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Abstract

Reinforcement learning algorithms are widely used in domains where it is desirable
to provide a personalized service. In these domains it is common that user data
contains sensitive information that needs to be protected from third parties. Moti-
vated by this, we study privacy in the context of finite-horizon Markov Decision
Processes (MDPs) by requiring information to be obfuscated on the user side.
We formulate this notion of privacy for RL by leveraging the local differential
privacy (LDP) framework. We establish a lower bound for regret minimization in
finite-horizon MDPs with LDP guarantees which shows that guaranteeing privacy
has a multiplicative effect on the regret. This result shows that while LDP is
an appealing notion of privacy, it makes the learning problem significantly more
complex. Finally, we present an optimistic algorithm that simultaneously satisfies
ε-LDP requirements, and achieves

√
K/ε regret in any finite-horizon MDP after

K episodes, matching the lower bound dependency on the number of episodes K.

1 Introduction

The practical successes of Reinforcement Learning (RL) algorithms have led to them becoming
ubiquitous in many settings such as digital marketing, healthcare and finance, where it is desirable to
provide a personalized service [e.g., 1, 2]. However, users are becoming increasingly wary of the
amount of personal information that these services require. This is particularly pertinent in many
of the aforementioned domains where the data obtained by the RL algorithm are highly sensitive.
For example, in healthcare, the state encodes personal information such as gender, age, vital signs,
etc. In advertising, it is normal for states to include browser history, geolocalized information,
etc. Unfortunately, [3] has shown that, unless sufficient precautions are taken, the RL agent leaks
information about the environment (i.e., states containing sensitive information). That is to say,
observing the policy computed by the RL algorithm is sufficient to infer information about the data
(e.g., states and rewards) used to compute the policy (scenario ¬). This puts users’ privacy at jeopardy.
Users therefore want to keep their sensitive information private, not only to an observer but also to
the service provider itself (i.e., the RL agent). In response, many services are adapting to provide
stronger protection of user privacy and personal data, for example by guaranteeing privacy directly
on the user side (scenario ­). This often means that user data (i.e., trajectories of states, actions,
rewards) are privatized before being observed by the RL agent. In this paper, we study the effect that
this has on the learning problem in RL.
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Differential privacy (DP) [4] is a standard mechanism for preserving data privacy, both on the al-
gorithm and the user side. The (ε, δ)-DP definition guarantees that it is statistically hard to infer
information about the data used to train a model by observing its predictions, thus addressing scenario
¬. In online learning, (ε, δ)-DP has been studied in the multi-armed bandit framework [e.g., 5, 6].
However, [7] showed that DP is incompatible with regret minimization in the contextual bandit
problems. This led to considering weaker or different notions of privacy [e.g., 7, 8]. Recently, [9]
transferred some of these techniques to RL, presenting the first private algorithm for regret mini-
mization in finite-horizon problems. In [9], they considered a relaxed definition of DP called joint
differential privacy (JDP) and showed that, under JDP constraints, the regret only increases by an
additive term which is logarithmic in the number of episodes. Similarly to DP, in the JDP setting the
privacy burden lies with the learning algorithm which directly observes user states and trajectories
containing sensitive data. In particular, this means that the data itself is not private and could poten-
tially be used –for example by the owner of the application– to train other algorithms with no privacy
guarantees. An alternative and stronger definition of privacy is Local Differential Privacy (LDP) [10].
This requires that the user’s data is protected at collection time before the learning agent has access
to it. This covers scenario ­ and implies that the learner is DP. Intuitively, in RL, LDP ensures
that each sample (states and rewards associated to an user) is already private when observed by the
learning agent, while JDP requires computation on the entire set of samples to be DP. Recently, [11]
showed that, in contrast to DP, LDP is compatible with regret minimization in contextual bandits.1
LDP is thus a stronger definition of privacy, simpler to understand and more user friendly. These
characteristics make LDP more suited for real-world applications. However, as we show in this paper,
guaranteeing LDP in RL makes the learning problem more challenging.

Contributions. In this paper, we study LDP for regret minimization in finite horizon reinforcement
learning problems with S states, A actions, and a horizon of H .2 Our contributions are as follows. 1)
We provide a regret lower bound for (ε, δ)-LDP of Ω

(
H
√
SAK/min{eε − 1, 1}

)
, showing LDP is

inherently harder than JDP, where the lower-bound is only Ω
(
H
√
SAK + SAH log(KH)/ε

)
[9].

2) We propose the first LDP algorithm for regret minimization in RL. We use a general privacy-
preserving mechanism to perturb information associated to each trajectory and derive LDP-OBI,
an optimistic model-based (ε, δ)-LDP algorithm with regret guarantees. 3) We present multiple
privacy-preserving mechanisms that are compatible with LDP-OBI and show that their regret is
Õ(
√
K/ε) up to some mechanism dependent terms depending on S,A,H . 4) We perform numerical

simulations to evaluate the impact of LDP on the learning process. For comparison, we build a
Thompson sampling algorithm [e.g., 12] for which we provide LDP guarantees but no regret bound.

Related Work. The notion of differential privacy was introduced in [4] and is now a standard
in machine learning [e.g., 13, 14, 15]. Several notions of DP have been studied in the literature,
including the standard DP and LDP notions. While LDP is a stronger definition of privacy compared
to DP, recent works have highlighted that it possible to achieve a trade-off between the two settings
in terms of privacy and utility. The shuffling model of privacy [16, 17, 18, 19, 20] allows to build
(ε, δ)-DP algorithm with an additional (ε′, δ′)-LDP guarantee (for ε′ ≈ ε+ ln(n), any δ′ > 0 where
n is the number of samples), hence it is possible to trade-off between DP, LDP, and utility in this
setting. However, the scope of this paper is ensuring (ε, δ)-LDP guarantees for a fixed ε. In this
case, shuffling will not provide an improvement in utility (error) (see Thm 5.2 in Sec. 5.1 of [17] and
App. I).

The bandit literature has investigated different privacy notions, including DP, JDP and LDP [5, 6,
21, 7, 22, 23, 11, 24]. In contextual bandits, [7] derived an impossibility result for learning under
DP by showing a regret lower-bound Ω(T ) for any (ε, δ)-DP algorithm. Since the contextual bandit
problem is a finite-horizon RL problem with horizon H = 1, this implies that DP is incompatible
with regret minimization in RL as well. Regret minimization in RL with privacy guarantees has only
been considered in [9], where the authors extended the JDP approach from bandit to finite-horizon

1This shows that there are peculiarities in the DP definitions that are unique to sequential decision-making
problems such as RL. The discrepancy between DP and LDP in RL is due to the fact that, when guaranteeing
DP, actions taken by the learner cannot depend on the current state (this would break the privacy guarantee). On
the other hand, in the LDP setting, the user executes a policy prescribed by the learner on its end (i.e., directly on
non-private states) and send a privatized result (sequence of states and rewards observed by executing the policy)
to the learner. Hence the user can execute actions based on its current state leading to a sublinear regret.

2We do not explicitly focus on preventing malicious attacks or securing the communication between the RL
algorithm and the users. This is outside the scope of the paper.
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RL problems. They proposed a variation of UBEV [25] using a randomized response mechanism
to guarantee ε-JDP with an additive cost to the regret bound. While local differential privacy [10]
has attracted increasing interest in the bandit literature [e.g., 21, 23, 11, 24], it remains unexplored
in the RL literature, and we provide the first contribution in that direction. Finally, outside regret
minimization, DP has been studied in off-policy evaluation [26], in control with DP guarantees on
only the reward function [27], and in distributional RL [28].

2 Preliminaries

We consider a finite-horizon time-homogeneous Markov Decision Process (MDP) [29, Chp. 4]
M = (S,A, p, r,H) with state space S, action space A, and horizon H ∈ N+. Every state-action
pair is characterized by a reward distribution with mean r(s, a) supported in [0, 1] and a transition
distribution p(·|s, a) over next state.3 We denote by S = |S| and A = |A| the number of states
and actions. A non-stationary Markovian deterministic (MD) policy is defined as a collection
π = (π1, . . . , πH) of MD policies πh : S → A. For any h ∈ [H] := {1, . . . ,H} and state s ∈ S,
the value functions of a policy π are defined as Qπh(s, a) = r(s, a) + Eπ

[∑H
i=h+1 r(si, ai)

]
and

V πh (s) = Qπ(s, πh(s)). There exists an optimal Markovian and deterministic policy π? [29, Sec. 4.4]
such that V ?h (s) = V π

?

h (s) = maxπ V
π
h (s). The Bellman equations at stage h ∈ [H] are defined as

Q?h(s, a) = rh(s, a)+maxa′ Es′∼ph(s,a′)

[
V ?h+1(s′)

]
. The value iteration algorithm (a.k.a. backward

induction) computes Q? by applying the Bellman equations starting from stage H down to 1, with
V ?H+1(s) = 0 for any s. The optimal policy is simply the greedy policy: π?h(s) = arg maxaQ

?
h(s, a).

By boundness of the reward, all value functions V πh (s) are bounded in [0, H − h+ 1] for any h and s.

The general interaction protocol. The learning agent (e.g., a personalization service) interacts
with an unknown MDP with multiple users in a sequence of episodes k ∈ [K] of fixed length
H . At each episode k, an user uk arrives and their personal information (e.g., location, gender,
health status, etc.) is encoded by the state s1,k. The learner selects a policy πk that is sent to
the user uk for local execution on “clear” states. The outcome of the execution, i.e., a trajectory,
Xk = (skh, akh, rkh, sk,h+1)h∈[H] is sent to the learner to update the policy. Note that we have not
yet explicitly taken into consideration privacy in here. We evaluate the performance of a learning
algorithm A which plays policies π1, . . . , πK by its cumulative regret after K episodes

∆(K) =

K∑

k=1

(V ?1 (s1,k)− V πk1 (s1,k)). (1)

2.1 Local Differential Privacy in RL

In many application settings, when modelling a decision problem as a finite horizon MDP, it is natural
to view each episode k ∈ [K] as a trajectory associated to a specific user. In this paper, we assume
that the sensitive information is contained in the states and rewards of the trajectory. Those quantities
need to be kept private. This is reasonable in many settings such as healthcare, advertising, and
finance, where states encode personal information, such as location, health, income etc. For example,
an investment service may aim to provide each user with investment suggestions tailored to their
income, deposit amount, age, risk level, properties owned, etc. This information is encoded in the
user state and evolves over time as a consequence of investment decisions. The service provides
guidances in the form of a policy (e.g., where, when and how much to invest) and the user follows
the strategy for a certain amount of time. After that and based on the newly acquired information
the provider may decide to change the policy. However, the user may want to keep their personal
and sensitive information private to the company, while still receiving a personalised and meaningful
service. This poses a fundamental challenge since in many cases, this information about actions
taken in each state is essential for learning and creating a personalized experience for the user. The
goal of a private RL algorithm is thus to ensure that the sensitive information remains private, while
preserving the learnability of the problem.

Privacy in RL has been tackled in [9] through the lens of joint differential privacy (JDP). Intuitively,
JDP requires that when a user changes, the actions observed by the other K − 1 users will not

3We can simply modify the algorithm to handle step dependent transitions and rewards. The regret is then
multiplied by a factor H

√
H .
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change much [9]. The privacy burden thus lies with the RL algorithm. The algorithm has access
to all the information about the users (i.e., trajectories) containing sensitive data. It then has to
provide guarantees about the privacy of the data and carefully select the policies to execute in order
to guarantee JDP. This approach to privacy requires the user to trust the RL algorithm to privately
handle the data and not to expose or share sensitive information, and does not cover the examples
mentioned above.

In contrast to prior work, in this paper, we consider local differential privacy (LDP) in RL. This
removes the requirement that the RL algorithm observes the true sensitive data, achieving stronger
privacy guarantees. LDP requires that an algorithm has access to user information (trajectories in RL)
only through samples that have been privatized before being passed to the learning agent. This is
different to JDP or DP where the trajectories are directly fed to the RL agent. In LDP, information is
secured locally by the user using a private randomizerM, before being sent to the RL agent. The
appeal of this local model is that privatization can be done locally on the user-side. Since nobody
other than the user has ever access to any piece of non private data, this local setting is far more
private. There are several variations of LDP available in the literature. In this paper, we focus on
the non-interactive setting. We argue that this is more appropriate for RL. Indeed, due to the RL
interaction framework, the data generated by user k is a function of the data of all users l < k,
therefore the data are not i.i.d. and the standard definition of sequential interactivity for LDP (Eq. 1
in [10]) is not applicable. It is therefore more natural to study the non-interactive setting (Eq. 2 in
[10]) in RL. We formally define this below.

Following the definition in [9], a user u is characterized by a starting state distribution ρ0,u (i.e., for
user u, s1 ∼ ρ0,u) and a tree of depth H , describing all the possible sequence of states and rewards
corresponding to all possible sequences of actions. Alg. 1 describes the LDP private interaction
protocol between K unique users {u1, . . . , uK} ⊂ UK , with U the set of all users, and an RL
algorithm A. For any k ∈ [K], let s1,k ∼ ρ0,uk be the initial state for user uk and denote by
Xuk = {(sk,h, ak,h, rk,h) | h ∈ [H]} ∈ Xuk the trajectory corresponding to user uk executing a
policy πk. We writeM(Xuk) to denote the privatized data generated by the randomizer for user uk.
The goal of mechanismM is to privatize sensitive informations while encoding sufficient information
for learning. With these notions in mind, LDP in RL can be defined as follows:
Definition 1. For any ε ≥ 0 and δ ≥ 0, a privacy preserving mechanismM is said to be (ε, δ)-
Locally Differential Private (LDP) if and only if for all users u, u′ ∈ U , trajectories (Xu, Xu′) ∈
Xu ×Xu′ and all O ⊂ {M(Xu) | u ∈ U}:

P (M(Xu) ∈ O) ≤ eε P (M(Xu′) ∈ O) + δ (2)

where Xu is the space of trajectories associated to user u.

Def. 1 ensures that if the RL algorithm observes the output of the privacy mechanismM for two
different input trajectories, then it is statistically difficult to guess which output is from which input
trajectory. As a consequence, the users’ privacy is preserved.

3 Lower Bound

We provide a lower bound on the regret that any LDP RL algorithm must incur. For this, as is standard
when proving lower bounds on the regret in RL [e.g., 30, 31], we construct a hard instance of the
problem. The proof (see App. B) relies on the fact that LDP acts as Lipschitz function, with respect
to the KL-divergence, in the space of probability distribution.
Theorem 2 (Lower-Bound). For any algorithm A associated to a ε-LDP mechanism, any number of
states S ≥ 3, actions A ≥ 2 and H ≥ 2 logA(S − 2) + 2, there exists an MDP M with S states and

A actions such that: EM (∆(K)) ≥ Ω
(

H
√
SAK

min{exp(ε)−1,1}

)
.

The lower bound of Thm. 2 shows that the price to pay for LDP in the RL setting is a factor
1/(exp(ε) − 1) compared to the non-private lower bound of H

√
SAK. The regret lower bound

scales multiplicatively with the privacy parameter ε. The recent work of [9] shows that for JDP, the
regret in finite-horizon MDPs is lower-bounded by Ω

(
H
√
SAK + 1

ε

)
. Thm. 2 shows that the local

differential privacy setting is inherently harder than the joint differential privacy one for small ε, as
our lower-bound scales with

√
K/ε when ε u 0. Both bounds scale with

√
K when ε→ +∞.
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Algorithm 1 Locally Private Episodic RL
Input: Agent: A, Local Randomizer: M, Users:
u1, . . . , uK
for k = 1 to K do

Agent A computes πk using {M(Xul)}l∈[K−1]

User uk receives πk from agent A and observes
s1,k ∼ ρ0,uk
User uk executes policy πk on “non-private”
states and observes a trajectory Xuk =
{(sh,k, ah,k, rh,k)}h∈[H]

User uk sends back private dataM(Xuk ) to A
end for

Algorithm 2 LDP-OBI (M)

Input: δ ∈ (0, 1), α > 1, randomizer M with
parameters (ε0, δ0)
for k = 1 to K do

Compute p̃k and r̃k as in Eq. (4) using
{M(Xul)}l∈[K−1], βrk and βpk as in Prop. 4 us-
ing {ck,i(ε0, δ0, 3δ

2k2π2 )}i, and bh,k
Compute πk as in Eq. (5) and send it to user uk
User uk executes policy πk, collects trajectory
Xk and sends back privatized valueM(Xk)

end for

4 Exploration with Local Differential Privacy

A standard approach to the design of the private randomizerM is to inject noise into the data to be
preserved [14]. A key challenge in RL is that we cannot simply inject noise to each component of the
trajectory since this will break the temporal consistency of the trajectory and possibly prevent learning.
In fact, a trajectory is not an arbitrary sequence of states, actions, and rewards but obeys the Markov
reward process induced by a policy. Fortunately, Def. 1 shows that the output of the randomizer
need not necessarily be a trajectory but could be any private information built from it. In the next
section, we show how to leverage this key feature to output succinct information that preserves the
information encoded in a trajectory while satisfying the privacy constraints. We show that the output
of such a randomizer can be used by an RL algorithm to build estimates of the unknown rewards
and transitions. While these estimates are biased, we show that they carry enough information to
derive optimistic policies for exploration. We leverage these tools to design LDP-OBI, an optimistic
model-based algorithm for exploration with LDP guarantees.

4.1 Privacy-Preserving Mechanism

Consider the locally-private episodic RL protocol described in Alg. 1. At the end of each episode
k ∈ [K], user uk uses a private randomizerM to generate a private statisticM(Xuk) to pass to the
RL algorithm A. This statistic should encode sufficient information for the RL algorithm to improve
the policy while maintaining the user’s privacy. In model-based settings, a sufficient statistic is a
local estimate of the rewards and transitions. Since this cannot be reliably obtained from a single
trajectory, we resort to counters of visits and rewards that can be aggregated by the RL algorithm.

For a given trajectory X = {(sh, ah, rh)}h∈[H], let RX(s, a) =
∑H
h=1 rh1{sh=s,ah=a},

Nr
X(s, a) =

∑H
h=1 1{sh=s,ah=a} and Np

X(s, a, s′) =
∑H−1
h=1 1{sh=s,ah=a,sh+1=s′} be the true

non-private statistics, which the agent will never observe. We design the mechanism M so that
for a given trajectory X ,M returns private versionsM(X) = (R̃X , Ñ

r
X , Ñ

p
X) of these statistics.

Here, R̃X(s, a) is a noisy version of the cumulative reward RX(s, a), and Ñr
X and Ñp

X are perturbed
counters of visits to state-action and state-action-next state tuples, respectively. At the beginning of
episode k, the algorithm has access to the aggregated private statistics:

R̃k(s, a) =
∑

l<k

R̃Xul (s, a), Ñr
k (s, a) =

∑

l<k

Ñr
Xul

(s, a), Ñp
k (s, a, s′) =

∑

l<k

Ñp
Xul

(s, a, s′) (3)

We denote the non-private counterparts of these aggregated statistics asRk(s, a) =
∑
l<k RXul (s, a),

Nr
k (s, a) =

∑
l<kN

r
Xul

(s, a) and Np
k (s, a, s′) =

∑
l<kN

p
Xul

(s, a, s′), these are also unknown to
the RL agent. Using these private statistics, we can define conditions that a private randomizer must
satisfy in order for our RL agent, LDP-OBI, to be able to learn the reward and dynamics of the MDP.

Assumption 3. The private randomizer M satisfies (ε0, δ0)-LDP, Def. 1, with ε0, δ0 ≥ 0.
Moreover, for any δ > 0 and k ≥ 0, there exist four finite strictly positive function,
ck,1(ε0, δ0, δ), ck,2(ε0, δ0, δ), ck,3(ε0, δ0, δ), ck,4(ε0, δ0, δ) ∈ R?+ such that with probabilty at least
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1− δ for all (s, a, s′) ∈ S ×A× S:∣∣∣R̃k(s, a)−Rk(s, a)
∣∣∣ ≤ ck,1(ε0, δ0, δ),

∣∣∣Ñr
k (s, a)−Nr

k (s, a)
∣∣∣ ≤ ck,2(ε0, δ0, δ)

∣∣∣∣∣
∑

s′

Np
k (s, a, s′)− Ñp

k (s, a, s′)

∣∣∣∣∣ ≤ ck,3(ε0, δ0, δ),
∣∣∣Np

k (s, a, s′)− Ñp
k (s, a, s′)

∣∣∣ ≤ ck,4(ε0, δ0, δ)

The functions ck,1(ε0, δ0, δ), ck,2(ε0, δ0, δ), ck,3(ε0, δ0, δ) and ck,4(ε0, δ0, δ) must be increasing
functions of k and decreasing functions of δ. We also write ck,1(ε0, δ), ck,2(ε0, δ), ck,3(ε0, δ) and
ck,4(ε0, δ) when δ0 = 0.

In Sec. 5, we will present schemas satisfying Asm. 3 and discuss their impacts on privacy and regret.

4.2 Our LDP Algorithm For Exploration

In this section, we introduce LDP-OBI (Local Differentially Private Optimistic Backward Induction),
a flexible optimistic model-based algorithm for exploration that can be paired with any privacy
mechanism satisfying Asm. 3. When developing optimistic algorithms it is necessary to define
confidence intervals using an estimated model that are broad enough to capture the true model with
high probability, but narrow enough to ensure low regret. This is made more complicated in the
LDP setting, since the estimated model is defined using randomized counters. In particular, this
means we cannot use standard concentration inequalities such as those used in [32, 33]. Moreover,
when working with randomized counters, classical estimators like the empirical mean can even be
ill-defined as the number of visits to a state-action pair, for example, can be negative.

Nevertheless, we show that by exploiting the properties of the mechanismM in Asm. 3, it is still
possible to define an empirical model which can be shown to be close to the true model with high
probability. To construct this empirical estimator, we rely on the fact that for each state-action
pair (s, a), Ñr

k (s, a) + ck,2(ε0, δ0, δ) ≥ Nr
k (s, a) ≥ 0 with high probability where the precision

ck,2(ε0, δ0, δ) ensures the positivity of the noisy number of visits to a state action-pair. A similar
argument holds for the transitions. Formally, the estimated private rewards and transitions before
episode k are defined as follows:

r̃k(s, a) =
R̃k(s, a)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

, p̃k(s′ | s, a) =
Ñp
k (s, a, s′)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

(4)

Note that unlike in classic optimistic algorithms, p̃k is not a probability measure but a signed sub-
probability measure. However, this does not preclude good performance. By leveraging properties of
Asm. 3 we are able to build confidence intervals using these private quantities (see App. E).
Proposition 4. For any ε0 > 0, δ0 ≥ 0, δ > 0, α > 1 and episode k, using mechanismM satisfying
Asm. 3, then with probability at least 1− 2δ, for any (s, a) ∈ S ×A

|r(s, a)− r̃k(s, a)| ≤ βrk(s, a) =

√√√√ 2 ln
(

4π2SAHk3

3δ

)
Ñr
k (s, a) + αck,2(ε0, δ0, δ)

+
(α+ 1)ck,2(ε0, δ0, δ) + ck,1(ε0, δ0, δ)

Ñr
k (s, a) + αck,2(ε0, δ0, δ)

‖p(·|s, a)− p̃k(·|s, a)‖1 ≤ βpk(s, a) =

√√√√ 14S ln
(

4π2SAHk3

3δ

)
Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+
Sck,4(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

+

(α+ 1)ck,3(ε0, δ0, δ)

Ñp
k (s, a) + αck,3(ε0, δ0, δ)

The shape of the bonuses in Prop. 4 highlights two terms. The first term is reminiscent of Hoeffding

bonuses as it scales with O
(

1/
√
Ñp
k

)
. The other term is of order O

(
1/Ñp

k

)
and accounts for the

variance (and potentially bias) of the noise added by the privacy-preserving mechanism.

As commonly done in the literature [e.g., 32, 34, 35], we use these concentration results to define a
bonus function bh,k(s, a) := (H − h+ 1) · βpk(s, a) + βrk(s, a) which is used to define an optimistic
value function and policy by running the following backward induction procedure:

Qh,k(s, a)s = r̃k(s, a) + bh,k(s, a) + p̃k(·|s, a)TVh+1,k, πh,k(s) = arg max
a

Qh,k(s, a) (5)

where Vh,k(s) = min{H − h+ 1,maxaQh,k(s, a)} and VH+1,k(s) = 0.

6



M Noise (ε, δ)-LDP level Regret ∆(T )

Laplace Lap(6H/ε) (ε, 0) Õ(H3S2A
√
K/ε)

Gaussian N (0, (H/ε)2) (ε, δ0) Õ(H3S2A
√
K ln(1/δ0)/ε)

Randomized
Response Ber((eε/H − 1)−1) (ε, 0) Õ(H7/2S2A

√
K/ε)

Bounded
Noise See [37] and App. F.3 (ε, δ0) Õ(H2S3A3/2

√
K ln(1/δ0)/ε)

Table 1: Summary of the guarantees of LDP-OBI with different randomizers for ε > 0 and δ0 > 0.
For the mechanism in this table, we have approximately ck,i = Õ(

√
kH/ε) for i ∈ {1, 2, 4} (ignoring

log terms) and ck,3 = Õ(
√
SkH/ε)

4.3 Regret Guarantees

We get the following general guarantees for any LDP mechanism satisfying Asm. 3 in LDP-OBI.
Theorem 5. For any privacy mechanismM satisfying Asm. 3 with ε > 0, δ0 ≥ 0, and for any δ > 0
the regret of LDP-OBI is bounded with probability at least 1− δ by:

∆(K) ≤ Õ
(
HS
√
AT︸ ︷︷ ︸

¶

+SAH2cK,3

(
ε, δ0,

3δ

2π2K2

)
+H2S2AcK,4

(
ε, δ0,

3δ

2π2K2

)

+SAHcK,2

(
ε, δ0,

3δ

2π2K2

)
+ SAHcK,1

(
ε, δ0,

3δ

2π2K2

)) (6)

The combination ofM and LDP-OBI is also (ε, δ0)-LDP.

Thm. 5 shows that the regret of LDP-OBI 1) is lower bounded by the regret in non-private settings;
and 2) depends directly on the precision of the privacy mechanism used though cK,1, . . . , cK,4. Thus
improving the precision, that is to say reducing the amount of noise that needs to be added to the data
to guarantee LDP of the privacy mechanism, directly improves the regret bounds of LDP-OBI. The
first term in the regret bound (¶) is of the order expected in the non-private setting (see e.g., [36]).
Classical results in DP suggest that the {cK,i}i≤4 terms should be approximately of order

√
K/ε

(this is indeed the case for many natural choices of randomizer). In such a case, the dominant term in
(38), is no longer ¶ but rather a term of order H2S2A

√
K/ε (from e.g. cK,4). The dependency on

S,A,H is larger than in the non-private setting. This is because the cost of LDP is multiplicative,
so it also impacts the lower order terms in the concentration results (see e.g. the second term in 4),
which are typically ignored in the non-private setting. In addition, this implies that variance reduction
techniques for RL (e.g., based on Bernstein) classically used to decrease the dependence on S,H
will not lead to any improvement here. This is to be contrasted with the JDP setting where [9] shows
that the cost of privacy is additive so using variance reduction techniques can reduce the dependency
of the regret on S,A,H .

5 Choice of Randomizer

There are several randomizers that satisfy Asm. 3, for example Laplace [14], randomized response [13,
38], Gaussian [39] and bounded noise [40] mechanisms. Since one method can be preferred to another
depending on the application, we believe it is important to understand the regret and privacy guarantees
achieved by LDP-OBI with these randomizers. Tab. 1 provides a global overview of the properties
of LDP-OBI with different randomized mechanism. The detailed derivations are deferred to App. F.

Privacy. All the mechanisms satisfy Asm. 3 but only the Laplace and Randomized Response
mechanisms guarantees (ε, 0)-LDP. Note that in all cases, in order to guarantee a ε level of privacy
(or (ε, δ) for the Gaussian and bounded noise mechanisms), it is necessary to scale the parameter ε
proportional to 1/H . This is because the statistics computed by the privacy-preserving mechanism are
the sum of H observations which are bounded in [0, 1], the sensitivity4 of those statistics is bounded

4For a function f : X → R the sensitivity is defined as S(f) = maxx,y∈X |f(x)− f(y)|
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by H . Directly applying the composition theorem for DP [14, Thm 3.14] over the different counters,
would lead to an upper-bound on the privacy of the mechanism of S2AHε and corresponding regret
bound of Õ

(
(H4S4A2

√
K)/ε

)
. For the randomizers that we use, the impact on ε is lower thanks

to fact that they are designed to exploit the structure of the input data (a trajectory).

Regret Bound. From looking at Table 1, we see that while all the mechanisms achieve a regret bound
of order Õ(

√
K) the dependence on the privacy level ε varies as well as the privacy guarantees. The

regret of Laplace, Gaussian and bounded noise mechanisms scale with ε−1, whereas the randomized
response has an exponential dependence in ε similar to the lower bound. However, this improvement
comes at the price of worse dependency in H when ε is small, and a worse multiplicative constant in
the regret. This is due to the randomized response mechanism perturbing the counters for each stage
h ∈ [H], leading to up to HS2A obfuscated elements. This worse dependence is also observed in
our numerical simulations.

For many of the randomizers, our regret bounds scale as Õ(H3S2A
√
K/ε). Aside from the

√
K/ε

rate which is expected, our bounds exhibit worse dependence on the MDP characteristics when
compared to the non-private setting. We believe that this is unavoidable due to the fact that we have
to make S2A terms private, while the extra dependence on H comes from dividing ε by H to ensure
privacy over the whole trajectory. Moreover, the DP literature [e.g., 41, 42, 43] suggests that the extra
dependency on S,A,H may be inherent to model-based algorithms due to the explicit estimation
of private rewards and transitions. Indeed, [43] shows that the minimax error rate in `1 norm for
estimating a distribution over S states is Ω

(
S√

n(exp(ε)−1)

)
with n samples in the high privacy regime

(ε < 1), while there is no change in the low privacy regime. This means that in the high privacy
regime the concentration scales with a multiplicative

√
S term which would translate directly into

the regret bound. Furthermore, this results assumes that the number n of samples is known to the
learner. In our setting, n maps to Nk(s, a) which is unknown to the algorithm. Since we only
observe a perturbed estimate of n, estimating p(·|s, a) here is strictly harder than the aforementioned
setting.5 This suggests that it is impossible for any model-based algorithm which directly estimates
the transition probabilities to match the lower bound. However, this does not rule out the possibility of
a model-free algorithm being able to match the lower bound. Designing such a model-free algorithm
which is able to work with LDP trajectories is non-trivial and we leave it to future work.

Another direction for future work is to investigate whether the recently developed shuffling model [45]
may be used to improve our regret bounds in the LDP setting. Preliminary investigations of the
shuffling model (see App. I) show that it is not possible while preserving a fixed ε-LDP constraint,
which is the focus of this paper. Nonetheless, if we were to relax the privacy constraint to only
guarantee ε-JDP then the shuffling model could be used to retrieve the regret bound in [9] while
guaranteeing some level of local differential privacy, although the level of LDP would be much
weaker than the one considered in this paper. We believe the study of this model sitting in-between
the joint and local DP settings for RL is a promising direction for future work and that the tools
developed in this paper will be helpful for tackling this problem.

6 Numerical Evaluation

In this section, we evaluate the empirical performance of LDP-OBI on a toy MDP. We compare
LDP-OBI with the non-private algorithm UCB-VI [32]. To the best of our knowledge there is no
other LDP algorithm for regret minimization in MDPs in the literature. To increase the comparators,
we introduce a novel LDP algorithm based on Thompson sampling [e.g., 12].

LDP-PSRL. Thompson sampling algorithms [e.g., PSRL, 12] have proved to be effective in several
applications [46]. Due to their inherent randomization, one may imagine that they are also well

5We are not aware of any lower-bound in the literature that applies to this setting but we believe that the
S2A
√
KH/ε dependence may be unavoidable for model-based algorithms. This is because Nk(s, a) and

Ñk(s, a) differ by at most
√
kH log(SA) (which is a well-known lower bound for the counting elements

problem see [44]). Intuitively this difference creates a bias when estimating each component p(·|s, a), a bias
that would scale with the size of the support p(·|s, a) and the relative difference between Nk(s, a) and Ñk(s, a).
Hence, the bias would scale with S

√
kH/Nk(s, a). Summing over all episodes and SA counters gives the

conjectured result.
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Figure 1: Evaluation of LDP-OBI with
the Laplace mechanism and LDP-PSRL.
Left) Cumulative regret. Right) per-step
regret (k 7→ Rk/k).
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Figure 2: Regret for LDP-OBI coupled with different
mechanisms. For all ε, δ = 0.1 for the Gaussian and
Bounded Noise mechanism.

suited to LDP regret minimization. Here, we introduce and evaluate LDP-PSRL, an LDP variant of
PSRL and provide a first empirical evaluation. Informally, by defining byWk = {(S,A, p, r,H) :
‖p − p̃‖1 ≤ βpk , |r − r̃| ≤ βrk} the private set of plausible MDPs constructed using the definition
in Prop. 4, we can see posterior sampling as drawing an MDP from this set at each episode k and
running the associated optimal policy:

i) Mk ∼ P(Wk), ii) πk = max
π
{V π1 (Mk)}.

More formally, we consider Gaussian and Dirichlet prior for rewards and transition which lead to
Normal-Gamma and Dirichlet distributions as posteriors. We use the private counters defined in
Asm. 3 to update the parameters of the posterior distribution and thus the distribution over plausible
models. We provide full details of this schema in App. G and show that it is LDP. However, we were
not able to provide a regret bound for this algorithm.

Simulations. We consider the RandomMDP environment described in [25] where for each state-
action pair transition probabilities are sampled from a Dirichlet(α) distribution (with αs,a,s′ =
0.1 for all (s, a, s′)) and rewards are deterministic in {0, 1} with r(s, a) = 1{Us,a≤0.5} for
(Us,a)(s,a)∈S×A ∼ U([0, 1]) sampled once when generating the MDP. We set the number of states
S = 2, number of actions A = 2 and horizon H = 2. We evaluate the regret of our algorithm for
ε ∈ {0.2, 2, 20} and K = 1× 108 episodes. For each ε, we run 20 simulations. Confidence intervals
are the minimum and maximum runs. Fig. 1 shows that the learning speed of the optimistic algorithm
LDP-OBI is severely impacted by the LDP constraint. This is consistent with our theoretical results.
The reason for this is the very large confidence intervals that are needed to deal with the noise from
the privacy preserving mechanism that is necessary to guarantee privacy. While the regret looks
almost linear for ε = 0.2, the decreasing trend of the per-step regret shows that LDP-OBI-L is
learning. Although these experimental results only consider a small MDP, we expect that many of the
observations will carry across to larger, more practical settings. However, further experiments are
needed to conclusively assess the impact of LDP in large MDPs. Fig. 1 also shows that LDP-PSRL
performs slightly better than LDP-OBI. This is to be expected, since even in the non-private case
PSRL usually outperforms optimistic algorithm empirically. Finally, Fig. 2 compares the mechanisms
with different privacy levels and illustrates the empirical impact of the privacy-preserving mechanism
on the performance of LDP-OBI. We observe empirically that the bounded noise mechanism is the
most effective approach, followed by the Laplace mechanism. However, the former suffers from a
higher variance in its performance.

7 Conclusion
We have introduced the definition of local differential privacy in RL and designed the first LDP
algorithm, LDP-OBI, for regret minimization in finite-horizon MDPs. We provided an intuition why
model-based approaches may suffer a higher dependence in the MDP characteristics. Designing a
model-free algorithm able to reduce or close the gap with the lower-bound is an interesting technical
question for future works. As mentioned in the paper, the shuffling privacy model does not provide
any privacy/regret improvement in the strong LDP setting. An interesting direction is to investigate the
trade-off between JDP and LDP that can be obtained in RL using shuffling. In particular, we believe
that, sacrificing LDP guarantees, it is possible to achieve better regret leveraging variance reduction
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techniques (that are not helpful in strong LDP settings). Finally, there are other privacy definition
that can be interesting for RL. For example, profile-based privacy [47, 48] allows to privatize only
specific information or geo-privacy [49] focuses on privacy between elements that are “similar”.
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