
Less is More: Using Buffer Nodes to Reduce Excessive Majority
Node Influence in Class Imbalance Graphs

Proceedings Track Submission

Anonymous Author(s)
Anonymous Affiliation
Anonymous Email

Abstract1

Graph Neural Networks (GNNs), despite success in node classification, strug-2

gle with class-imbalanced graphs, leading to minority node misclassification.3

Existing methods that synthesize minority nodes often overlook how major-4

ity nodes propagate misleading information through majority-minority edges;5

our analysis confirms this negative impact. To address this, we propose6

BufferGraph, a framework that inserts buffer nodes on such edges. These7

nodes act as controlled bottlenecks to reduce excessive majority node influ-8

ence. And we theoretically demonstrate they reduce minority node feature9

distortion. Experiments on five real-world datasets show BufferGraph improves10

accuracy by up to 2% over state-of-the-art methods, excelling in imbalanced11

settings and for minority classes with high heterophily. Code is available at12

https://anonymous.4open.science/r/BufferGraph-C257.13

1 Introduction14

Recent years have witnessed the rapid development of graph representations, especially GNNs [1–6].15

Among various graph tasks, node classification has proven important and socially beneficial in real-16

world applications, such as identifying influencers on social networks [7–9] and detecting fraudsters17

in financial activities [10–12]. Naturally, the misclassification of minority classes can have harmful18

societal impacts. For example, minor fraudulent accounts that are not identified will continue to affect19

the reputation of e-commerce platforms and lead to loss of platform users [13, 14]. Despite the critical20

importance of accurate minority class prediction in real-world applications, current GNN approaches21

struggle with class-imbalanced graphs, creating a significant gap between model capabilities and22

practical needs.23

Standard GNN models assume class balance and neighborhood homogeneity when aggregating24

features [1–3]. However, real-world graphs typically exhibit significant class imbalances—fraudulent25

accounts form a tiny minority in the Ethereum network [12, 15], and computer vision papers greatly26

outnumber computer architecture papers in citation networks [16]. These imbalances bias model27

performance toward majority classes [4, 17, 18], resulting in poor minority class prediction when28

GNNs are applied directly to imbalanced graphs.29

To address this problem, previous methods have synthesized fake minority nodes and connected30

them to the original graph [19–24]. These approaches include techniques like GraphSMOTE [19],31

GraphENS [20], TAM [21], and GraphSHA [22], which generate synthetic minority nodes through32

various interpolation and mixing strategies. However, these approaches overlook a critical issue:33

majority nodes continue to propagate information to minority nodes through majority-minority34

edges, which we define as misleading edges. These edges distort minority node representations during35

message passing. Despite generating new nodes to balance classes globally, local neighborhoods36

often remain imbalanced, with minority nodes surrounded by majority nodes. As shown in Figure 1,37

higher percentages of majority neighbors correlate with lower prediction accuracy for minority38

classes, which restricts the performance of baselines.39

Submitted to the Fourth Learning on Graphs Conference (LoG 2025, Proceedings Track). Do not distribute.

https://anonymous.4open.science/r/BufferGraph-C257

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Percentage of Majority Neighbors (0-1)

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

Impact of Majority Neighbors on Minority Class Accuracy
GraphSHA
GraphENS
TAM
BufferGraph

Figure 1: Impact of majority-class neighborhood composition on minority class accuracy on the
Amazon-Computers dataset. Each point represents a minority class, plotting its classification accuracy
against the percentage of its majority-class neighbors. While baseline methods struggle with accuracy
degradation as majority-class neighbor percentage increases, our proposed BufferGraph maintains
consistently superior performance across all neighborhood compositions, effectively addressing
the challenge of majority-class interference in graph-based classification.

To address this fundamental limitation, we propose BufferGraph—a framework that explicitly40

regulates cross-class edge message propagation through adaptive edge intervention.41

hh, as my neighbors are good
guys, I can pretend myself

as a good guy,

Misleading Edge Misleading Edge

Misleading Edge

Figure 2: Misleading edge example.

Our approach enhances minority class classification42

by decreasing message propagation along misleading43

edges—connections often dominated by majority nodes,44

which can distort the inherent features of minority in-45

stances as shown in Figure 2.46

To achieve this goal, we first use predicted labels from47

the GNN pre-training stage to identify potential mislead-48

ing edges. Edges connecting to predicted minority nodes49

are classified as non-problematic as their predictions have50

shown high precision [22]. For other potentially mislead-51

ing edges, we insert buffer nodes to modulate message52

passing, allowing information to flow through both the53

original path and a new path via the buffer node. These54

unlabeled buffer nodes act as message passing modulators. The proportion of message passing55

through the original edge is determined by the difference in predicted labels of connected nodes,56

helping maintain prediction accuracy for majority-majority node pairs while reducing majority nodes’57

misleading influences on minority nodes. We provide the overview of our method in Figure 3.58

We evaluate BufferGraph on five real-world datasets: Amazon-Photos, Amazon-Computers [25],59

Coauthor-CS, Coauthor-Physics [16], and WikiCS [26]. Experiments are conducted under both60

natural and artificially imbalanced settings to assess BufferGraph’s effectiveness across varying61

imbalance ratios, comparing against state-of-the-art baselines.62

Experiment results demonstrate that BufferGraph consistently outperforms the baseline models63

[19–22] in most configurations and datasets. For instance, under the random splitting scenario,64

BufferGraph exhibits its superiority by achieving a 2% increase in accuracy (from 88.39% to 90.22%),65

a 2% enhancement in balanced accuracy (from 89.23% to 91.85%), and a 2% boost in F1-score66

(from 87.55% to 89.30%) on the Amazon-Computers dataset compared to the second-best outcomes.67

Conversely, within the imbalanced splitting framework, BufferGraph continues to excel, marking a68

2% improvement in accuracy, a 1% gain in balanced accuracy, and a 1.5% increase in F1-score on the69

2

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

Figure 3: BufferGraph overview where v1, v2, v4, v5 are of the major class and v3, v6 are of the
minor class. The input graph is shown in (a). After the pre-training using the GCN model, the nodes
are predicted into majority or minority classes. Subsequently, we introduce a buffer node into each
edge except those minority nodes’ neighboring edges, as depicted in (b). The feature of the buffer
node is a mixup of the features from the two nodes connected by the edge. Then, we zoom in v3 to
show the neighbor aggregation of BufferGraph in (c). For edges with buffer nodes, messages pass
both through the buffer node and directly to v3, with direct edge weights determined by the predicted
label differences between nodes. Loss calculation during BufferGraph neighbor aggregation is shown
in (d).

Amazon-Computers dataset relative to the runner-up results. These findings underscore BufferGraph’s70

adaptability and efficacy in addressing class imbalances. We make the following contributions:71

❶ Heterophily-Aware Buffer Framework: We identify a critical issue overlooked by previous72

work - the negative impact of majority-minority edges on message passing in imbalanced graphs.73

To address this, we propose BufferGraph, which strategically introduces buffer nodes to regulate74

information flow through misleading connections.75

❷ Theoretical Analysis: We establish the mathematical foundation explaining how buffer nodes76

preserve minority class features by controlling eigenvalue decay during message passing, pro-77

viding insights into why our approach effectively addresses class imbalance through message78

regulation.79

❸ Experimental Validation: We conduct comprehensive experiments on multiple real-world80

datasets. Results demonstrate BufferGraph’s consistent superiority over state-of-the-art methods,81

particularly in improving performance on minority classes across varying imbalance ratios.82

We also conduct comprehensive ablation studies on BufferGraph to assure each component is83

necessary.84

2 Proposed Method85

Figure 3 illustrates our approach, which consists of three key components: (1) pre-training a GCN to86

identify potential misleading edges, (2) inserting buffer nodes into these edges to create controlled87

information bottlenecks, and (3) implementing an adaptive message-passing mechanism that adjusts88

information flow based on node similarity.89

2.1 Background90

Notations. We address the challenge of class-imbalanced node classification on an unweighted,91

undirected graph G = (V, E), where V = {v1, · · · , vN} represents the set of N nodes, and E ⊆ V×V92

denotes the edges. The graph structure is captured by an adjacency matrix A ∈ {0, 1}N×N , with93

Aij = 1 indicating an edge between nodes vi and vj . Node features are represented by a matrix94

X ∈ RN×d, where each row Xi ∈ Rd corresponds to the d-dimensional features of node vi. Each95

node v is labeled with one of C classes, Y (v) ∈ {1, · · · , C}, with Y c encompassing all nodes in96

class c. The training subset VL ⊂ V , particularly in imbalanced settings, is characterized by class97

size disparities, quantified by the imbalance ratio. We provide notations used in Table 6.98

Definition. Majority-minority edges, also referred to as misleading edges, are defined as the edges99

connecting nodes from the majority class to nodes from the minority class in a graph. Formally, given100

a graph G = (V, E) with a label function Y : V → {1, · · · , C}, let M denote the set of nodes in the101

3

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

majority class and m denote the set of nodes in the minority class. An edge e = (vi, vj) ∈ E is a102

majority-minority edge if vi ∈M and vj ∈ m or vi ∈ m and vj ∈M .103

2.2 Buffer Node Generation104

Buffer nodes represent our key innovation for addressing class imbalance in GNNs by modulating105

message passing between majority and minority classes through strategically introduced buffer nodes,106

rather than generating new minority nodes.107

A buffer node, denoted as vbuf, does not possess a label but is characterized by a feature vector Xbuf.108

This vector is derived by interpolating the features of two adjacent nodes, va and vb, connected by an109

undirected edge. The interpolation is governed by the equation [27]:110

Xbuf = αXa + (1− α)Xb, α ∈ [0, 1]. (1)

In this formula, α acts as the mixup coefficient, influencing the degree to which the features of node111

va and node vb affect the buffer node’s features. A lower value of α biases the feature vector Xbuf112

towards the features of vb, whereas a higher value biases it towards those of va.113

The buffer nodes integrated into edges serve primarily to regulate message passing rather than to114

enhance feature representation. Given this focused role, we initially set α = 1/2 uniformly across all115

edges, prioritizing methodological consistency in our preliminary investigation. A comprehensive116

analysis of α’s impact through systematic parameter variation is presented in Section 3.5.117

2.3 BufferGraph Framework118

To address the challenges of message passing across majority-minority edges within class-imbalanced119

graphs, BufferGraph implements a dynamic message passing mechanism that precisely modulates120

the flow of information. We illustrate the details in Figure 3 as follows:121

Pre-training Stage. We first pre-train a GCN model using training sets label information to predict122

the labels of all nodes in the original graph. These predicted labels serve as a guide for identifying123

potential problematic edges, which are then targeted for buffer node insertion. According to our124

algorithm, edges connected to predicted minority nodes are considered non-problematic and left125

unchanged, as previous work [22] has shown high precision in minority node predictions.126

Difference Score. After pre-training, we compute a difference score s(vi,vj) for each edge e(vi,vj),127

based on the Manhattan distance between the predicted label distributions of the connected nodes:128

s(vi,vj) =
∑
k

|ŷi,k − ŷj,k| (2)

where ŷi,k and ŷj,k are the predicted label distributions for nodes vi and vj respectively. This score129

quantifies the dissimilarity between nodes’ predicted class distributions.130

Adaptive Message Passing. For edges in the original graph, we modulate the message passing by131

adjusting the edge weight w(vi,vj) according to:132

w(vi,vj) = 1− s(vi,vj) (3)

For edges connected to buffer nodes, we maintain their weights at 1. This design ensures that when133

there is a large label distribution difference (high s(vi,vj)) between connected nodes, more information134

flows through the buffer node path rather than the direct edge. This mechanism effectively reduces the135

direct influence of majority nodes on their minority neighbors while preserving necessary information136

exchange through the buffer nodes.137

Neighbor Aggregation. The GNN neighbor aggregation mechanism we utilize follows the standard138

form [22]:139

H
(l)
t ← Transform

(
Propagate

∀vs∈Nt

(
H(l−1)

s ;H
(l−1)
t

))
, (4)

where H
(l)
t represents node embedding of node vt in the l-th layer.140

4

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

A GCN can be formalized with the following operations [1]:141

Propagate: M
(l)
t = ÂH

(l−1)
t , (5)

Transform: H
(l)
t = ReLU(M

(l)
t W

(l)
t), (6)

where W (l) is the learnable weight matrix of the l-th layer, and ReLU(·) is the activation function.142

Training Objective. During training, we calculate the validation loss every epoch and re-evaluate the143

difference scores if the current validation loss improves over the best previous loss. Our loss function144

combines two components:145

Ltotal = Lpred + λ ·Ldiff. (7)
where λ is a hyperparameter that balances the prediction loss and difference loss. While λ can146

theoretically take any positive real value, we primarily consider λ ∈ [0.1, 1.0] to maintain a balanced147

contribution between the two loss terms. We also explore larger values of λ in our parameter148

sensitivity analysis (Section 3.5).149

Algorithm 1 details the complete BufferGraph implementation. And complexity analysis of Buffer-150

Graph can be found in Appendix D.151

2.4 Theoretical Analysis152

This section provides theoretical justification for how buffer node insertion enhances minority node153

classification by modifying graph spectral properties and improving information propagation. First,154

we establish the mathematical foundation of GNN propagation and identify the key challenge of155

eigenvalue decay. Second, we demonstrate how buffer nodes address this challenge through controlled156

message passing. Third, we prove that this mechanism effectively preserves minority class features.157

❶ GNN Propagation and Eigenvalue Decay: The feature update rule in standard GNNs for a single158

layer ℓ is:159

H(ℓ+1) = σ
(
ŜH(ℓ)W (ℓ)

)
, (8)

where Ŝ = D̂−1/2ÂD̂−1/2 is the symmetrically normalized adjacency matrix, H(ℓ) represents node160

features, and W (ℓ) is a trainable weight matrix. Multi-layer propagation effectiveness is governed by161

the eigenvalues (µ) of operator Ŝ. A critical challenge in deep GNNs is that smaller eigenvalues of Ŝ,162

essential for preserving minority class features, decay exponentially through multiple propagation163

steps (µ(k)
eff ∼ µ2k+1 after k layers) [28]. This rapid decay leads to feature smoothing and minority164

information loss.165

❷ Buffer Node Impact on Propagation: When a buffer node b is inserted between nodes (u, v), it166

creates two new edges (u, b) and (b, v), modifying the graph structure in two key ways:167

1) Modified Propagation Operator: The augmented adjacency matrix Ã =

[
A B
B⊤ 0

]
introduces168

buffer connections through block matrix B, altering the graph Laplacian L̃ and propagation operator169

S̃ while preserving original node degrees.170

2) Controlled Information Flow: Buffer nodes bij between (vi, vj) create two-hop paths with171

attenuation factor αij , regulating message passing via h̃
(l)
bij

= αij(W
(l)h

(l−1)
i +W (l)h

(l−1)
j).172

❸ Feature Preservation Mechanism: BufferGraph creates a modified propagation operator Ŝ′ with173

more favorable spectral properties, achieving an effect similar to specialized GNN architectures with174

slower eigenvalue decay:175

µ
(k)
eff ∼ C(α) · µk+1, (9)

where C(α) is a factor dependent on architectural parameters. This improvement is achieved through176

two key mechanisms:177

1) Reduced Decay Rate: Effective eigenvalue decay improves from O(µ2k+1) to O(µk+1):178

λ(l)
new = λ

(l)
orig ·

(
1 + α

⟨hi, hj⟩
∥hi∥∥hj∥

)
︸ ︷︷ ︸

C(α)≥1

(10)

5

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

2) Feature Preservation: The scaling factor C(α) amplifies components orthogonal to majority-class179

features, maintaining minority feature magnitudes during propagation.180

Implications. These theoretical insights underscore BufferGraph’s broad applicability. For highly181

imbalanced graphs, where minority features risk being overshadowed by dominant majority signals,182

BufferGraph’s reduced eigenvalue decay and targeted feature amplification are crucial. These183

mechanisms preserve minority feature integrity and mitigate data skew, leading to more accurate184

minority node identification. In moderately imbalanced or relatively balanced graphs, even with185

less severe feature suppression, BufferGraph’s controlled message passing from majority to minority186

nodes and favorable spectral properties enhance model robustness and refine feature learning. This187

nuanced aggregation benefits overall classification, positioning BufferGraph as both a specialized188

solution for severe imbalance and a generally beneficial graph learning framework.189

3 Experiments190

This section focuses on answering the following research questions (RQs): (RQ1) How does Buffer-191

Graph’s performance in node classification on naturally class-imbalanced graphs compare to that of192

existing baseline models (§3.2)? (RQ2) How effectively does BufferGraph outperform other baseline193

models in node classification across graphs with varying class-imbalance ratios (§3.3)? (RQ3) How194

does each component contribute to the overall performance of BufferGraph (§3.4)? (RQ4) How does195

BufferGraph’s performance change when different hyperparameter settings are used (§3.5)? (RQ5)196

Does our inserting ratio affect the performance of BufferGraph (§3.6)?197

3.1 Experimental Setup198

Datasets. To comprehensively evaluate BufferGraph, we conduct experiments across five naturally199

class-imbalanced datasets: Amazon-Photos, Amazon-Computers [25], Coauthor-CS, Coauthor-200

Physics [16], and WikiCS [26]. Table 5 summarizes the key statistics of these datasets. The Max/Min201

ratio represents the number of samples in the largest majority class to that in the smallest minority202

class, highlighting the natural class imbalance in these datasets.203

Baselines. We compare BufferGraph against three categories of GCN-backboned baselines: (1) Loss204

management strategies including Reweight [29], PC SoftMax [30], Cross Entropy, and Balanced205

SoftMax [31]; (2) Class-imbalanced node classification methods including GraphSMOTE [19],206

GraphENS [20], TAM [21], and GraphSHA [22]; (3) Heterophilic GCN models including MixHop207

[32] and H2GCN [33], which handle heterophily similar to majority-minority edges. More details208

can be found in Appendix F.209

Evaluation Metrics. We use four widely adopted metrics for class-imbalanced node classification:210

Accuracy (Acc.) measuring overall classification accuracy across all nodes; Balanced Accuracy211

(BAcc.) as the average of per-class accuracy giving equal weight to each class; Macro F1 Score212

(F1) balancing precision and recall across all classes; and Standard Deviation reported as mean±std213

across five runs with different random seeds.214

Implementation Details. For all experiments, we use the following settings: (1) Random Splitting215

with dataset division into training/validation/testing sets (6:2:2 ratio); (2) Model Architecture216

featuring three hidden layers (256 hidden dimensions each); (3) Training Parameters including217

learning rate 0.01, dropout rate 0.4, and up to 5000 epochs with early stopping; (4) BufferGraph-218

Specific Parameters with mixup coefficient α = 0.5 and difference loss weight λ = 1.0. For the219

imbalanced setting, we follow [20] by downsampling the last half of classes in the training set to220

achieve an imbalance ratio of 10, while maintaining the original distribution in validation and testing221

sets. For hardware, we provide the information in Appendix E.222

3.2 RQ1: Performance on Naturally Imbalanced Graphs223

Random Splitting Results. Tables 1 and 2 demonstrate BufferGraph’s consistent superiority over224

baselines across five datasets. On Amazon-Computers, BufferGraph achieves 90.22% accuracy (+2%225

vs 88.39%), 91.85% balanced accuracy (+2% vs 89.23%), and 89.30% F1-score (+2% vs 87.55%).226

The framework shows particular strength on minority classes (evidenced by high balanced accuracy)227

while maintaining majority class performance, with consistent improvements across datasets of228

varying characteristics, confirming its robustness. To further validate BufferGraph’s effectiveness,229

6

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

we present a comparative analysis in Figure 1. The results reveal that BufferGraph significantly230

improves the performance of minority classes, particularly those with a high percentage of231

majority-class neighbors, while maintaining strong performance across all classes. This balanced232

improvement demonstrates BufferGraph’s ability to effectively address the challenges of imbalanced233

node classification.234

Imbalanced Splitting Results. Tables 3 and 4 show BufferGraph’s performance under artificially235

imbalanced settings with an imbalance ratio of 10. BufferGraph maintains its superior performance,236

achieving approximately 2% improvement in accuracy, 1% in balanced accuracy, and 1.5% in F1-score237

on Amazon-Computers compared to the runner-up results. While baseline methods like Reweight238

show good balanced accuracy but lower overall accuracy (indicating they improve minority class239

performance at the cost of majority class accuracy), BufferGraph achieves strong performance across240

all metrics, demonstrating its ability to effectively balance minority and majority class prediction.241

Analysis. BufferGraph’s superior performance stems from two key innovations: First, buffer nodes242

transform direct one-hop neighbors into two-hop neighbors, reducing the negative influence of major-243

ity nodes on minority nodes. Second, adaptive message passing modulates information flow based on244

node similarity, preserving minority class features while maintaining majority class performance.245

Table 1: Random splitting experiment results of BufferGraph and other baselines on Amazon-Photos,
Amazon-Computers, and Coauthor-CS. We report all metrics with the standard deviation errors for
five repetitions. The best result is highlighted by bold text. The runner-up result is highlighted by the
underline.

Dataset Amazon-Photos Amazon-Computers Coauthor-CS

Random Splitting Acc. BAcc. F1 Acc. BAcc. F1 Acc. BAcc. F1

M
et

ho
ds

Vanilla 92.44±0.16 90.41±0.62 91.20±0.27 87.71±0.36 82.34±1.36 83.03±1.86 92.89±0.41 89.97±0.45 90.70±0.63

Reweight 92.91±0.36 92.51±0.41 91.72±0.25 86.21±0.71 89.23±0.19 85.09±0.68 92.86±0.03 90.86±0.13 91.09±0.04
PC Softmax 91.83±0.33 91.83±0.34 90.31±0.48 87.13±1.49 87.60±0.67 85.09±1.71 92.95±0.12 91.87±0.11 91.21±0.11
Balanced Softmax 93.46±0.05 91.19±0.01 92.05±0.05 86.28±0.02 87.42±0.29 83.91±0.02 93.46±0.05 91.19±0.01 92.05±0.05
Cross Entropy 93.40±0.20 92.13±0.21 92.30±0.23 86.99±0.22 82.26±0.75 84.21±0.50 93.05±0.14 90.85±0.37 91.49±0.32

MixHop 92.85±0.42 91.77±1.36 91.20±0.47 85.02±0.26 75.17±1.58 75.09±1.13 91.97±0.58 88.50±0.49 89.41±0.43
H2GCN 93.06±0.53 92.47±0.27 91.79±0.21 88.39±0.55 88.01±0.32 87.55±1.18 94.24±0.14 92.77±0.34 92.75±0.60

GraphSmote 89.72±0.45 90.69±0.57 88.90±0.48 85.36±0.72 84.79±1.22 85.22±0.98 87.44±0.24 85.08±0.63 84.26±0.52
GraphENS 93.37±0.42 92.18±0.36 91.63±0.46 86.35±0.71 87.66±0.54 85.81±0.47 91.65±0.23 90.72±0.39 89.53±0.36
TAM 90.13±0.33 90.98±0.36 89.15±0.49 85.46±0.11 88.51±0.67 84.52±0.26 92.41±0.04 90.84±0.01 91.35±0.02
GraphSHA 93.63±0.23 92.61±0.66 92.60±0.38 82.98±0.17 77.73±1.90 79.10±2.22 92.68±0.59 91.00±0.37 90.94±0.51
BufferGraph 94.47±0.10 94.28±0.10 93.12±0.07 90.22±0.48 91.85±0.34 89.30±0.69 94.90±0.28 93.88±0.39 93.70±0.41

Table 2: Random splitting experiment results of BufferGraph on Coauthor-Physics and WikiCS.

Dataset Coauthor-Physics WikiCS

Random Splitting Acc. BAcc. F1 Acc. BAcc. F1

M
et

ho
ds

Vanilla 96.22±0.24 94.60±0.42 93.49±0.03 83.20±0.23 80.34±0.41 80.63±0.07

Reweight 95.70±0.02 95.06±0.05 94.52±0.01 82.66±0.17 82.82±0.09 80.92±0.20
PC Softmax 96.14±0.07 95.36±0.11 95.07±0.11 82.76±0.32 81.94±0.50 80.46±0.45
Balanced Softmax 96.16±0.03 95.52±0.06 95.05±0.02 83.83±0.49 82.15±0.51 81.74±0.72
Cross Entropy 96.50±0.14 95.30±0.13 95.25±0.18 83.15±0.23 82.63±0.74 81.57±0.30

MixHop 94.77±0.69 92.32±0.86 93.15±1.09 77.07±1.11 67.96±2.02 68.57±1.95
H2GCN 95.17±0.33 92.33±0.25 93.25±0.81 79.77±2.23 69.69±2.62 72.90±2.67

GraphSmote 95.09±0.53 93.01±0.66 93.42±0.76 82.94±0.70 80.42±1.14 80.65±0.75
GraphENS 95.46±0.09 95.32±0.04 94.27±0.06 81.78±0.06 80.87±0.12 79.80±0.08
TAM 95.35±0.19 95.04±0.08 94.04±0.20 80.73±0.34 79.02±0.21 79.02±0.16
GraphSHA 96.27±0.14 95.51±0.17 95.05±0.11 81.83±1.22 80.76±0.54 78.95±1.53
BufferGraph 96.78±0.07 96.18±0.07 95.34±0.06 84.47±0.22 84.34±0.21 81.92±0.08

3.3 RQ2: Performance Across Varying Imbalance Ratios246

Experimental Setup. To evaluate BufferGraph’s robustness to different levels of class imbalance,247

we artificially adjust the imbalance ratio to 15, 20, and 25 on the Amazon-Computers dataset.248

Results and Analysis. Figure 4 shows that BufferGraph maintains consistently superior balanced249

accuracy across all imbalance ratios, outperforming the second-best baseline by at least 3% in each250

7

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

Table 3: Imbalanced splitting experiment results of BufferGraph and other baselines on Amazon-
Photos, Amazon-Computers, and Coauthor-CS.

Dataset Amazon-Photos Amazon-Computers Coauthor-CS

ρ=10 Acc. BAcc. F1 Acc. BAcc. F1 Acc. BAcc. F1
M

et
ho

ds

Vanilla 92.20±0.54 89.60±0.05 90.41±0.14 83.40±0.29 69.71±0.28 70.79±0.43 92.54±0.55 89.86±0.68 90.53±0.63

Reweight 92.65±0.36 92.34±0.17 90.79±0.36 86.46±0.20 89.26±0.08 85.33±0.14 93.23±0.12 91.74±0.07 91.86±0.03
PC Softmax 84.51±0.86 88.69±1.27 84.01±2.57 70.48±1.09 84.92±1.21 70.50±0.46 92.78±0.02 93.16±0.06 91.23±0.14
Balanced Softmax 92.81±0.20 93.33±0.04 91.44±0.19 87.55±0.24 89.31±0.16 86.95±0.02 93.99±0.01 93.24±0.03 92.35±0.02
Cross Entropy 91.67±0.16 87.85±0.40 89.93±0.35 87.46±0.18 83.49±0.53 85.19±0.53 94.04±0.07 92.03±0.03 92.38±0.04

MixHop 91.57±0.84 90.46±0.54 89.53±0.72 84.56±1.15 75.48±2.35 75.30±2.52 88.65±0.51 80.59±1.24 83.19±1.03
H2GCN 92.49±0.70 91.04±0.29 91.55±0.24 85.22±0.46 85.19±0.30 85.55±0.83 93.98±0.36 92.61±0.36 92.33±0.34

GraphSmote 88.31±0.63 88.15±1.53 87.27±0.28 85.30±0.66 84.66±0.27 84.35±0.23 88.95±0.19 83.96±0.99 85.56±0.78
GraphENS 92.55±0.07 91.66±0.37 91.07±0.02 85.50±0.58 89.21±0.14 85.05±0.69 92.12±0.03 90.49±0.01 89.21±0.16
TAM 91.08±0.03 91.70±0.07 90.15±0.07 85.79±0.18 88.21±0.69 85.21±0.42 92.53±0.04 90.45±0.13 90.67±0.13
GraphSHA 93.56±0.04 92.46±0.30 92.59±0.02 85.24±0.52 83.77±0.55 83.31±0.59 92.42±0.16 90.43±0.46 90.21±0.22
BufferGraph 93.91±0.18 93.40±0.20 92.90±0.07 89.51±0.35 90.54±0.57 88.14±0.40 94.06±0.02 93.78±0.03 92.72±0.35

Table 4: Imbalanced splitting experiment results of our model BufferGraph and other baselines on
two class-imbalanced node classification benchmark datasets.

Dataset Coauthor-Physics WikiCS

ρ=10 Acc. BAcc. F1 Acc. BAcc. F1

M
et

ho
ds

Vanilla 95.65±0.04 93.76±0.12 94.19±0.17 81.30±1.00 75.16±1.53 77.42±1.55

Reweight 96.35±0.04 95.12±0.20 95.16±0.09 81.16±0.13 81.48±0.28 79.54±0.34
PC Softmax 95.18±0.09 95.47±0.08 93.87±0.13 76.01±2.24 80.30±1.42 73.85±2.13
Balanced Softmax 96.46±0.05 95.46±0.03 95.32±0.04 82.14±0.04 82.45±0.21 80.10±0.08
Cross Entropy 96.12±0.01 94.53±0.11 94.93±0.03 82.44±0.23 78.07±0.51 80.06±0.10

MixHop 93.88±0.32 91.06±0.82 91.98±0.27 76.91±1.41 66.24±0.49 66.90±0.94
H2GCN 93.09±0.17 88.60±0.14 90.02±0.56 77.85±1.83 66.30±2.75 68.01±0.93

GraphSmote 92.64±0.36 92.79±0.11 94.42±0.53 74.96±1.07 69.43±2.17 70.82±1.93
GraphENS 95.35±0.19 95.04±0.08 94.04±0.20 80.73±0.30 79.94±0.27 77.83±0.45
TAM 95.25±0.06 94.11±0.19 93.66±0.16 81.12±0.04 80.29±0.03 79.32±0.12
GraphSHA 96.27±0.14 95.14±0.04 94.94±0.14 82.60±0.30 80.34±0.31 80.00±0.52
BufferGraph 96.26±0.17 96.13±0.14 96.15±0.27 83.42±0.52 84.21±0.35 81.58±0.45

case. While all methods show some performance degradation as the imbalance ratio increases, Buffer-251

Graph exhibits the most stable performance, demonstrating its robustness to severe class imbalance.252

This stability can be attributed to BufferGraph’s buffer node mechanism, which effectively modulates253

message passing between majority and minority classes regardless of their relative proportions.254

3.4 RQ3: Ablation Study255

Experimental Setup. To assess the contribution of each component in BufferGraph, we conduct256

ablation studies on Amazon-Computers and WikiCS datasets using the GCN backbone under the257

random splitting setting. BufferGraph uniquely combines buffer node insertion with a specialized258

message passing scheme and a difference loss. We examine four variants: the Complete BufferGraph259

(the full model); - DL, which ablates the difference loss component; - CMP (Concrete Message260

Passing), which removes the adaptively weighted direct message path between the original connected261

nodes, thereby routing all interaction through the buffer node pathway; and - UMP (Update Message262

Passing via Buffer), which ablates the message pathway through the inserted buffer node, relying263

only on the adaptively weighted direct path between original nodes.264

Results and Analysis. Figure 5 shows that removing the update message passing mechanism (- UMP)265

leads to the most significant performance drop across all metrics, particularly in F1 scores. This266

confirms that adaptive message passing is the core component of BufferGraph, as it directly controls267

how information flows between majority and minority nodes. The removal of other components also268

notably impacts model performance, demonstrating that each component plays an essential role in269

BufferGraph’s effectiveness. The complete BufferGraph consistently outperforms all ablated variants,270

confirming the synergistic effect of combining all components.271

8

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

3.5 RQ4: Parameter Sensitivity Analysis272

Experimental Setup. We investigate the sensitivity of BufferGraph to two critical hyperparameters:273

(1) Mixup coefficient α controlling feature interpolation for buffer nodes (tested values: 0.1, 0.3,274

0.5, 0.7, 0.9), and (2) Difference loss weight λ balancing prediction loss and difference loss (tested275

values: 0.1, 0.5, 1, 2, 5).276

Results and Analysis. Figure 6 reveals that: (1) For α, optimal performance occurs at 0.5 across both277

datasets, suggesting equal feature mixing is ideal for buffer nodes; (2) For λ, Amazon-Computers278

shows stable performance from 0.1 to 1 while WikiCS improves over this range, but both degrade279

significantly at λ ≥ 2. These results demonstrate BufferGraph’s robustness within moderate parameter280

ranges (α = 0.5, λ = 1.0), while extreme values harm performance. The optimal settings balance281

feature mixing and loss weighting effectively across diverse datasets.282

3.6 RQ5: Buffer Node Ratio Study283

Experimental Setup. We investigate how the ratio of inserted buffer nodes affects model performance284

under the random splitting setting on Amazon-Computers and WikiCS datasets. We vary the number285

of buffer nodes in the graph to evaluate the sensitivity of our approach. Specifically, we randomly286

selected a certain percentage of all eligible edges to add buffer nodes varying from 0% to 100%.287

Results and Analysis. Our experiments consistently show that higher insertion ratios lead to288

improved performance, with the best results achieved when buffer nodes are inserted for all potentially289

misleading edges (100% insertion ratio). This confirms that our strategy of comprehensive buffer290

node insertion is effective and that the benefits of modulating message passing outweigh any potential291

drawbacks from increased graph complexity. Detailed results are provided in Appendix G.5.292

4 Related Work293

Existing methods to tackle class imbalance in graphs can be categorized into two main approaches.294

The first approach focuses on generating synthetic nodes and edges [18–20, 22, 34, 35], where295

methods like DRGCN [34] and GraphSMOTE [19] generate minority nodes to balance classes, while296

GraphSHA [22] focuses on generating ’hard’ nodes of minority classes to enlarge the margin between297

majority and minority classes. The second approach modifies the learning process itself, such as TAM298

[21] which introduces connectivity-aware margins. Recently, BAT [36] addresses class imbalance299

from a topological perspective by theoretically identifying two fundamental phenomena that amplify300

class-imbalance bias, serving as a plug-and-play module for existing class rebalancing methods.301

However, existing methods either overlook the direct influence of majority classes on minority302

classes through majority-minority edges (empirically demonstrated in Figure 1), or function merely303

as auxiliary modules without providing a complete solution. In contrast, BufferGraph offers a304

comprehensive end-to-end model that fundamentally redesigns the message passing mechanism using305

buffer nodes to effectively address the class imbalance problem. We provide a comparison between306

previous works and BufferGraph to highlight our novelty in Table 4.307

Method Handle Majority-Minority Edges Label-Free Node Generation Message Propagation Adjustment No Complex Parameter Tuning
GraphSMOTE [19] ✗ ✗ ✗ ✗

GraphENS [20] ✗ ✗ ✗ ✗
TAM [21] ✗ ✓ ✓ ✗

GraphSHA [22] ✗ ✗ ✗ ✗
DRGCN [34] ✗ ✗ ✗ ✗

BAT [36] ✗ ✓ ✗ ✓

BufferGraph ✓ ✓ ✓ ✓

308

5 Conclusion309

We introduce BufferGraph, a lightweight framework that addresses class imbalance in graph neural310

networks through strategic buffer node insertion. Unlike previous approaches focusing on minority311

node generation, BufferGraph modulates message passing through potentially misleading edges,312

effectively reducing majority nodes’ negative influence on minority nodes. Our experiments on five313

real-world datasets demonstrate BufferGraph’s superior and robust performance, particularly for314

minority classes with high percentages of majority-class neighbors.315

9

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

References316

[1] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional317

networks. arXiv preprint arXiv:1609.02907, 2016. 1, 5318

[2] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua319

Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.320

[3] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large321

graphs. Advances in neural information processing systems, 30, 2017. 1322

[4] Fenyu Hu, Liping Wang, Shu Wu, Liang Wang, and Tieniu Tan. Graph classification by mixture323

of diverse experts. arXiv preprint arXiv:2103.15622, 2021. 1324

[5] Dingyi Zeng, Wanlong Liu, Wenyu Chen, Li Zhou, Malu Zhang, and Hong Qu. Substructure325

aware graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,326

volume 37, pages 11129–11137, 2023.327

[6] Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training328

and downstream tasks for graph neural networks. In Proceedings of the ACM Web Conference329

2023, pages 417–428, 2023. 1330

[7] Xinyu Huang, Dongming Chen, Dongqi Wang, and Tao Ren. Identifying influencers in social331

networks. Entropy, 22(4):450, 2020. 1332

[8] Jayati Bhadra, Amandeep Singh Khanna, and Alexei Beuno. A graph neural network approach333

for identification of influencers and micro-influencers in a social network:* classifying influ-334

encers from non-influencers using gnn and gcn. In 2023 International Conference on Advances335

in Electronics, Communication, Computing and Intelligent Information Systems (ICAECIS),336

pages 66–71. IEEE, 2023.337

[9] Alexander K Taylor, Nuan Wen, Po-Nien Kung, Jiaao Chen, Violet Peng, and Wei Wang. Where338

does your news come from? predicting information pathways in social media. In Proceedings339

of the 46th International ACM SIGIR Conference on Research and Development in Information340

Retrieval, pages 2511–2515, 2023. 1341

[10] Dan Lin, Jiajing Wu, Qi Xuan, and K Tse Chi. Ethereum transaction tracking: Inferring342

evolution of transaction networks via link prediction. Physica A: Statistical Mechanics and its343

Applications, 600:127504, 2022. 1344

[11] Kiarash Shamsi, Friedhelm Victor, Murat Kantarcioglu, Yulia Gel, and Cuneyt G Akcora.345

Chartalist: Labeled graph datasets for utxo and account-based blockchains. Advances in Neural346

Information Processing Systems, 35:34926–34939, 2022.347

[12] Qian Wang, Zhen Zhang, Zemin Liu, Shengliang Lu, Bingqiao Luo, and Bingsheng He. Etgraph:348

A pioneering dataset bridging ethereum and twitter. arXiv preprint arXiv:2310.01015, 2023. 1349

[13] Sunil Kumar Maurya, Xin Liu, and Tsuyoshi Murata. Not all neighbors are friendly: Learning to350

choose hop features to improve node classification. In Proceedings of the 31st ACM international351

conference on information & knowledge management, pages 4334–4338, 2022. 1352

[14] Jianke Yu, Hanchen Wang, Xiaoyang Wang, Zhao Li, Lu Qin, Wenjie Zhang, Jian Liao, and353

Ying Zhang. Group-based fraud detection network on e-commerce platforms. In Proceedings354

of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages355

5463–5475, 2023. 1356

[15] Yuan Li, Bingqiao Luo, Qian Wang, Nuo Chen, Xu Liu, and Bingsheng He. Cryptotrade: A357

reflective llm-based agent to guide zero-shot cryptocurrency trading. In Proceedings of the 2024358

Conference on Empirical Methods in Natural Language Processing, pages 1094–1106, 2024. 1359

[16] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-360

Rad. Collective classification in network data. AI magazine, 29(3):93–93, 2008. 1, 2, 6361

[17] Min Liu, Siwen Jin, Luo Jin, Shuohan Wang, Yu Fang, and Yuliang Shi. Imbalanced nodes362

classification for graph neural networks based on valuable sample mining. In Proceedings363

of the 2022 6th international conference on electronic information technology and computer364

engineering, pages 1957–1962, 2022. 1365

[18] Mengting Zhou and Zhiguo Gong. Graphsr: A data augmentation algorithm for imbalanced366

node classification. arXiv preprint arXiv:2302.12814, 2023. 1, 9367

10

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

[19] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification368

on graphs with graph neural networks. In Proceedings of the 14th ACM international conference369

on web search and data mining, pages 833–841, 2021. 1, 2, 6, 9, 14370

[20] Joonhyung Park, Jaeyun Song, and Eunho Yang. Graphens: Neighbor-aware ego network371

synthesis for class-imbalanced node classification. In The Tenth International Conference on372

Learning Representations, ICLR 2022. International Conference on Learning Representations373

(ICLR), 2022. 1, 6, 9, 14374

[21] Jaeyun Song, Joonhyung Park, and Eunho Yang. Tam: topology-aware margin loss for class-375

imbalanced node classification. In International Conference on Machine Learning, pages376

20369–20383. PMLR, 2022. 1, 6, 9, 14377

[22] Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. Graphsha: Synthesizing378

harder samples for class-imbalanced node classification. arXiv preprint arXiv:2306.09612,379

2023. 1, 2, 4, 6, 9, 14380

[23] Meilun Shi, Enguang Zuo, Hanwen Qu, and Xiaoyi Lv. Graphuc: Predictive probability-based381

graph-structured data augmentation model for class imbalance node classification. In 2024382

4th International Conference on Electronic Information Engineering and Computer Science383

(EIECS), pages 933–936. IEEE, 2024.384

[24] Nan Chen, Zemin Liu, Bryan Hooi, Bingsheng He, Jun Hu, and Jia Chen. Nodeimport:385

Imbalanced node classification with node importance assessment. In Proceedings of the 31st386

ACM SIGKDD Conference on Knowledge Discovery and Data Mining V. 1, pages 94–105, 2025.387

1388

[25] Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.389

Pitfalls of graph neural network evaluation. arXiv preprint arXiv:1811.05868, 2018. 2, 6390

[26] Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural391

networks. arXiv preprint arXiv:2007.02901, 2020. 2, 6392

[27] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond393

empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017. 4394

[28] Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing.395

Advances in Neural Information Processing Systems, 35:2268–2281, 2022. 5396

[29] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based397

on effective number of samples. In Proceedings of the IEEE/CVF conference on computer398

vision and pattern recognition, pages 9268–9277, 2019. 6, 14399

[30] Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang.400

Disentangling label distribution for long-tailed visual recognition. In Proceedings of the401

IEEE/CVF conference on computer vision and pattern recognition, pages 6626–6636, 2021. 6,402

14403

[31] Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-404

tailed visual recognition. Advances in neural information processing systems, 33:4175–4186,405

2020. 6, 14406

[32] Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr407

Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional408

architectures via sparsified neighborhood mixing. In international conference on machine409

learning, pages 21–29. PMLR, 2019. 6, 14410

[33] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-411

yond homophily in graph neural networks: Current limitations and effective designs. Advances412

in neural information processing systems, 33:7793–7804, 2020. 6, 14413

[34] Min Shi, Yufei Tang, Xingquan Zhu, David Wilson, and Jianxun Liu. Multi-class imbalanced414

graph convolutional network learning. In Proceedings of the Twenty-Ninth International Joint415

Conference on Artificial Intelligence (IJCAI-20), 2020. 9416

[35] Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin. Imgagn: Imbalanced417

network embedding via generative adversarial graph networks. In Proceedings of the 27th ACM418

SIGKDD Conference on Knowledge Discovery & Data Mining, pages 1390–1398, 2021. 9419

11

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

[36] Zhining Liu, Ruizhong Qiu, Zhichen Zeng, Hyunsik Yoo, David Zhou, Zhe Xu, Yada Zhu,420

Kommy Weldemariam, Jingrui He, and Hanghang Tong. Class-imbalanced graph learning421

without class rebalancing. In Forty-first International Conference on Machine Learning, 2024.422

9423

[37] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen424

Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural425

information processing systems, 35:1362–1375, 2022. 14426

A Dataset Details427

We provide the statistics of datasets used in the paper in Table 5.

Table 5: Statistics of datasets used in the paper.

Dataset #Nodes #Edges #Features #Classes #Max / Min

Amazon-Photos 7,650 119,081 745 8 5.86
Amazon-Computers 13,752 245,861 767 10 17.72
Coauthor-CS 18,333 163,778 6,805 15 35.05
Coauthor-Physics 34,493 247,962 8,415 5 6.33
WikiCS 11,701 216,123 300 10 9.08

428

And these datasets’ licenses are as follows:429

• Amazon-Photos/Computers: Sourced from Amazon product data under MIT license.430

• Coauthor-CS/Physics: Academic collaboration networks from arXiv with CC-BY 4.0 license.431

• WikiCS: Wikipedia article network dataset (v1.0) under CC-BY-SA 3.0 license.432

B Notations in BufferGraph433

We provide all notations we use in BufferGraph paper in Table 6.434

Table 6: Key Notations Used in BufferGraph

Symbol Description
G = (V, E) Graph with nodes V and edges E

A ∈ {0, 1}N×N Adjacency matrix
X ∈ RN×d Node feature matrix

vbuf Buffer node
s(vi,vj) Difference score between nodes vi and vj
w(vi,vj) Edge weight between nodes vi and vj

C Algorithm435

We provide the full algorithm in Algorithm 1.436

D Complexity Analysis437

Given N as the total number of nodes and E as the total number of edges within the graph, the creation438

of buffer nodes correlates with the subset of the node and edge sets, leading to a computational439

complexity of O(E). Generating augmented features for buffer nodes requires O(E · d) time, with440

d representing the dimensionality of the node features. Additionally, forming augmented edges for441

the buffer nodes incurs a time complexity of O(E), engaging the whole graph’s edge set. Hence,442

12

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

Algorithm 1: BufferGraph: Buffer Node Synthesis and Adaptive Message Passing

Input: Graph G = (X,A), training set nodes VL and their labels Y L, number of classes C,
mixup coefficient α, distance loss coefficient λ

Output: Trained GNN model fθ
/* Buffer Node Generation */

1 for each edge (vsrc, vtar) in G do
2 Xbuf ← αXsrc + (1− α)X tar
3 Insert buffer node vbuf with feature Xbuf into G between vsrc and vtar
4 end
/* Pre-training Stage */

5 Initialize vanilla GCN fθ
6 Ŷ ← PreTrainGCN(G,VL,Y L)

7 Identify minority nodes based on Ŷ
8 Decide edges to insert buffer nodes in G (exclude edges connected to predicted minority nodes)
/* Training Stage */

9 best_val_loss←∞
10 Define warmup_epochs
11 for epoch← 1 to N do
12 Compute node prediction loss Lpred
13 Compute difference loss Ldiff
14 Ltotal ← Lpred + λ · Ldiff
15 Update fθ by minimizing Ltotal with standard backpropagation
16 if epoch > warmup_epochs then
17 if val_loss < best_val_loss then
18 best_val_loss← val_loss
19 for each edge e(vi,vj) ∈ G do
20 s(vi,vj) ←

∑
k |ŷi,k − ŷj,k|

21 if edge e(vi,vj) has a buffer node then
22 w(vi,vj) ← 1− s(vi,vj)
23 end
24 end
25 end
26 end
27 end
28 return trained model fθ

the total additional complexity introduced by our model is O(E + E · d+ E). As demonstrated by443

successful experiments on extensive datasets such as Coauthor-Physics and WikiCS, BufferGraph444

can work well on the large datasets.445

E Experimental Environment446

All models in our experiments were implemented using Pytorch 2.0.0 in Python 3.9.16, and run on a447

robust Linux workstation. This system is equipped with two Intel(R) Xeon(R) Gold 6226R CPUs,448

each operating at a base frequency of 2.90 GHz and a max turbo frequency of 3.90 GHz. With 16449

cores each, capable of supporting 32 threads, these CPUs offer a total of 64 logical CPUs for efficient450

multitasking and parallel computing. The workstation is further complemented by a potent GPU451

setup, comprising eight NVIDIA GeForce RTX 3090 GPUs, each providing 24.576 GB of memory.452

The operation of these GPUs is managed by the NVIDIA-SMI 525.60.13 driver and CUDA 12.0,453

ensuring optimal computational performance for our tasks.454

F Baselines455

• Loss Management Strategies:456

13

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

1. Reweight [29]: This adjusts the weights of classes based on their propotion to the class457

samples in the dataset, aiming to counteract imbalance.458

2. PC SoftMax [30]: This improves the model’s probability calibration for multi-class classifi-459

cation, ensuring more precise probabilistic predictions for minority classes.460

3. Cross Entropy: It acts as a core loss function by quantifying the divergence between461

predicted and actual distributions.462

4. Balanced Softmax [31]: It is designed to minimize the generalization bound in multi-class463

softmax regression.464

• Heterophilious GCNs465

1. MixHop [32]: It extracts the features from multi-hop neighbors to get more information.466

2. H2GCN [33] [37]: It combines three key designs to address heterophily: (1) ego- and467

neighbor-embedding separation; (2) higher-order neighborhoods; (3) combination of inter-468

mediate representations.469

• Class-imbalanced Node Classification Approaches:470

1. GraphSMOTE [19]: It synthesizes new instances in minority classes to directly tackle class471

imbalance.472

2. GraphENS [20]: It utilizes ensemble strategies to generate new instances in minority473

classes.474

3. TAM [21]: It introduces connectivity and distribution-aware margin to guide minority475

classes’ classification.476

4. GraphSHA [22]: It focus on generating hard minority samples to enlarge the margin477

between minority and majority classes.478

For general hyper-parameters such as learning rates and the number of layers, we explore layers479

of 2,3 and explore hidden dimensions of 64, 128, and 256. Among these, we select the layer and480

dimension that provide the best performance of each baseline on each dataset. For the learning rate,481

we explore the optimal settings by evaluating the performance at values of 0.001, 0.005, and 0.01.482

For the dropout rate, we explore the optimal settings for evaluating the performance of 0.1, 0.2, 0.3,483

0.4, 0.5.484

For GraphSmote, we opt for the GraphSmoteO variant, which is tailored to predict discrete values485

without necessitating pretraining, showcasing superior performance among its various versions [19].486

In the implementation of GraphENS, we set the feature masking rate k to 0.01 and the temperature τ487

to 1 according to the paper’s configuration [20].488

For TAM, we select the GraphENS-based iteration, which is identified as the most performant489

according to the findings reported in the corresponding paper. The default settings from the released490

code are utilized, with the coefficients for ACM α, ADM β, and classwise temperature ϕ set to 2.5,491

0.5, and 1.2, respectively [21].492

Specifically for GraphSHA, we follow the parameter configurations detailed in the original study,493

employing the PPR version with a setting of α = 0.05 and K = 128 [22].494

G Experiment Results495

G.1 Imbalanced Splitting Experiment496

In this section, we provide the results of the imbalanced splitting experiment in Table 3 and Table 4.497

G.2 Imbalance Ratio Experiment Results498

In this section, we provide the results of the imbalance ratio experiment on Amazon-Computers499

dataset in Figure 4.500

G.3 Ablation Study Results501

In this section, we provide the results of the ablation study on Amazon-Computers and WikiCS in502

Figure 5.503

14

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

10 12 14 16 18 20 22 24
Imbalance Ratio

82

84

86

88

90

92

Ba
la

nc
ed

 A
cc

ur
ac

y
(B

Ac
c.

 (%
))

Balanced Accuracy (BAcc.) vs Imbalance Ratio for Each Model
Balanced Softmax
GraphENS
TAM
GraphSHA
BufferGraph

Figure 4: Balanced accuracy (BAcc.) with increasing imbalance ratios on Amazon-Computers.
BufferGraph maintains superior performance even as imbalance becomes more severe.

Acc. BAcc. F1
Metrics

84
85
86
87
88
89
90
91
92
93

Pe
rfo

rm
an

ce
 (%

)

Amazon-Computers
BufferGraph
- HL
- CMP
- UMP

Acc. BAcc. F1
Metrics

79

80

81

82

83

84

85
Pe

rfo
rm

an
ce

 (%
)

WikiCS
BufferGraph
- HL
- CMP
- UMP

Figure 5: Ablation study on Amazon-Computers and WikiCS.

G.4 Parameter Sensitivity Experiment Results504

In this section, we provide the results of the parameter sensitivity experiment on Amazon-Computers505

and WikiCS in Figure 6.506

G.5 Insertion Ratio Experiment Results507

We use the pre-training predicted results to identify the edges most likely to connect majority and508

minority nodes. We apply various ratios: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 to select509

the top potential edges for inserting buffer nodes and analyze their performance. For instance, a 0.1510

ratio means that only the top 10% of potential majority-minority edges, excluding edges neighboring511

minority nodes, would be inserted with buffer nodes. To quantify the likelihood of an edge connecting512

majority-minority nodes, we calculate a score for each edge using the following formula:513

score(e) =
1

2

(
prob_minority(vi) · prob_majority(vj)

+ prob_minority(vj) · prob_majority(vi)
)

where e = (vi, vj) ∈ E is an edge, prob_minority(v) is the sum of the probabilities of node514

v belonging to minority classes, and prob_majority(v) is the sum of the probabilities of node v515

belonging to majority classes. The scores are then normalized between 0 and 1:516

15

Less is More: Using Buffer Nodes to Reduce Excessive Majority Node Influence in Class Imbalance Graphs

0.1 0.3 0.5 0.7 0.9
Alpha Value

80
82
84
86
88
90
92

Pe
rfo

rm
an

ce
 (%

)

Amazon-Computers - Alpha
Acc.
BAcc.
F1

0.10.5 1 2 5
Lambda Value

10
20
30
40
50
60
70
80
90

Pe
rfo

rm
an

ce
 (%

)

Amazon-Computers - Lambda
Acc.
BAcc.
F1

0.1 0.3 0.5 0.7 0.9
Alpha Value

80

81

82

83

84

Pe
rfo

rm
an

ce
 (%

)

WikiCS - Alpha
Acc.
BAcc.
F1

0.10.5 1 2 5
Lambda Value

80

81

82

83

84

Pe
rfo

rm
an

ce
 (%

)

WikiCS - Lambda
Acc.
BAcc.
F1

Figure 6: Parameter sensitivity analysis on Amazon-Computers and WikiCS.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio

84

85

86

87

88

89

90

91

92

Pe
rfo

rm
an

ce
 (%

)

Amazon-Computers - Insertion Ratio
Acc.
BAcc.
F1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ratio

81

82

83

84

Pe
rfo

rm
an

ce
 (%

)

WikiCS - Insertion Ratio
Acc.
BAcc.
F1

Figure 7: Insertion ratio experiments on Amazon-Computers and WikiCS.

normalized_score(e) =
score(e)−min(score(e))

max(score(e))−min(score(e))

This edge scoring mechanism effectively identifies potential majority-minority connections, guiding517

the strategic insertion of buffer nodes. The experimental results show that higher insertion ratios518

consistently lead to better performance, validating the effectiveness of BufferGraph’s design.519

H Limitations and Broader Impacts520

Limitations. BufferGraph has two main limitations: (1) using a fixed mixup coefficient for all buffer521

nodes may not be optimal across different graph structures, and (2) its effectiveness is currently only522

validated for node classification, leaving other graph tasks (e.g., edge prediction) for future work.523

Broader Impact. By improving minority class prediction in imbalanced graphs, BufferGraph has524

potential applications in domains where fairness and equity are crucial, such as social network525

analysis, recommendation systems, and fraud detection. Addressing class imbalance can help526

reduce algorithmic bias against underrepresented groups in graph-based applications. Future work527

could explore dynamic buffer node generation strategies, adaptive mixup coefficients based on node528

characteristics, and extensions to other graph learning tasks beyond node classification.529

16

	1 Introduction
	2 Proposed Method
	2.1 Background
	2.2 Buffer Node Generation
	2.3 BufferGraph Framework
	2.4 Theoretical Analysis

	3 Experiments
	3.1 Experimental Setup
	3.2 RQ1: Performance on Naturally Imbalanced Graphs
	3.3 RQ2: Performance Across Varying Imbalance Ratios
	3.4 RQ3: Ablation Study
	3.5 RQ4: Parameter Sensitivity Analysis
	3.6 RQ5: Buffer Node Ratio Study

	4 Related Work
	5 Conclusion
	A Dataset Details
	B Notations in BufferGraph
	C Algorithm
	D Complexity Analysis
	E Experimental Environment
	F Baselines
	G Experiment Results
	G.1 Imbalanced Splitting Experiment
	G.2 Imbalance Ratio Experiment Results
	G.3 Ablation Study Results
	G.4 Parameter Sensitivity Experiment Results
	G.5 Insertion Ratio Experiment Results

	H Limitations and Broader Impacts

