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ABSTRACT

We present Slashed Normal, a novel parameterization for the normal posterior
distribution in variational-inference-based latent variable models. Slashed Normal
takes a simple form resembling conventional practice, but uses the new stdplus
activation function to derive the standard deviation instead of softplus or exp. Al-
though taking this simple form, the Slashed Normal establishes a direct connection
between the squared L2-norm of the raw neural network output, termed KL am-
plitude, and the exact KL divergence value between the prior and the posterior.
As a result, this parameterization enables a direct control of the KL divergence
value, which is usually interpreted as the rate from the rate-distortion perspective
for variational autoencoders. We demonstrate the versatility of Slashed Normal
through theoretical analysis and experiments, showcasing its ability to provide good
insight about the posterior distribution, explicit control over the KL divergence,
and mitigate posterior collapse.

1 INTRODUCTION

Variational inference-based latent variable models, particularly Variational Autoencoders (VAEs)
(Kingma and Welling, 2013; Higgins et al., 2016), have become fundamental tools in stochastic
modeling with deep neural networks. At the core of VAE training lies a crucial balance between
reconstruction and regularization. The regularization term, expressed as the Kullback-Leibler (KL)
divergence between the posterior and prior of the latent variable, plays a pivotal role in shaping the
model’s behavior. This KL divergence, often interpreted as the model’s rate, quantifies the information
encoded in latent variables and significantly influences the quality of learned representations.

However, the promise of VAEs is tempered by persistent challenges that have affected researchers
and practitioners alike, such as numerical instability (Vahdat and Kautz, 2020; Child, 2021) and
posterior collapse (Bowman et al., 2015; Razavi et al., 2019; Lucas et al., 2019; Dai et al., 2019).
Numerical instability manifests as large spikes in training loss, while posterior collapse results in the
model ignoring a substantial portion of latent codes, hindering the learnability of the latent-variable
model. These issues have been partially attributed to the KL divergence term in those individual
works, motivating the need to obtain control over this component.

Moreover, various applications require direct manipulation of KL values. For instance, disentangled
representation learning (Higgins et al., 2016) relies on careful control of KL divergence to achieve
interpretable latent spaces. Prediction attribution methods (Jiang et al., 2020; Schulz et al., 2020) use
KL divergence to quantify information flow. Data compression techniques (Ballé et al., 2018; Huang
et al., 2020; Flamich et al., 2020) directly relate KL divergence to encoding length. In these scenarios,
precise control over KL divergence is not just beneficial but essential for achieving desired outcomes.

Existing methods for controlling KL divergence often rely on indirect mechanisms, such as adjusting
the weight β of the KL term in the loss function. However, this approach can lead to tuning difficulties
and potential instabilities during training. To illustrate this challenge, we present a motivational
example in Figure 1.

Figure 1 compares β-tuning with direct rate control, as enabled by the proposed parameterization, in
a Variational Information Bottleneck (VIB, Alemi et al. (2017)) context. The top panel shows that
when tuning β, a sharp accuracy drop (to 0.5) occurs at a threshold β0 1, beyond which all latents

1In this toy example, β0 is known as a function of the label flipping probability
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collapse (Wu et al., 2020). Optimal performance is precariously close to this threshold. In contrast,
the bottom panel demonstrates that directly tuning the rate yields more stable performance across a
range of reasonable values. Achieving certain optimal rates via β-tuning requires carefully designed
schedules, with most popular KL warmup schedules failing except for adaptive controllers like GECO
(Rezende and Viola, 2018).

To address these challenges, we propose Slashed Normal, a novel parameterization of the posterior
Normal distribution relative to a specified Gaussian prior. Our approach offers several key advantages:
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Figure 1: Half moon classification with random la-
bel noise. β-tuning (Top) vs. rate tuning (Bottom).

• Direct KL Control: Slashed Normal estab-
lishes a direct link between the squared L2-
norm of the raw network output and the KL di-
vergence, allowing direct control of the chan-
nel capacity in latent codes.

• Simplicity: The parameterization closely re-
sembles conventional VAE practices, facilitat-
ing easy adoptation.

• Theoretical insights: Our formulation pro-
vides new perspectives on phenomena like
posterior collapse. Due to the resemblance be-
tween our parameterization and conventional
parameterization, we argue that our results
also approximately hold for the conventional
parameterization, especially for those using
softplus activation.

• Unification: Slashed Normal generalizes sev-
eral existing KL control techniques for miti-
gating posterior collapse for Gaussian VAEs
under a single framework.

• New capabilities: It enables novel approaches
such as fixed-rate variational information bot-
tlenecks.

This paper focuses on the theoretical construc-
tion, mathematical properties, and initial demon-
strations of Slashed Normal in addressing key
challenges in variational inference. Our work
not only offers a powerful new tool for vari-
ational inference but also deepens our under-
standing of the role of KL divergence in latent
variable models.

While we provide initial experimental results to validate our theoretical findings, exhaustive empirical
comparisons across all possible applications are beyond the scope of this initial work. Our primary
goal is to introduce Slashed Normal as a novel tool for the variational inference toolkit, laying the
groundwork for future research and applications.

2 BACKGROUND

2.1 VARIATIONAL AUTOENCODERS

Variational Autoencoders (VAEs) (Kingma and Welling, 2013) model the data generation process
as z ∼ p(z),x ∼ pθ(x|z), where p(z) is the prior distribution of the latent variable z, and pθ(x|z)
is the decoder that generates data x from z. The encoder qϕ(z|x) approximates the true posterior
p(z|x). The VAE training objective is:

L(ϕ, θ) = Epdata(x)

{
Eqϕ(z|x)[− log pθ(x|z)]︸ ︷︷ ︸

Reconstruction/Distortion

+βDKL(qϕ(z|x)||p(z))︸ ︷︷ ︸
Regularization/Rate

}
,

(1)
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where pdata(x) is the empirical data distribution, DKL(qϕ(z|x)||p(z)) denotes the KL divergence
between the variational approximation qϕ(z|x) and the prior p(z). The parameter β, introduced
in (Higgins et al., 2016), controls the regularization strength. From a compression perspective, these
terms are sometimes referred to as distortion and rate (Park et al., 2020), and β governs the strength
of compression.

In our work, we focus on the most common case where both prior and posterior are Gaussian
distributions.

2.2 POSTERIOR COLLAPSE

Unfortunately, VAE training often suffers from posterior collapse, a phenomenon where posterior
distributions become indistinguishable from the prior, rendering latent variables uninformative about
the data. The phenomenon of posterior collapse could be attributed to model convergence to spurious
local optima (Lucas et al., 2019; Dai et al., 2019) or poor global optima (Yacoby et al., 2020) that can
explain data equally well as the good global optimum.

Mitigation strategies include clipping the KL divergence loss term (Kingma et al., 2014), enforcing
a parameterization with a lower bound on the KL divergence (Davidson et al., 2018; Razavi et al.,
2019; Zhu et al., 2020), scheduling or adaptively controlling the KL weight β (Bowman et al., 2015;
Fu et al., 2019; Shao et al., 2020; Rezende and Viola, 2018), limiting the decoder capacity (Bowman
et al., 2015; Rey, 2021), enforcing specific properties in the network architecture (Wang et al., 2021;
Kinoshita et al., 2023), and exploring less affected network architectures (Child, 2021).

2.3 DEEP VARIATIONAL INFORMATION BOTTLENECK

The Deep Variational Information Bottleneck (DVIB) (Alemi et al., 2017) generalizes VAEs beyond
autoencoding. It uses p(y|z)p(z)/q(z|x) to predict target y from input x, learning a compressed
representation that preserves prediction-relevant information. DVIB has shown effectiveness in neural
network regularization, adversarial robustness (Alemi et al., 2017), and low-resource fine-tuning of
large language models (mahabadi et al., 2021).

2.4 RESIDUAL NORMAL DISTRIBUTION

The concept of parameterizing posterior distributions relative to the prior distribution has been
previously explored in (Vahdat and Kautz, 2020). In their work, the posterior distribution, termed
the Residual Normal Distribution, is expressed in terms of the relative mean ∆µ and the relative
standard deviation ∆σ with respect to the mean µ0 and standard deviation σ0 of the prior Gaussian.
This parameterization aims to facilitate training and is formulated as follows in the univariate case:

µ = µ0 +∆µ, σ = σ0∆σ. (2)
The KL divergence term in their parameterization is computed as

DKL(N (µ, σ2)||N (µ0, σ0)) =
1

2

(
∆µ2

σ2
0

+∆σ2 − log∆σ2 − 1

)
. (3)

Our work extends this concept, deriving a parameterization where KL divergence depends solely on
relative parameters, enabling explicit modeling of the KL divergence.

3 SLASHED NORMAL: KL Amplitude PARAMETERIZED GAUSSIAN
DISTRIBUTION

In this section, we introduce Slashed Normal, a novel parameterization for the Gaussian posterior that
is relative to a specified Gaussian prior. Motivated by the need for direct control over KL divergence
in variational inference, as discussed in the introduction, the derivation starts from an attempt to
incorporate the KL divergence quantity as one parameter of the posterior distribution. This approach
leads to a simple yet powerful parameterization that offers explicit control over the exact value of the
KL divergence.

3
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Figure 2: (a) Upper and lower roots of Eq. (6) when k ≤ 0, shown as the intersection between the two
colored regions. (b) The proposed stdplus function and its derivative. We can see that this function
resembles the 1-centered softplus function.

We will now derive this parameterization step by step, beginning with the basic parameter constraints
and progressing to a general formulation applicable to multivariate Gaussian distributions.

3.1 THE PARAMETER CONSTRAINTS

For investigating how to incorporate the KL divergence quantity as one parameter of the posterior
distribution, we begin with the analytic expression for the KL divergence between a univariate normal
distribution N (µ, σ2) and a standard normal distribution N (0, 1):

DKL(N (µ, σ2)||N (0, 1)) =
1

2

(
µ2 + σ2 − log(σ2)− 1

)
. (4)

Let DKL(N (µ, σ2)||N (0, 1)) = δ, we have

log(σ2)− σ2 = −1− (2δ − µ2). (5)
Denoting k = −(2δ − µ2) and x = σ2, we arrive at:

log(x)− x = k − 1. (6)
Taking exponential on both sides, we obtain

xe−x = ek−1 =⇒ (−x)e(−x) = (−ek−1), (7)
which has the form of yey = z. The solution to this equation is given by the Lambert W function
(Corless et al., 1996): y =W (z).

Figure 2a illustrates the solutions to Eq. (6). When k ≤ 0, real roots exist. These roots, named
x =M0(k) and x =M1(k), can be directly represented using the two real branches of the Lambert
W function: M0(k) = −W0(−ek−1)

M1(k) = −W−1(−ek−1)
(8)

Substituting x and k with the original variables, we have:
σ2 =M{0,1}(−(2δ − µ2)), (9)

where M{0,1} denotes either M0 or M1. We can easily verify that DKL(N (µ, σ2)||N (0, 1)) = δ.

While the resulting parameterization (µ, δ) achieves our goal of incorporating δ as a parameter, it has
two significant drawbacks: 1) it can only represent one branch of variances (either M0 or M1); 2) the
derivative of the variance with respect to δ, i.e., ∂σ2

∂δ = −2∂x
∂k goes to infinity as δ approaches 0 (see

Fig. 2a). These limitations motivate the development of a more robust parameterization, which we
introduce in the next subsection.

4
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3.2 THE KL Amplitude PARAMETERIZATION

Examining Eq. 9, we see that if we define variables a = µ/
√
2, and b = ±

√
δ − µ2/2, then KL

divergence δ can be expressed as: δ = a2 + b2. (10)
Substituting (µ, δ) in Eq. 9 with (a, b), we derive a new way to parameterize the normal distribution
N (µ, σ2):

µ =
√
2a,

σ2 =M{0,1}(−2b2)).
(11)

In this parameterization, µ is controlled by a while σ2 is controlled by b, and the KL divergence
equals the sum of squares of a and b. Inspired by the concept of probability amplitude in quantum
physics, we combine these parameters into a complex number ψ:

ψ = a+ bi. (12)

This complex number2 combines the raw parameters for both mean and variance. We term ψ the KL
amplitude, as its squared modulus directly represents the KL divergence: δ = |ψ|2.

With a signed imaginary part, the two branches of M(·) can be further unified into a single function,
using the sign of b to select which branch to use. Additionally, for convenience, we make the
designated function that glues the two branches to compute the standard deviation instead of the
variance. This function, which we call stdplus, is defined as follows:

stdplus(x) =
{√

M0(−x2), x < 0√
M1(−x2), x >= 0

. (13)

This leads to our final parameterization, which we call Slashed Normal /N (ψ):

N (µ, σ2) = /N (ψ),

s.t. ψ = a+ bi,

µ =
√
2a,

σ = stdplus(
√
2b).

(14)

The stdplus function and its derivative, depicted in Fig. 2b, resembles those of the 1-centered softplus
function, which is shifted from the original softplus function such that it achieves 1 at x = 0. It can
serve as a direct replacement for softplus or exp in computing standard deviations. More details about
stdplus function, including the numerical recipe, is given in appendix A.

This complex-valued parameterization maintains explicit control over the KL divergence while
addressing the unbounded derivative issue encountered in Section 3.1. It also closely resembles
conventional VAE parameterizations, facilitating easy adoption in existing models.

3.3 GENERALIZE TO GENERAL UNIVARIATE GAUSSIAN PRIORS

We can extend the Slashed Normal parameterization to be relative to a univariate Gaussian with mean
µ0 and variance σ2

0 :

N (µ, σ2) = /N (ψ, µ0, σ
2
0)

s.t. ψ = a+ bi

µ = µ0 +
√
2σ0a

σ =

√
σ2
0M{0,1}(−(2δ −

(µ− µ0)2

σ2
0

)),

= σ0stdplus(
√
2b).

(15)

This parameterization maintains the key property:
DKL(N (µ, σ2)||N (µ0, σ

2
0)) = |ψ|2. (16)

2One may argue that the use of complex numbers is not necessary, however we identify that complex numbers
are conceptually simpler among other alternative equivalent forms.
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3.4 GENERALIZE TO MULTIVARIATE GAUSSIAN DISTRIBUTIONS

We can further extend the parameterization to multivariate Gaussian distributions with full covariance
matrices for both the prior N (µ0,Σ0) and posterior N (µ,Σ):

N (µ,Σ) = /N (ψ,P ,µ0,Σ0)

s.t. ψ = a+ bi

µ = µ0 +
√
2Σ

1/2
0 a,

Σ1/2 = Σ
1/2
0 Pdiag(stdplus(

√
2b)),

(17)

where complex vector ψ = a + bi, P is an orthogonal matrix, and Σ
1/2
0 is a matrix such that

Σ0 = (Σ
1/2
0 )(Σ

1/2
0 )T . This generalization comes from factorization of the covariance matrix.

This parameterization maintains the property:

DKL( /N (ψ,P ,µ0,Σ0)||N (µ0,Σ0)) = ψ
Hψ. (18)

Notably, this generalization is applicable to priors that are degenerate multivariate normal distributions.
In such cases, both the prior and posterior have support over an affine subspace of Rk: {µ0+Σ

1/2
0 z :

z ∈ Rk}, where k is the dimension of the vector; the matrix Σ
1/2
0 of the prior is not required to be

positive definite. A detailed derivation of this multivariate case is provided in appendix B.

4 BENEFITS OF SLASHED NORMAL

In this section, we demonstrate the practical advantages of the Slashed Normal parameterization.

4.1 VARIATIONAL AUTOENCODER WITH SLASHED NORMAL

As a concrete example, we demonstrate how the proposed Slashed Normal can simplify the formula-
tion of a variational autoencoder with diagonal Gaussian latents.

Let ψ(x) : RN1 → CN2 be an encoder that maps from the data space to the KL amplitude latent
space, where N1 is the data dimension and N2 is the latent dimension. Using Slashed Normal, we
can express the evidence lower bound (ELBO) loss for a vanilla VAE as:

L = E
x∼pdata(x)

{
E

z∼ /N (z;ψ(x))
[− log p(x|z)]︸ ︷︷ ︸

Reconstruction

+ψH(x)ψ(x)︸ ︷︷ ︸
KL divergence

}
.

(19)

Remarkably, the KL divergence term now exclusively comprises the squared L2-norm of the raw
encoder output ψ(x). Consequently, the entire objective takes the form of a L2 regularized au-
toencoder with a stochastic reconstruction loss. Notably, this formulation eliminates all potentially
unstable operations, e.g., log/exp, which previously requires clipping the range of the input to prevent
numerical problems. This property likely improves the numerical stability of training.

4.2 EXPLICIT CONTROL OF KL DIVERGENCE

Explicit control, either through inequality or equality constraints, of the KL divergence (rate) term can
be directly achieved by manipulating the L2-norm of ψ(x), that is, the KL amplutude as a function
of the input . Denoting ψ̃(x) as the raw neural network output, controlling the KL divergence value
can be accomplished as follows:

ψ(x) = δ1/2(x)normalize(ψ̃(x)) (20)

Here δ1/2(x) is the squared root rate function, which can a function of each input, or a constant for
all inputs. The function normalize(·) normalizes the input to unit L2-norm.

This renormalization is equivalent to fixing the channel capacity, as demonstrated by the following
theorem:

6
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Theorem 4.1. For z ∼ /N (ψ(x)), we have

I(X;Z) ≤ Ex [DKL(q(z|x)||p(z))] = Ex||ψ(x)||22 = Channel Capacity, (21)
where the equality is achieved when DKL(q(z)||p(z)) = 0.

Proof. See appendix C.

From this perspective, the stochastic layer defined by z ∼ /N (ψ(x)) can be viewed as a neural
network component that imposes a predefined channel capacity, which functions similarly as Gaussian
Dropout (Rey and Mnih, 2021), but with manageable channel capacity.

We then identify that different normalization schemes carry distinct information-theoretic implications.
Assume that the raw network output ψ̃(x) for a minibatch has the shape N ×K, where N and K
denote the batch size (batch) and the dimensionality of ψ̃ (dimension), respectively, and a global
squared root rate function δ1/2(x) = δ1/2 is used. Then for the following normalization options:

1. Batch: normalize jointly across (batch, dimension): In this case, the total rate for the batch
is δ, The (average) rate per instance can be approximated as δ

N .
2. Instance: normalize across (dimension): In this case, each instance in a mini-batch is forced

to have a total rate of δ.
3. Feature: normalize across (batch): In this case, every dimension of ψ must have a total

rate of δ over the batch. It corresponds to the case where all latent dimensions are forced
to be active and have an average rate of δ

N per instances. This strategy can be viewed as a
generalization of (Zhu et al., 2020), which directly applies the batchnorm to posterior means,
together with a fixed scale parameter to enforce a lower bound on KL divergence.

These schemes provide flexibility in controlling information flow and latent space utilization.

When the rate is fixed, the optimization objective further simplifies to only the reconstruction term.
Typically, increasing the rate tends to decrease the distortion (reconstruction) term. Therefore, the
previously fixed global rate serves as a more interpretable hyperparameter (unit: nats/bits) to control
the trade-off between the rate and the distortion term, as opposed to using a KL divergence weight β,
as seen in approaches like beta-VAE (Higgins et al., 2016) and DVIB (Alemi et al., 2017), which has
no interpretable meaning.

If the rate function δ(x) = (δ1/2(x))2 is parameterized to have a lower bound, for example δ(x) =
δ0 + |δ̃(x)|, it corresponds to the concept of committed rate, which delta-VAE (Razavi et al., 2019)
aims to address. However, their approach is more complicated and less flexible compared to our
approach.

4.3 UNCONSTRAINED PARAMETERIZATION OF A PRIOR DISTRIBUTION

Similar to the conventional Gaussian distribution, the prior distribution can be parameterized as
(µ0,σ0) with diagonal covariance or (µ0,Σ

1/2
0 ) with full covariance. In the previous VAE example,

we observe that the prior distribution influences only the reconstruction term when generating
reparameterized samples from the Slashed Normal.

As discussed earlier in Sec. 3.4, the Slashed Normal accommodates a degenerate Gaussian prior,
where σ0 or Σ1/2

0 need not be positive or positive definite. Consequently, the actual prior parameters,
(µ0,σ0) or (µ0,Σ

1/2
0 ), can be left unconstrained.

Let us delve into the sampling procedure for the multivariate Slashed Normal, N (Ψ,P ,µ0,Σ0),
which is relative to a multivariate Gaussian prior N (µ0,Σ0):

z = µ0 +Σ
1/2
0 (
√
2a+ P

(
stdplus(

√
2b)⊙ ϵ)

)︸ ︷︷ ︸
sample from Slashed Normal
with standard Gaussian prior

,where ϵ ∼ N (0,1). (22)

This equation clearly demonstrates that a certain multivariate Gaussian prior can be implicitly
incorporated by applying a linear layer or hypernetworks (Ha et al., 2017) with unconstrained weights

7
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to samples from the Slashed Normal with a standard Gaussian prior. This property further simplifies
the modeling process. This discussion also highlights the long-ignored fact that the linear projection
layer on the decoder side applied on the sampled latents is effectively part of the prior distribution,
which can itself be a source of collapse.

5 INTERPRETING THE KL AMPLITUDE

The stochastic layer formulated by the Slashed Normal Parameterization reveals interesting interpre-
tation. We first establish the relationship between the KL amplitude and the expected gradient. For
clarity, without loss of generality, we use the version of the Slashed Normal with diagonal covariance
and the standard normal prior.
Theorem 5.1 (Posterior Stationary Equation). For the stochastic layer z ∼ /N (ψ), assuming the
loss can be splitted into two terms L(ψ) = Ez∼ /N (ψ)[L>(z)] + βDKL( /N (ψ)||N (0,1)), which is
the case for the VAE/VIB defined via Slashed Normal, the stationary posterior distribution such that
∇L(ψ) = 0 satisfies

ψ = − 1

2β
E

ϵ∼N (0,1)
[∇ψL>(z = µ+ σ ⊙ ϵ)] , (23)

where µ =
√
2ℜ(ψ) and σ = stdplus(

√
2ℑ(ψ)).

Proof. Computing∇L(ψ) and setting it to 0 gives the result, as
∇L(ψ) = ∇Ez∼ /N (ψ)[L>(z)] + 2βψ = Eϵ∼N (0,1)[∇L>(z = µ+ σ ⊙ ϵ)] + 2βψ. (24)

Relationship with SmoothGrad method (Smilkov et al., 2017) for attribution Theorem 5.1
establishes the relationship between the locally smoothed negative gradient of L> with the KL
amplitude ψ at stationary points. This connection is reminiscent of the SmoothGrad Smilkov et al.
(2017) method for attribution, which, for image classification, computes the locally smoothed gradient
to obtain a clean sensitivity map identifying pixels that most affect model decisions. In this sense,
SmoothGrad can be seen as performing inference for ψ, which is the perturbation distribution added
to the input, via iterating Eq. (23) for one step. This can be viewed as an approximation for finding a
rate-regularized perturbation direction. KL divergence values for specially designed bottlenecks have
been directly used for attribution (Schulz et al., 2020; Jiang et al., 2020), and the gradient related to
the information bottleneck has also been explored (Cheng et al., 2024). Our result connects these
approaches, providing a unified perspective on attribution methods based on variational information
bottlenecks and smoothed gradients.

Implication for understanding posterior collapse Posterior collapse, characterized by the total or
partial inactivation of latent space dimensions, is often indicated by near-zero KL divergence values.
Theorem 5.1 suggests that a collapsed stationary posterior coincides with a gradient magnitude close
to zero. Moreover, near stationary point, the KL divergence term can be interpreted as a penalty on
the gradient magnitude. During optimization, the near-zero gradient at a certain state of collapse
will make it challenging for gradient-based algorithms to escape. This is evidenced by several
works (Bowman et al., 2015; Fu et al., 2019; He et al., 2019) that attempt to control the optimization
trajectory to avoid being trapped in such adverse states. For mitigating posterior collapses, one can
either choose to lower bound ||ψ||22, e.g, Zhu et al. (2020); Razavi et al. (2019), or the gradient norm
||∇ψL||, e.g., using a Brenier map as in Wang et al. (2021); Kinoshita et al. (2023). Our result
connects the two strategies at stationarity.

6 EXPERIMENT

6.1 FIXED RATE VARIATIONAL INFORMATION BOTTLENECK

Following the motivational example in the introduction, we evaluate training a VIB on MNIST
and CIFAR10, directly targeting a specific rate using various normalization strategies proposed
in section 4.2. In our case with fixed rate, the objective only include the cross entropy loss for
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classification, and our fixed-rate VIB layer functions similarly to dropout. Following the setup of
Alemi et al. (2017), we perform supervised classification on the MNIST and CIFAR10 datasets.
We use accuracy under the Fast Gradient Sign Method (FGSM) with varying attack strengths as
the metric. This choice is motivated by the known ability of VIB to improve robustness against
adversarial attacks (Alemi et al., 2017).

In our experiments, we insert a fixed-rate VIB (FR-VIB) before the last linear layer preceding the
final softmax layer. We test three normalization types: batch, instance, and feature, as proposed in
section 4.2, to achieve a target average rate δ per instance. For classification with C classes, where
logC nats is the maximum entropy for encoding classes, we set δ = r logC. The constant r is
adjustable, allowing flexibility based on empirical data or theoretical insight.

Results are shown in table 1, with experimental details provided in appendix E. For both datasets,
we can see that FR-VIB improves significantly against the base model on robustness against FGSM
attack. Among the normalization methods, batch generally performs best across different values of r,
while instance performs worst. We conjecture that this is due to the varying tightness of the capacity
bound implied by different normalization methods. The results suggest that r = 1 is a good default
value, aligning with the upper bound of the entropy for predicting C classes. Moreover, the best error
rate with ϵ = 0, r = 1 in MNIST experiment is consistent with that of Alemi et al. (2017), which was
obtained using a tuned value of β, suggesting the effectiveness of the proposed FR-VIB.

MNIST
Norm batch instance feature

r
ϵ 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

0.125 1.14 6.46 13.21 21.72 35.02 19.28 24.17 30.27 37.28 44.13 1.22 6.93 17.80 34.60 52.62
0.25 1.19 6.47 11.17 16.72 24.42 5.30 10.61 15.56 21.69 28.56 1.27 6.52 13.60 23.36 36.03
0.5 1.31 6.71 15.53 25.28 35.56 1.62 5.95 10.12 15.15 21.69 1.32 6.62 11.66 17.46 25.73
1 1.14 6.24 10.04 13.20 17.90 1.36 5.30 9.82 16.15 22.87 1.25 6.19 9.54 13.90 20.62
1.5 1.19 6.03 10.77 15.81 25.90 1.44 5.49 10.13 17.15 24.32 1.21 6.08 10.44 14.94 21.66
base 1.35 14.94 58.94 81.52 89.75
dropout 1.20 10.40 42.45 70.27 81.55

CIFAR10
Norm batch instance feature

r
ϵ 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4

0.125 7.28 58.37 82.06 88.81 89.64 25.91 66.90 84.76 87.79 88.55 7.03 57.75 81.51 87.95 89.14
0.25 7.40 62.09 86.38 89.39 89.83 11.69 56.83 79.10 83.21 84.24 7.83 60.31 77.34 83.30 86.34
0.5 6.94 59.03 82.24 86.66 87.49 7.05 60.04 83.49 88.12 89.10 8.80 56.21 75.73 82.07 85.51
1 6.42 48.44 75.90 86.13 88.09 6.96 53.86 76.12 84.87 87.15 6.82 51.90 77.46 85.35 87.18
1.5 6.65 52.83 79.85 85.70 87.36 7.14 51.12 71.15 80.83 86.36 6.73 65.87 83.21 86.64 87.94
base 6.70 91.94 91.29 90.22 89.83

Table 1: Error Rates on MNIST and CIFAR10: This table presents the impact of adversarial examples,
generated using the Fast Gradient Sign Method (FGSM), on error rates. The values of ϵ indicate the
strength of the adversarial example generated by the Fast Gradient Sign Method (FGSM). r represents
the predetermined KL divergence value, as a fraction of logC, where C is the number of classes.
batch, instance, and feature are normalization methods used to normalize the KL divergence value.

The results demonstrate that FR-VIB can effectively control the information bottleneck without the
need for a separate KL loss term or β-tuning. This simplifies the training process while maintaining
or improving performance, particularly in terms of adversarial robustness. The superiority of batch
normalization suggests that allowing some flexibility in rate allocation across the batch may be
beneficial, balancing between strict per-instance control (instance normalization) and global per-
dimention control (feature normalization).

6.2 MITIGATING POSTERIOR COLLAPSE

This experiment aims to demonstrate the versatility of Slashed Normal in addressing posterior
collapse, a common issue in variational autoencoders. We benchmark various renormalization
techniques and compare them with existing methods. We also tested directly adding skip connection
in the hope that it will mitigate posterior collapse by mitigating gradient vanishing, as these two
phenomena are closely related (see section 5).

9
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(Re)normalization for a target KL value For Slashed Normal, the KL divergence takes the form
of the squared L2-norm of ψ. We test three normalization mechanisms from section 4.2: batch,
instance, and feature, imposing the target KL value by renormalizing ψ with the squared root of the
target value δ̃ = δ0 + |δ|, where δ0 is a fixed base rate and δ is learnable. We also experimented with
applying renormalization only on the real part (mean) of the KL amplitude, which was done in (Zhu
et al., 2020) as a special case of the proposed feature normalization.

Decoupling KL divergence with batch normalization. We also test using a learnable scalar with
a large initial value instead of a fixed constant to enforce the KL divergence value. In this case, the
KL divergence value is directly represented by this parameter, and we effectively decoupled learning
the KL divergence value from the model architecture. We use this strrategy with batch normalization.

NLL KL AU MIq
LSTM 336.47
LSTM VAE 337.21 0.00 0 0.00
LSTM VAE Warmup 336.72 1.09 1 1.08
LSTM VAE Cyclic 335.56 4.70 6 4.54
Batch Mean only δ0 = 6 336.89 8.04 7 6.42
Batch δ0 = 6 336.86 6.09 5 5.90
Instance Mean only δ0 = 6 335.80 8.02 11 6.80
Instance δ0 = 6 337.15 6.27 4 6.11
Feature Mean only δ0 = 6 338.49 6.12 32 3.70
Feature δ0 = 6 336.95 5.98 32 4.11
BatchNorm Zhu et al. (2020) 337.22 5.88 32 3.85
LSTM+Skip Connection 331.90 7.42 10 6.63
Decoupled Learnable Rate, init δ = 2 337.05 1.04 1 1.03
Decoupled Learnable Rate, init δ = 8 337.04 3.02 3 2.95
Decoupled Learnable Rate, init δ = 20 336.02 3.42 4 3.33
Decoupled Learnable Rate, init δ = 40 335.59 4.82 6 4.65
Decoupled Learnable Rate, init δ = 80 335.50 5.47 6 5.26

Table 2: Posterior collapse experiment.

Metrics We evaluate using negative log-
likelihood (NLL), average KL divergence, Ac-
tive Units (AU) (Alemi et al., 2018), and Mutual
Information MIQ (Burda et al., 2015). Details
are in appendix F.

Baseline Plain LSTM, LSTM VAE, KL
warmup (Bowman et al., 2015), KL cyclic an-
nealing (Fu et al., 2019), and BatchNorm(Zhu
et al., 2020). Here we only include baselines
that are applicable on the same model architec-
ture (LSTM encoder/decoder), therefore exclud-
ing methods such as Wang et al. (2021) and
Kinoshita et al. (2023). Results are in table 2.

Our results shows that:

1. Competitive Performance: Several of our methods outperform the chosen baselines (KL warmup,
cyclic annealing, BatchNorm), demonstrating the effectiveness of our approach.

2. Benchmarking Renormalization Techniques: We demonstrate various ways of applying our
proposed renormalization technique to the encoder’s raw outputs. This reveals how different
applications of renormalization affect model behavior. Certain variations, for instance, "feature"
normalization ensures all latent codes are active (100% utilization), which, while not optimal for
NLL, can be desirable in certain scenarios.

3. Comparison with (Zhu et al., 2020): The result on fully occupied active units (AU) clearly
demonstrates the connection between Zhu et al. (2020) and the proposed feature normalization.

4. Simplified KL Control: By decoupling the KL divergence as an individual trainable parameter
initialized with a large value (Batch Learnable Rate rows in the table), we achieve performance
comparable to tuned cyclic annealing schedules. Importantly, this doesn’t require scheduled
modifications to the objective function, simplifying the training process.

5. Architectural Insights: The "LSTM+Skip Connection" case, which applies no specific technique
to mitigate posterior collapse, outperforms all other cases. This supports our theoretical insights in
Section 5 connecting posterior collapse with gradient vanishing. It suggests that model architecture
may play a larger role in mitigating posterior collapse than specific tricks.

7 CONCLUSION

In this work, we introduced the Slashed Normal, a novel parameterization for Gaussian posterior
distributions in variational inference that provides explicit control over the KL divergence via the
KL amplitude. Experiments validated the effectiveness of Slashed Normal in preventing posterior
collapse and enabling training information bottleneck models by directly specifying the desired KL
divergence. We believe that simplicity and interpretability make the proposed parameterization a
valuable addition to the toolkit for research on Variational inference based latent variable models.
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A MORE ON stdplus FUNCTION

A.1 DERIVATIVE OF stdplus FUNCTION

In this section, we derive the derivative of the proposed stdplus function.

For y = stdplus(x), by definition we have:

log(y2)− y2 = −x2 − 1. (25)
Taking the derivative w.r.t. x on both sides, we have

2

y

dy

dx
− 2y

dy

dx
= −2x. (26)

Then we obtain dy

dx
=

x

y − 1
y

. (27)

Both the denominator and the numerator equal 0 as x→ 0 as stdplus(0) = 1. By L’Hôpital’s rule, as
x→ 0+ or x→ 0−,we have dy

dx
=

1

2 dy
dx

. (28)

That is, (
dy

dx

∣∣∣∣
x=0

)2

=
1

2
. (29)

It is clear that dy
dx > 0 for both sides around x = 0, then it gives

lim
x→0−

stdplus′(x) = lim
x→0+

stdplus′(x) = stdplus′(0) =
1√
2
, (30)

which also confirms the differentiability of stdplus(x).

In summary, the derivative of the proposed stdplus function is

stdplus′(x) =

{
1√
2
, x = 0

stdplus(x)x
(stdplus(x))2−1 , x ̸= 0

. (31)

A.2 NUMERICAL RECIPE FOR stdplus(x)

In this section, we present our numerical methods for evaluating the proposed stdplus(·) function,
which is based on Newton’s method.

From the above analysis, there is a removable discontinuity (x = 0) in the derivative shown in
Eq. (31). Therefore, the numerical computation of stdplus around x = 0 can be inaccurate and
unstable with the Newton method.

To address this, we obtain a Padé approximant of log stdplus for small x:

log stdplus(x) ≈
x√
2
+ x2

4 + x3

90
√
2

1 + 5x
6
√
2
+ 17x2

180

, (32)

which has an absolute error < 3.14× 10−13 for |x| < 0.04.

For other cases (x < 0.04 and x > 0.04), we find that it suffices to use an initial guess of 1
2 (x +√

x2 + 4)) (squareplus Barron (2021)), to allow the same Newton step to be applied for both cases
of (x < 0.04 and x > 0.04). Moreover, we observe an improved numerical stability by computing
log stdplus and then exponentiating to obtain stdplus.

The complete algorithm for computing log stdplus is illustrated in Algorithm 1. The update equation
is inspired by the numerical methods used to evaluate the Lambert W function Lóczi (2022). In Fig. 3,
we present empirical results illustrating the number of iterations used in the algorithm to achieve the
desired precision. The figure indicates that 4 iterations are needed for float32, while float64 requires
5 iterations.
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Figure 3: Number of Iterations in Algorithm 1 versus the maximum absolute error. Here, n denotes
the number of iterations performed in Algorithm 1 as determined by the desired precision (solid line).
The term measured indicates the actual error.

Algorithm 1 Numerical evaluation of the stdplus function.
function LOG_STDPLUS(x: input, eps: desired precision)

if x ∈ [−0.04, 0.04] then

return
x√
2
+ x2

4 + x3

90
√

2

1+ 5x
6
√

2
+ 17x2

180

end if
r ← 2 log(12 (x+

√
x2 + 4)) ▷ r = log(stdplus(x)2)

for i = 1 to ⌈log2(− log2(eps))− 1⌉ do
a← max(r, 0)

r ← (r−1)er−a+(x2+1)e−a

er−a−e−a

end for
return r/2

end function
function STDPLUS(x: input, eps: desired precision)

return exp(LOG_STDPLUS(x, eps) )
end function

B DERIVATION OF THE MULTIVARIATE VERSION OF SLASHED NORMAL

For the multivariate posterior distributionN (µ,Σ) and priorN (µ0,Σ0), the KL divergence between
them is given by

DKL(N (µ,Σ)||N (µ0,Σ0)) =
1

2

{
Tr(Σ−1

0 Σ) + (µ− µ0)
TΣ−1

0 (µ− µ0)− k + ln
|Σ|
|Σ0|

}
(33)

where k is the dimension of the vector.

Let
µ = µ0 +Σ

1
2
0 µ∆

Σ = (Σ
1
2
0 )Σ∆(Σ

1
2
0 )

T ,
(34)

For now, we assume that Σ0 and Σ∆, are full rank and Σ
1
2
0 is a matrix such that Σ0 = Σ

1
2
0 (Σ

1
2
0 )

T .
Substituting eq. (34) into eq. (33) gives

DKL =
1

2

{
Tr(Σ∆) + µ

T
∆µ∆ − k + log |Σ∆|

}
(35)

which only depends on the relative parameters (µ∆,Σ∆). To derive the multivariate version of
Slashed Normal, we focus on these relative parameters. Assuming positive semidefinite, Σ∆ accepts
a factorized form: Σ∆ = PΛP T = PΛ

1
2 (PΛ

1
2 )T (36)
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where P is an orthogonal matrix and Λ is a diagonal matrix. Substituting eq. (36) into eq. (35) gives:

DKL =

k−1∑
i=0

1

2

[
(Λ1/2)2i + (µ∆)

2
i − 1− 2 log((Λ1/2)i)

]
(37)

Here, we recover the KL divergence equation of the diagonal covariance Gaussian case, which can
be transformed into squared l2-norm of ψ = a+ bi by applying Slashed Normal parameterization
ψ = a+ bi that sets

µ∆ =
√
2a

Λ1/2 = diag(stdplus(
√
2b)).

(38)

Combining eq. (36),eq. (38) into eq. (34) yields

Σ = (Σ
1
2
0 )PΛ

1
2 (PΛ

1
2 )T (Σ

1
2
0 )

T (39)
Finally

µ = µ0 +
√
2Σ

1/2
0 a

Σ1/2 = Σ
1/2
0 P diag(stdplus(

√
2b))

(40)

We have thus recovered the multivariate Slashed Normal parameterization given in section 3.4.

Generalization to degenerate normal distribution We can remove the requirement of a nonde-
generate prior covariance matrix Σ0 by formulating the prior with the degenerate normal distribution
(Mikheev, 2006; Schoeman et al., 2021).

We can conveniently express the KL divergence in this case by looking at the limit of adding a small
identity matrix to the prior covariance. Note that adding λI with arbitrary small λ > 0 to Σ0 will
make it full rank, then it is obvious that:

DKL( /N (ψ,P ,µ0,Σ0)||N (µ0,Σ0)

= lim
λ→0+

DKL( /N (ψ,P ,µ0,Σ0 + λI)||N (µ0,Σ0 + λI))

=ψHψ

(41)

This result highlights the property that the KL divergence for Slashed Normal is independent of the
prior distribution, even in the degenerate case.

C PROOF FOR THEOREM 4.1

I(X;Z) = ExEz∼q(z|x)[log
q(z|x)
q(z)

]

= ExEz∼q(z|x)[log
q(z|x)
p(z)

]−DKL(q(z)||p(z))

≤ ExEz∼q(z|x)[log
q(z|x)
p(z)

]

= ExDKL(q(z|x)||p(z))
= Ex||ψ||22 = Channel Capacity,

(42)

where the equality is achieved when DKL(q(z)||p(z)) = 0.

D COMPUTATIONAL RESOURCES

All experiments reported in this paper were performed on a server equipped with an NVIDIA GeForce
RTX 3090 GPU and 64GB of RAM.
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E EXPERIMENT DETAILS ON FIXED RATE VARIATIONAL INFORMATION
BOTTLENECK

E.1 OVERVIEW

Motivation Existing IB-based approaches, such as the deep variational information bottleneck
(VIB) Alemi et al. (2017) and β -VAE Higgins et al. (2016), use a hyperparameter β (e.g., in eqn 1)
to control the compression strength for the encoded representation. However, in practice, we find
that tuning β is quite tricky for the following reasons: 1. different tasks and model architectures
may require different β values that differ in several magnitudes, requiring extensive experimentation
to identify; 2. certain range of β may make the training process vulnerable to the phenomenon of
posterior collapse, making the training process unstable; 3. it increases the complexity of balancing
different loss terms when multiple loss terms are present.

FR-VIB In response to these challenges, we propose a variant of the variational information bottle-
neck, termed the Fixed-Rate Variational Information Bottleneck (FR-VIB). This approach specifies
the KL divergence directly as a hyperparameter, circumventing the indirect control mechanisms
associated with β. The component is formalized as:

z ∼ /N (z;ψ(x)), s.t. Ex[||ψ||22] = δ (43)

where δ is the predetermined kl divergence (rate) value.

Training Objective The training objective is defined as:
min
θ

Ex∼pdata(x)Ez∼ /N (z;ψθ(x)
[− log pθ(y|z)]

s.t. Ex[||ψ||22] = δ
(44)

where y denotes the label in a multiclass classification setting. The constraint here is enforced at a
parameterization level through the strategies introduced in sec.4.2 by controlling the L2-norm of the
KL amplitude vector.

Normalization implementations As discussed in Section 4.2, we employ three normalization
strategies, namely batch, instance, and feature normalization, to achieve the desired KL divergence.
We refer to these three ways of normalization as batch, instance, and feature normalization. Batch
and feature normalization utilize mini-batch statistics during training; and, at the test time, running
statistics updated during training are used for normalization, which is similar to BatchNorm Ioffe and
Szegedy (2015). Instance normalization directly applies L2 normalization to each ψ(x).

E.2 DATASETS

We tested the proposed FR-VIB on the task of multiclass classification on MNIST and CIFAR10
datasets. For both datasets, this bottleneck layer is placed before the last linear projection. All images
are scaled to have pixel values between −1 and 1.

MNIST We follow the model architecture as in Alemi et al. (2017), which is structured as a
multilayer perceptron (MLP) with layers configured as 784-1024-1024-512-10 and employing ReLU
activation functions, We treat the 512-sized output as the raw KL amplitude vector ψ̃, which is a
complex vector of 256 dimensions. This vector undergoes renormalization to meet the desired L2

norm. We use Adam optimizer Kingma and Ba (2014) with an initial learning rate of 1e−4 that
decays by a factor of 0.99 every 2 epoches; weight decay 1e−4. Models are trained for 400 epochs.
Following Alemi et al. (2017), we take the average from 12 posterior samples to make a prediction
during the evaluation. The baseline model is the same architecture with the bottleneck layer removed
(base). We also trained the same baseline, but with dropout rate 0.2 (drop).

CIFAR10 The setup for CIFAR10 closely follows that of MNIST, except that we use Resnet18
from torchvision maintainers and contributors (2016), and the output layer has a dimension of 512;
the initial learning rate is set to 2e−4 which decays by a factor of 0.98 for every 2 epochs.
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E.3 THE FGSM METHOD

The adversarial examples are generated by the Fast Gradient Sign Method (FGSM) Goodfellow et al.
(2015), where the attack example is generated by

x̃ = x+ ϵ · sign(∇xL(θ, x, y)), (45)
where L(θ, x, y) represents the cross-entropy loss for the data x with label y. For both datasets, we
can see that FR-VIB improves significantly against the base model on robustness against adversarial
examples.

F EXPERIMENT DETAILS ON POSTERIOR COLLAPSE EXPERIMENT

F.1 EVALUATION METRICS

(mean) KL divergence (KL)
KL = Epdata(x)[DKL(q(z|x)||p(z))] (46)

Active Unit (AU) (Burda et al., 2015) This metric is defined as the number of latent dimensions
that are active. The activation of latents is defined as

AU = Cov(Ez∼q(z|x)[z]) (47)
We follow the convention that a dimension i is active if AUi > 0.01.

Mutual information Iq (Alemi et al., 2017)
Iq = Epdata(x)[DKL(q(z|x)||p(z))]−DKL(q(z)||p(z)) (48)

where pdata(x) is the data distribution. q(z) = Ex∼pdata(x)q(z|x) is the marginal distribution of z.
p(z) is the prior for z. This metric measures how much information content about x is encoded in z.
When the second term is small (the amortization gap), the KL metric defined previously approximates
this value.

F.2 CONFIGURATION

For both encoder and decoder, we use 3 layers of LSTM with 512 hidden units. The decoder uses
a dropout rate 20% between layers. We use latent dimension of 32, word embedding size 512. For
estimating NLL, we use importance weighted ELBO Burda et al. (2015) using 100 samples. Training
is performed for 400 epoches using the OneCycle learning rate schedule with warm-up steps of 10%.
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