tracking, which can fail in feature-
sparse environments or when occlusions occur [7, 23]—such
as during drawer opening or tool use.

Other approaches aim to estimate both hand and wrist poses
directly from visual input [29, 35, 5, 45, 28, 20, 32]. These
methods are easy to deploy and require no instrumentation, but
their performance degrades significantly under occlusion—an
unavoidable situation in manipulation. Alternative strategies
for wrist tracking, such as IMU-based [9, 50] and outside-
in optical systems [30], come with their own limitations:
IMUs are lightweight and portable but prone to drift, while
optical systems are accurate yet require laborious calibration
and controlled environments. DexWild leverages calibration-
free Aruco tracking—significantly improving reliability and
minimizing setup time as it requires a single monocular camera.

While vision-based methods often attempt to track both the
wrist and fingers simultaneously, many recent systems decouple
the two to improve accuracy. Kinematic exoskeleton gloves
can provide high-fidelity joint measurements and even haptic
feedback [58], but are bulky and uncomfortable for long-term
use. Instead, DexWild, along with prior works [41, 55], adopts
a lightweight glove-based solution that uses electromagnetic
field (EMF) sensing to estimate fingertip positions. This allows
for accurate, real-time hand tracking that is robust to occlusions
and readily retargetable to a wide range of robot hands.

B. Visual Alignment

Figure 5 shows that the human and robot visual observations
are aligned.

C. Detailed Task Description and Scoring Criteria:

We evaluate five dexterous manipulation tasks, each designed
to assess different capabilities such as functional grasping,
long-horizon planning, precision, bimanual coordination, and
deformable object manipulation. Each task is scored according
to a structured rubric based on discrete completion milestones.
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Fig. 6: Using DexWild-System, humans can effortlessly collect accurate data with their own hands across a wide range of environments.
This data is directly used to train any robot hand to perform dexterous manipulation in a human-like way in any environment. We validate
this approach on five representative tasks.

The task scoring criteria are designed to quantify the
performance of different robot tasks based on specific com-
pletion milestones. Each task has a set of defined actions
with corresponding point values. Higher scores are assigned to
more complex or functionally successful actions, while partial
completions and failed attempts receive lower scores. This
structured scoring system allows for consistent evaluation and
comparison of task performance.
Spray Bottle
This task evaluates functional grasping and affordance under-
standing. The robot must grasp a spray bottle and orient it to
spray over a target cloth.

– 0.00: Nothing
– 0.15: Tries functional grasp but fails
– 0.25: Grasp bottle
– 0.75: Grasp bottle, orient over cloth
– 0.75: Grasp bottle, use functional grasp
– 1.00: Grasp bottle, use functional grasp, orient over cloth

Toy Cleanup
This task tests long-horizon planning and generalization. The
robot must collect scattered toys and deposit them in a
designated bin.

– 0.00: Nothing
– 0.25: Tries for grasp but fails
– 0.50: Grasp object
– 1.00: Grasp object, drop into bin

Pouring
This task assesses precise motion control and transfer learning
from the spray bottle task. The robot must pour liquid from a
bottle into a container.

– 0.00: Nothing
– 0.15: Tries functional grasp but fails
– 0.25: Grasp bottle
– 0.75: Grasp bottle, pour into container
– 0.75: Grasp bottle, use functional grasp
– 1.00: Grasp bottle, use functional grasp, pour into container

Bimanual Florist
This task evaluates coordinated control of both hands. The

Fig. 7: DexWild-System features a simple and easy-to-use interface
for deployment by untrained data collectors.

robot must pick up a flower, hand it to the other arm, and
insert it into a vase.

– 0.00: Nothing
– 0.15: Tries grasp but fails
– 0.25: Grasp the bouquet
– 0.75: Grasp the bouquet, handover
– 1.00: Grasp the bouquet, handover, insert into vase

Clothes Folding
This task tests manipulation of deformable objects using both
hands. The robot must fold a clothing item placed on a surface.

– 0.00: Nothing
– 0.25: Tries grasp but fails
– 0.50: Grasp with one hand
– 0.75: Grasp with both hands
– 1.00: Grasp and fold

D. Training and Test Objects

Please see Figure 8 for breakdown of train and test objects
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Fig. 8: We collect data using a diverse set of objects across categories. Spray Bottle Task – 25 Train, 11 Test; Toy Cleanup Task – 64 Train,
9 Test; Pour Task – 35 Train, 5 Test; Florist Task - 6 Train, 2 Test; Clothes Folding Task - 17 Train, 6 Test.

E. Dataset Sizes

Human Demonstrations: 3,000 demonstrations from 30
different environments for each of the Spray Bottle and Toy
Cleanup tasks, 621 trajectories from 6 environments for the
Pour task, 1,545 demonstrations from 15 environments for the
Florist task, and 1,124 demonstrations from 12 environments
for the Clothes Folding task.

Robot Demonstrations: The robot dataset DR includes 1,395
demonstrations: 388 for Spray Bottle, 370 for Toy Cleanup,
111 for Pour, 236 for Florist, and 290 for Clothes Folding
tasks.

F. Data Collection Procedure

To deploy DexWild-System with untrained data collectors,
we provide a one-page instruction sheet outlining the task,
object setup, and system startup/shutdown. DexWild-System
includes three core components: a wrist-tracking camera, a
battery-powered mini-PC for onboard data capture, and a
custom sensor pod with a motion-capture glove and palm-
mounted cameras. At a new site, users simply wear the mocap
glove and power on the mini-PC with a provided power
bank. For egocentric tracking, a headstrap holds the tracking
camera; for exocentric tracking, we provide a collapsible
tripod. Once booted, users launch our custom desktop app
and control recording via a Bluetooth clicker or foot pedal.
The UI (Fig. 7) shows sensor status, SLAM recording, and
data capture indicators, along with buttons to view the tracking
camera feed and delete the last episode. Collectors gather 100
episodes per location. After the day is finished, we upload the
data to our remote machine for processing.

G. Data Collection Speed

Please see Figure 9 for comparison of data collection speed
of different methods

H. Downstream Data Processing

Each episode is stored in its own folder, with subfolders
organizing individual actions and observations. SVO recordings
from the Zed Mini camera—used for SLAM and wrist pose
tracking—are saved separately, with each file covering five
episodes. To begin data processing, we use the Zed SDK
to decode these SVO files, reconstruct the camera’s motion,
and perform ArUco cube tracking and wrist pose estimation
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Fig. 9: DexWild-System offers 4.6× improvement over robot data
collection speed and nearly matches the human bare hands data
collection speed.

using both the left image and stereo depth data. We then
apply a filtering pipeline to assess tracking quality; episodes
are discarded if the wrist pose cannot be reliably tracked
for more than 75% of the duration. Next, we compute the
action distribution and clip outliers outside the 2nd and 97th
percentiles. We smooth the trajectories using interpolation and
Gaussian filtering to ensure fluid motion. Hand motions are
then retargeted using inverse kinematics in PyBullet, following
the method in [41]. The entire pipeline is parallelized using
Ray for efficiency.

I. Behavior Cloning Algorithm

Algorithm 1 DexWild Imitation Learning Procedure

Require: Human dataset DH , Robot dataset DR, Co-training weights
{ωh, ωr}

1: Initialize policy πθ with ViT encoder ϕvit
2: while not converged do
3: Sample a batch of transitions {xh}, {xr} from DH ,DR using

weights {ωh, ωr}
4: for each transition xi in the batch do
5: Extract observation oi
6: Encode images: Zi = ϕvit(oi)
7: Extract ground truth action chunk ai:i+n−1 =

{ai, . . . , ai+n−1}
8: Sample noise scale t ∼ U(1, T )
9: Add noise ϵt ∼ N (0, σt) to ai:i+n−1

10: Predict noise ϵ̂θ = πθ(Zi, ai:i+n−1 + ϵt, t)
11: Compute diffusion loss Lθ = ∥ϵt − ϵ̂θ∥22
12: end for
13: Update policy parameters θ
14: end while



J. Behavior Cloning Policy Architecture and Training Hyper-
Parameters

Our behavior cloning policy takes as input RGB images
and relative state history. We obtain tokens for the image
observation via a ViT and tokens for relative states via linear
layers. The weights of ViT is initialized from the Soup 1M
model from [11]. We decide to include relative states as we
found it greatly increases the robustness of the policy, and
enables smoother motions. In particular, for bimanual tasks,
we find that including the interhand pose (pose of left hand
relative to right hand) greatly increases success rate in tasks
like Florist We implement both Action Chunking Transformer
[59] and Diffusion U-Net [6] as policy classes, which output
a sequence of actions. The network outputs actions which
consists of relative end effector actions and absolute hand joint
angles.

We list the hyper-paramaters that we used for policy training
using behavior-cloning in this Table V

K. Low Level Motion Control

For optimal smoothness of our policies and safety, we employ
a Riemannian Motion Policy (RMP) [34] implemented in
Isaac Lab [26], where the RMP dynamically generates joint-
space targets given end effector targets. RMP also has the
added benefit of incorporating real-time collision avoidance,
preventing self-collision between the arms and a set table
height. Although our policies does not rely on RMP to prevent
collisions, the peace of mind is appreciated.

L. Comparing Policy Classes

Does DexWild work with different behavior cloning
policy classes? Table I compares the performance of ACT
and Diffusion—across both the In-the-Wild and In-the-Wild
Extreme settings. Each policy is evaluated in a robot-only
setting and a co-trained (1:2) setting using the DexWild dataset.
Notably, Diffusion policies benefit more from DexWild co-
training, achieving the highest scores in all tasks, including
substantial improvements on the Pour task where the policy
must generalize across tasks. These results suggest that
DexWild co-training enables stronger generalization, especially
when paired with expressive policy architectures like Diffusion.

M. Cross Hand Extended Results

Does DexWild generalize across different robot hands?
Table II reports LEAP Hand performance under both In the Wild
and In the Wild Extreme conditions. In every case, DexWild
co-training substantially outperforms the robot-only baseline.
These results highlight the effectiveness of DexWild in cross
embodiment generalization even when using a completely
different robot hand.

N. Scaling Extended Results

Does DexWild improve as more DexWild data is added?
Table III shows steady gains as we scale from 0% to 100% of
the DexWild dataset. Performance increases steadily with more
human demonstrations, with a notable jump between 25% and

50% of the dataset. These results demonstrate that DexWild
enables scalable learning, where even comparably smaller data
scales yields substantial gains, and additional data continues
to enhance generalization

O. Cotraining Extended Results

How does DexWild react to different cotraining ratios?
Table IV groups all three raw metrics: (a) In-Domain, (b) In-
the-Wild, and (c) In-the-Wild Extreme. All evaluations were
run on xArm + LEAP Hand V2 Advanced.

Task Policy Class In the Wild In the Wild Extreme

Robot Only 1:2 Robot Only 1:2

Spray ACT 0.000 0.680 0.115 0.395
Diffusion 0.050 0.628 0.120 0.520

Toy Cleanup ACT 0.458 0.583 0.125 0.458
Diffusion 0.521 0.875 0.500 0.625

Pour (Cross Task) ACT 0.025 0.508 0.000 0.350
Diffusion 0.000 0.958 0.000 0.917

TABLE I: DexWild Performance on Different Policy Classes

In the Wild In the Wild Extreme

Task Robot Only 1:2 Robot Only 1:2

Spray 0.305 0.805 0.150 0.600
Toy Cleanup 0.500 0.656 0.250 0.542
Pour (Cross Task) 0.050 0.917 0.000 0.817

TABLE II: LEAP Hand Performance on In-the-Wild and In-
the-Wild Extreme Tasks. Ratio is Robot:Human

Scale 0% 25% 50% 100%

Spray 0.060 0.260 0.605 0.565
Toy Cleanup 0.514 0.442 0.440 0.792

Average 0.287 0.351 0.523 0.678
Std 0.321 0.129 0.116 0.160

TABLE III: Performance Scaling with DexWild Dataset Size



Task Robot 1:1 1:2 1:5 Human

Spray 0.690 0.630 0.763 0.381 0.030
Toy Cleanup 0.604 0.792 0.833 0.708 0.042

Average 0.647 0.711 0.798 0.545 0.036
Std 0.061 0.114 0.050 0.232 0.008

(a) In Distribution Task Performance

Task Robot 1:1 1:2 1:5 Human

Spray 0.050 0.625 0.628 0.393 0.063
Toy Cleanup 0.521 0.646 0.875 0.625 0.083

Average 0.285 0.635 0.751 0.509 0.073
Std 0.333 0.015 0.175 0.164 0.015

(b) In-the-Wild Task Performance

Task Robot 1:2

Spray 0.120 0.520
Toy Cleanup 0.500 0.625
Bimanual Florist 0.063 0.623
Bimanual Clothes Folding 0.198 0.740

Average 0.220 0.627
Std 0.195 0.090

(c) In-the-Wild Extreme Task Performance

TABLE IV: Performance Across Cotrain Ratios for Varying
Deployment Conditions. Ratio is Robot:Human

Hyperparameter Value

Training Configuration

Optimizer AdamW
Base Learning Rate 3e-4
Optimizer Momentum β1, β2 = 0.95, 0.999
Learning Rate Schedule Cosine (diffusers)
Warmup Steps 2000
Total Steps 70000
Batch Size 256
Environment Frequency 30 Hz

Observation Settings

Proprioception Horizon
1 (Spray, Toy, Pour)
3 (Florist, Clothes)

Image Horizon 1 (all tasks)
Observation Resolution 224×224

Observation Dim
9 (Spray, Toy, Pour)
27 (Florist, Clothes)

Action Dimension
26 (Spray, Toy, Pour)
52 (Florist, Clothes)

Action Chunk Size 48

Action Chunking Transformer

# Encoder Layers 4
# Decoder Layers 6
# MHSA Heads 8
Feed-Forward Dim 3200
Hidden Dim (Token Dim) 768
Dropout 0.1
Feature Norm LayerNorm

Diffusion U-Net Policy

Train Diffusion Steps 100
Eval Diffusion Steps 16
Down Channels [256, 512, 1024]
Kernel Size 3
Groups (GN) 8
Dropout 0.1
Feature Norm None

TABLE V: Full training and architecture settings used across our
experiments.


