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Abstract

Symmetry is a fundamental concept that has been studied
extensively, however, its detection in complex scenes re-
mains challenging in computer vision. Recent heatmap-
based methods identify potential regions of symmetry axes
but lack precision for individual axis. In this work, we
introduce a novel framework for axis-level detection of
the most common symmetry types—reflection and rota-
tion—representing them as explicit geometric primitives
i.e., lines and points. We formulate a dihedral group-
equivariant dual-branch architecture, where each branch
exploits the properties of dihedral group-equivariant fea-
tures in a novel, specialized manner for each symmetry
type. Specifically, for reflection symmetry, we propose ori-
entational anchors aligned with group components to en-
able orientation-specific detection, and reflectional match-
ing that computes similarity between patterns and their mir-
rored counterparts across potential reflection axes. For
rotational symmetry, we propose rotational matching that
computes the similarity between patterns at fixed angu-
lar intervals. Extensive experiments demonstrate that our
method significantly outperforms state-of-the-art methods.

1. Introduction

Symmetry is a fundamental concept observed across natural
and artificial environments [51, 56], appearing at multiple
scales and orientations [17, 39]. While humans easily rec-
ognize symmetry [52], it remains a challenge for computer
vision. This work focuses on detecting reflection and rota-
tion symmetries in complex 2D scenes [35]. Robust sym-
metry detection requires precise localization of reflection
and rotation axes, along with accurate determination of ad-
ditional properties; reflection symmetry involves estimating
axis length and orientation [60], while rotation symmetry
requires classifying the correct fold. These challenges are
amplified by real-world complexities such as noise, occlu-
sion, and geometric distortions.

Symmetry detection has evolved from classical to deep
learning approaches. Traditional methods use descrip-

Figure 1. Comparison of the heatmap-based method [44] and
our axis-level approach on rotated inputs. The red triangle
indicates the rotated orientation of input image. Our proposed
axis-level symmetry detection method captures reflection (green
lines) and rotation (red points) axes as precise geometric entities
and demonstrates superior robustness to rotation compared to the
heatmap-based method.

tor matching for reflection symmetry [3, 27, 36, 37], and
frequency domain analysis [25, 30] or gradient vector
flow [40] for rotation symmetry. Neural networks pro-
vide advancements to the field, from early symmetry-aware
models [14, 50] to CNN-based pixel prediction [15, 48], and
recently to self-similarity networks and group-equivariant
architectures [43, 44].

Despite these advancements, neural network-based ap-
proaches face two key limitations. First, most treat sym-
metry detection as a per-pixel heatmap prediction prob-
lem [15, 43, 44], which makes it difficult to recover the pre-
cise geometric parameters of symmetry axes. Second, they
lack explicit integration of symmetric structures in feature
representations [43], or fail to consider explicit matching
modules [44], leading to inconsistent results under arbitrary
rotations and reflections of the input image.

To address these limitations, we propose an axis-level
symmetry detection approach that is equivariant to the di-
hedral group. Reflection and rotation symmetry axes are
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modeled explicitly as geometric primitives, i.e., lines and
points. We leverage features that are equivariant under the
dihedral group D (the group of planar rotations and re-
flections) and build specialized modules for each symmetry
type, ensuring that the symmetry predictions transform pre-
dictably with rotations or reflections of the input.

For reflection symmetry, we introduce orientational an-
chors aligned with the discrete orientations of Dy, enabling
the network to detect reflection axes in an orientation-
specific manner while remaining equivariant to image rota-
tions and reflections. We also include a reflectional match-
ing module that explicitly compares patterns with their
mirror-image across candidate axes. By design, this reflec-
tional matching module preserves equivariance to Dy and
is invariant to reflections of the input (intuitively, rotating
an image rotates the symmetry response accordingly, while
mirroring preserves the symmetry response).

For rotation symmetry, we present a rotational match-
ing module that compares features with rotated versions of
themselves at fixed angles. This module is constructed to
be completely invariant to dihedral group, ensuring consis-
tent detection of rotational symmetry centers regardless of
image rotations or reflections. Fig. | provides an overview,
illustrating that our method produces consistent reflection
and rotation axis detections even when the input image is
rotated, in contrast to standard heatmap-based methods. Ex-
periments on real-world datasets demonstrate that our ap-
proach consistently outperforms pixel-level methods.

The contributions of this paper include:

* We propose a novel axis-level symmetry detection net-
work for reflection and rotation symmetry, leveraging rep-
resentations that are equivariant to the dihedral group D .

e We introduce an orientational anchor expansion mech-
anism for orientation-specific analysis, integrating the
group’s rotation dimension into the detection process.

* We develop an equivariant reflectional matching module
and an invariant rotational matching module to explicitly
incorporate symmetry-consistent feature comparisons for
reflection and rotation, respectively.

* We validate our approach on real-world datasets, where
it achieves superior performance compared to existing
methods.

2. Related work

Symmetry detection. Early reflection symmetry detec-
tion used keypoint matching [3, 37] with SIFT descrip-
tors [36], while contour [45, 53] and gradient-based [18,
47] methods extracted symmetry structures. Random-
ized approaches [4] aligned patterns via cross-correlation,
while Hough voting [23], local affine frames [10], and
RANSAC [46] refined axis extraction for planar surfaces.
For rotation symmetry, early methods identified periodic
signals in spatial [34] and frequency domains [25, 30],

leveraging spectral density and angular correlation. SIFT-
based techniques [36, 37] normalized orientation for rota-
tion detection, while GVF [40] and polar domain repre-
sentations [1] improved boundary detection. Rectification
methods [29] further addressed affine distortions.

Deep learning advanced symmetry detection from early
feature extraction [14, 50] to CNN-based heatmaps [15, 43,
48], but focused on dense predictions. Recent optimization-
based [24] and neural 3D symmetry reconstruction [31, 61]
methods predict instance-level reflection symmetry but are
limited to isolated objects without background context.
Feature matching remains underexplored—PMCNet [43]
introduced polar matching but lacked explicit symmetry
integration, while group-equivariant [16, 44] and invari-
ant [12] architectures improved robustness but focused on
appearance features. To address these limitations, we rede-
fine symmetry detection as an instance-level task, modeling
symmetry axes as geometric entities and integrating equiv-
ariant matching for symmetry-aware feature comparisons.

Equivariant neural networks. Convolutional neural net-
works (CNNs) provide translation equivariance but lack ro-
tation and reflection equivariance, limiting their effective-
ness in symmetry-aware tasks. Group-equivariant CNNs [5,
8, 16] introduced group convolutions to address this, with
advancements in circular harmonics [57], vector fields [38],
and hexagonal lattices [21]. Later work extended equiv-
ariance to 3D data [55], intertwiner spaces [9], and homo-
geneous spaces [6, 7, 54]. Equivariant models have been
applied to aerial object detection [19] and symmetry detec-
tion [44], with recent works improving keypoint descrip-
tions [2] and enforcing group-equivariant constraints for de-
noising [49]. Beyond 2D, 3D-equivariant architectures ad-
dress pose estimation [28] and leverage spherical harmon-
ics for 3D rotation-equivariant encoding [58]. Our approach
builds upon dihedral-group equivariant networks, with spe-
cialized matching for enhanced symmetry detection.

3. Background

Group. A group is a mathematical structure with a set and
an operation satisfying closure, associativity, identity, and
invertibility [42]. Groups describe symmetries: transforma-
tions like rotations and reflections that preserve an object’s
structure. Our work is built upon two common discrete
groups in neural networks: the cyclic group and the dihedral
group. The cyclic group Cp represents discrete rotations
{r0, ..., rN=1}, with the group law rir/ = y(i+3) mod N
The dihedral group Dy, relevant to our work, includes both
rotations and reflections:

Dy ={r 7t ... 7V b bt o erN T (D)

where r and b are generators of the dihedral group corre-
sponding to rotation and reflection, respectively, satisfying
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b? = e and r"b = br—", with ¢ as the identity.

Equivariance. A function f : X — ) is equivariant if it
commutes with a group action. Formally, for linear group
representations o1 : G — GL(X) and 02 : G — GL()),
equivariance is defined as:

flo1(g) -x) = o2(9) - f(2),

In neural networks, equivariance ensures that transforma-
tions in the input induce predictable transformations in the
output, preserving data symmetries.

VgeG,zeX. (2)

Group representation. A group representation maps
each element of a group G to a linear transformation in
a vector space [8, 55]. The regular representation [5], a
standard way to express discrete groups, maps group ele-
ments to permutation matrices on RIGI*IG| encoding the
group structure through basis vector permutations. For a

finite group G = {g1,...,9n}. the regular representation
0ia(g) is:
G

Oreg (9) = [eggu e 7eggN]7 3)

where e,, € RI!¢l is a standard basis vector. The identity el-
ement e corresponds to the identity matrix: 0%, (e) = Iig|.
For the cyclic group C, the regular representation of 7™ is
a N x N cyclic permutation matrix:

Cn

Treg (r") = [ern, €p(nt1) mod Ny« - €p(ntN-1) moa N|. (4)

For the dihedral group D , the regular representation of br”™
permutes both for rotations and reflections:

oDn

ny _
reg (bT‘ ) —[ebrn y €pp(n+1) mod Ny ...y €pp(n+N—1) mod N,

€pny € (n+1) mod Ny ...y €p(n+N—-1) mod N]. (5)

This captures the structure of Dy in a 2N x 2N matrix.
A detailed explanation of group-equivariant representations
and corresponding network architectures is provided in the
Supplementary Material.

4. Proposed method

In this section, we introduce a D y-equivariant network for
axis-level symmetry detection, modeling reflection axes as
line segments and rotation axes as points. The network uses
a dihedral group-equivariant backbone [5] to extract fea-
tures, and then processes these features with two branches:
one branch predicts the midpoint, orientation, and length
of reflection axes, and the other predicts the location and
fold class of rotation symmetry centers (Sec. 4.1). To han-
dle multiple orientations, we introduce orientational anchor
expansion, aligning feature channels with the discrete ori-
entations of the dihedral group (Sec. 4.2). We also present

reflectional matching to capture symmetry across reflection
axes (Sec. 4.3) to compare features with their mirrored ver-
sions, and a rotational matching module (Sec. 4.4) to com-
pare the same features at different rotation angles, while
preserving dihedral group-equivariance. Fig. 2 illustrates
the overall pipeline of our approach.

4.1. Axis-level symmetry detection

Existing neural network-based methods detect symmetry
in 2D scenes using pixel-level heatmaps [15, 43, 44],
methods detect symmetry by predicting dense pixel-wise
heatmaps [15, 43, 44], which makes it hard to recover ex-
act axis parameters. Recent approaches represent reflection
axes as lines [24, 31] but are limited to isolated 2D or 3D
objects without backgrounds. To address these limitations,
we present an axis-level symmetry detection network that
accurately represents reflection and rotation axes in com-
plex real-world scenes with multiple instances.

Feature extraction. Given an input image I, we employ
a D -equivariant backbone network [5, 20] to extract the
base feature map F € RIXWxCIDNI - Here, H and W
denote the spatial dimensions, [Dy| = 2N represents the
number of dihedral group elements(combining N rotations
and their reflections), and C is the number of channels per
group element. The extracted base feature F is then fed into
the symmetry detection branches.

Reflection symmetry detection. For axis-level reflection
symmetry detection, we model reflection axes using the
center-angle-length representation [60]. Unlike the end-
point representation [22, 59, 62], this approach inherently
handles rotation and reflection equivariance via orientation
parameterization. The reflection branch B,.s processes the
base feature map to predict the reflection axes components:

Yoot = [Yomia; Y5 Yo] = Bret(F) € RIPNIXHXWSE ()

where Y ;g provides a probability for each spatial location
being the midpoint of a reflection axis, and Y, and Yy are
the regression outputs for the axis length and orientation at
that location. To obtain reflection component map, we ap-
ply pooling across the group dimension, Poolg as follows:

Orf = Poolg(Yief) € REXWX3, (7)

At each position (z,y), a reflection axis prediction is pa-
rameterized as (x,y, p, p, 0), where p is the midpoint prob-
ability, p the length, and 6 the orientation. The start and end
points of the predicted axis are given by:

=[] g o
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Figure 2. Overall architecture of our proposed instance-level symmetry detection network. Given an input image, a D y-equivariant

backbone extracts features F € R *WxCIDn|

. The reflection branch (top) employs equivariant reflectional matching and orientational

anchor expansion to predict reflection axes as parameterized line segments («, z, y, p, p, 0). The rotation branch (bottom) applies invariant
rotational matching to detect rotation axes and classify their fold classes parameterized as (z, y, pc).

Rotation symmetry detection. For rotation symmetry,
our goal is to predict the positions of rotation centers and
classify their fold (symmetry order). An n-fold rotational
symmetry means the pattern looks the same after rotation
by 27” (for example, a 4-fold symmetry repeats every 5). To
predict both axis existance and fold class, rotation branch
B,ot produces the multi-class classification score map:

0.0t = Biot (Poolg(F)) € REXWXS (10)

where S is the number of fold classes including the back-
ground class. Each rotation axis prediction is represented as
(z,y, ps), with pg as the probability of the s-th fold class.

Training objective. The training objective includes both
reflection and rotation symmetry losses. For reflection sym-
metry, we apply losses for midpoint classification, length
regression, and orientation regression. Midpoint classifica-
tion is optimized using weighted binary cross-entropy:

Lmid = ]E(ac,y) [_P)/rcfp IOg(ﬁ) - (1 - P) log(]- - ﬁ)]v (11)

where p is the ground truth label, p is the predicted probabil-
ity, and ~y,cf is a weighting factor. Length p and orientation
0 regression losses are applied only at positions with valid
midpoints (p = 1), enforced by the indicator function I,,—:

L, = E(z 4)[lp=1 - SmoothL1(p, p)], (12)
Lo =E(yy[l=1- 10— 0], (13)

where p and 6 denote ground truth values, and p and 6 are
the predicted values. For rotation symmetry, fold classifica-
tion is optimized using weighted multi-class cross-entropy:

Lfold = E(m,y,s) [_’Yrotps IOg ﬁs]7 (14)

p—

[e][2] [«][=]
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Figure 3. Illustration of our orientational anchor expansion
on D3 group. The Dg-equivariant features Y ,, undergo transfor-
mation N, and aggregation ®,., creating Cs-equivariant features
O,. These are combined across opposite orientations to handle
the 6 and 6 + 7 equivalence, allowing each orientation channel to
specialize in specific angular ranges and improve detection of axes
with overlapping midpoints. Each arrow represents a feature map.

—

T

@, = +, if k € {mid, p}
—, ifk=10

==
seleleRlE)=])°

7.7

. Vx € {mid, p, 0}

where s represents the fold class and v, is applied at po-
sitions with ground truth rotation axis and correct fold class
(p = 1). The total loss is a weighted sum of loss terms:

Liotal = Lmid + ALy + ALy + Aold Leold- (15)

4.2. Orientational anchor expansion

In standard object detection, anchor boxes [33, 41] are
placed at various scales and aspect ratios to guide bound-
ing box regression. Analogously, our reflection symmetry
branch initially treats each pixel as an anchor for a poten-
tial symmetry axis and learns to regress the orientation and
length of the axis. However, this straightforward approach
does not fully exploit the orientation dimension provided by
our group-equivariant features. To address this, we intro-
duce orientational anchor expansion, integrating the group
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Oreg : Permutation matrix
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Figure 4. Illustration of our equivariant reflectional matching (left) and invariant rotational matching (right) modules. The re-
flectional matching computes similarity scores between rotated features and their reflections across all |Cy| rotation angles, preserving
dihedral group equivariance with rotation invariance. The rotational matching computes similarities between feature pairs with different
rotation angle interval, yielding rotation-invariant features for detecting n-fold rotation symmetry centers. Both modules incorporate spatial

neighborhoods Q. for robust detection across multiple scales.

dimension into the detection framework for orientationally
specialized axis detection and improved handling of axes
with overlapping midpoints but different orientations. Fig. 3
illustrates the proposed orientational anchor expansion.

Reflectional counterpart aggregation. In a Dy-
equivariant feature map, each group dimensional channel
of F corresponds to a particular element of the dihedral
group. Recall that reflection branch outputs in Eq. (6)
produce tensors Y, € RIPNXHXW for each component
k € {mid, p,0}. The 2N channels in this first dimension
can be thought of as N pairs, where each pair (i, i + N)
consists of a feature responding to some rotation ¢ and
its reflected version br’. To make use of the orientation-
specific information, we aggregate each such pair of
reflection counterparts into a single response, in a way that
preserves the feature’s equivariance under pure rotations.
For the midpoint score Y g and length Y ,, which are
unchanged by reflecting the image, we add the two re-
sponses. For the orientation output Yy, which flips sign

under reflection (an axis at angle 6 becomes —6), we sub-

) denote the

feature map for the i-th rotation channel and Y,EHN) the
corresponding reflection channel. We compute an aggre-

gated feature Y, with only N channels as:

tract the reflected response. Formally, let Y,(.f

[Cn |
Vo= @ WeYs Y ) e MY Y]] L )
i=1
where ®,, is the pairwise aggregation operator defined as
@, = + for k € {mid, p} and ®, = — for k = . Rather
than directly adding or subtracting feature maps which dis-
cards useful details, we apply a learnable transformation N,
to extract and reweight information from each channel be-
fore combining, while preserving both the reflection trans-
formation properties and C y-equivariance.

Orientational anchor construction. Even after merging
reflection pairs, there remains an ambiguity in the orienta-
tion representation: a line at orientation 6 is equivalent to
the one at 6 4 , since both describe the same physical axis
line. To address this ambiguity, we combine the aggregated
response at rotation channel index « with that at o + N /2 to
produce Oy = [Opia; O,; Op] € RION/2XHXWXS

On,a :?/{,a""YK,aJrN/m @ = 13-“7%7 17

for each component x € {mid, p,0}. Each anchor O,
specializes in detecting axes with orientation offsets within
[— %, %) from its base orientation 2%2. We predict offsets
rather than absolute orientations to directly adapt invariant
orientation regression values across different anchor orien-
tations. At each position (a,z,y), an axis is represented
as (o, z,y,p, p,0), where the output O, 5,y = (p,p,0)

determines its start and end points as:

Ts o0 To p (cos(0y)
Y= =1 18
|:ys,o¢:| [ya] T3 {sm((?a)] ’ (18)
To o T p cos(@a)]
= —= . , 19
[ye,a} [ya] 2 Lm(%) )
where 0, = 2“70‘ + 6 represents the absolute orientation.

4.3. Reflectional matching

Reflection symmetry can be validated by comparing a pat-
tern with its mirrored counterpart, known as reflectional
matching [3, 37]. Unlike hand-crafted descriptors such as
SIFT [36], conventional neural features [13, 20] lack rota-
tion and reflection equivariance, limiting their effectiveness.
To address this, we leverage D y-equivariant features [5] for
reflectional matching, providing a strong cue for symmetry
detection. Fig. 4 (left) illustrates the detailed process.

For a feature fiber f € RCIP~| from a D y-equivariant
feature map F, its transformation under [ reflections and n
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rotations is:

fm) = @UDN (b'r™)f, € REIPN, (20)

where f, € RIP~| represents the group-equivariant subset
of the fiber, and f = [f",...,f/]T. Here, oR2n (b'r™)
denotes the regular representation of Dy for [ reflections
and n rotations. The group-aware similarity h between two

fibers £, f2 € RCIP~| is defined as:

h(f!, £?) € RC. (1)
@ ||f1||||f2H

To capture symmetry across orientations, reflectional simi-
larity scores are computed for each rotation, comparing ro-
tated and rotated-then-reflected fibers:

|[Cn|-1

refx: @ h

0 \n) F(l n)) e RCICNI7 (22)

where Fﬁ?’") and FS’") represent fibers at position x under
the regular representation for n rotations, with and with-
out reflection. The resulting similarity score map H €
RCICNIXHXW is equivariant under the dihedral group while
remaining reflection-invariant. To detect broader symme-
tries beyond single points, we extend matching to spatial
neighborhoods defined by a set of 2D offset vectors:

Qk:{<7’7.7)|laj€{_ka7k}}? (23)

where £ € N controls the neighborhood size. The neigh-
borhood similarity is computed as:

[Cn|-1
=) Z (0,n) (1,n) CICN]|
ret x @ Fx+r"(q)’ Fx+br" (q)) eR M@
qeQ n=0

where b'r™(q) denotes the transformed offset after n rota-
tions and [ reflections. To improve robustness, we use multi-
scale reflectional similarity features Hr(ekfl) HficM),
concatenated with the base feature map F' to capture sym-
metry across various spatial scales while preserving equiv-
ariance. The matching output is equivariant to D while
preserving reflection invariance, as demonstrated in the de-
tailed proof provided in the Supplementary Material.

4.4. Rotational matching

Rotation symmetry is identified by comparing a pattern with
its rotated version around its axis. Our rotational matching
module implements this by comparing features with their
rotated versions around each candidate center point (Fig. 4
right). An n -fold rotational symmetry remains invariant un-
der every 2™ rotation. To reduce redundancy in similarity

comparisons, we exploit the consistency of feature com-
parisons at fixed angular separations, requiring only L%J
unique comparisons instead of 5 C, feature pairs. The com-
plete rotational matching feature is computed as:

L5
Hox = P LELY ™) e RELEL (25)

m=1

which remains dihedral group-invariant, as similarity val-
ues are preserved. To extend matching to spatial neighbor-
hoods, we use the approach from Sec. 4.3:

FO™)

FOM ) ERELEL(26)

H = Y @h o0,

q€eQr m=1

Following the multi-scale approach in Sec. 4.3, we compute
features at multiple kernel sizes and concatenate them with
the pooled base feature map from Sec. 4.1, enabling precise
detection of rotation axis and fold classes. The resulting
output remains invariant to both rotation and reflection.

5. Experiments

5.1. Implementation details

Dataset. We use DENDI dataset [44], which provides an-
notations for reflection symmetry axes and rotation symme-
try centers with folds. Data augmentation includes flipping,
rotation, and color jittering. We extract 7k axis-annotated
and 8k rotation center-annotated masks from the training
set, pasting them onto other images without overlapping ex-
isting annotations. Adding 1-6 objects per iteration and re-
peating three times expands the dataset to approximately
30k training images. We also evaluate Fl-scores on re-
flection symmetry datasets SDRW [32] and LDRS [44] for
comparison with previous methods.

Evaluation metrics. For reflection symmetry, structural
Average Precision (sAP) [62] is adopted, where a predicted
axis is considered a true positive if d3+d3 < Tord?;; < 5
with at least 70% overlap within an annotated ellipse. Here,
dy and ds are endpoint distances between ground truth and
predicted axis, and dp,;q is the distance between ground
truth ellipse center and predicted axis midpoint. For rota-
tion symmetry, we evaluate SAP for the rotation axis with
threshold d2. ., < 7 and fold sAP, which also requires cor-
rect fold class predlction. Here, deneer denotes the distance
between predicted and ground truth rotation axes. Results
are reported at 7 = 5, 10, 15 pixels for both tasks. For com-
parison with heatmap-based methods, we report Fl-scores
after generating heatmaps by dilating ground-truth and pre-
dicted symmetry axes by 5 pixels. [15, 44].
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PMCNet[43] Ground truth

EquiSym[44]

PMCNet[43] EquiSym[44]

Figure 5. Qualitative comparison of symmetry detection methods. Our instance-wise approach produces clearer, more precise symmetry
instances compared to heatmap-based methods [43, 44], especially for smaller objects and complex scenes. Green lines in ground truth
and our results represent reflection axes, while red points represent rotation axes.

Model and training. We use a Dg-equivariant ResNet-
34 [5, 20] as the feature extractor. Both reflectional and
rotational matching modules employ multi-scale similarity
feature (1, 3, and 5). In the reflection branch, group convo-
lution [5] is implemented by rotating the image, permuting
group dimension channels, and applying standard convo-
lution. We chose this approach because the e2cnn [54]
framework does not natively support group convolution
for reflection-invariant dihedral groups, nor various opera-
tions such as deformable convolution [11] while preserving
equivariance. The model is trained for 100 epochs with a
batch size of 32 using AdamW [26], starting with a learning
rate of 103, which decreases % at epochs 50 and 75. Loss
weights are set as A, = 1 for length, Ay = 150 for orienta-
tion (to account for the radian scale), and A¢,1q = 2 for rota-
tion fold classification. Weighted binary cross-entropy with
a positive class weight of 3 is applied to £,,;q and Lio1q.

5.2. Evaluation of the proposed method

Reflection symmetry detection. As shown in the last row
of the Tab. 1, the proposed model achieves sAP scores of
18.7%, 22.7%, and 24.7% at 5, 10, and 15-pixel thresh-
olds on the DENDI dataset [44]. Fig. 5 demonstrates ro-
bust reflection symmetry detection across diverse scenes,
handling multiple orientations and scales, even in complex
backgrounds. The orientational anchor expansion resolves
overlapping midpoints, addressing a key challenge in axis-
level detection.

Rotation symmetry detection. The rotation symmetry
branch outputs classification scores for multiple folds. For

Ref. SAP (%)

Method @5 @10 @I5
Axis-level detection 6.2 9.3 11.2
+ Orientational anchors 16.6 199 21.1
+ Ref. matchy—q 176 207 21.8

+ Ref. matchy—o 1 184 220 23.7

+Ref. matchy—o,, 188 227 247

Table 1. Ablation results for reflection symmetry detection on the
DENDI dataset. Orientational anchors denotes our anchor expan-
sion approach, and Ref. matchy, represents reflectional matching
with kernel sizes 2k + 1. Best results are shown in bold.

center detection, we pool the maximum score as the cen-
ter probability for binary evaluation. In the last row of the
Tab. 2, we report both center sAP and fold sAP. Our method
achieves center sSAP scores of 36.8%, 39.1%, and 40.0%
and fold AP scores of 26.6%, 28.3%, and 28.9% at 5, 10,
and 15-pixel thresholds, respectively. Fold misclassifica-
tions primarily occur between 2-fold and 4-fold symmetries
(e.g., rectangles vs. squares). Fig. 5 shows robust detection
across complex scenes.

5.3. Ablation study

Reflection symmetry detection. We conduct ablation
studies on our reflection symmetry components in Tab. 1.
The baseline axis-level detection achieves SAP scores of
6.2%, 9.3%, and 11.2%. Adding orientational anchors sig-
nificantly improves performance, increasing sAP to 16.6%,
19.9%, and 21.1% by enabling orientation-specific feature
learning. Incorporating single-kernel reflectional matching
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Figure 6. Evaluation of our symmetry detection approach: (a) Precision-recall curves for reflection symmetry detection on SDRW [32],
LDRS [43], and DENDI [44] datasets, and rotation symmetry detection on the DENDI dataset; (b) Analysis of F1-score with varying axis
padding values(multiplied to image diagonal) on the SDRW dataset. For rotation symmetry evaluation on DENDI, we compare only with
EquiSym [44], as PMCNet [43] does not support rotation symmetry detection.

Method Center SAP (Fold sAP) (%)

@5 @10 @15
Axis-level detection  31.5(22.5) 34.7(24.6) 35.7(25.3)
+ Rot. matchy—g 35.9025.4) 37.8126.6) 37.027.2)
+ Rot. match,—g 1 36.2(26.2) 38.2(27.8) 37.4(28.1)
+ Rot. matchp—g12 36.826.6) 39.128.3) 40.0(28.9)

Table 2. Ablation results for rotation symmetry detection on the
DENDI dataset. Rot. matchy, represents rotational matching with
kernel sizes 2k + 1. Best results are shown in bold.

(k = 0) further boosts performance, achieving sAP scores
of 17.6%, 20.7%, and 21.8%. Expanding to multi-kernel
matching (K = 0, 1) enhances detection, reaching 18.4%,
22.0%, and 23.7%. The best performance is obtained with
k = 0,1,2, achieving sAP scores of 18.8%, 22.7%, and
24.7%. These results confirm that multi-scale reflectional
matching effectively captures symmetry patterns across dif-
ferent spatial scales.

Rotation symmetry detection. Tab. 2 shows the effec-
tiveness of our rotational matching approach. The baseline
axis-level detection achieves sAP scores of 31.5%, 34.7%,
and 35.7%, with fold sAP scores of 22.5%, 24.6%, and
25.3%. Adding single-kernel rotational matching (k = 0)
improves sAP by 4.4%, 3.1%, and 1.3%, with greater gains
at smaller thresholds (5 pixels), indicating better localiza-
tion. Expanding to multi-kernel matching (k = 0,1 and
k=0,1,2) further enhances performance. Our final model
achieves sAP scores of 36.8%, 39.1%, and 40.0%, with fold
SAP scores of 26.6%, 28.3%, and 28.9%, demonstrating the
effectiveness of rotational matching across scales.

5.4. Comparison with the state-of-the-art methods

F1-score. Tab. 3 shows F1-scores across multiple bench-
marks.  Our method outperforms previous work on
LDRS [43] (+3.4%) and DENDI [44] (+0.5%) for reflection
symmetry and achieves a significant gain(+4.4%) in rotation
symmetry detection on DENDI. For the SDRW [32], our
method (68.3%) is comparable to PMCNet (68.8%). This

Method Ref. F1 (%) Rot. F1 (%)
SDRW [32] LDRS [43] DENDI [44] DENDI [44]
PMCNet [43] 68.8 37.3 32.6 -
EquiSym [44] 67.5 40.0 36.7 22.4
Ours 68.3 434 37.2 26.8

Table 3. Comparison with the state-of-the-art methods using pixel-
wise Fl-score on multiple datasets. Ref. and Rot. denote reflec-
tion and rotation symmetry respectively. Best results in bold.

slight difference stems from the disparity between heatmap-
based segmentation and detection approaches. As shown in
Fig. 6(b), when the evaluation criterion becomes more strin-
gent (smaller padding values), our axis-level approach out-
performs PMCNet’s region-based predictions due to more
precise axis localization.

PR curve. Precision-recall curves in Fig. 6(a) further
highlight performance differences. Our method maintains
higher precision, especially in LDRS and DENDI. Unlike
pixel-level methods that boost recall by predicting all pix-
els, our approach models symmetry as geometric primitives,
where a single midpoint score affects the entire axis. This
results in higher precision but more variable recall. Post-
processing steps like Non-Maximum Suppression and score
thresholding further prioritize precision over recall.

6. Conclusion

We have introduced a dihedral group-equivariant approach
for axis-level symmetry detection, representing symmetries
as geometric primitives instead of pixel-level heatmaps.
Our method integrates orientational anchors and reflectional
matching for reflection symmetry detection, and invariant
rotational matching for rotation symmetry detection to cap-
ture symmetry across orientations and scales. Experiments
demonstrate superior performance over existing methods,
with ablations validating the effectiveness of our approach.
Future work can extend our model to continuous groups, 3D
spaces, and varying viewpoints for real-world applications.
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