© ® N o o A~ W N

Less is More: Using Buffer Nodes to Reduce Excessive Majority
Node Influence in Class Imbalance Graphs

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract

Graph Neural Networks (GNNs), despite success in node classification, strug-
gle with class-imbalanced graphs, leading to minority node misclassification.
Existing methods that synthesize minority nodes often overlook how major-
ity nodes propagate misleading information through majority-minority edges;
our analysis confirms this negative impact. To address this, we propose
BufferGraph, a framework that inserts buffer nodes on such edges. These
nodes act as controlled bottlenecks to reduce excessive majority node influ-
ence. And we theoretically demonstrate they reduce minority node feature
distortion. Experiments on five real-world datasets show BufferGraph improves
accuracy by up to 2% over state-of-the-art methods, excelling in imbalanced
settings and for minority classes with high heterophily. Code is available at
https://anonymous.4open.science/r/BufferGraph-C257.

1 Introduction

Recent years have witnessed the rapid development of graph representations, especially GNNs [1-6].
Among various graph tasks, node classification has proven important and socially beneficial in real-
world applications, such as identifying influencers on social networks [7-9] and detecting fraudsters
in financial activities [10—12]. Naturally, the misclassification of minority classes can have harmful
societal impacts. For example, minor fraudulent accounts that are not identified will continue to affect
the reputation of e-commerce platforms and lead to loss of platform users [13, 14]. Despite the critical
importance of accurate minority class prediction in real-world applications, current GNN approaches
struggle with class-imbalanced graphs, creating a significant gap between model capabilities and
practical needs.

Standard GNN models assume class balance and neighborhood homogeneity when aggregating
features [1-3]. However, real-world graphs typically exhibit significant class imbalances—fraudulent
accounts form a tiny minority in the Ethereum network [12, 15], and computer vision papers greatly
outnumber computer architecture papers in citation networks [16]. These imbalances bias model
performance toward majority classes [4, 17, 18], resulting in poor minority class prediction when
GNNGs are applied directly to imbalanced graphs.

To address this problem, previous methods have synthesized fake minority nodes and connected
them to the original graph [19-24]. These approaches include techniques like GraphSMOTE [19],
GraphENS [20], TAM [21], and GraphSHA [22], which generate synthetic minority nodes through
various interpolation and mixing strategies. However, these approaches overlook a critical issue:
majority nodes continue to propagate information to minority nodes through majority-minority
edges, which we define as misleading edges. These edges distort minority node representations during
message passing. Despite generating new nodes to balance classes globally, local neighborhoods
often remain imbalanced, with minority nodes surrounded by majority nodes. As shown in Figure 1,
higher percentages of majority neighbors correlate with lower prediction accuracy for minority
classes, which restricts the performance of baselines.

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

https://anonymous.4open.science/r/BufferGraph-C257

40
41

42
43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58

59
60
61
62

63
64
65
66
67
68
69

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

Impact of Majority Neighbors on Minority Class Accuracy

5 ® GraphSHA
¢ m GraphENS
0.95 ¢ TAM
¢ BufferGraph
L 2
- ®
>~ 0.90 4 |]
()
e
=)
|9
[)
<
0.85
0.80
O,iO O.‘15 0.‘20 0“25 O.éO 0.‘35 04210 O.‘45

Percentage of Majority Neighbors (0-1)

Figure 1: Impact of majority-class neighborhood composition on minority class accuracy on the
Amazon-Computers dataset. Each point represents a minority class, plotting its classification accuracy
against the percentage of its majority-class neighbors. While baseline methods struggle with accuracy
degradation as majority-class neighbor percentage increases, our proposed BufferGraph maintains
consistently superior performance across all neighborhood compositions, effectively addressing
the challenge of majority-class interference in graph-based classification.

To address this fundamental limitation, we propose BufferGraph—a framework that explicitly
regulates cross-class edge message propagation through adaptive edge intervention.

Our approach enhances minority class classification
by decreasing message propagation along misleading
edges—connections often dominated by majority nodes,
which can distort the inherent features of minority in-
stances as shown in Figure 2.

hh, as my neighbors are good
guys, I can pretend myself
as a good guy,

@ Misleading Edge Misleading Edge @
To achieve this goal, we first use predicted labels from — —
the GNN pre-training stage to identify potential mislead- 1 Misleading Edge
ing edges. Edges connecting to predicted minority nodes
are classified as non-problematic as their predictions have '1[[3!3

shown high precision [22]. For other potentially mislead-

ing edges, we insert buffer nodes to modulate message Figure 2: Misleading edge examp]e,
passing, allowing information to flow through both the

original path and a new path via the buffer node. These

unlabeled buffer nodes act as message passing modulators. The proportion of message passing
through the original edge is determined by the difference in predicted labels of connected nodes,
helping maintain prediction accuracy for majority-majority node pairs while reducing majority nodes’
misleading influences on minority nodes. We provide the overview of our method in Figure 3.

We evaluate BufferGraph on five real-world datasets: Amazon-Photos, Amazon-Computers [25],
Coauthor-CS, Coauthor-Physics [16], and WikiCS [26]. Experiments are conducted under both
natural and artificially imbalanced settings to assess BufferGraph’s effectiveness across varying
imbalance ratios, comparing against state-of-the-art baselines.

Experiment results demonstrate that BufferGraph consistently outperforms the baseline models
[19-22] in most configurations and datasets. For instance, under the random splitting scenario,
BufferGraph exhibits its superiority by achieving a 2% increase in accuracy (from 88.39% to 90.22%),
a 2% enhancement in balanced accuracy (from 89.23% to 91.85%), and a 2% boost in F1-score
(from 87.55% to 89.30%) on the Amazon-Computers dataset compared to the second-best outcomes.
Conversely, within the imbalanced splitting framework, BufferGraph continues to excel, marking a
2% improvement in accuracy, a 1% gain in balanced accuracy, and a 1.5% increase in F1-score on the

70
71

72

74
75

76

85

86
87
88
89

90

91
92
93
94
95
96
97
98

99

101

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

I~

Pre-train 2

<

i

=]

w

w»
. Majority class O Predicted Majority class
O Minority class O Predicted Minority class

(a) Original Graph (b)BufferGraph Construction (c) Neighbor Aggregation (d) Loss Function

Figure 3: BufferGraph overview where vy, va, v4, v5 are of the major class and vs, vg are of the
minor class. The input graph is shown in (a). After the pre-training using the GCN model, the nodes
are predicted into majority or minority classes. Subsequently, we introduce a buffer node into each
edge except those minority nodes’ neighboring edges, as depicted in (b). The feature of the buffer
node is a mixup of the features from the two nodes connected by the edge. Then, we zoom in v3 to
show the neighbor aggregation of BufferGraph in (¢). For edges with buffer nodes, messages pass
both through the buffer node and directly to v3, with direct edge weights determined by the predicted
label differences between nodes. Loss calculation during BufferGraph neighbor aggregation is shown
in (d).

Amazon-Computers dataset relative to the runner-up results. These findings underscore BufferGraph’s
adaptability and efficacy in addressing class imbalances. We make the following contributions:

© Heterophily-Aware Buffer Framework: We identify a critical issue overlooked by previous
work - the negative impact of majority-minority edges on message passing in imbalanced graphs.
To address this, we propose BufferGraph, which strategically introduces buffer nodes to regulate
information flow through misleading connections.

® Theoretical Analysis: We establish the mathematical foundation explaining how buffer nodes
preserve minority class features by controlling eigenvalue decay during message passing, pro-
viding insights into why our approach effectively addresses class imbalance through message
regulation.

® Experimental Validation: We conduct comprehensive experiments on multiple real-world
datasets. Results demonstrate BufferGraph’s consistent superiority over state-of-the-art methods,
particularly in improving performance on minority classes across varying imbalance ratios.
We also conduct comprehensive ablation studies on BufferGraph to assure each component is
necessary.

2 Proposed Method

Figure 3 illustrates our approach, which consists of three key components: (1) pre-training a GCN to
identify potential misleading edges, (2) inserting buffer nodes into these edges to create controlled
information bottlenecks, and (3) implementing an adaptive message-passing mechanism that adjusts
information flow based on node similarity.

2.1 Background

Notations. We address the challenge of class-imbalanced node classification on an unweighted,
undirected graph G = (V, £), where V = {v1, - - - , vy } represents the set of NV nodes, and € C V xV
denotes the edges. The graph structure is captured by an adjacency matrix A € {0, 1}V*¥ with
A;; = 1 indicating an edge between nodes v; and v;. Node features are represented by a matrix
X € RV*4 where each row X; € R corresponds to the d-dimensional features of node v;. Each
node v is labeled with one of C classes, Y (v) € {1,---,C}, with Y. encompassing all nodes in
class c. The training subset V* C V), particularly in imbalanced settings, is characterized by class
size disparities, quantified by the imbalance ratio. We provide notations used in Table 6.

Definition. Majority-minority edges, also referred to as misleading edges, are defined as the edges
connecting nodes from the majority class to nodes from the minority class in a graph. Formally, given
a graph G = (V, £) with a label function Y : V — {1,--- ,C}, let M denote the set of nodes in the

103

104

106
107

108
109
110

111
112
113

114
115
116
117

118

119
120
121

122
123
124
125
126

127
128

129
130

131
132

133
134
135
136

138
139

140

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

majority class and m denote the set of nodes in the minority class. An edge e = (v;,v;) € £isa
majority-minority edge if v; € M and v; € morv; € mand v; € M.

2.2 Buffer Node Generation

Buffer nodes represent our key innovation for addressing class imbalance in GNNs by modulating
message passing between majority and minority classes through strategically introduced buffer nodes,
rather than generating new minority nodes.

A buffer node, denoted as wvy,s, does not possess a label but is characterized by a feature vector X pys.
This vector is derived by interpolating the features of two adjacent nodes, v, and vy, connected by an
undirected edge. The interpolation is governed by the equation [27]:

Xput =X+ (1—-a)Xy, acl0,1]. 1)

In this formula, « acts as the mixup coefficient, influencing the degree to which the features of node
v, and node vy, affect the buffer node’s features. A lower value of « biases the feature vector X ¢
towards the features of vy, whereas a higher value biases it towards those of v,.

The buffer nodes integrated into edges serve primarily to regulate message passing rather than to
enhance feature representation. Given this focused role, we initially set « = 1/2 uniformly across all
edges, prioritizing methodological consistency in our preliminary investigation. A comprehensive
analysis of o’s impact through systematic parameter variation is presented in Section 3.5.

2.3 BufferGraph Framework

To address the challenges of message passing across majority-minority edges within class-imbalanced
graphs, BufferGraph implements a dynamic message passing mechanism that precisely modulates
the flow of information. We illustrate the details in Figure 3 as follows:

Pre-training Stage. We first pre-train a GCN model using training sets label information to predict
the labels of all nodes in the original graph. These predicted labels serve as a guide for identifying
potential problematic edges, which are then targeted for buffer node insertion. According to our
algorithm, edges connected to predicted minority nodes are considered non-problematic and left
unchanged, as previous work [22] has shown high precision in minority node predictions.

Difference Score. After pre-training, we compute a difference score s(,, ;) for each edge €y,),
based on the Manhattan distance between the predicted label distributions of the connected nodes:

S(oioy) = D |Gik — Ukl)
k

where §J; 1, and §; ;. are the predicted label distributions for nodes v; and v; respectively. This score
quantifies the dissimilarity between nodes’ predicted class distributions.

Adaptive Message Passing. For edges in the original graph, we modulate the message passing by
adjusting the edge weight w(,, ,,,) according to:

W, v5) = 1= S(; ;) (€)

For edges connected to buffer nodes, we maintain their weights at 1. This design ensures that when
there is a large label distribution difference (high s, v y) between connected nodes, more information
flows through the buffer node path rather than the direct edge. This mechanism effectively reduces the
direct influence of majority nodes on their minority neighbors while preserving necessary information
exchange through the buffer nodes.

Neighbor Aggregation. The GNN neighbor aggregation mechanism we utilize follows the standard
form [22]:

Hﬁl) £ Transform (Propagate (Hgl—l); Hgll))> , “)
VosEN

where H El) represents node embedding of node v, in the /-th layer.

142

143
144
145

146
147
148
149

151

152

153
154
155
156
157

159

160
161

162
163

164
165

169
170

171

172

173

174
175

176
177

178

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

A GCN can be formalized with the following operations [1]:
Propagate: Mt(l) = AHt(l_l), 5)
Transform: H" = ReLU(M W), (6)
where W) is the learnable weight matrix of the I-th layer, and ReLU(-) is the activation function.

Training Objective. During training, we calculate the validation loss every epoch and re-evaluate the
difference scores if the current validation loss improves over the best previous loss. Our loss function
combines two components:

Liotal = Lpred + A - Laify. @)
where A is a hyperparameter that balances the prediction loss and difference loss. While A can
theoretically take any positive real value, we primarily consider A € [0.1, 1.0] to maintain a balanced
contribution between the two loss terms. We also explore larger values of A in our parameter
sensitivity analysis (Section 3.5).

Algorithm 1 details the complete BufferGraph implementation. And complexity analysis of Buffer-
Graph can be found in Appendix D.

2.4 Theoretical Analysis

This section provides theoretical justification for how buffer node insertion enhances minority node
classification by modifying graph spectral properties and improving information propagation. First,
we establish the mathematical foundation of GNN propagation and identify the key challenge of
eigenvalue decay. Second, we demonstrate how buffer nodes address this challenge through controlled
message passing. Third, we prove that this mechanism effectively preserves minority class features.

@ GNN Propagation and Eigenvalue Decay: The feature update rule in standard GNNs for a single
layer ¢ is:

HAD = o (S‘H“)W(‘)) : ®)

where S = D~1/2AD~1/2 is the symmetrically normalized adjacency matrix, H®) represents node
features, and W (¥) is a trainable weight matrix. Multi-layer propagation effectiveness is governed by
the eigenvalues (1) of operator S. A critical challenge in deep GNNs is that smaller eigenvalues of S,
essential for preserving minority class features, decay exponentially through multiple propagation
steps (pyy) ~ 2+
information loss.

after k layers) [28]. This rapid decay leads to feature smoothing and minority

O Buffer Node Impact on Propagation: When a buffer node b is inserted between nodes (u, v), it
creates two new edges (u, b) and (b, v), modifying the graph structure in two key ways:

1) Modified Propagation Operator: The augmented adjacency matrix A= [;T g] introduces

buffer connections through block matrix B, altering the graph Laplacian L and propagation operator
S while preserving original node degrees.

2) Controlled Information Flow: Buffer nodes b;; between (v;,v;) create two-hop paths with
attenuation factor «;;, regulating message passing via fzél)] = ;j (W(l)hl(-lfl) + W(l)hg-l*l)).

® Feature Preservation Mechanism: BufferGraph creates a modified propagation operator S’ with

more favorable spectral properties, achieving an effect similar to specialized GNN architectures with
slower eigenvalue decay:

k
i ~ Cla) - uht, ©)
where C'(«) is a factor dependent on architectural parameters. This improvement is achieved through
two key mechanisms:

1) Reduced Decay Rate: Effective eigenvalue decay improves from O(u2*+1) to O(u*+1):

hi, hyj)
AD =)\(lri) . (1 + a<“-7> (10)
e [} 25 |

C(a)>1

191
192
193
194
195
196
197

198

199
200
201
202

204
205

207
208
209

210
211
212
213
214

215
216
217
218
219
220
221
222

223

224
225
226
227
228
229

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

2) Feature Preservation: The scaling factor C'(«) amplifies components orthogonal to majority-class
features, maintaining minority feature magnitudes during propagation.

Implications. These theoretical insights underscore BufferGraph’s broad applicability. For highly
imbalanced graphs, where minority features risk being overshadowed by dominant majority signals,
BufferGraph’s reduced eigenvalue decay and targeted feature amplification are crucial. These
mechanisms preserve minority feature integrity and mitigate data skew, leading to more accurate
minority node identification. In moderately imbalanced or relatively balanced graphs, even with
less severe feature suppression, BufferGraph’s controlled message passing from majority to minority
nodes and favorable spectral properties enhance model robustness and refine feature learning. This
nuanced aggregation benefits overall classification, positioning BufferGraph as both a specialized
solution for severe imbalance and a generally beneficial graph learning framework.

3 Experiments

This section focuses on answering the following research questions (RQs): (RQ1) How does Buffer-
Graph’s performance in node classification on naturally class-imbalanced graphs compare to that of
existing baseline models (§3.2)? (RQ2) How effectively does BufferGraph outperform other baseline
models in node classification across graphs with varying class-imbalance ratios (§3.3)? (RQ3) How
does each component contribute to the overall performance of BufferGraph (§3.4)? (RQ4) How does
BufferGraph’s performance change when different hyperparameter settings are used (§3.5)? (RQS5)
Does our inserting ratio affect the performance of BufferGraph (§3.6)?

3.1 Experimental Setup

Datasets. To comprehensively evaluate BufferGraph, we conduct experiments across five naturally
class-imbalanced datasets: Amazon-Photos, Amazon-Computers [25], Coauthor-CS, Coauthor-
Physics [16], and WikiCS [26]. Table 5 summarizes the key statistics of these datasets. The Max/Min
ratio represents the number of samples in the largest majority class to that in the smallest minority
class, highlighting the natural class imbalance in these datasets.

Baselines. We compare BufferGraph against three categories of GCN-backboned baselines: (1) Loss
management strategies including Reweight [29], PC SoftMax [30], Cross Entropy, and Balanced
SoftMax [31]; (2) Class-imbalanced node classification methods including GraphSMOTE [19],
GraphENS [20], TAM [21], and GraphSHA [22]; (3) Heterophilic GCN models including MixHop
[32] and H2GCN [33], which handle heterophily similar to majority-minority edges. More details
can be found in Appendix F.

Evaluation Metrics. We use four widely adopted metrics for class-imbalanced node classification:
Accuracy (Acc.) measuring overall classification accuracy across all nodes; Balanced Accuracy
(BAcc.) as the average of per-class accuracy giving equal weight to each class; Macro F1 Score
(F1) balancing precision and recall across all classes; and Standard Deviation reported as mean+std
across five runs with different random seeds.

Implementation Details. For all experiments, we use the following settings: (1) Random Splitting
with dataset division into training/validation/testing sets (6:2:2 ratio); (2) Model Architecture
featuring three hidden layers (256 hidden dimensions each); (3) Training Parameters including
learning rate 0.01, dropout rate 0.4, and up to 5000 epochs with early stopping; (4) BufferGraph-
Specific Parameters with mixup coefficient « = 0.5 and difference loss weight A = 1.0. For the
imbalanced setting, we follow [20] by downsampling the last half of classes in the training set to
achieve an imbalance ratio of 10, while maintaining the original distribution in validation and testing
sets. For hardware, we provide the information in Appendix E.

3.2 RQ1: Performance on Naturally Imbalanced Graphs

Random Splitting Results. Tables 1 and 2 demonstrate BufferGraph’s consistent superiority over
baselines across five datasets. On Amazon-Computers, BufferGraph achieves 90.22% accuracy (+2%
vs 88.39%), 91.85% balanced accuracy (+2% vs 89.23%), and 89.30% F1-score (+2% vs 87.55%).
The framework shows particular strength on minority classes (evidenced by high balanced accuracy)
while maintaining majority class performance, with consistent improvements across datasets of
varying characteristics, confirming its robustness. To further validate BufferGraph’s effectiveness,

231
232
233
234

235
236
237
238

240
241

242
243
244
245

246

247
248

249
250

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

we present a comparative analysis in Figure 1. The results reveal that BufferGraph significantly
improves the performance of minority classes, particularly those with a high percentage of
majority-class neighbors, while maintaining strong performance across all classes. This balanced
improvement demonstrates BufferGraph’s ability to effectively address the challenges of imbalanced
node classification.

Imbalanced Splitting Results. Tables 3 and 4 show BufferGraph’s performance under artificially
imbalanced settings with an imbalance ratio of 10. BufferGraph maintains its superior performance,
achieving approximately 2% improvement in accuracy, 1% in balanced accuracy, and 1.5% in F1-score
on Amazon-Computers compared to the runner-up results. While baseline methods like Reweight
show good balanced accuracy but lower overall accuracy (indicating they improve minority class
performance at the cost of majority class accuracy), BufferGraph achieves strong performance across
all metrics, demonstrating its ability to effectively balance minority and majority class prediction.

Analysis. BufferGraph’s superior performance stems from two key innovations: First, buffer nodes
transform direct one-hop neighbors into two-hop neighbors, reducing the negative influence of major-
ity nodes on minority nodes. Second, adaptive message passing modulates information flow based on
node similarity, preserving minority class features while maintaining majority class performance.

Table 1: Random splitting experiment results of BufferGraph and other baselines on Amazon-Photos,
Amazon-Computers, and Coauthor-CS. We report all metrics with the standard deviation errors for
five repetitions. The best result is highlighted by bold text. The runner-up result is highlighted by the
underline.

Dataset | Amazon-Photos | Amazon-Computers | Coauthor-CS
Random Splitting | Acc. BAcc. F1 | Acc. BAcc. F1 | Acc. BAcc. F1
Vanilla ‘ 92.44+0.16 90.41+0.62 91.204+0.27 ‘ 87.71+£0.36 82.34+1.36 83.03+1.86 ‘ 92.89+0.41 89.97+0.45 90.70+0.63
Reweight 92914036 92.51+0.41 91.72+0.25 | 86.21+0.71 89.23+0.19 85.094+0.68 | 92.86+0.03 90.86+0.13 91.09+0.04
PC Softmax 91.83+0.33 91.834+0.34 90.314+0.48 | 87.13+£1.49 87.60+0.67 85.09+1.71 | 92.95+0.12 91.87+0.11 91.21+0.11
] Balanced Softmax | 93.46+0.05 91.19+0.01 92.05+0.05 | 86.284+0.02 87.42+0.29 83.91+0.02 | 93.46+0.05 91.194+0.01 92.05+0.05
_g Cross Entropy 93.40+0.20 92.134+0.21 92.304+0.23 | 86.99+0.22 82.26+0.75 84.214+0.50 | 93.05+0.14 90.85+0.37 91.49+0.32
S MixHo 92.85+0.42 91.774+1.36 91.20+0.47 | 85.02+0.26 75.17+1.58 75.09+1.13 | 91.97+0.58 88.50+0.49 89.41+0.43
= P
H2GCN 93.06+0.53 92.474+0.27 91.794+0.21 | 88.39+0.55 88.01+0.32 87.55+1.18 | 94.24+0.14 92.77+0.34 92.754+0.60
GraphSmote 89.724+0.45 90.69+0.57 88.90+0.48 | 85.36+0.72 84.79+1.22 85.22+0.98 | 87.444+0.24 85.084+0.63 84.26+0.52
GraphENS 93.37+0.42 92.1840.36 91.63+0.46 | 86.35+0.71 87.66+0.54 85.81+0.47 | 91.65+0.23 90.72+0.39 89.53+0.36
TAM 90.13+0.33 90.984+0.36 89.154+0.49 | 85.46+0.11 88.51+0.67 84.52+0.26 | 92.41+0.04 90.84+0.01 91.3540.02
GraphSHA 93.63+0.23 92.614+0.66 92.60+0.38 | 82.98+0.17 77.73+£1.90 79.10+2.22 | 92.68+0.59 91.00+0.37 90.94+0.51
BufferGraph 94.47+0.10 94.284+0.10 93.124+0.07 | 90.22+0.48 91.85+0.34 89.30+0.69 | 94.90+0.28 93.88+0.39 93.70+0.41

Table 2: Random splitting experiment results of BufferGraph on Coauthor-Physics and WikiCS.

Dataset | Coauthor-Physics | WikiCS
Random Splitting | Acc. BAcc. F1 | Acc. BAcc. F1
Vanilla ‘ 96.224+0.24 94.60+0.42 93.49+0.03 ‘ 83.20+0.23 80.34+0.41 80.6340.07
Reweight 95.704+0.02 95.064+0.05 94.52+0.01 | 82.66+0.17 82.824+0.09 80.92+0.20
PC Softmax 96.144+0.07 95.364+0.11 95.074+0.11 | 82.76+0.32 81.944+0.50 80.46+0.45
4 Balanced Softmax | 96.16+0.03 95.52+0.06 95.05+0.02 | 83.83+0.49 82.15+0.51 81.74+0.72
_g Cross Entropy 96.50+0.14 95.304+0.13 95.2540.18 | 83.15+0.23 82.63+0.74 81.574+0.30
§ MixHop 94.774+0.69 92.3240.86 93.15+1.09 | 77.07+£1.11 67.96+2.02 68.57+1.95
H2GCN 95.174+0.33 92.33+£0.25 93.25+0.81 | 79.77+2.23 69.69+2.62 72.90+2.67
GraphSmote 95.094+0.53 93.014+0.66 93.42+0.76 | 82.94+0.70 80.42+1.14 80.65+0.75
GraphENS 95.46+0.09 95.32+0.04 94.27+0.06 | 81.78+0.06 80.87+0.12 79.80+0.08
TAM 95.354+0.19 95.0440.08 94.0440.20 | 80.73+0.34 79.024+0.21 79.02+0.16
GraphSHA 96.274+0.14 95.51+£0.17 95.05+0.11 | 81.83+1.22 80.76+0.54 78.95+1.53
BufferGraph 96.78+0.07 96.18+0.07 95.34+0.06 | 84.47+0.22 84.34+0.21 81.92+0.08

3.3 RQ2: Performance Across Varying Imbalance Ratios

Experimental Setup. To evaluate BufferGraph’s robustness to different levels of class imbalance,
we artificially adjust the imbalance ratio to 15, 20, and 25 on the Amazon-Computers dataset.

Results and Analysis. Figure 4 shows that BufferGraph maintains consistently superior balanced
accuracy across all imbalance ratios, outperforming the second-best baseline by at least 3% in each

251
252
253
254

255

256
257
258
259
260
261
262
263
264

265
266
267
268
269
270
271

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

Table 3: Imbalanced splitting experiment results of BufferGraph and other baselines on Amazon-
Photos, Amazon-Computers, and Coauthor-CS.

Dataset | Amazon-Photos | Amazon-Computers | Coauthor-CS
p=10 | Acc BAcc. F1 | Acc. BAcc. F1 | Acc. BAcc. F1
Vanilla ‘ 92.20+0.54 89.60+0.05 90.41+0.14 ‘ 83.404+0.29 69.71+£0.28 70.79+0.43 ‘ 92.54+0.55 89.86+0.68 90.53+0.63
Reweight 92.65+0.36 92.34+0.17 90.794+0.36 | 86.46+0.20 89.26+0.08 85.334+0.14 | 93.23+0.12 91.744+0.07 91.86+0.03
PC Softmax 84.514+0.86 88.69+1.27 84.01+£2.57 | 70.48+1.09 84.92+1.21 70.50+£0.46 | 92.78+0.02 93.16+0.06 91.23+0.14
] Balanced Softmax | 92.81+0.20 93.33+0.04 91.44+0.19 | 87.55+0.24 89.31+0.16 86.95+0.02 | 93.99+0.01 93.24+0.03 92.35+0.02
£ Cross Entropy 91.67+0.16 87.85+0.40 89.93+0.35 | 87.46+0.18 83.49+0.53 85.194+0.53 | 94.04+0.07 92.03+0.03 92.38+0.04
g MixHop 91.5740.84 90.46+0.54 89.534+0.72 | 84.56+1.15 75.48+2.35 75.3042.52 | 88.65+0.51 80.59+1.24 83.19+1.03
H2GCN 92.49+40.70 91.04+0.29 91.554+0.24 | 85.22+0.46 85.19+0.30 85.554+0.83 | 93.98+0.36 92.61+0.36 92.33+0.34
GraphSmote 88.314+0.63 88.15+1.53 87.27+0.28 | 85.30+0.66 84.66+0.27 84.35+0.23 | 88.95+0.19 83.96+0.99 85.56+0.78
GraphENS 92.55+0.07 91.66+0.37 91.074+0.02 | 85.50+0.58 89.21+0.14 85.054+0.69 | 92.12+0.03 90.49+0.01 89.21+0.16
TAM 91.08+0.03 91.70+0.07 90.15+0.07 | 85.79+0.18 88.21+0.69 85.214+0.42 | 92.53+0.04 90.45+0.13 90.67+0.13
GraphSHA 93.56+0.04 92.46+030 92.594+0.02 | 85.24+0.52 83.77+0.55 83.31+0.59 | 92.42+0.16 90.43+0.46 90.21+0.22
BufferGraph 93.91+0.18 93.40+0.20 92.90+0.07 | 89.51+0.35 90.54+0.57 88.14+0.40 | 94.06+0.02 93.78+0.03 92.72+0.35

Table 4: Imbalanced splitting experiment results of our model BufferGraph and other baselines on
two class-imbalanced node classification benchmark datasets.

Dataset | Coauthor-Physics | WikiCS
p=10 | Acc. BAcc. F1 | Acc. BAcc. F1
Vanilla | 95.65+£0.04 93.7640.12 94.19+0.17 | 81.30+1.00 75.16+1.53 77.42+1.55
Reweight 96.354+0.04 95124020 95.1640.09 | 81.16+0.13 81.48+0.28 79.5440.34
PC Softmax 95.18+0.09 95.4740.08 93.87+0.13 | 76.01+2.24 80.30+1.42 73.85+2.13
& Balanced Softmax | 96.46+0.05 95.46+0.03 95.32+0.04 | 82.14+0.04 82.45+021 80.10+0.08
£ Cross Entropy 96.1240.01 94.53+0.11 94.934+0.03 | 82.4440.23 78.07+0.51 80.06+0.10
S MixHop 93.88+0.32 91.06+0.82 91.98+027 | 76.91+1.41 66.244049 66.90:£0.94
H2GCN 93.09+0.17 88.604+0.14 90.02+0.56 | 77.85+1.83 66.30£2.75 68.01+£0.93
GraphSmote 92644036 92.7940.11 94.42+0.53 | 74.96+1.07 69.434+2.17 70.82+1.93
GraphENS 95.3540.19 95.0440.08 94.04+0.20 | 80.73+£0.30 79.944+0.27 77.83+0.45
TAM 95.254+0.06 94.11+0.19 93.6640.16 | 81.124+0.04 80.29+0.03 79.3240.12
GraphSHA 96.274+0.14 95.14+0.04 94.9440.14 | 82.6040.30 80.34+0.31 80.0040.52
BufferGraph 96.2640.17 96.13+0.14 96.15+0.27 | 83.424+0.52 84.21+035 81.58+0.45

case. While all methods show some performance degradation as the imbalance ratio increases, Buffer-
Graph exhibits the most stable performance, demonstrating its robustness to severe class imbalance.
This stability can be attributed to BufferGraph’s buffer node mechanism, which effectively modulates
message passing between majority and minority classes regardless of their relative proportions.

3.4 RQ3: Ablation Study

Experimental Setup. To assess the contribution of each component in BufferGraph, we conduct
ablation studies on Amazon-Computers and WikiCS datasets using the GCN backbone under the
random splitting setting. BufferGraph uniquely combines buffer node insertion with a specialized
message passing scheme and a difference loss. We examine four variants: the Complete BufferGraph
(the full model); - DL, which ablates the difference loss component; - CMP (Concrete Message
Passing), which removes the adaptively weighted direct message path between the original connected
nodes, thereby routing all interaction through the buffer node pathway; and - UMP (Update Message
Passing via Buffer), which ablates the message pathway through the inserted buffer node, relying
only on the adaptively weighted direct path between original nodes.

Results and Analysis. Figure 5 shows that removing the update message passing mechanism (- UMP)
leads to the most significant performance drop across all metrics, particularly in F1 scores. This
confirms that adaptive message passing is the core component of BufferGraph, as it directly controls
how information flows between majority and minority nodes. The removal of other components also
notably impacts model performance, demonstrating that each component plays an essential role in
BufferGraph’s effectiveness. The complete BufferGraph consistently outperforms all ablated variants,
confirming the synergistic effect of combining all components.

272

273
274
275
276

277
278
279
280
281
282

284
285

287

288

290
291
292

293

294
295
296
297

299
300
301

302
303
304
305
306
307

308

309

310
311
312
313
314
315

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

3.5 RQ4: Parameter Sensitivity Analysis

Experimental Setup. We investigate the sensitivity of BufferGraph to two critical hyperparameters:
(1) Mixup coefficient « controlling feature interpolation for buffer nodes (tested values: 0.1, 0.3,
0.5, 0.7, 0.9), and (2) Difference loss weight \ balancing prediction loss and difference loss (tested
values: 0.1, 0.5, 1, 2, 5).

Results and Analysis. Figure 6 reveals that: (1) For a, optimal performance occurs at 0.5 across both
datasets, suggesting equal feature mixing is ideal for buffer nodes; (2) For A\, Amazon-Computers
shows stable performance from 0.1 to 1 while WikiCS improves over this range, but both degrade
significantly at A > 2. These results demonstrate BufferGraph’s robustness within moderate parameter
ranges (o = 0.5, A = 1.0), while extreme values harm performance. The optimal settings balance
feature mixing and loss weighting effectively across diverse datasets.

3.6 RQS5: Buffer Node Ratio Study

Experimental Setup. We investigate how the ratio of inserted buffer nodes affects model performance
under the random splitting setting on Amazon-Computers and WikiCS datasets. We vary the number
of buffer nodes in the graph to evaluate the sensitivity of our approach. Specifically, we randomly
selected a certain percentage of all eligible edges to add buffer nodes varying from 0% to 100%.

Results and Analysis. Our experiments consistently show that higher insertion ratios lead to
improved performance, with the best results achieved when buffer nodes are inserted for all potentially
misleading edges (100% insertion ratio). This confirms that our strategy of comprehensive buffer
node insertion is effective and that the benefits of modulating message passing outweigh any potential
drawbacks from increased graph complexity. Detailed results are provided in Appendix G.5.

4 Related Work

Existing methods to tackle class imbalance in graphs can be categorized into two main approaches.
The first approach focuses on generating synthetic nodes and edges [18-20, 22, 34, 35], where
methods like DRGCN [34] and GraphSMOTE [19] generate minority nodes to balance classes, while
GraphSHA [22] focuses on generating "hard’ nodes of minority classes to enlarge the margin between
majority and minority classes. The second approach modifies the learning process itself, such as TAM
[21] which introduces connectivity-aware margins. Recently, BAT [36] addresses class imbalance
from a topological perspective by theoretically identifying two fundamental phenomena that amplify
class-imbalance bias, serving as a plug-and-play module for existing class rebalancing methods.

However, existing methods either overlook the direct influence of majority classes on minority
classes through majority-minority edges (empirically demonstrated in Figure 1), or function merely
as auxiliary modules without providing a complete solution. In contrast, BufferGraph offers a
comprehensive end-to-end model that fundamentally redesigns the message passing mechanism using
buffer nodes to effectively address the class imbalance problem. We provide a comparison between
previous works and BufferGraph to highlight our novelty in Table 4.

Method ‘ Handle Majority-Minority Edges Label-Free Node Generation Message Propagation Adjustment No Complex Parameter Tuning

GraphSMOTE [19]
GraphENS [20]

TAM [21] v v
GraphSHA [22]
DRGCN [34]
BAT [36] v v
BufferGraph | v 4 v v

5 Conclusion

We introduce BufferGraph, a lightweight framework that addresses class imbalance in graph neural
networks through strategic buffer node insertion. Unlike previous approaches focusing on minority
node generation, BufferGraph modulates message passing through potentially misleading edges,
effectively reducing majority nodes’ negative influence on minority nodes. Our experiments on five
real-world datasets demonstrate BufferGraph’s superior and robust performance, particularly for
minority classes with high percentages of majority-class neighbors.

w

6

3
318

7

319
320

321
322

323
324

325
326
327

328
329
330

331
332

333
334
335
336
337

338
339
340
341

342
343
344

345
346
347

348
349

350
351
352

353
354
355
356

357
358
359

360
361

362
363
364
365

366
367

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

References

[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016. 1, 5

[2] Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017. 1

[4] Fenyu Hu, Liping Wang, Shu Wu, Liang Wang, and Tieniu Tan. Graph classification by mixture
of diverse experts. arXiv preprint arXiv:2103.15622, 2021. 1

[5] Dingyi Zeng, Wanlong Liu, Wenyu Chen, Li Zhou, Malu Zhang, and Hong Qu. Substructure
aware graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pages 11129-11137, 2023.

[6] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training
and downstream tasks for graph neural networks. In Proceedings of the ACM Web Conference
2023, pages 417-428, 2023. 1

[7] Xinyu Huang, Dongming Chen, Dongqi Wang, and Tao Ren. Identifying influencers in social
networks. Entropy, 22(4):450, 2020. 1

[8] Jayati Bhadra, Amandeep Singh Khanna, and Alexei Beuno. A graph neural network approach
for identification of influencers and micro-influencers in a social network:* classifying influ-
encers from non-influencers using gnn and gen. In 2023 International Conference on Advances
in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS),
pages 66-71. IEEE, 2023.

[9] Alexander K Taylor, Nuan Wen, Po-Nien Kung, Jiaao Chen, Violet Peng, and Wei Wang. Where
does your news come from? predicting information pathways in social media. In Proceedings
of the 46th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 2511-2515, 2023. 1

[10] Dan Lin, Jiajing Wu, Qi Xuan, and K Tse Chi. Ethereum transaction tracking: Inferring
evolution of transaction networks via link prediction. Physica A: Statistical Mechanics and its
Applications, 600:127504, 2022. 1

[11] Kiarash Shamsi, Friedhelm Victor, Murat Kantarcioglu, Yulia Gel, and Cuneyt G Akcora.
Chartalist: Labeled graph datasets for utxo and account-based blockchains. Advances in Neural
Information Processing Systems, 35:34926-34939, 2022.

[12] Qian Wang, Zhen Zhang, Zemin Liu, Shengliang Lu, Bingqiao Luo, and Bingsheng He. Etgraph:
A pioneering dataset bridging ethereum and twitter. arXiv preprint arXiv:2310.01015,2023. 1

[13] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Not all neighbors are friendly: Learning to
choose hop features to improve node classification. In Proceedings of the 3 1st ACM international
conference on information & knowledge management, pages 43344338, 2022. 1

[14] Jianke Yu, Hanchen Wang, Xiaoyang Wang, Zhao Li, Lu Qin, Wenjie Zhang, Jian Liao, and
Ying Zhang. Group-based fraud detection network on e-commerce platforms. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
5463-5475, 2023. 1

[15] Yuan Li, Bingqiao Luo, Qian Wang, Nuo Chen, Xu Liu, and Bingsheng He. Cryptotrade: A
reflective llm-based agent to guide zero-shot cryptocurrency trading. In Proceedings of the 2024
Conference on Empirical Methods in Natural Language Processing, pages 1094—1106, 2024. 1

[16] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-
Rad. Collective classification in network data. Al magazine, 29(3):93-93, 2008. 1, 2, 6

[17] Min Liu, Siwen Jin, Luo Jin, Shuohan Wang, Yu Fang, and Yuliang Shi. Imbalanced nodes
classification for graph neural networks based on valuable sample mining. In Proceedings
of the 2022 6th international conference on electronic information technology and computer
engineering, pages 1957-1962, 2022. 1

[18] Mengting Zhou and Zhiguo Gong. Graphsr: A data augmentation algorithm for imbalanced
node classification. arXiv preprint arXiv:2302.12814,2023. 1,9

10

368
369
370

371
372
373
374

375
376
377

378
379
380

381
382
383
384

385
386
387
388

389
390

391
392

393
394

395
396

397
398
399

400
401
402
403

404
405
406

407
408
409
410

411
412
413

414
415
416

417
418
419

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification
on graphs with graph neural networks. In Proceedings of the 14th ACM international conference
on web search and data mining, pages 833-841, 2021. 1,2,6,9, 14

Joonhyung Park, Jaeyun Song, and Eunho Yang. Graphens: Neighbor-aware ego network
synthesis for class-imbalanced node classification. In The Tenth International Conference on
Learning Representations, ICLR 2022. International Conference on Learning Representations
(ICLR), 2022. 1, 6,9, 14

Jaeyun Song, Joonhyung Park, and Eunho Yang. Tam: topology-aware margin loss for class-
imbalanced node classification. In International Conference on Machine Learning, pages
20369-20383. PMLR, 2022. 1, 6,9, 14

Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. Graphsha: Synthesizing
harder samples for class-imbalanced node classification. arXiv preprint arXiv:2306.09612,
2023.1,2,4,6,9, 14

Meilun Shi, Enguang Zuo, Hanwen Qu, and Xiaoyi Lv. Graphuc: Predictive probability-based
graph-structured data augmentation model for class imbalance node classification. In 2024
4th International Conference on Electronic Information Engineering and Computer Science
(EIECS), pages 933-936. IEEE, 2024.

Nan Chen, Zemin Liu, Bryan Hooi, Bingsheng He, Jun Hu, and Jia Chen. Nodeimport:
Imbalanced node classification with node importance assessment. In Proceedings of the 31st
ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1, pages 94-105, 2025.
1

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Giinnemann.
Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. 2, 6

Péter Mernyei and Citdlina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural
networks. arXiv preprint arXiv:2007.02901, 2020. 2, 6

Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. 4

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.
Advances in Neural Information Processing Systems, 35:2268-2281, 2022. 5

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 9268-9277, 2019. 6, 14

Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang.
Disentangling label distribution for long-tailed visual recognition. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 6626—-6636, 2021. 6,
14

Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-
tailed visual recognition. Advances in neural information processing systems, 33:4175-4186,
2020. 6, 14

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine
learning, pages 21-29. PMLR, 2019. 6, 14

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in neural information processing systems, 33:7793-7804, 2020. 6, 14

Min Shi, Yufei Tang, Xingquan Zhu, David Wilson, and Jianxun Liu. Multi-class imbalanced
graph convolutional network learning. In Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence (IJCAI-20), 2020. 9

Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin. Imgagn: Imbalanced
network embedding via generative adversarial graph networks. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1390-1398, 2021. 9

11

420
421
422
423

424
425
426

427

428

429

431

432

433

434

435

436

437

438
439
440
441
442

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

[36] Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu,
Kommy Weldemariam, Jingrui He, and Hanghang Tong. Class-imbalanced graph learning

without class rebalancing. In Forty-first International Conference on Machine Learning, 2024.
9

[37] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiagi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362—1375, 2022. 14

A Dataset Details

We provide the statistics of datasets used in the paper in Table 5.

Table 5: Statistics of datasets used in the paper.

Dataset | #Nodes #Edges #Features #Classes #Max /Min
Amazon-Photos 7,650 119,081 745 8 5.86
Amazon-Computers | 13,752 245,861 767 10 17.72
Coauthor-CS 18,333 163,778 6,805 15 35.05
Coauthor-Physics 34,493 247,962 8,415 5 6.33
WikiCS 11,701 216,123 300 10 9.08

And these datasets’ licenses are as follows:

* Amazon-Photos/Computers: Sourced from Amazon product data under MIT license.
¢ Coauthor-CS/Physics: Academic collaboration networks from arXiv with CC-BY 4.0 license.
* WikiCS: Wikipedia article network dataset (v1.0) under CC-BY-SA 3.0 license.

B Notations in BufferGraph

We provide all notations we use in BufferGraph paper in Table 6.

Table 6: Key Notations Used in BufferGraph

Symbol Description

G=(,¢) Graph with nodes V and edges £
A € {0,1}V*N Adjacency matrix

X c RVxd Node feature matrix
Vpuf Buffer node
S(v;,07) Difference score between nodes v; and v;
W(vy,0;) Edge weight between nodes v; and v;

C Algorithm
We provide the full algorithm in Algorithm 1.

D Complexity Analysis

Given N as the total number of nodes and E as the total number of edges within the graph, the creation
of buffer nodes correlates with the subset of the node and edge sets, leading to a computational
complexity of O(E). Generating augmented features for buffer nodes requires O(FE - d) time, with
d representing the dimensionality of the node features. Additionally, forming augmented edges for
the buffer nodes incurs a time complexity of O(FE), engaging the whole graph’s edge set. Hence,

12

Lo I ST

w9 & wn

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

443
444
445

446

447
448
449
450
451
452
453
454

455

456

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

Algorithm 1: BufferGraph: Buffer Node Synthesis and Adaptive Message Passing

Input: Graph G = (X, A), training set nodes VL and their labels Y ¥, number of classes C,
mixup coefficient «, distance loss coefficient \
Output: Trained GNN model fy
/x Buffer Node Generation */
for each edge (v, Viar) in G do
Xbuf — aXsrc + (1 - a)Xtar
Insert buffer node vy, with feature X, into G between vg. and v,
end
/+ Pre—training Stage */
Initialize vanilla GCN fy
Y < PreTrainGCN (G, VvV, Yh

Identify minority nodes based on Y
Decide edges to insert buffer nodes in G (exclude edges connected to predicted minority nodes)
/+ Training Stage */
best_val_loss + oo
Define warmup_epochs
for epoch < 1 to N do
Compute node prediction loss Lpreq
Compute difference loss Lyig
Liotal + Lpred + A - Laitr
Update fy by minimizing L, With standard backpropagation
if epoch > warmup_epochs then
if val_loss < best_val_loss then
best_val_loss <+ val_loss
for each edge e(,, ;) € G do

S(ui,og) € 2o Pik — Uikl

if edge ey, ., has a buffer node then

‘ Wws0) 1= (o))

end

end

end
end

end
return trained model fy

the total additional complexity introduced by our model is O(F + E - d + E). As demonstrated by
successful experiments on extensive datasets such as Coauthor-Physics and WikiCS, BufferGraph
can work well on the large datasets.

E Experimental Environment

All models in our experiments were implemented using Pytorch 2.0.0 in Python 3.9.16, and run on a
robust Linux workstation. This system is equipped with two Intel(R) Xeon(R) Gold 6226R CPUs,
each operating at a base frequency of 2.90 GHz and a max turbo frequency of 3.90 GHz. With 16
cores each, capable of supporting 32 threads, these CPUs offer a total of 64 logical CPUs for efficient
multitasking and parallel computing. The workstation is further complemented by a potent GPU
setup, comprising eight NVIDIA GeForce RTX 3090 GPUs, each providing 24.576 GB of memory.
The operation of these GPUs is managed by the NVIDIA-SMI 525.60.13 driver and CUDA 12.0,
ensuring optimal computational performance for our tasks.

F Baselines

¢ Loss Management Strategies:

13

465

466

467
468
469

470

489
490
491
492

494

495

497

498

499
500

501

502
503

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

1. Reweight [29]: This adjusts the weights of classes based on their propotion to the class
samples in the dataset, aiming to counteract imbalance.

2. PC SoftMax [30]: This improves the model’s probability calibration for multi-class classifi-
cation, ensuring more precise probabilistic predictions for minority classes.

3. Cross Entropy: It acts as a core loss function by quantifying the divergence between
predicted and actual distributions.

4. Balanced Softmax [31]: It is designed to minimize the generalization bound in multi-class
softmax regression.
¢ Heterophilious GCNs

1. MixHop [32]: It extracts the features from multi-hop neighbors to get more information.

2. H2GCN [33] [37]: It combines three key designs to address heterophily: (1) ego- and
neighbor-embedding separation; (2) higher-order neighborhoods; (3) combination of inter-
mediate representations.

¢ Class-imbalanced Node Classification Approaches:

1. GraphSMOTE [19]: It synthesizes new instances in minority classes to directly tackle class
imbalance.

2. GraphENS [20]: It utilizes ensemble strategies to generate new instances in minority
classes.

3. TAM [21]: It introduces connectivity and distribution-aware margin to guide minority
classes’ classification.

4. GraphSHA [22]: It focus on generating hard minority samples to enlarge the margin
between minority and majority classes.

For general hyper-parameters such as learning rates and the number of layers, we explore layers
of 2,3 and explore hidden dimensions of 64, 128, and 256. Among these, we select the layer and
dimension that provide the best performance of each baseline on each dataset. For the learning rate,
we explore the optimal settings by evaluating the performance at values of 0.001, 0.005, and 0.01.
For the dropout rate, we explore the optimal settings for evaluating the performance of 0.1, 0.2, 0.3,
0.4,0.5.

For GraphSmote, we opt for the GraphSmotep variant, which is tailored to predict discrete values
without necessitating pretraining, showcasing superior performance among its various versions [19].

In the implementation of GraphENS, we set the feature masking rate & to 0.01 and the temperature 7
to 1 according to the paper’s configuration [20].

For TAM, we select the GraphENS-based iteration, which is identified as the most performant
according to the findings reported in the corresponding paper. The default settings from the released
code are utilized, with the coefficients for ACM «, ADM S, and classwise temperature ¢ set to 2.5,
0.5, and 1.2, respectively [21].

Specifically for GraphSHA, we follow the parameter configurations detailed in the original study,
employing the PPR version with a setting of & = 0.05 and K = 128 [22].

G Experiment Results
G.1 Imbalanced Splitting Experiment

In this section, we provide the results of the imbalanced splitting experiment in Table 3 and Table 4.

G.2 Imbalance Ratio Experiment Results

In this section, we provide the results of the imbalance ratio experiment on Amazon-Computers
dataset in Figure 4.

G.3 Ablation Study Results

In this section, we provide the results of the ablation study on Amazon-Computers and WikiCS in
Figure 5.

14

504

505
506

507

508
509
510
511
512
513

514
515
516

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

Balanced Accuracy (BAcc.) vs Imbalance Ratio for Each Model

'//'\ —e— Balanced Softmax

—=— GraphENS
TAM
GraphSHA
BufferGraph

]
N

+

Balanced Accuracy (BAcc. (%))
(o] (o]
)] o]

o]
N

10 12 14 16 18 20 22 24
Imbalance Ratio

Figure 4: Balanced accuracy (BAcc.) with increasing imbalance ratios on Amazon-Computers.
BufferGraph maintains superior performance even as imbalance becomes more severe.

93 Amazon-Computers a5 WikiCS
92 B BufferGraph B BufferGraph
)l . - HL | . - HL
< 911 = - CMP 84 = - CMP
) = - UMP = - UMP
g 901 831
c 891
©

Performance (%)
[o¢]
N

= 81
& 861
801
851
84 79-
Acc. BAcc. F1 Acc. BAcc. F1
Metrics Metrics

Figure 5: Ablation study on Amazon-Computers and WikiCS.

G.4 Parameter Sensitivity Experiment Results

In this section, we provide the results of the parameter sensitivity experiment on Amazon-Computers
and WikiCS in Figure 6.

G.5 Insertion Ratio Experiment Results

We use the pre-training predicted results to identify the edges most likely to connect majority and
minority nodes. We apply various ratios: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 to select
the top potential edges for inserting buffer nodes and analyze their performance. For instance, a 0.1
ratio means that only the top 10% of potential majority-minority edges, excluding edges neighboring
minority nodes, would be inserted with buffer nodes. To quantify the likelihood of an edge connecting
majority-minority nodes, we calculate a score for each edge using the following formula:

1
score(e) = 3 (prob_minority(vi) - prob_majority(v;)
+ prob_minority(v;) - prob_majority(v;))

where e = (v;,v;) € & is an edge, prob_minority(v) is the sum of the probabilities of node
v belonging to minority classes, and prob_majority(v) is the sum of the probabilities of node v
belonging to majority classes. The scores are then normalized between 0 and 1:

15

517
518
519

520

521
522
523

524
525
526
527
528
529

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

Amazon-Computers - Alpha Amazon-Computers - Lambda

92
—~on | —— Acc.
§go —=— BAcc.
g 881 —— F1
S 86 N
g4
£
o 82

80

0.1 0.3 0.5 0.7 0.9 0.105 1 2 5
Alpha Value Lambda Value
WikiCS - Alpha WikiCS - Lambda

~ 841 —e— Acc. = 841 —e— Acc.
S —=— BAcc. | & —=— BAccC.
g 831 F1 g 831 —— F1
£ 821 | 8s2 - .
S 81 S ol
E &S—J 81

80 801

0.1 0.3 0.5 0.7 0.9 0.105 1 2 5
Alpha Value Lambda Value

Figure 6: Parameter sensitivity analysis on Amazon-Computers and WikiCS.

Amazon-Computers - Insertion Ratio WikiCS - Insertion Ratio

—— Acc.

—=— BAcc. —=— BAcc.
01 —— F1 a1 — F1
90

Performance (%)
Performance (%)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ratio

-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 7: Insertion ratio experiments on Amazon-Computers and WikiCS.

score(e) — min(score(e))

lized =
normalized_score(c) max(score(e)) — min(score(e))

This edge scoring mechanism effectively identifies potential majority-minority connections, guiding
the strategic insertion of buffer nodes. The experimental results show that higher insertion ratios
consistently lead to better performance, validating the effectiveness of BufferGraph’s design.

H Limitations and Broader Impacts

Limitations. BufferGraph has two main limitations: (1) using a fixed mixup coefficient for all buffer
nodes may not be optimal across different graph structures, and (2) its effectiveness is currently only
validated for node classification, leaving other graph tasks (e.g., edge prediction) for future work.

Broader Impact. By improving minority class prediction in imbalanced graphs, BufferGraph has
potential applications in domains where fairness and equity are crucial, such as social network
analysis, recommendation systems, and fraud detection. Addressing class imbalance can help
reduce algorithmic bias against underrepresented groups in graph-based applications. Future work
could explore dynamic buffer node generation strategies, adaptive mixup coefficients based on node
characteristics, and extensions to other graph learning tasks beyond node classification.

16

	1 Introduction
	2 Proposed Method
	2.1 Background
	2.2 Buffer Node Generation
	2.3 BufferGraph Framework
	2.4 Theoretical Analysis

	3 Experiments
	3.1 Experimental Setup
	3.2 RQ1: Performance on Naturally Imbalanced Graphs
	3.3 RQ2: Performance Across Varying Imbalance Ratios
	3.4 RQ3: Ablation Study
	3.5 RQ4: Parameter Sensitivity Analysis
	3.6 RQ5: Buffer Node Ratio Study

	4 Related Work
	5 Conclusion
	A Dataset Details
	B Notations in BufferGraph
	C Algorithm
	D Complexity Analysis
	E Experimental Environment
	F Baselines
	G Experiment Results
	G.1 Imbalanced Splitting Experiment
	G.2 Imbalance Ratio Experiment Results
	G.3 Ablation Study Results
	G.4 Parameter Sensitivity Experiment Results
	G.5 Insertion Ratio Experiment Results

	H Limitations and Broader Impacts

