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Abstract. World Models in Reinforcement Learning agents support the
construction of an internal representation of the external environment
by compressing sensory experiences into a form suitable for reasoning,
planning, and guiding behavior. They are inspired by the hippocam-
pal formation in the limbic system of the mammalian brain, which fa-
cilitates spatial navigation, abstract problem-solving, generalization of
knowledge, and transfer of learned skills across a wide range of contexts.
In this paper, we consider two different world model architectures in the
reinforcement learning setting: one using a stochastic transformer, and
one using the hippocampus-inspired TEM transformer. We investigate
the extent to which agents equipped with such world models can be
effectively trained across a small set of diverse environments, and how
well they transfer and generalize between them. Our experiments demon-
strate early but promising signs that multi-environment agents can not
only solve multiple tasks with shared parameters but also address the
spatial invariance problem in a highly sample-efficient manner.
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1 Introduction

One of the cornerstones of human intelligence is our ability to generalize knowl-
edge and transfer learned skills across different contexts and environments. These
abilities allow humans to efficiently adapt in novel or semi-novel situations us-
ing their past experiences as a reference. The utility of such generalization and
transfer can be observed in diverse daily-life scenarios, which humans perform
with extreme efficiency and dexterity.

For example, supermarket chains usually follow a consistent pattern of the
floor plan with the arrangements of different product categories across their dif-
ferent stores. However, each individual store often consists of spatial changes
(e.g., the relative orientation of the entrance door, a vertically or horizontally
mirrored floor plan, or a difference in the relative sizes of product sections).
It takes relatively little effort for most humans to understand the pattern and
adapt to a new store, considering they are already familiar with the pattern
from their past shopping experiences in other stores of the same chain. More-
over, humans can navigate in new and unseen places, transfer motor skills, and



2 R. Mukherjee et al.

solve complex problems, because certain aspects of the world remain unchanged
(e.g., gravitational force, the physics of opening doors, or the motor dynamics of
climbing stairs). These universal regularities provide a stable foundation upon
which learning in new contexts can be built. Whereas, shifts in subtle or more
significant ways of more abstract dimensions, such as cultural norms and social
etiquette, can be quickly recognized and, through adaptation, incorporated into
human behavior [I].

One explanation of these abilities lies in our capacity to differentiate, mem-
orize, and reuse underlying spatial and cognitive patterns from environment-
specific sensory stimuli by storing knowledge of the world in a structured, co-
herent framework called cognitive maps [43]. The biological manifestation of
cognitive maps has been associated with the hippocampal formation in the mam-
malian brain [35/I8]. For spatial tasks, a variety of cell types, like the hippocam-
pal place cells, landmark cells, and entorhinal grid cells, tune their firing pattern
to solve the localization and mapping problem. However, during evolution, these
mechanisms were repurposed for more generalized and non-spatial cognition and
learning. The hippocampal formation became crucial for the organization and
generalization of knowledge to novel experiences. Moreover, the interpretation
of a cognitive map as a connected graph bridges the two domains of spatial
and non-spatial cognition. In simpler terms, to the hippocampus, locomotion is
equivalent to movement in spatial maps, whereas thinking or cognition is the
ability to move in cognitive maps. For example, in mathematics, proving a new
hypothesis is equivalent to creating or traversing along a cognitive graph where
the starting or ending node is often an already established truth. Thus, humans
can generalize by effectively reusing existing cognitive and spatial maps.

In contrast, generalization and adaptation remain challenging in reinforce-
ment learning (RL) [44U51150], significantly limiting the efficiency and real-world
applicability of these systems. Despite the advent of deep learning-based RL ap-
proaches that promise scalable learning across tasks, agents are often still trained
extensively on each environment before achieving good performance. World Mod-
els [I3THITAI7I52] could solve this problem in RL by building a compact repre-
sentation of the environment dynamics and training the agent within this latent
space, making the training process sampling and computation efficient. However,
their impact on generalization and transfer is not tested.

Inspired by the roles that cognitive maps and the hippocampus appear to
play in generalization and transfer learning in mammals, we consider two differ-
ent world model architectures in the reinforcement learning setting: one using a
stochastic transformer [52], and one using the hippocampus-inspired TEM trans-
former [45]. We present an exploratory study investigating the extent to which
agents using such world models can effectively be trained in a small selection
of multiple environments simultaneously, and transfer and generalize between
them. Our experiments indicate that agents trained simultaneously on a hand-
ful of MiniGrid environments [5] can not only solve multiple tasks with shared
parameters, but also address the spatial invariance problem in a highly sample-
efficient manner.
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2 Related Work

A common way to induce and benchmark generalization in RL is to train an
agent on a wide array of variations of an environment (e.g., different levels
of the same video game), and test it on yet another collection of variations
[4826/1TIA9TOTIB3I8TH4TI3T]. However, such work typically relies on getting
exposed to sufficient variety in environments at training time for generalization,
more so than leveraging world models, specific architectures, or other induc-
tive biases for generalization. Other multi-environment RL approaches rely on
additional inputs to specify goals or otherwise enable disambiguation between
environments. These inputs may take the form of, for example, numeric pa-
rameters [9], language-based instructions [30J2I32/3414047I28/T2127I20], or expert
demonstrations [24036l37]. Recent multi-environment world models are studied
predominantly in large-scale settings (e.g., many dozens of environments and
internet-scale data) [38/49].

3 World Model Architectures

This section provides details on the world model architectures considered in this
paper. We take a stochastic transformer-based world model [52] as a baseline,
and introduce a variant with a TEM transformer [45] as an alternative.

3.1 Stochastic Transformer-based World Model (STORM)
Architecture

The STORM architecture considered as a baseline in this paper closely follows
the original [52]. It converts raw pixel-based observations o; into stochastic cate-
gorical distributions Z; using a Variational Auto-Encoder (VAE) [22]. Convolu-
tional Neural Networks [23] are used as the main building blocks of the encoder
and decoder of the VAE. Unlike standard VAEs, here Z; is a categorical distri-
bution comprising 32 categories, each with 32 classes. Additionally, a sample z;
is drawn from the latent variable Z;, and the straight-through gradient trick [3]
is used to preserve the gradients for back propagation. Latent states z; are com-
bined with actions a; into embedding tokens e;, which in turn are passed to a
transformer-based sequence model. The sequence model generates hidden states
h¢, which are used for predictions of future latent states Zt+1, reward predictions
7¢, and predictions of whether or not the episode continues ¢;.

3.2 Tolman-Eichenbaum Machine (TEM) Transformer in World
Model

The TEM transformer is a hippocampus-inspired transformer variant designed
to model structured world knowledge through learned latent positions and asso-
ciated sensory bindings [45]. Its core design draws on the Tolman-Eichenbaum
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Fig.1: The architecture of the TEM transformer.

Machine (TEM) [46] principles. However, in the original paper, the TEM trans-
former was designed and tested for the prediction of spatial stimuli in a super-
vised learning setup; we customized and modified it to fit in as a sequence model
of the world model architecture as shown in Fig. [T}

Whereas standard transformers process a single sequence, the TEM trans-
former processes two separate streams of embeddings:

— ¢;: position (or latent spatial code) stream
— x4 stimulus (observation) stream

Each attention block operates jointly on these streams via a modified multi-
headed attention mechanism. Queries and keys are computed from the position
stream e;, while values are derived from the stimulus stream x;. The attention
computation is defined as:

. €tET
Attention(X, E) = softmax X (1)
Vdy

Here E, X are matrices with each row representing one timestep of e;, x; respec-
tively, and dj, is the number of dimensions of e;. The outputs are added to both
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streams and normalized:

x} = LayerNorm(z; + Attention(zy,e;)) (2)
e; = LayerNorm(e; + Attention(zy, e;)) (3)

These updated streams are then passed through independent position-wise feed-
forward layers. The dual residual pathways ensure that both spatial encoding
and stimulus association evolve in tandem.

The original TEM transformer [45] uses a simple recurrent update rule for
position encodings: e;11 = o(e;W,), where W, is a learnable action-dependent
matrix and o(-) is a non-linear activation function. Our implementation replaces
this update with a Gated Recurrent Unit (GRU) [6]:

€i+1 = GRU(et, at). (4)

The key difference is that the original update is a lightweight linear transforma-
tion with a nonlinearity, while the GRU introduces gating mechanisms. Theo-
retically, this should allow the position encoding to selectively retain, reset, or
update information over time, leading to a more expressive and stable represen-
tation. This enables trajectory-aware encoding of spatial structure, resembling
hippocampal path integration and grid cell formation. As the agent acts in the
environment, the position representation evolves to reflect new positions, poten-
tially supporting generalization and memory-based reasoning.

4 Experiments

This section describes the setup of our experiments, presents the results, and
provides a discussion of them. The core aim of our experiments is to explore
and investigate the extent to which generalization and transfer may take place
in small-scale multi-environment training setups with world models.

4.1 Setup

Environments. For our experiments, we selected simple goal-oriented 2D grid-
world environments from MiniGrid [5]. The agent in these environments is a
red triangular object with a discrete action space consisting of seven possible
actions. The left and right actions allow the agent to rotate its orientation,
while the forward action moves the agent one step in the direction it is currently
facing. The remaining actions—pickup, drop, toggle, and done—are defined
within the environment but remain unused in the current experimental setup
due to the choice of environments. The tasks involve solving different maze maps
and interacting with various objects such as doors, keys, or boxes. The reward
structure is discrete, designed to incentivize task completion in the minimum
number of steps. Upon achievement of the goal, the agent receives a reward

Rguceess = 1 —0.9- (%), where step _count denotes the number of steps
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Fig.2: Sample observations of the grid-world environments: Empty, Simple
Crossing, Four Rooms, and Memory. The top row shows the fully observable
variants, and the bottom row shows the partially observable variants (different
samples).

taken to reach the goal, and max_ steps is the maximum allowed number of steps
per episode. Failure to complete the task within the allotted steps results in a
reward of 0. We selected four environments, each with two variants: fully and
partially observable. Fig. [2| shows random observations of the two variants of
each of the four environments.

Empty: It is the simplest of the four environments where the objective of
the agent is to reach the goal: the green square. Upon reaching that, the
agent gets a reward.

Simple Crossing: Similar to the Empty environment, the goal is to reach
the cell with a green square, but there are obstacles: walls that the agent
can only cross through a specific opening. The position of the wall and the
opening is random in each episode.

Four Rooms: The agent must navigate in a maze composed of four rooms
interconnected by four gaps in the walls. To obtain a reward, the agent must
reach the green goal square. Both the agent and the goal square are randomly
placed in any of the four rooms. It is an extension of Simple Crossing that
requires Hierarchical RL capabilities to solve [42].

Memory: This environment is a memory test. The agent starts in a small
room where it sees an object. It then has to go through a narrow hallway,
which ends in a split. At each end of the split, there is an object, one of which
is the same as the object in the starting room. The agent has to remember
the initial object and go to the matching object at the split.

The partially observable variants are the egocentric views of the fully observ-
able environments. In these cases, the agent object (red triangle) remains fixed
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in its position at the bottom of the frames, whereas the surroundings change
based on what the agent is supposed to observe. The limiting reach of the view
significantly alters the nature of the environments. For example, the partially-
observable Memory environment requires the agent to memorize the initially
visited object (blue key or green ball) and reach a similar object as the goal.
However, under full observation, the need to remember the initial object becomes
superfluous, as the whole environment is always accessible to our AC-agent.

Hyperparameters. Across all experiments, certain elements of the core archi-
tecture and hyperparameters of the world model and the actor-critic agent were
kept consistent to ensure fair comparisons. Any hyperparameters, choice of loss
functions, training setup, and so on that are not specified otherwise are kept
the same as in the original STORM publication [52]. The input to the world
model comprises environment frames as RGB images of size 64 x 64 x 3. The
encoder is implemented as a convolutional backbone with batch normalization,
starting with a stem layer of 32 channels and progressively downsampling until
the spatial resolution reaches 4 x 4. The final encoded feature dimension is given
by Clast X 4 x 4. The latent stochastic state has dimension K x K with K = 32,
flattened to 1024 features.

Both the baseline stochastic transformers and the TEM transformer are ini-
tiated with two transformer blocks with 512 hidden dimensions, eight attention
heads, and a dropout rate of 0.1. Three prediction heads are employed: the
distribution head maps the encoder output to posterior logits and the trans-
former states to prior logits; the reward predictor is a two-layer MLP with hid-
den dimension 512, LayerNorm, and ReLU activations, outputting a discrete
255-class symlog-twohot reward encoding [17]; and the continuation predictor,
implemented as a similar MLP, predicts the scalar termination probability. The
decoder is a de-convolutional network reconstructing the 64 x 64 RGB observa-
tion from the latent state. The world model is trained with Adam optimizer [21]
at a learning rate of 1 x 10™%, gradient clipping at 1000, mixed-precision training
(AMP) enabled, and a free-bits threshold of 1 for KL regularization.

The actor-critic operates on the concatenation of latent samples and trans-
former hidden states, producing policy logits and value estimates. The input
dimension of the actor-critic is 1024 + 512 = 1536. The actor network is a two-
layer MLP with hidden size 512, LayerNorm, and ReLU activations, mapping
to discrete action logits by first passing the logits to a categorical distribution
and then sampling from it. The critic shares the same backbone but outputs
a 255-dimensional symlog-twohot value representation, with a slow critic main-
tained as an exponential moving average copy updated with a decay rate of 0.98.
Training is performed with Adam at a learning rate of 3 x 1072, e = 1 x 107%,
gradient clipping at 1000.0, and AMP enabled. The discount factor is v = 0.985,
the GAE [39] parameter is A = 0.95, and an entropy regularization coefficient of
3 x 10~* is applied.

4.2 Results
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Fig. 3: Comparison of performance of baseline world model across (a) fully and
(b) partially observable environments between agents trained only on single en-
vironments, with agents trained on all environments simultaneously. The plots
show the episodic returns as a function of environment steps. The cumulative
reward is recorded only at the termination of each episode, after which a new
episode begins while the environment step count continues to increase.
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Multi-Environment and Single-Environment Training. In this exper-
iment, the same model architecture and hyperparameters are used to train
the agent (world model and actor-critic) across all four environments simul-
taneously. During the initial 4000 steps, vectorized environments were sampled
asynchronously, and the resulting transitions [observation, action, reward,
info] were stored in a replay buffer. Subsequently, for the remaining train-
ing steps, batches were drawn from the replay buffer to train the world model
and actor-critic agent. Each batch consisted of ordered sequences of a fixed
length, sampled from all environments, resulting in data of shape [batch_size,
imagination_length, H], where batch_size and imagination_length were
set to 128 and 32, respectively, and H depends on the feature dimensionality of
each element in the transitions data. Through this process, the shared param-
eters of the agent were optimized to maximize cumulative rewards across all
environments concurrently.

We compare the performance of the multi-environment agent (MEA) to that
of a set of single-environment agents (SEAs), each trained independently on a
single environment from scratch without any parameter sharing. In both cases,
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Fig. 4: Multi-environment agent (MEA) training with TEM transformer-based
world model in different environments. The plots show the episodic returns as
a function of environment steps. The cumulative reward is recorded only at
the termination of each episode, after which a new episode begins while the
environment step count continues to increase.

the stochastic transformer was utilized as the sequence model in the world model
architecture. The comparative results are presented in Figure [3] where we plot
the episodic returns as a function of the number of environment interactions.
The Step count increases monotonically as training progresses and the agent
transitions across new episodes. A very high episodic return indicates that the
agent could solve the environment, and the more optimal the solution, the closer
the return is to 1. After each environment step, the collected transition was
stored in the replay buffer, from which updates to both the world model and
the actor-critic were subsequently performed. Another MEA experiment was
performed with TEM-transformer as the sequence model in the world model,
keeping other settings unchanged. The results are shown in Figure

Latent Representations of Environments. To investigate how the multi-
environment agent (MEA) represents different environments, we analyze the
latent representations learned by the world model. Once the agent is trained,
in evaluation, we roll out a fixed number of steps (16 per environment) and
capture the hidden states of the transformer in the world model. Since this
hidden representation serves as the shared input to the reward head, continuation
head, and actor-critic module, it constitutes a common latent space influencing
multiple components. These hidden states are then averaged across the time
dimension, resulting in a single aggregated vector for each environment.

To visualize these representations, we apply t-SNE [29] to the aggregated
environment vectors at different training checkpoints for both the fully and par-
tially observable environments, as shown in Figure [f| Initially, the environment
representations are close together; however, as training progresses, they increas-
ingly get separated into distinct clusters. This trend is observed for both the
baseline stochastic transformer and TEM transformer architectures. In the fully
observable environments, the Memory environment consistently forms a clus-
ter distant from the others, likely due to its visual and structural dissimilarity.
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Fig.5: T-SNE plot of the hidden embeddings of the world model transformers
across various training checkpoints. Top: embeddings of the baseline stochas-
tic transformer. Bottom: embeddings of the TEM transformer. The left column
shows the fully observable environments, and the right column shows their par-
tially observable counterparts.

For the partially observable settings, the latent clusters of Empty often appear
close to those of Simple Cross, which can be attributed to the similarity in their
observations in visual space when partial observability is enforced.

Spatial Invariance. Spatial invariance can be characterized as the notion of
identifying similarities of different environments with spatial modifications like
rotation, elongation, expansion, etc. To test the agent’s robustness against such
variations, we first fabricate some additional environments. We consider the fully-
observable variant of the EFmpty environment and change the relative positions
of the agent (red triangle) and the goal (green square) while keeping the head
direction of the agent fixed. We create three such environments, referred to
as Empty-FullObs-Ort-1, Empty-FullObs-Ort-2, Empty-FullObs-Ort-3, while the
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Empty-FullObs-Org Empty-FullObs-Ort-1 Empty-FullObs-Ort-2 Empty-FullObs-Ort-3

Fig. 6: Different variants of the fully observable Empty environment achieved
by changing the relative position of the agent and the goal. These modified
environments are: original Empty, Empty-FullObs-Ort-1, Empty-FullObs-Ort-2,
Empty-FullObs-Ort-8 from left to right

original is referred to as Empty-Org as shown in Fig. [f] Each of these environ-
ments has an effective change equivalent to a consecutive 90° clockwise rotation.
The remaining dynamics of the environment and the reward structure remain
the same.

To analyze the agent’s few-shot adaptation ability to spatial variations de-
scribed above, we take existing model parameters of the trained agents in the
fully-observable multi-environment setting, and run them in these new environ-
ments. We try four different combinations based on whether the world model
and the actor-critic are loaded from pretrained weights or trained from scratch.
The results are displayed in Fig. [f] When both the world model and actor-critic
are initiated from the pre-trained weights, the agent learns the optimal policy in
less than 50 steps of training (the first 250 steps are used for buffer warm-up).
This is faster than all the other three combinations, where at least one or both
models are trained from scratch. Both the transformer variants show a simi-
lar trend, with one exception for TEM transformer in the Empty-FullObs-Ort-1
environment.

4.3 Discussion

In the fully observable setting, the MEA successfully learned optimal policies in
Empty and Simple Cross, as the episodic return is consistently high. In Memory
and Four Rooms, the zigzag lines indicate oscillatory episodic return between
very-high and very-low. This signifies that the agent could not consistently solve
the environment. On the other hand, SEAs achieved optimal performance only in
Empty (see Fig. . In partially observable environments, both MEA and SEAs
reached optimal policies in Empty and Simple Cross. The Four Rooms environ-
ment was originally proposed as a benchmark for hierarchical RL approaches
[42], which were not integrated in our work. Hence, integrating hierarchical RL
capabilities inside the world model [16] would be a natural way to improve per-
formance in this environment. We remark that, with sufficient transfer from
other environments such as Simple Crossing (which ought to teach an agent
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Fig. 7: Comparison of agent performance in semi-novel environments at different
degrees of transfer. On the top (a), we observe results achieved with baseline-
transformer, (b) shows the result achieved using TEM transformer. The plots
show the episodic returns as a function of environment steps. The cumulative
reward is recorded only at the termination of each episode, after which a new
episode begins while the environment step count continues to increase.

how to navigate towards a green objective and cross doorways), this might not
have been necessary, but we do not observe such an extent of generalization
happening in our experiments.

The primary change in results after switching to the TEM transformer (see
Fig. @ is that the Memory environment appears to become solvable, but still
only in the fully observable setting (in which there is no actual need for memo-
rization). Further research (e.g., repetitions with more random seeds) is needed
before this difference can be conclusively attributed to the modified transformer
type.

The t-SNE embeddings of Fig. [5| show that networks trained on multiple
environments simultaneously clearly become able to distinguish between them
as learning progresses. On the one hand, this may be seen as a necessity for
strong performance across different environments (as an agent that is confused
as to which environment it is in cannot be expected to perform well). On the
other hand, the clean separation of environments may be indicative of a lack of
transfer between them.
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The results of Fig. [] demonstrate that, especially when both the world model
and the actor-critic are transferred to the rotated versions of the Empty environ-
ment, training consistently accelerates in comparison to training from scratch.
This is indicative of a helpful transfer.

5 Conclusion

Inspired by the role that world models play in the intelligence and generaliza-
tion capabilities of humans, we described an exploratory study of the abilities
of reinforcement learning agents to train simultaneously in a small selection of
multiple different MiniGrid environments, and generalize and transfer between
and from them. This is achieved with small-scale RL: agents are only trained
on up to four different environments, from which their ability to generalize is
assessed. We used STORM [52] as a state-of-the-art baseline world model, and
also tested a variant of it in which we replaced its stochastic transformer with a
hippocampus-inspired TEM-transformer [46]. Experimental results demonstrate
an ability to learn effective policies in multiple distinct environments in a single
shared network, with no need for explicit environment-specific context. Benefits
of transfer and the ability to effectively recognise and distinguish between dif-
ferent environments are observed. However, consistent success in the two most
complex of the four environments remains out of reach for the tested approaches.

Future work aimed at developing a more thorough understanding of gen-
eralization and transfer behaviors could consist of more extensive experiments
with carefully designed variations of environments. For example, the colors of
objects could be modified to evaluate the extent to which trained agents can
or cannot generalize across environments based on the colors of goal or hazard
objects. Furthermore, the array of environments that an agent is simultaneously
trained on could be extended to include more environments that are concep-
tually “in between” current ones, possibly forming a bridge to enable smoother
transfer between them. To improve the performance of agents in general, future
work could consider algorithmic and architectural additions such as Mixture-of-
Experts [25] or hierarchical RL support for world models [I6].

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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