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ABSTRACT
Reconstructing visual stimuli from brain activities is crucial for
deciphering the underlying mechanism of the human visual sys-
tem. While recent studies have achieved notable results by lever-
aging deep generative models, challenges persist due to the lack
of large-scale datasets and the inherent noise from non-invasive
measurement methods. In this study, we draw inspiration from the
mechanism of human memory and propose BrainRAM1, a novel
two-stage dual-guided framework for visual stimuli reconstruction.
BrainRAM incorporates a Retrieval-Augmented Module (RAM) and
diffusion prior to enhance the quality of reconstructed images from
the brain. Specifically, in stage I, we transform fMRI voxels into the
latent space of image and text embeddings via diffusion priors, ob-
taining preliminary estimates of the visual stimuli’s semantics and
structure. In stage II, based on previous estimates, we retrieve data
from the LAION-2B-en dataset and employ the proposed RAM to
refine them, yielding high-quality reconstruction results. Extensive
experiments demonstrate that our BrainRAM outperforms current
state-of-the-art methods both qualitatively and quantitatively, pro-
viding a new perspective for visual stimuli reconstruction.
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• Computing methodologies → Visual content-based index-
ing and retrieval; Reconstruction; Cognitive science.

KEYWORDS
Retrieval-AugmentedGeneration, Neural Decoding, Brain-Computer
Interface

∗Corresponding Author.
1Code is available at https://github.com/HQ406/BrainRAM.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3681296

ACM Reference Format:
Dian Xie, Peiang Zhao, Jiarui Zhang, Kangqi Wei, Xiaobao Ni, and Jiong
Xia. 2024. BrainRAM: Cross-Modality Retrieval-Augmented Image Recon-
struction from Human Brain Activity. In Proceedings of the 32nd ACM
International Conference on Multimedia (MM ’24), October 28-November
1, 2024, Melbourne, VIC, Australia. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3664647.3681296

1 INTRODUCTION
"What you see is what you get." The cognitive function of humans
is closely intertwined with the visual system [51]. People capture
information about the external world through their eyes and obtain
corresponding perceptions through prior knowledge and memory
within their minds [4, 12]. Understanding the intricate visual pro-
cess occurring in the human brain has long been a hot topic in
cognitive neuroscience. Within this overarching topic, decoding
visual stimuli from functional magnetic resonance imaging (fMRI)
represents one of the most challenging issues that has garnered
extensive attention [10, 12, 20, 29, 30, 36, 44].

Early attempts [18, 29, 32] demonstrated the feasibility of de-
coding visual images. However, the results were primitive and ab-
stract due to the limited expressive ability of traditional regression
methods. Over the last few years, with the prosperity of Artifi-
cial Intelligence Generated Content (AIGC), a series of methods
[3, 9, 20, 43, 44] adopt generative models to decode visual activities.
Shen et al. [44] and Ozcelik et al. [34] have employed Generative
Adversarial Network (GAN) [16] to reconstruct stimulus. More
recent works [8, 23, 28, 42, 47, 49, 55] leverage diffusion models
[11, 19, 39, 56] to generate high-quality images corresponding to
the original visual stimuli. However, fMRI is a transient response to
human brain activity, which does not adequately reflect the role of
past human knowledge and memory in the cognitive process. It also
inherently contains some physiological noise unrelated to visual
stimuli. As shown in Fig 2, relying solely on fMRI for decoding will
inevitably lead to semantic and structural inconsistency.

The recent study by Scotti et al. [42] observed that images based
on the retrieval of brain activities tend to be more realistic than the
reconstructed ones. However, this observation has not been thor-
oughly explored and leveraged. Meanwhile, Retrieval-Augmented
Generation (RAG) has achieved impressive success in generative
models [5, 45, 46, 52, 54, 57]. It introduces an information retrieval
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Figure 1: Different perspectives on visual stimuli reconstruc-
tion. Previous methods overlooked the transient character-
istics of fMRI and did not consider the impact of human
memory on visual perception.

process that enhances generated results by retrieving relevant ob-
jects from a large dataset, thereby improving accuracy and robust-
ness. This parallels human cognitive and memory functions, where
individuals with rich knowledge and experience tend to describe ob-
jects more accurately than those with limited experience. Moreover,
the introduction of RAG can compensate for limited training sam-
ples with the support of massive data. Therefore, we believe that
RAG is an effective means to improve the quality of reconstruction.

In this paper, we propose a novel framework for visual stimuli
reconstruction called BrainRAM, which aims to produce more faith-
ful reconstructions by imitating human memory mechanisms. In
stage I, we project fMRI voxels into the representation space of
images and text separately, transforming them into corresponding
features using diffusion priors. These features serve as preliminary
estimates of visual stimuli. To further enhance alignment and alle-
viate inconsistency, we introduce the Retrieval-Augmented Module
(RAM) to select and integrate features between preliminary esti-
mates and retrieved samples. In stage II, we retrieve samples from
the LAION-2B-en dataset [41] based on prior output features. These
features, along with the retrieved samples, collaboratively predict
the image and text features of the visual stimuli in RAM. We il-
lustrate the differences between BrainRAM and previous methods
briefly in Figure 1. Extensive experiments have demonstrated that
our method outperforms state-of-the-art methods. Two examples
in Figure 2 also showcase the superiority of BrainRAM.

In summary, our main contributions are formulated as follows:

Ground-Truth Ours Takagi et al. Brain-diffuser MindEye

Figure 2: A brief comparison of reconstruction results from
BrainRAM, Takagi et al. [49], Brain-diffuser [35], and Mind-
Eye [42]. Inconsistency still exists in many recent works.

• We propose BrainRAM, a novel framework for visual stimuli
reconstruction, which utilize Retrieval-Augmented Gener-
ation (RAG) and general visual-linguistic data to produce
photo-realistic results.

• BrainRAM features an image-text dual-guided framework
and a Retrieval-Augmentation Module (RAM). The dual-
guided framework leverages both image and text features
simultaneously to accurately estimate the semantic and struc-
tural aspects of the visual stimuli. The proposed RAM pro-
vides an unprecedented perspective on visual stimuli recon-
struction by mimicking human memory and using retrieved
samples to refine reconstruction results.

• We conduct thorough experiments to demonstrate the effec-
tiveness of the visual-linguistic dual-guidance and retrieval-
augmentation. It achieves state-of-the-art in reconstruction
and retrieval compared to current reconstruction-only meth-
ods.

2 RELATEDWORKS
2.1 Visual stimuli reconstruction
Neural decoding from visual stimuli has captivated researchers
many years. Several early studies have demonstrated the possibility
of decoding visual information from brain activity patterns mea-
sured using functional magnetic resonance imaging (fMRI). Nase-
laris et al. [31] showed that natural images can be reconstructed
from fMRI data using a linear decoder. Kay et al. [21] used a sup-
port vector machine to decode the orientation of gratings based
on activity patterns in the early visual cortex. Nishimoto et al. [32]
used natural scences as visual stimuli. However, traditional visual
stimuli reconstruction methods [10, 14, 21, 30–32] only rely on
linear regression models to fit fMRI data with paired images. The
results were abstract and blurry due to the limited expressive ca-
pabilities of regression models. In recent years, a series of studies
[3, 20, 26, 43, 44] have delved into the potential of harnessing deep
learning algorithms to unravel visual information within the human
brain. Beliy et al. and Gaziv et al. [3, 15] employed encoder-decoder
structure to align image representations with fMRI voxels. Shen
et al. [44] fed the predicted features into GAN to reconstruct orig-
inal visual stimuli. Ozcelik et al. [34] used a regression model to
extract fMRI features and fine-tuned a pre-trained conditional big-
GAN. The introduction of diffusion model [11, 19] and Contrastive
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Language-Image Pre-training (CLIP) [37] provides powerful tools
for this task. Takagi et al. [49] use regression model to mapping
fMRI to image and text features of Stable Diffusion [39]. Chen et
al. [8] use Masked Aucoencoder (MAE) to extract fMRI feature and
fine-tuned a LDM to reconstruct stimulus. Lu et al. [28] controlled
the semantic and structure of the results by mapping fMRI vox-
els to CLIP features and VQ-VAE latent features. Scotti et al. [42]
leverage diffusion prior from DALL-E 2 [38] to transform fMRI to
image representations. These methods have achieved impressive
results in visual stimuli reconstruction. But the above methods have
limitations in image fidelity and semantic accuracy, resulting in
unreliable reconstruction results.

2.2 Retrieval-Augmented Generation
Recently, the use of external memory to enhance large models has
attracted attention. Typically, adding more training data can im-
prove model’s performance. But it is inefficient to collecting data
and retraining a model with a large number of parameters. In natu-
ral language processing (NLP), Wu et al. [54] proposed a memory
transformer to store information from past inputs. Querying in the
memory component could improve performance many downstream
tasks. Several studies [46, 52] also introduced retrieval-augmented
generation in computer vision. They use the retrieved data to gen-
erate high fidelity and faithful images. RetrieveGAN [52] used a
differentiable retrieval module to generate images based on scene
descriptions. IC-GAN [7] trained a GAN using the neighborhood
of the training image and generate samples by adjusting individ-
ual instances from the training data. KNN-diffusion [45] trained
diffusion based models using large-scale retrieval methods with-
out any textual data. The model is conditioned on text or image
feature extracted by CLIP, and use k retrieved embeddings from
a large dataset to generate images. RDM [5] combines small diffu-
sion or autoregressive models with large external image datasets to
form a semi parametric model. The model retrieves a set of nearest
neighbors for each training image from the dataset and adjusts the
diffusion model based on their CLIP embeddings.

These studies have proved that retrieving samples from large
datasets can enhance the generation quality. But prior works of
neural decoding only focus on aligning fMRI with image or text
features directly. As far as we know, BrainRAM is the first method
to integrate retrieval-augmentation into visual stimuli reconstruc-
tion, which utilize retrieved samples to achieve higher fidelity and
semantic accuracy in reconstructions.

3 METHOD
3.1 Overview
In this subsection, we give a detailed analysis of the fMRI data and
visual-linguistic representations that inspire our method’s design.

As a non-invasivemeasurement, fMRImeasures the blood-oxygen-
level-dependent (BOLD) level in every brain voxels, indirectly re-
flecting the intensity of activity in brain regions. The neural activity
in the brain often exhibits certain clustering characteristics in space,
where similar neurons participate in processing similar informa-
tion. Therefore, when a brain region is activated, it usually leads to
changes in the blood oxygen levels of that region and its surround-
ing areas, resulting in signals with similar amplitudes between

adjacent voxels in fMRI. Therefore, the spatial representation of
fMRI is sparse. Besides, it is inherently noisy because fMRI not only
records brain activity induced by visual stimuli, but also signals
from other physiological and cognitive processes. Therefore, we
need to compress fMRI voxels into a denser representation space
and utilize RAG on general visual-linguistic data to overcome the
inherent noise of fMRI.

Driven by the analysis above, we propose our two-stage dual-
guided framework, which illustrated in Fig 3. In stage I, the fMRI
signals are projected and transformed into image/text representa-
tions with diffusion prior. The predicted embedding will serve as a
query to find k-nearest-neighbour of image-text pairs in LAION-
2B-en dataset in stage II. Then, the retrieved data and the predicted
embedding will be fed into the retrieval-augmentation module to
generate a further refined embedding. Finally, the refined image/text
embeddings will jointly guide the image generation in Versatile
Diffusion dual-guided pipeline.

3.2 Stage I: Brain-visual-linguistic Consistency
As mentioned in 3.1, fMRI signals have sparse representations just
like images. Therefore, it is necessary to project it onto a tighter,
shared feature space through contrastive learning. The success
of Contrastive Language-Image Pre-Training (CLIP) [37] proves
that images and text could essentially share same representations.
However, the final representation space of CLIP itself is too small
(1 × 768), making it difficult to recover the original details from
shared features. Aligning tightly on a larger representation space
will be more feasible for our goal. Meanwhile, previous studies have
proved the effectiveness of diffusion prior to transfer features and
reconstruct between modalities [13, 38, 42]. As a result, we adopt
diffusion prior as backbone to maintain the consistency between
fMRI and image/text representations.

Consider the triplet dataset Ω = {𝑆𝑖 ,𝑉𝑖 ,𝑇𝑖 }𝑛𝑖=1 of { fMRI, image,
captions }. The fMRI data 𝑆𝑖 ∈ R1×𝑁 is pre-processed fMRI beta
values. The beta value is obtained by weighted average on the blood
oxygen level response throughout the entire experiment, avoiding
processing more sparse and lengthy temporal data in subsequent
analysis. The fMRI data was flatten as a 1D series based on the
region of interest (ROI) on visual cortex, 𝑁 denotes the number of
voxels in the ROI. 𝑉𝑖 ∈ R𝐻×𝑊 ×3 denotes visual stimuli presented
to the subject, and𝑇𝑖 is corresponding COCO captions of the visual
stimuli.

We adopt the pre-trained image encoder E𝑖𝑚𝑔 (·) and text en-
coder E𝑡𝑥𝑡 (·) of CLIP to extract image and text features. However,
instead of direct using the final outputs of the encoder (1× 768), we
use the last hidden layers as the mapping target of fMRI (257 × 768
for image feature, and 77 × 768 for text feature), avoiding overly
tight spatial constraints on expression ability.

At first, the fMRI data will pass a MLP projection layer and subse-
quent mamba blocksΦ𝑝𝑟𝑜 𝑗 (·) to projected into a intermediate space
(e.g. 257 × 768 or 77 × 768). Then the diffusion prior will generate
corresponding target feature (E𝑖𝑚𝑔 (𝑉𝑖 ) or E𝑡𝑥𝑡 (𝑇𝑖 )) from Gaussian
noise conditioned on Φ𝑝𝑟𝑜 𝑗 (𝑆𝑖 ). In forward diffusion process, the
sample at each time point is defined as:

x𝑡 =
√
𝛼𝑡x0 +

√
1 − 𝛼𝑡𝜖𝑡 , (1)
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Figure 3: Overview of our proposed BrainRAM. E𝑖𝑚𝑔 and E𝑡𝑥𝑡 represents CLIP image encoder and text encoder, respectively. In
stage I, we transform fMRI voxels into corresponding image and text features via diffusion prior. In stage II, we use RAM to
combine prior features and retrieved samples, and then refine the final output.

where x0 is target GT feature, 𝛼𝑡 represents the noise variance
schedule and 𝑡 ∈ {0, 1, . . . ,𝑇 } [39]. The inverse diffusion process
will apply a attention-based U-Net 𝑓𝜃 (x𝑡 , 𝑡,Φ𝑝𝑟𝑜 𝑗 (𝑆𝑖 )) to gradually
recover the original input x0 from noisy x𝑇 . Specifically, the condi-
tional information Φ𝑝𝑟𝑜 𝑗 (𝑆𝑖 ) is incorporated in the cross-attention
module of 𝑓𝜃 :

CrossAttention (𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇√
𝑑

)
𝑉 ,

𝑄 =𝑊
(𝑖 )
𝑄
𝜑𝑖 (x𝑡 ) , 𝐾 =𝑊

(𝑖 )
𝐾

Φ𝑝𝑟𝑜 𝑗 (𝑆),𝑉 =𝑊
(𝑖 )
𝑉

Φ𝑝𝑟𝑜 𝑗 (𝑆),
(2)

where 𝜑𝑖 (x𝑡 ) indicates intermediate features of U-Net [40] and
𝑊

(𝑖 )
𝑄

,𝑊 (𝑖 )
𝐾

,𝑊 (𝑖 )
𝑉

denote trainable attention projection matrices.

We use InfoNCE loss [33] to align the representations of fMRI
to target features:

LInfoNCE = − 1
𝐵

𝐵∑︁
𝑖=1

log
exp (𝑝𝑖 · 𝑐𝑖/𝜏)∑𝐵
𝑗=1 exp

(
𝑝𝑖 · 𝑐 𝑗/𝜏

) , (3)

where 𝑝 denotes the output of diffusion prior, 𝑐 denotes aligned
target, 𝜏 is a temperature hyperparameter. It has 1 positive and
𝐵 − 1 negative samples in batch size of 𝐵. We also incorporate
Mean Square Error (MSE) loss to improve retrieval performance in
subsequent stage, with a hyperparameter 𝛾 to balance these two
losses in Eq 6.

Due to the limitation of limited number of training samples of
brain-image-text triplet compared to the contrastive learning in
CLIP, we adopt the MixCo [22] augmentation strategy to improve
the robustness. Given two fMRI data 𝑆𝑖 and 𝑆𝑘 , the convex mixture
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are given by:
𝑆𝑚𝑖𝑥𝑖,𝑘 = 𝜆𝑖 · 𝑆𝑖 + (1 − 𝜆𝑖 ) · 𝑆𝑘 , (4)

where 𝑆𝑘 is a arbitrary sample shared the same batch with 𝑆𝑖 . Let 𝑝∗𝑖
be the diffusion prior output from 𝑆𝑚𝑖𝑥𝑖,𝑘 , and 𝑐 is the corresponding
target feature, the MixCo loss is given by:

LMixCo = −
𝑛∑︁
𝑖=1

𝜆𝑖 · log
exp

(
𝑝∗
𝑖
· 𝑐𝑖/𝜏

)∑𝐾
𝑗=0 exp

(
𝑝∗
𝑖
· 𝑐 𝑗/𝜏

)
+ (1 − 𝜆𝑖 ) · log

exp
(
𝑝∗
𝑖
· 𝑐𝑘/𝜏

)∑𝐾
𝑗=0 exp

(
𝑝∗
𝑖
· 𝑐 𝑗/𝜏

)  .
(5)

With introduced hyperparameter 𝛽 to control the intensity of
LMixCo , the total loss of stage I can formulated as:

Ltotal1 = 𝛾LInfoNCE + (1 − 𝛾)LMSE + 𝛽LMixCo . (6)

3.3 Stage II: Retrieval-Augmentation
In this stage, we proposed Retrieval-Augmentation Module (RAM),
which illustrated in Fig. 3 (c), to incorporate massive real-world data
into the generated results. Unlike other retrieval-augmented image
generative models, which require to train the entire diffusion model,
we utilize RAM in embedding level that can directly applied to the
existing model. To enable the module adaptively select feature from
the retrieved data, we perform an automatic selection contain two
operations: Divide and Fuse [25]. Note that the diffusion prior and
fMRI projection block are frozen in this stage.

Divide. Let 𝑝 ∈ R𝑇×𝐷 be the output of diffusion prior, where
𝑇 is the number of tokens (257 for image and 77 for text) and 𝐷
is the dimension of tokens (typically 768). The 𝑝 will serve as a
query in LAION-2B-en, and retrieve 𝐾 embeddings {𝑐𝑖 }𝐾𝑖=1 based
on the similarity between 𝑐𝑖 and 𝑝 . Every 𝑐𝑖 is performed cross-
attention with 𝑝 separately, with query from 𝑝 , key and value from
𝑐𝑖 . Note that 𝑝 also performed self-attention too. These operations
will generate 𝑘 + 1 attention maps, denoted as:

𝑢𝑐𝑖 = CrossAttention (𝑄𝑝 , 𝐾𝑐𝑖 ,𝑉𝑐𝑖 ),
𝑢𝑝 = SelfAttention (𝑄𝑝 , 𝐾𝑝 ,𝑉𝑝 ),
U =

[
𝑢𝑝 , 𝑢𝑐1 , 𝑢𝑐2 , . . . , 𝑢𝑐𝐾

]𝑇
,

(7)

where 𝑢𝑝 , 𝑢𝑐𝑖 ∈ R𝑇×𝐷 , U ∈ R(𝐾+1)×𝑇×𝐷 . The weights are shared
between cross-attention and self-attention.

Fuse. To integrate information from 𝐾 + 1 features, we averaged
them firstly:

𝑢 =
1

𝐾 + 1
(𝑢𝑝 +

𝐾∑︁
𝑖

𝑢𝑐𝑖 ). (8)

Then, we apply different tiny MLP F𝑖 (·) to extract sample-specific
information from the compact 𝑢 separately:

Z =


F1 (𝑢)
F2 (𝑢)
. . .

F𝐾+1 (𝑢)

 , 𝑖 = 1, 2, . . . , 𝐾 + 1. (9)

where Z ∈ R(𝐾+1)×𝑇 .

To acquire the guidance for adaptive selection from different
samples, we apply softmax to the first dimension of Z:

Z̃ = softmax(Z) . (10)

where the first dimension of Z̃ are weights for feature from different
tokens. Let 𝑞 ∈ R𝑇×𝐷 be the final output of RAM, every element in
𝑞 is given by:

𝑞𝑖 𝑗 =

𝐾+1∑︁
𝑘

𝑇∑︁
𝑖

Z̃𝑘𝑖 · U𝑘𝑖 𝑗 , 𝑗 = 1, 2, . . . , 𝐷, (11)

which represents weighted average for every token on different 𝑢.
To ensure the reconstruction results won’t get worse with RAM,

we consider the optimization objective of 𝑞 as residual between
prior output 𝑝 and ground truth embedding 𝑐 , whichmeans 𝑐 = 𝑝+𝑞
in the most ideal situation. Besides, the initial weight of the last
dense linear layer in Attention is zero-initialized, which means
the initial output of RAM is zero, to protect 𝑝 from the damage of
random initialization. Considering that the residual on embedding
is relatively small, we use the loss with smaller 𝛾 value compared
to stage I:

Ltotal2 = 𝛾LInfoNCE + (1 − 𝛾)LMSE . (12)

4 EXPERIMENTS
4.1 Dataset
We employ the Natural Scenes Dataset (NSD) [1] for this study.
NSD is the largest known dataset that using 7T scanner to acquire
visual-evoked fMRI response from 8 subjects. Each subject was pre-
sented about 10,000 different natural images multiple times during
30 to 40 sessions, with whole-brain gradient-echo EPI at 1.8mm
isotropic resolution and 1.6s TR for scanning. The natural images in
the paradigm are sourced from Common Objects in Context dataset
(COCO) [27], which have 5 or 6 captions correspondingly for each
image. In this study, we only focused on 4 subjects (subj01, subj02,
subj05, and subj07) out of 8, since they have completed all scan-
ning sessions. Same as other experiment, we use nsdgeneral mask
to select ROI, which provide a general ROI that covering voxels
responsive to the NSD experiment in the posterior aspect of cortex.

4.2 Implementation Details
We follow the same train-test splits in NSD, with 8,859 image stimuli
for training and 982 for testing for each subject. Also, we averaged
response for image with multiple fMRI trials, and the target text
feature are averaged on multiple captions.

In stage I, we training image diffusion prior and text diffusion
prior separately for 180 epochswith batch size of 32.We use AdamW
optimizer with default parameters and one-cycle learning rate
2.5 × 10−4. The loss hyperparameter 𝛾 and 𝛽 are set as 0.8, 0.3
respectively. In stage II, we use clip-retrieval tool [2] to retrieve
data in LAION-2B-en. Due to the randomness of diffusion prior
output, we reconstruct 4 priors per image stimuli, and each prior
was retrieved for another 4 samples. We apply zero-initialization
to the last dense linear layer of Attention in RAM. Training for 120
epochs with batch size of 256, and default AdamW optimizer with
fixed learning rate 2.5 × 10−4. The loss hyperparameter 𝛾 is 0.2.
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Figure 4: Visual comparison of reconstruction results.

Method Low-Level High-Level

PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓
Lin et al. [26] - - - - 78.2% - - -

Takagi et al. [49] .148 .285 71.9% 74.8% 64.5% 63.3% .953 .684
Gu et al. [17] .150 .325 - - - - .862 .465

Brain-diffuser [35] .136 .321 81.1% 85.9% 75.9% 73.8% .895 .548
MindEye [42] .182 .358 88.9% 92.4% 88.2% 90.0% .719 .422

BrainRAM (Ours) .176 .342 89.9% 95.7% 92.6% 94.1% .666 .381

Table 1: Quantitative evaluation of reconstruction results. The best performance is highlighted in bold, while the second
performance is highlighted with underline. Missing values are from papers not reporting all metrics or metrics being non-
applicable.

4.3 Evaluation Metrics
Due to inherent noise in current measurement method, it is impos-
sible to reconstruct all details of the image from fMRI with complete
accuracy. As a result, we mainly focus on semantic consistency in
this task. But for the sake of fairness, we still use some low-level
metrics in accordance with previous studies [35, 42]. Specifically, for
high-level metrics, we use two-way comparison of the last hidden
layer of CLIP image encoder E𝑖𝑚𝑔 (·), denoted as CLIP [37]. EffNet-
B and SwAV indicate the average correlation distance gathered from
EfficientNet-B1 [50] and SwAV-ResNet50 [6], correspondingly. In-
ception represents the two-way comparison of the last pooling layer
of InceptionV3 [48]. In low-level metrics, the Structural Similarity
Index (SSIM) [53] measures the similarity between two images. Pix-
Corr indicates pixel-level correlation between the reconstructed
and ground-truth images. AlexNet(2) and AlexNet(5) represent two-
way comparisons of the second and fifth layers of AlexNet [24],
respectively.

5 RESULTS
5.1 Reconstruction Results
In this section, we compared our BrainRAM with other five state-
of-the-art methods: Lin et al. [26], Takagi et al. [49], Gu et al. [17],
Brain-diffuser [35], andMindEye [42]. Due to somemethods’ results

were based on experiments conducted on subj01, for the sake of
fairness, if not specified, all our experiments were conducted on
subj01. The quantitative performance of each model are presented
in Tab 1. Our method outperforms in all high-level metrics and
part of low-level metrics. Especially in CLIP similarity, BrainRAM
earn 4.1%, 20.3%, and 32.8% performance gains over previous state-
of-the-art MindEye [42], Takagi et al. [49], and Brain-diffuser [35],
which proves that our method has achieved significant success in
high-precision semantic information extraction.

In addition to quantitative metrics, several visual cases are also
illustrated in Fig 4 that are consistent with numerical findings. For
an example, in the first row of Fig 4, other methods did not ac-
curately capture semantic information, which misidentified the
elephant in GT as a dog (Takagi et al. [49]) or zebra (MindEye
[42]). Alternatively, Brain-diffuser [35] can’t accurately reconstruct
the structure of the elephant. Besides, for the Red double-decker
bus, other methods can only reconstruct it as a public transporta-
tion vehicle. In contrast, BrainRAM precisely reconstructs the red
double-decker bus with its unique structure and semantic informa-
tion. These results indicate that BrainRAM could produce results
that are consistent with the visual stimuli in terms of semantics
and structure.
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Ground-Truth Ours MindEye
Top 1 Top 2 Top 3 Top 4 Top 1 Top 2 Top 3 Top 4

Figure 5: Visual comparison of retrieved results on LAION-2B-en. The first column represents the original visual stimuli
presented to the subject. The second to fifth columns and sixth to ninth columns represents retrieved images based on MindEye
and BrainRAM, respectively. The similarity of the four retrieved images is arranged in descending order from left to right.

Method High-Level Image↑ Brain↑
Incep↑ CLIP↑ Eff↓ SwAV↓

Lin et al. [26] - - - - 11.0% 49.0%
Brain-diffuser [35] - - - - 21.1% 30.3%
MindEye [42] 86.7% 86.5% .724 .457 89.8% 85.3%

Ours (w/o RAM) 87.4% 88.9% .737 .481 90.1% 84.6%
BrainRAM (Ours) 88.1% 91.0% .726 .444 93.4% 90.3%

Table 2: Quantitative evaluation of retrieval results. The first
four columns refer to high-level metrics computed on re-
trieved images from LAION-2B-en. The last two columns
represent image retrieval and fMRI retrieval performance
on the test set.

5.2 Retrieval Results
In this subsection, we will demonstrate the performance of test set
retrieval and LAION retrieval separately.

Test set retrieval. Test set retrieval contain fMRI retrieval and
image retrieval. Image retrieval means retrieving the image em-
bedding with the highest CLIP similarity based on predicted out-
put embedding from fMRI in the test set. The image retrieval is
considered correct if a paired image embedding is retrieved, and
vice-versa for fMRI retrieval. Follow the same settings of previous
studies [26, 42], we randomly select 300 image-fMRI pairs in the test
set of NSD, and computing image embeddings and corresponding
output embeddings from fMRI voxels. The quantitative results are
presented in Tab 2. Compared to previous studies, our retrieval
accuracy improved significantly for both image and brain retrieval
ways, with 3.6% and 5.7% superiority over MindEye [42].

LAION retrieval. LAION retrieval refers to image retrieval on
LAION-2B-en [41], which can reflect the model’s potential to cap-
ture visual information from fMRI from another perspective. For an
output embedding, we could query K-nearest neighbours to retrieve

images most relevant to the model’s prediction. Given the emphasis
on semantic relevance in embedding-based retrieval, we only focus
high-level image evaluation metrics. We calculate 16 output em-
beddings per fMRI data, and retrieve 16 images with highest CLIP
similarity in correspondence to the outputs. Experiment results in
Tab 5 shows that our BrainRAM outperforms MindEye [42] in most
of high-level metrics. And indicate introducing text guidance is ef-
fective in improving the capability of capture semantic information,
compared to MindEye solely relied on image guidance. Also, most
of performance still remains better than MindEye even without our
proposed RAM. The visual comparison of retrieved results in Fig 5
also demonstrates the effectiveness of our method.

5.3 Ablation Studies
In this subsection, we further conduct comprehensive experiments
to verify the validity of each component in the model. All quantita-
tive performance can be found in Tab 3.

Effect ofmodel architecture.Obviously, as shown in the Tab 3,
the introduction of RAM significantly increases the reconstruction
performance of the model. It can also be observed that even using
predicted features directly to reconstruct visual stimuli in stage I can
surpass MindEye in most of high-level metrics. We also conduct ex-
periments to compare our proposed RAM with other feature fusion
methods: Average, 1x1 Convolution, and Cross-Attention. Average
means directly average on all features. 1x1 Convolution represents
use a 1x1 convolution kernel to merge all features. Cross-Attention
means the prior output serves as query, and other retrieved embed-
dings serve as keys and values. Presented in Tab 4, RAM surpasses
all other feature fusion methods in all metrics. RAM leverages
Divide and Fuse operations to select features from retrieved embed-
dings and prior output, thus enhance reconstruction using retrieved
information. It also ensures that the performance of the model will
not decrease after adding RAM.

As mentioned in Sec 3.2, we used several Mamba blocks after
the MLP projection layer, instead of purely using MLP in the fMRI
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Variants Low-Level High-Level

MambaBlock RAM ImageGuide TextGuide Dataset PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓
✓ ✓ N/A .161 .317 83.2% 89.3% 85.1% 90.1% .823 .412

✓ ✓ ✓ N/A .183 .328 84.3% 93.4% 88.3% 91.2% .711 .412
✓ ✓ ✓ 2B-en .170 .337 87.6% 92.7% 85.1% 90.1% .823 .419
✓ ✓ ✓ 2B-en .165 .320 82.9% 88.4% 90.1% 91.3% .709 .397
✓ ✓ ✓ ✓ 400M .174 .345 89.3% 93.2% 90.3% 92.2% .679 .393

✓ ✓ ✓ ✓ 2B-en .176 .342 89.9% 95.7% 92.6% 94.1% .666 .381

Table 3: Ablation study onmodel architecture, dual-guidance, and retrieval dataset. The column of Dataset refers to the retrieval
LAION dataset the model based on, N/A means retrieval didn’t involve in this process.

Fusion method Low-Level High-Level

PixCorr↑ SSIM↑ Alex(2)↑ Alex(5)↑ Incep↑ CLIP↑ Eff↓ SwAV↓
Average .153 .298 82.3% 87.4% 84.3% 85.2% .806 .526
1x1Conv .162 .326 86.5% 92.8% 90.8% 89.7% .687 .407

Cross-Attention .178 .332 87.9% 93.9% 91.4% 90.2% .677 .392

RAM (Ours) .176 .342 89.9% 95.7% 92.6% 94.1% .666 .381

Table 4: Effectiveness of RAM. We conduct experiments using different feature fusion methods to integrate prior outputs and
retrieved samples.

projector. Experiments in the first and second row of Tab 3 have
shown that replace MLP backbone with Mamba blocks achieved
improvement in high-level metrics.

Effect of image text dual-guidance. Intuitively, text contains
richer semantic information, thus could enhance the semantic fi-
delity of reconstructed image. Results from the third and fourth
row in Tab 3 also verified that idea. Our BrainRAMmaintain higher
semantic superiority than solely relied on image guidance. It is also
impractical to reconstruct image with text guidance only. Since
text is on semantic-level, which may not be able to provide de-
tails in the image. Furthermore, due to the ambiguity of language
representation, RAM has limited effectiveness in this situation.

Effect of retrieval dataset. When using RAM, we default to
retrieve sample on LAION-2B-en. To examine the impact of re-
trieval datasets on model performance, we conduct experiments
with different retrieval dataset. Specifically, we re-trained RAM on
LAION-400M, and results could be found in the second to the last
row of Tab 3. We observed that when retrieving on LAION-400M,
the model’s performance also increased, but not significant like
retrieving on LAION-2B-en. On the one hand, smaller data size
reduces data diversity in the retrieved samples. If retrieving on a
larger dataset, it may even be possible to retrieve ground-truth stim-
uli based on prior output (like in Fig 5), which would be very helpful
for reconstruction. On the other hand, captions from LAION-2B-en
are only in English. LAION-400M contains multi-language captions
that may cause confusion for CLIP text encoders, since CLIP are
trained on image-text pairs with English captions.

6 CONCLUSION
In this study, we propose a two-stage dual-guided visual stimuli
reconstruction framework called BrainRAM. In stage I, we first
project the fMRI signal and then convert it into CLIP text image fea-
tures through diffusion prior. In stage II, we retrieve samples from
LAION-2B-en to refine prior outputs, and use Versatile Diffusion to
reconstruct visual stimuli. Experiments have shown that BrainRAM
outperforms current state-of-the-art methods both qualitatively
and quantitatively in reconstruction and retrieval. In addition, we
provide a completely new perspective for this task: introducing
retrieval-augmented generation into visual stimuli reconstruction
can help improve image fidelity and semantic accuracy. For future
work, we believe that cross-subject decoding would be a promising
direction. By utilizing the responses of different subjects in multiple
datasets, we can further understand the visual mechanisms of entire
humanity.
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