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ABSTRACT

Differentially private GANs have proven to be a promising approach for gener-
ating realistic synthetic data without compromising the privacy of individuals.
Due to the privacy-protective noise introduced in the training, the convergence
of GANs becomes even more elusive, which often leads to poor utility in the
output generator at the end of training. We propose Private post-GAN boosting
(Private PGB), a differentially private method that combines samples produced by
the sequence of generators obtained during GAN training to create a high-quality
synthetic dataset. To that end, our method leverages the Private Multiplicative
Weights method (Hardt and Rothblum, 2010) to reweight generated samples. We
evaluate Private PGB on two dimensional toy data, MNIST images, US Census
data and a standard machine learning prediction task. Our experiments show that
Private PGB improves upon a standard private GAN approach across a collection
of quality measures. We also provide a non-private variant of PGB that improves
the data quality of standard GAN training.

1 INTRODUCTION

The vast collection of detailed personal data, including everything from medical history to voting
records, to GPS traces, to online behavior, promises to enable researchers from many disciplines
to conduct insightful data analyses. However, many of these datasets contain sensitive personal
information, and there is a growing tension between data analyses and data privacy. To protect
the privacy of individual citizens, many organizations, including Google (Erlingsson et al., 2014),
Microsoft (Ding et al., 2017), Apple (Differential Privacy Team, Apple, 2017), and more recently
the 2020 US Census (Abowd, 2018), have adopted differential privacy (Dwork et al., 2006) as a
mathematically rigorous privacy measure. However, working with noisy statistics released under
differential privacy requires training.

A natural and promising approach to tackle this challenge is to release differentially private synthetic
data—a privatized version of the dataset that consists of fake data records and that approximates the
real dataset on important statistical properties of interest. Since they already satisfy differential
privacy, synthetic data enable researchers to interact with the data freely and to perform the same
analyses even without expertise in differential privacy. A recent line of work (Beaulieu-Jones et al.,
2019; Xie et al., 2018; Yoon et al., 2019) studies how one can generate synthetic data by incorpo-
rating differential privacy into generative adversarial networks (GANs) (Goodfellow et al., 2014).
Although GANs provide a powerful framework for synthetic data, they are also notoriously hard
to train and privacy constraint imposes even more difficulty. Due to the added noise in the private
gradient updates, it is often difficult to reach convergence with private training.

In this paper, we study how to improve the quality of the synthetic data produced by private GANs.
Unlike much of the prior work that focuses on fine-tuning of network architectures and training
techniques, we propose Private post-GAN boosting (Private PGB)—a differentially private method
that boosts the quality of the generated samples after the training of a GAN. Our method can be
viewed as a simple and practical amplification scheme that improves the distribution from any ex-
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isting black-box GAN training method – private or not. We take inspiration from an empirical
observation in Beaulieu-Jones et al. (2019) that even though the generator distribution at the end of
the private training may be a poor approximation to the data distribution (due to e.g. mode collapse),
there may exist a high-quality mixture distribution that is given by several generators over different
training epochs. PGB is a principled method for finding such a mixture at a moderate privacy cost
and without any modification of the GAN training procedure.

To derive PGB, we first formulate a two-player zero-sum game, called post-GAN zero-sum game,
between a synthetic data player, who chooses a distribution over generated samples over training
epochs to emulate the real dataset, and a distinguisher player, who tries to distinguish generated
samples from real samples with the set of discriminators over training epochs. We show that under
a “support coverage” assumption the synthetic data player’s mixed strategy (given by a distribution
over the generated samples) at an equilibrium can successfully “fool” the distinguisher–that is, no
mixture of discriminators can distinguish the real versus fake examples better than random guessing.
While the strict assumption does not always hold in practice, we demonstrate empirically that the
synthetic data player’s equilibrium mixture consistently improves the GAN distribution.

The Private PGB method then privately computes an approximate equilibrium in the game. The
algorithm can be viewed as a computationally efficient variant of MWEM (Hardt & Rothblum,
2010; Hardt et al., 2012), which is an inefficient query release algorithm with near-optimal sample
complexity. Since MWEM maintains a distribution over exponentially many “experts” (the set of
all possible records in the data domain), it runs in time exponential in the dimension of the data. In
contrast, we rely on private GAN to reduce the support to only contain the set of privately generated
samples, which makes PGB tractable even for high-dimensional data.

We also provide an extension of the PGB method by incorporating the technique of discriminator
rejection sampling (Azadi et al., 2019; Turner et al., 2019). We leverage the fact that the distin-
guisher’s equilibrium strategy, which is a mixture of discriminators, can often accurately predict
which samples are unlikely and thus can be used as a rejection sampler. This allows us to further
improve the PGB distribution with rejection sampling without any additional privacy cost since dif-
ferential privacy is preserved under post-processing. Our Private PGB method also has a natural
non-private variant, which we show improves the GAN training without privacy constraints.

We empirically evaluate both the Private and Non-Private PGB methods on several tasks. To vi-
sualize the effects of our methods, we first evaluate our methods on a two-dimensional toy dataset
with samples drawn from a mixture of 25 Gaussian distributions. We define a relevant quality score
function and show that the both Private and Non-Private PGB methods improve the score of the
samples generated from GAN. We then show that the Non-Private PGB method can also be used to
improve the quality of images generated by GANs using the MNIST dataset. Finally, we focus on
applications with high relevance for privacy-protection. First we synthesize US Census datasets and
demonstrate that the PGB method can improve the generator distribution on several statistical mea-
sures, including 3-way marginal distributions and pMSE. Secondly, we evaluate the PGB methods
on a dataset with a natural classification task. We train predictive models on samples from Private
PGB and samples from a private GAN (without PGB), and show that PGB consistently improves
the model accuracy on real out-of-sample test data.

Related work. Our PGB method can be viewed as a modular boosting method that can improve
on a growing line of work on differentially private GANs (Beaulieu-Jones et al., 2019; Xie et al.,
2018; Frigerio et al., 2019; Torkzadehmahani et al., 2020). To obtain formal privacy guarantees,
these algorithms optimize the discriminators in GAN under differential privacy, by using private
SGD, RMSprop, or Adam methods, and track the privacy cost using moments accounting Abadi
et al. (2016); Mironov (2017). Yoon et al. (2019) give a private GAN training method by adapting
ideas from the PATE framework (Papernot et al., 2018).

Our PGB method is inspired by the Private Multiplicative Weigths method (Hardt & Rothblum,
2010) and its more practical variant MWEM (Hardt et al., 2012), which answer a large collection
of statistical queries by releasing a synthetic dataset. Our work also draws upon two recent tech-
niques (Turner et al. (2019) and Azadi et al. (2019)) that use the discriminator as a rejection sampler
to improve the generator distribution. We apply their technique by using the mixture discriminator
computed in PGB as the rejection sampler. There has also been work that applies the idea of boosting
to (non-private) GANs. For example, Arora et al. (2017) and Hoang et al. (2018) propose methods
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that directly train a mixture of generators and discriminators, and Tolstikhin et al. (2017) proposes
AdaGAN that reweighes the real examples during training similarly to what is done in AdaBoost
(Freund & Schapire, 1997). Both of these methods may be hard to make differentially private: they
either require substantially more privacy budget to train a collection of discriminators or increase the
weights on a subset of examples, which requires more adding more noise when computing private
gradients. In contrast, our PGB method boosts the generated samples post training and does not
make modifications to the GAN training procedure.

2 PRELIMINARIES

Let X denote the data domain of all possible observations in a given context. Let pd be a distribution
over X . We say that two datasets X,X ′ ∈ Xn are adjacent, denoted by X ∼ X ′, if they differ by at
most one observation. We will write pX to denote the empirical distribution over X .
Definition 1 (Differential Privacy (DP) (Dwork et al., 2006)). A randomized algorithm A : Xn →
R with output domain R (e.g. all generative models) is (ε, δ)-differentially private (DP) if for all
adjacent datasets X,X ′ ∈ Xn and for all S ⊆ R: P (A(X) ∈ S) ≤ eεP (A(X ′) ∈ S) + δ.

A very nice property of differential privacy is that it is preserved under post-processing.
Lemma 1 (Post-processing). LetM be an (ε, δ)-differentially private algorithm with output range
R and f : R→ R′ be any mapping, the composition f ◦M is (ε, δ)-differentially private.

As a result, any subsequent analyses conducted on DP synthetic data also satisfy DP.

The exponential mechanism (McSherry & Talwar, 2007) is a private mechanism for selecting among
the best of a discrete set of alternativesR, where “best” is defined by a quality function q : Xn×R →
R that measures the quality of the result r for the dataset X . The sensitivity of the quality score q is
defined as ∆(q) = maxr∈RmaxX∼X′ |q(X, r)−q(X ′, r)|. Then given a quality score q and privacy
parameter ε, the exponential mechanismME(q, ε,X) simply samples a random alternative from the
rangeR such that the probability of selecting each r is proportional to exp(εq(X, r)/(2∆(q))).

2.1 DIFFERENTIALLY PRIVATE GAN

The framework of generative adversarial networks (GANs) (Goodfellow et al., 2014) consists of
two types of neural networks: generators and discriminators. A generator G is a function that maps
random vectors z ∈ Z drawn from a prior distribution pz to a sample G(z) ∈ X . A discriminator D
takes an observation x ∈ X as input and computes a probability D(x) that the observation is real.
Each observation is either drawn from the underlying distribution pd or the induced distribution pg
from a generator. The training of GAN involves solving the following joint optimization over the
discriminator and generator:

min
G

max
D

Ex∼pX [f(D(x))] + Ez∼pz [f(1−D(G(z)))]

where f : [0, 1] → R is a monotone function. For example, in standard GAN, f(a) = log a,
and in Wasserstein GAN (Arjovsky et al., 2017), f(a) = a. The standard (non-private) algorithm
iterates between optimizing the parameters of the discriminator and the generator based on the loss
functions:

LD = −Ex∼pX [f(D(x))]− Ez∼pz [f(1−D(G(z)))], LG = Ez∼pz [f(1−D(G(z)))]

The private algorithm for training GAN also performs the same alternating optimization, but it
optimizes the discriminator under differential privacy while keeping the generator optimization the
same. In general, the training proceeds over epochs τ = 1, . . . , N , and at the end of each epoch
τ the algorithm obtains a discriminator Dτ and a generator Gτ by optimizing the loss functions
respectively. In Beaulieu-Jones et al. (2019); Xie et al. (2018), the private optimization on the
discriminators is done by running the private SGD method Abadi et al. (2016) or its variants. Yoon
et al. (2019) performs the private optimization by incorporating the PATE framework Papernot et al.
(2018). For all of these private GAN methods, the entire sequence of discriminators {D1, . . . , DN}
satisfies privacy, and thus the sequence of generators {G1, . . . , GN} is also private since they can
be viewed as post-processing of the discriminators. Our PGB method is agnostic to the exact private
GAN training methods.
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3 PRIVATE POST-GAN BOOSTING

The noisy gradient updates impede convergence of the differentially private GAN training algo-
rithm, and the generator obtained in the final epoch of the training procedure may not yield a good
approximation to the data distribution. Nonetheless, empirical evidence has shown that a mixture
over the set of generators can be a realistic distribution (Beaulieu-Jones et al., 2019). We now
provide a principled and practical scheme for computing such a mixture subject to a moderate pri-
vacy budget. Recall that during private GAN training method produces a sequence of generators
G = {G1, . . . , GN} and discriminators D = {D1, . . . , DN}. Our boosting method computes a
weighted mixture of the Gj’s and a weighted mixture of the Dj’s that improve upon any individual
generator and discriminator. We do that by computing an equilibrium of the following post-GAN
(training) zero-sum game.

3.1 POST-GAN ZERO-SUM GAME.

We will first draw r independent samples from each generator Gj , and let B be the collection of the
rN examples drawn from the set of generators. Consider the following post-GAN zero-sum game
between a synthetic data player, who maintains a distribution φ over the data in B to imitate the
true data distribution pX , and a distinguisher player, who uses a mixture of discriminators to tell
the two distributions φ and pX apart. This zero-sum game is aligned with the minimax game in the
original GAN formulation, but is much more tractable since each player has a finite set of strategies.
To define the payoff in the game, we will adapt from the Wasserstein GAN objective since it is less
sensitive than the standard GAN objective to the change of any single observation (changing any
single real example changes the payoff by at most 1/n), rendering it more compatible with privacy
tools. Formally, for any x ∈ B and any discriminator Dj , define the payoff as

U(x,Dj) = Ex′∼pX [Dj(x
′)] + (1−Dj(x))

For any distribution φ over B, let U(φ, ·) = Ex∼φ[U(x, ·)], and similarly for any distribution ψ
over {D1, . . . , DN}, we will write U(·, ψ) = ED∼ψ[U(·, D)]. Intuitively, the payoff function U
measures the predictive accuracy of the distinguisher in classifying whether the examples are drawn
from the synthetic data player’s distribution φ or the private dataset X . Thus, the synthetic data
player aims to minimize U while the distinguisher player aims to maximize U .

Definition 2. The pair (D,φ) is an α-approximate equilibrium of the post-GAN game if

max
Dj∈D

U(φ,Dj) ≤ U(φ,D) + α, and min
φ∈∆(B)

U(φ,D) ≥ U(φ,D)− α (1)

By von Neumann’s minimax theorem, there exists a value V – called the game value – such that

V = min
φ∈∆(B)

max
j∈[N ]

U(φ,Dj) = max
ψ∈∆(D)

min
x∈B

U(x, ψ)

The game value corresponds to the payoff value at an exact equilibrium of the game (that is α = 0).
When the set of discriminators cannot predict the real versus fake examples better than random
guessing, the game value V = 1. We now show that under the assumption that the generated
samples in B approximately cover the support of the dataset X , the distinguisher player cannot
distinguish the real and fake distributions much better than by random guessing.
Theorem 1. Fix a private dataset X ∈ (Rd)n. Suppose that for every x ∈ X , there exists xb ∈ B
such that ‖x − xb‖2 ≤ γ. Suppose D includes a discriminator network D1/2 that outputs 1/2
for all inputs, and assume that all networks in D are L-Lipschitz. Then there exists a distribution
φ ∈ ∆(B) such that (φ,D1/2) is a Lγ-approximate equilibrium, and so 1 ≤ V ≤ 1 + Lγ.

We defer the proof to the appendix. While the support coverage assumption is strong, we show
empirically the synthetic data player’s mixture distribution in an approximate equilibrium improves
on the distribution given by the last generatorGN even when the assumption does not hold. We now
provide a method for computing an approximate equilibrium of the game.

3.2 BOOSTING VIA EQUILIBRIUM COMPUTATION.

Our post-GAN boosting (PGB) method computes an approximate equilibrium of the post-GAN
zero-sum game by simulating the so-called no-regret dynamics. Over T rounds the synthetic data
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player maintains a sequence of distributions φ1, . . . , φT over the set B, and the distinguisher plays a
sequence of discriminatorsD1, . . . , DT . At each round t, the distinguisher first selects a discrimina-
torD using the exponential mechanismME with the payoff U(φt, ·) as the score function. This will
find an accurate discriminator Dt against the current synthetic distribution φt, so that the synthetic
data player can improve the distribution. Then the synthetic data player updates its distribution to φt
based on an online no-regret learning algorithm–the multiplicative weights (MW) method Kivinen
& Warmuth (1997). We can view the set of generated examples in B as a set of “experts”, and
the algorithm maintains a distribution over these experts and, over time, places more weight on the
examples that can better “fool” the distinguisher player. To do so, MW updates the weight for each
x ∈ B with

φt+1(x) ∝ φt exp
(
−ηU(x,Dt)

)
∝ exp

(
ηDt(x)

)
(2)

where η is the learning rate. At the end, the algorithm outputs the average plays (D,φ) for both
players. We will show these form an approximate equilibrium of the post-GAN zero-sum game
(Freund & Schapire, 1997).

Algorithm 1 Differentially Private Post-GAN Boosting

Require: a private dataset X ∈ Xn, a synthetic dataset B generated by the set of generators G, a
collection of discriminators {D1, . . . , DN}, number of iterations T , per-round privacy budget ε0,
learning rate parameter η.
Initialize φ1 to be the uniform distribution over B
for t = 1, . . . , T do

Distinguisher player: Run exponential mechanism ME to select a discriminator Dt using
quality score q(X,Dj) = U(φt, Dj) and privacy parameter ε0.
Synthetic data player: Multiplicative weights update on the distribution over B: for each
example b ∈ B:

φt+1(b) ∝ φt(b) exp(ηDt(b))

Let D be the discriminator defined by the uniform average over the set {D1, . . . , DT }, and φ be
the distribution defined by the average over the set {φ1, . . . , φT }

Note that the synthetic data player’s MW update rule does not involve the private dataset, and hence
is just a post-processing step of the selected discriminator Dt. Thus, the privacy guarantee follows
from applying the advacned composition of T runs of the exponential mechanism.1

Theorem 2 (Privacy Guarantee). For any δ ∈ (0, 1), the private MW post-amplification algorithm
satisfies (ε, δ)-DP with ε =

√
2 log(1/δ)Tε0 + Tε0(exp(ε0)− 1).

Note that if the private GAN training algorithm satisfies (ε1, δ1)-DP and the Private PGB method
satisfies (ε2, δ2)-DP, then the entire procedure is (ε1 + ε2, δ1 + δ2)-DP.

We now show that the pair of average plays form an approximate equilibrium of the game.

Theorem 3 (Approximate Equilibrium). With probability 1−β, the pair (D,φ) is an α-approximate
equilibrium of the post-GAN zero-sum game with α = 4η + log |B|

ηT + 2 log(NT/β)
nε0

. If T ≥ n2 and

η = 1
2

√
log(|B|)/T , then

α = O

(
log(nN |B|/β)

nε0

)
We provide a proof sketch here and defer the full proof to the appendix. By the result of Fre-
und & Schapire (1997), if the two players have low regret in the dynamics, then their average
plays form an approximate equilibrium, where the regret of the two players is defined as Rsyn =∑T
t=1 U(φt, Dt)−minb∈B

∑T
t=1 U(b,Dt) andRdis = maxDj

∑T
t=1 U(φt, Dj)−

∑T
t=1 U(φt, Dt).

Then the approximate equilibrium guarantee directly follows from bounding Rsyn with the regret
bound of MW and Rdis with the approximate optimality of the exponential mechanism.

1Note that since the quality scores from the GAN Discriminators are assumed to be probabilities and the
score function takes an average over n probabilities (one for each private example), the sensitivity is ∆(q) = 1

n
.
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Non-Private PGB. The Private PGB method has a natural non-private variant: in each round, in-
stead of drawing from the exponential mechanism, the distinguisher player will simply compute the
exact best response: Dt = arg maxDj

U(φt, Dj). Then if we set learning rate η = 1
2

√
log(|B|)/T

and run for T = log(|B|)/α2 rounds, the pair (D,φ) returned is an α-approximate equilibrium.

Extension with Discriminator Rejection Sampling. The mixture discriminator D at the equi-
librium provides an accurate predictor on which samples are unlikely. As a result, we can use
D to further improve the data distribution φ by the discriminator rejection sampling (DRS) tech-
nique of Azadi et al. (2019). The DRS scheme in our setting generates a single example as fol-
lows: first draw an example x from φ (the proposal distribution), and then accept x with probabil-
ity proportional to D(x)/(1 − D(x)). Note that the optimal discriminator D∗ that distinguishes
the distribution φ from true data distribution pd will accept x with probability proportional to
pd(x)/pφ(x) = D∗(x)/(1−D∗(x)). Our scheme aims to approximate this ideal rejection sampling
by approxinatingD∗ with the equilibrium strategyD, whereas prior work uses the last discriminator
DN as an approximation.

4 EMPIRICAL EVALUATION

We empirically evaluate how both the Private and Non-Private PGB methods affect the utility of
the generated synthetic data from GANs. We show two appealing advantages of our approach: 1)
non-private PGB outperforms the last Generator of GANs, and 2) our approach can significantly
improve the synthetic examples generated by a GAN under differential privacy.

Datasets. We assess our method with a toy dataset drawn from a mixture of 25 Gaussians, which is
commonly used to evaluate the quality of GAN (Srivastava et al., 2017; Azadi et al., 2019; Turner
et al., 2019) and synthesize MNIST images. We then turn to real datasets from the American Census,
and a standard machine learning dataset (Titanic).

Privacy budget. For the tasks with privacy, we set the privacy budget to be the same across all
algorithms. Since Private PGB requires additional privacy budget this means that the differentially
private GAN training has to be stopped earlier as compared to running only a GAN to achieve the
same privacy guarantee. Our principle is to allocate the majority of the privacy budget to the GAN
training, and a much smaller budget for our Private PGB method. Throughout we used 80% to 90%
of the final privacy budget on DP GAN training.2

Utility measures. Utility of synthetic data can be assessed along two dimensions; general utility
and specific utility (Snoke et al., 2018; Arnold & Neunhoeffer, 2020). General utility describes the
overall distributional similarity between the real data and synthetic datasets, but does not capture
specific use cases of synthetic data. To assess general utility, we use the propensity score mean
squared error (pMSE) measure (Snoke et al., 2018) (detailed in the Appendix). Specific utility of a
synthetic dataset depends on the specific use an analyst has in mind. In general, specific utility can
be defined as the similarity of results for analyses using synthetic data instead of real data. For each
of the experiments we define specific utility measures that are sensible for the respective example.
For the toy dataset of 25 gaussians we look at the number of high quality samples. For the American
Census data we compare marginal distributions of the synthetic data to marginal distributions of the
true data and look at the similarity of regression results.

4.1 EVALUATION OF NON-PRIVATE PGB

Mixture of 25 Gaussians. We first examine the performance of our approach on a two dimensional
dataset with a mixture of 25 multivariate Gaussian distributions, each with a covariance matrix of
0.0025I . The left column in Figure 1 displays the training data. Each of the 25 clusters consists

2Our observation is that the DP GAN training is doing the “heavy lifting”. Providing a good “basis” for
PGB requires a substantial privacy expenditure in training DP GAN. The privacy budget allocation is a hy-
perparameter for PGB that could be tuned. In general, the problem of differentially private hyperparameter
selection is extremely important and the literature is thin (Liu & Talwar, 2019; Chaudhuri & Vinterbo, 2013).
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of 1, 000 observations. The architecture of the GAN is the same across all results.3 To compare
the utility of the synthetic datasets with the real data, we inspect the visual quality of the resultsand
calculate the proportion of high quality synthetic examples similar to Azadi et al. (2019),Turner et al.
(2019) and Srivastava et al. (2017).4

Visual inspection of the results without privacy (in the top row of Figure 1) shows that our proposed
method outperforms the synthetic examples generated by the last Generator of the GAN, as well as
the last Generator enhanced with DRS. PGB over the last 100 stored Generators and Discriminators
trained for T = 1, 000 update steps, and the combination of PGB and DRS, visibly improves the
results. The visual impression is confirmed by the proportion of high quality samples. The data from
the last GAN generator have a proportion of 0.904 high quality samples. The synthetic data after
PGB achieves a higher score of 0.918. The DRS samples have a proportion of 0.826 high quality
samples, and the combination of PGB and DRS a higher proportion of 0.874 high quality samples.5

MNIST Data. We further evaluate the performance of our method on an image generation task
with the MNIST dataset. Our results are based on the DCGAN GAN architecture (Radford et al.,
2015) with the KL-WGAN loss (Song & Ermon, 2020). To evaluate the quality of the generated
images we use a metric that is based on the Inception score (IS) (Salimans et al., 2016), where
instead of the Inception Net we use a MNIST Classifier that achieves 99.65% test accuracy. The
theoretical best score of the MNIST IS is 10, and the real test images achieve a score of 9.93.
Without privacy the last GAN Generator achieves a score of 8.41, using DRS on the last Generator
slightly decreases the score to 8.21, samples with PGB achieve a score of 8.76, samples with the
combination of PGB and DRS achieve a similar score of 8.77 (all inception scores are calculated on
5,000 samples). Uncurated samples for all methods are included in the Appendix.

4.2 EVALUATION OF PRIVATE PGB

Mixture of 25 Gaussians. To show how the differentially private version of PGB improves the
samples generated from GANs that were trained under differential privacy, we first re-run the ex-
periment with the two-dimensional toy data.6 Our final value of ε is 1 and δ is 1

2N . For the results
with PGB, the GAN training contributes ε1 = 0.9 to the overall ε and the Private PGB algorithm
ε2 = 0.1. Again a first visual inspection of the results in Figure 1 (in the bottom row) shows that
post-processing the results of the last GAN Generator with Private PGB is worthwhile. Private PGB
over the last 100 stored Generators and Discriminators trained for T = 1, 000 update steps, again,
visibly improves the results. Again, our visual impression is confirmed by the proportion of high
quality samples. The last Generator of the differentially private GAN achieves a proportion of 0.031
high quality samples. With DRS on top of the last Generator, the samples achieve a quality score of
0.035. The GAN enhanced with Private PGB achieves a proportion of 0.044 high quality samples,
the combination of Private PGB and DRS achieves a quality score of 0.053.

MNIST Data. On the MNIST data, with differential privacy (ε = 10, δ = 1
2N ) the last DP GAN

Generator achieves an inception score of 8.07, using DRS on the last Generator the IS improves to
8.18. With Private PGB the samples achieve an IS of 8.58, samples with the combination of Private
PGB and DRS achieve the highest IS of 8.66.7 Uncurated samples for all methods are included in
the Appendix.

Private Synthetic 1940 American Census Samples. While the results on the toy dataset are en-
couraging, the ultimate goal of private synthetic data is to protect the privacy of actual persons in

3A description of the architecture is in the Appendix. The code for the GANs and the PGB algorithm will
be made available on GitHub.

4Note that the scores in Azadi et al. (2019) and Turner et al. (2019) do not account for the synthetic data
distribution across the 25 modes. We detail our evaluation of high quality examples in the Appendix.

5The lower scores for the DRS samples are due to the capping penalty in the quality metric. Without the
capping penalty the scores are 0.906 for the last Generator, 0.951 for PGB , 0.946 for DRS and 0.972 for the
combination of PGB and DRS.

6To achieve DP, we trained the Discriminator with a DP optimizer as implemented in
tensorflow privacy or the opacus library. We keep track of the values of ε and δ by using the
moments accountant (Abadi et al., 2016; Mironov, 2017).

7All inception scores are calculated on 5, 000 samples.
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Figure 1: Real samples from 25 multivariate normal distributions, synthetic examples without pri-
vacy from a GAN, DRS, Non-Private PGB and the combination of PGB and DRS (top row). Syn-
thetic examples from a GAN with differential privacy, DP DRS, Private PGB and the combination
of Private PGB and DRS (bottom row).

data collections, and to provide useful data to interested analysts. In this section we report the results
of synthesizing data from the 1940 American Census. We rely on the public use micro data samples
(PUMS) as provided in Ruggles et al. (2019).8 For 1940 we synthesize an excerpt of the 1% sample
of all Californians that were at least 18 years old.9 Our training sample consists of 39,660 observa-
tions and 8 attributes (sex, age, educational attainment, income, race, Hispanic origin, marital status
and county). The test set contains another 9,915 observations. Our final value of ε is 1 and δ is

1
2N ≈ 6.3×10−6 (after DP GAN training with ε1 = 0.8 and PGB with ε2 = 0.2, δ1 = 1

2N , δ2 = 0).
The general utility scores as measured by the pMSE ratio score are 2.357 (DP GAN), 2.313 (DP
DRS), 2.253 (DP PGB), and 2.445 (DP PGB+DRS). This indicates that PGB achieves the best
general utility. To assess the specific utility of our synthetic census samples we compare one-way
marginal distributions to the same marginal distributions in the original data. In panel (A) of Figure
2 we show the distribution of race membership. Comparing the synthetic data distributions to the
true distribution (in gray), we conclude that PGB, improves upon the last Generator. To underpin
the visual impression we calculate the total variation distance between each of the synthetic distri-
butions and the real distribution, the data from the last GAN Generator has a total variation distance
of 0.58, DP DRS of 0.44, DP PGB of 0.22 and DP PGB+DRS of 0.13. Furthermore, we evaluate
whether more complex analysis models, such as regression models, trained on synthetic samples
could be used to make sensible out-of-sample predictions. Panel (B) of Figure 2 shows a parallel
coordinate plot to compare the out-of-sample root mean squared error of regression models trained
on real data and trained on synthetic data. The lines show the RMSE for predicted income for all
linear regression models trained with three independent variables from the set of on the synthetic
data generated with Private PGB as compared to the last GAN generator and other post processing
methods like DRS.

8Further experiments using data from the 2010 American Census can be found in the appendix.
9A 1% sample means that the micro data contains 1% of the total American (here Californian) population.
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Figure 2: Specific Utility of Synthetic 1940 American Census Data. Panel (A): Distribution of Race
Membership in Synthetic Samples. Panel (B): Regression RMSE with Synthetic Samples.

Machine Learning Prediction with Synthetic Data. In a final set of experiments we evaluate the
performance of machine learning models trained on synthetic data (with and without privacy) and
tested on real out-of-sample data. We synthesize the Kaggle Titanic10 training set (891 observations
of Titanic passengers on 8 attributes) and train three machine learning models (Logistic Regression,
Random Forests (RF) (Breiman, 2001) and XGBoost (Chen & Guestrin, 2016)) on the synthetic
datasets to predict whether someone survived the Titanic catastrophe. We then evaluate the perfor-
mance on the test set with 418 observations. To address missing values in both the training set and
the test set we independently impute values using the MissForest (Stekhoven & Bühlmann, 2012)
algorithm. For the private synthetic data our final value of ε is 2 and δ is 1

2N (for PGB this implies
DP GAN training with ε1 = 1.6 and PGB ε2 = 0.4). The models trained on synthetic data gener-
ated with our approaches (PGB and PGB+DRS) consistently perform better than models trained on
synthetic data from the last generator or DRS – with or without privacy.11
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A PROOFS

A.1 PROOF OF THEOREM 1

Proof of Theorem 1. Note that if the synthetic data player plays the distribution over X , then
U(pX , D) = Ex∼pX [D(x′)] + Ex∼φ[1 − D(x)] = 1 for any discriminator D ∈ D. Now let
us replace each element in X with its γ-approximation in B and obtain a new dataset XB , and
let pXB

denote the empirical distribution over XB . By the Lipschitz conditions, we then have
|U(pX , D)− U(pXB

, D)| ≤ Lγ. This means U(pXB
, D) ∈ [1− Lγ, 1 + Lγ] for all D. Also, for

all φ ∈ ∆(B), we have U(φ,D1/2) = 1. Thus, (pXb
, D1/2) satisfies equation 1 with α = Lγ.

A.2 PROOF OF THE APPROXIMATE EQUILIBRIUM

Proof. We will use the seminal result of Freund & Schapire (1997), which shows that if the two
players have low regret in the dynamics, then their average plays form an approximate equilibrium.
First, we will bound the regret from the data player. The regret guarantee of the multiplicative
weights algorithm (see e.g. Theorem 2.3 of Arora et al. (2012)) gives

T∑
t=1

U(φt, Dt)−min
b∈B

T∑
t=1

U(b,Dt) ≤ 4ηT +
log |B|
η

(3)

Next, we bound the regret of the distinguisher using the accuracy guarantee of the exponential
mechanism (McSherry & Talwar, 2007). For each t, we know with probability (1− β/T ),

max
Dj

U(φt, Dj)− U(φt, Dt) ≤ 2 log(NT/β)

nε0

Taking a union bound, we have this accuracy guarantee holds for all t, and so

max
Dj

T∑
t=1

U(φt, Dj)−
T∑
t=1

U(φt, Dt) ≤ 2T log(NT/β)

nε0
(4)

Then following the result of Freund & Schapire (1997), their average plays (D,φ) is an α-
approximate equilibrium with

α = 4η +
log |B|
ηT

+
2 log(NT/β)

nε0

Plugging in the choices of T and η gives the stated bound.

B ADDITIONAL DETAILS ON THE QUALITY EVALUATION

B.1 ON THE CALCULATION OF THE PMSE.

To calculate the pMSE one trains a discriminator to distinguish between real and synthetic examples.
The predicted probability of being classified as real or synthetic is the propensity score. Taking
all propensity scores into account the mean squared error between the propensity scores and the
proportion of real data examples is calculated. A synthetic dataset has high general utility, if the
model can at best predict probabilities of 0.5 for both real and synthetic examples, then the pMSE
would be 0.

B.2 SPECIFIC UTILITY MEASURE FOR THE 25 GAUSSIANS.

In the real data, given the data generating process outlined in section 4.1, at each of the 25 modes
99% of the observations lie within a circle with radius r =

√
0.0025 · 9.21034 around the mode

centroids, where 9.21034 is the critical value at p = 0.99 of a χ2 distribution with 2 degrees of
freedom, and 0.0025 is the variance of the spherical gaussian.
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To calculate the quality score we count the number of observations within each of these 25 circles.
If one of the modes contains more points than we would expect given the true distribution the count
is capped accordingly. Our quality score for the toy dataset of 25 gaussians can be expressed as
Q =

∑25
i (min(pireal ·Nsyn, N i

syn)/Nsyn), where i indexes the clusters, preal is the true distribution
of points per cluster,N i

syn the number of observations at a cluster within radius r, andNsyn the total
number of synthetic examples.

C GAN ARCHITECTURES

C.1 DETAILS ON THE EXPERIMENTS WITH THE 25 GAUSSIANS.

The generator and discriminator are neural nets with two fully connected hidden layers (Discrimi-
nator: 128, 256; Generator: 512, 256) with Leaky ReLu activations. The latent noise vector Z is of
dimension 2 and independently sampled from a gaussian distribution with mean 0 and standard de-
viation of 1. For GAN training we use the KL-WGAN loss (Song & Ermon, 2020). Before passing
the Discriminator scores to PGB we transform them to probabilities using a sigmoid activation.

C.2 GAN ARCHITECTURE FOR THE 1940 AMERICAN CENSUS DATA.

The GAN networks consist of two fully connected hidden layers (256, 128) with Leaky ReLu activa-
tion functions. To sample from categorical attributes we apply the Gumbel-Softmax trick (Maddison
et al., 2016; Jang et al., 2016) to the output layer of the Generator. We run our PGB algorithm over
the last 150 stored Generators and Discriminators and train it for T = 400 update steps.

D PRIVATE SYNTHETIC 2010 AMERICAN DECENNIAL CENSUS SAMPLES.

We conducted further experiments on more recent Census files. The 2010 data is similar to the
data that the American Census is collecting for the 2020 decennial Census. For this experiment,
we synthesize a 10% sample for California with 3,723,669 observations of 5 attributes (gender,
age, Hispanic origin, race and puma district membership). Our final value of ε is 0.795 and δ
is 1

2N ≈ 1.34 × 10−7 (for PGB the GAN training contributes ε = 0.786 and PGB ε = 0.09).
The pMSE ratio scores are 1.934 (DP GAN), 1.889 (DP DRS), 1.609 (DP PGB) and 1.485 (DP
PGB+DRS), here PGB achieves the best general utility. For specific utility, we compare the accuracy
of three-way marginals on the synthetic data to the proportions in the true data.12 We tabulate race
(11 answer categories in the 2010 Census) by Hispanic origin (25 answer categories in the 2010
Census) by gender (2 answer categories in the 2010 Census) giving us a total of 550 cells. To assess
the specific utility for these three-way marginals we calculate the average accuracy across all 550
cells. Compared to the true data DP GAN achieves 99.82%, DP DRS 99.89%, DP PGB 99.89%
and the combination of DP PGB and DRS 99.93%. Besides the average accuracy across all 550
cells another interesting metric of specific utility is the number of cells in which each synthesizer
achieves the highest accuracy compared to the other methods, this is the case 43 times for DP GAN,
30 times for DP DRS, 90 times for DP PGB and 387 times for DP PGB+DRS. Again, this shows
that our proposed approach can improve the utility of private synthetic data.

E DETAILED RESULTS OF MACHINE LEARNING PREDICTION WITH
SYNTHETIC DATA

Table 1 summarizes the results for the machine learning prediction experiment with the Titanic data.
We present the accuracy, ROC AUC and PR AUC to evaluate the performance. It can be seen that
the models trained on synthetic data generated with our approach consistently perform better than
models trained on synthetic data from the last generator or DRS – with or without privacy. To put
these values into perspective, the models trained on the real training data and tested on the same
out-of-sample data achieve the scores in table 2.

12A task that is similar to the tables released by the Census.
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Table 1: Predicting Titanic Survivors with Machine Learning Models trained on synthetic data and
tested on real out-of-sample data. Median scores of 20 repetitions with independently generated
synthetic data. With differential privacy ε is 2 and δ is 1

2N ≈ 5.6× 10−4.

GAN DRS PGB PGB
+ DRS

Logit Accuracy 0.626 0.746 0.701 0.765
Logit ROC AUC 0.591 0.760 0.726 0.792
Logit PR AUC 0.483 0.686 0.655 0.748
RF Accuracy 0.594 0.724 0.719 0.742
RF ROC AUC 0.531 0.744 0.741 0.771
RF PR AUC 0.425 0.701 0.706 0.743
XGBoost Accuracy 0.547 0.724 0.683 0.740
XGBoost ROC AUC 0.503 0.732 0.681 0.772
XGBoost PR AUC 0.400 0.689 0.611 0.732

DP DP DP DP PGB
GAN DRS PGB +DRS

Logit Accuracy 0.566 0.577 0.640 0.649
Logit ROC AUC 0.477 0.568 0.621 0.624
Logit PR AUC 0.407 0.482 0.532 0.547
RF Accuracy 0.487 0.459 0.481 0.628
RF ROC AUC ROC AUC 0.512 0.553 0.558 0.652
RF PR AUC PR AUC 0.407 0.442 0.425 0.535
XGBoost Accuracy 0.577 0.589 0.609 0.641
XGBoost ROC AUC 0.530 0.586 0.619 0.596
XGBoost PR AUC 0.398 0.479 0.488 0.526

Table 2: Predicting Titanic Survivors with Machine Learning Models trained on real data and tested
on real out-of-sample data.

Model Score

Logit Accuracy 0.764
Logit ROC AUC 0.813
Logit PR AUC 0.785

RF Accuracy 0.768
RF ROC AUC 0.809
RF PR AUC 0.767

XGBoost Accuracy 0.768
XGBoost ROC AUC 0.773
XGBoost PR AUC 0.718

F SYNTHETIC MNIST SAMPLES

Figure 3 shows uncurated samples from the last Generator after 30 epochs of training without dif-
ferential privacy in Panel 3a and with differential privacy (ε =, δ =) in Panel 3b. Figure 4 shows
uncurated samples with DRS on the last Generator. Figure 5 shows uncurated samples after PGB
and Figure 6 shows uncurated samples after the combination of PGB and DRS. In Figure 7 we show
the 100 samples with the highest PGB probabilities.
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(a) Without Differential Privacy. (b) With Differential Privacy (ε = 10, δ = 1
2N

)

Figure 3: Uncurated MNIST samples from last GAN Generator after 30 epochs.

(a) Without Differential Privacy. (b) With Differential Privacy (ε = 10, δ = 1
2N

)

Figure 4: Uncurated MNIST samples with DRS on last Generator after 30 epochs.

(a) Without Differential Privacy. (b) With Differential Privacy (ε = 10, δ = 1
2N

)

Figure 5: Uncurated MNIST samples with PGB after 30 epochs (without DP) and 25 epochs (with
DP).
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(a) Without Differential Privacy. (b) With Differential Privacy (ε = 10, δ = 1
2N

)

Figure 6: Uncurated MNIST samples with PGB and DRS after 30 epochs (without DP) and 25
epochs (with DP).

(a) Without Differential Privacy. (b) With Differential Privacy (ε = 10, δ = 1
2N

)

Figure 7: Top 100 MNIST samples after PGB after 30 epochs (without DP) and 25 epochs (with
DP).
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