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Abstract

From the latter half of the last decade, there001
has been growing interest in developing algo-002
rithms for automatically solving mathematical003
word problems (MWP). It is an exciting lan-004
guage problem which demands not only sur-005
face level text pattern recognition but requires006
coupling with mathematical reasoning as well.007
In spite of the dedicated effort, we are still008
miles away from building robust representa-009
tions of elementary math word problems. In010
this paper, we critically examine the various011
models that have been developed for solving012
word problems, their pros and cons and the013
challenges ahead. In the last two years, a lot of014
deep learning models have come out with com-015
peting results on benchmark datasets. We take016
a step back and analyse why, in spite of this,017
the predominantly used experiment and dataset018
designs are a stumbling block and provide a019
road-map for the future.020

1 Introduction021

Natural language processing has been one of the022

most popular and intriguing AI-complete sub-fields023

of artificial intelligence. One of the earliest systems024

arguably was the PhD Thesis on automatically solv-025

ing arithmetic word problems (Bobrow, 1964). The026

challenge lay on two fronts (a) analysing uncon-027

strained natural language and (b) mapping infinite028

text patterns onto a small mathematical vocabulary029

and reasoning framework.030

Right up until 2010, there has been prolific explo-031

ration of MWP solvers, for various domains (such032

as algebra, percentages, ratio etc). These solvers033

relied heavily on hand-crafted rules for bridging034

Input Kevin has 3 books. Kylie has 7 books.
How many books do they have together?

Answer 10

Table 1: Typical Example

the gap between language and the corresponding 035

mathematical notation. As can be surmised, these 036

approaches did not generalise well. Moreover, due 037

to the lack of well accepted datasets, it is hard to 038

measure the relative performance across proposed 039

systems (Mukherjee and Garain, 2008). 040

The pioneering work by (Kushman et al., 2014) 041

employed statistical methods to solve word prob- 042

lems, which set the stage for the development of 043

automatic MWP solvers using traditional machine 044

learning methods. The work also introduced the 045

first dataset, popularly referred to as Alg514, that 046

used multiple linear equations for solving the prob- 047

lem. The machine learning model mapped the co- 048

efficients in the equation to the numbers in the 049

problem. Hence, the dataset comprised of the nat- 050

ural language question, equation set and the final 051

answer. 052

Mirroring recent trends in NLP, there has been 053

an explosion of deep learning models for MWP. 054

Some of the early ones (Wang et al., 2017; Ling 055

et al., 2017) modeled the task of converting the 056

text to equation as a Seq2Seq problem. In this 057

context, increasingly complex models have been 058

proposed to capture semantics beyond the surface 059

text. Some have captured structural information 060

(pertaining to input text, domain knowledge, output 061

equation structure) in the form of graphs and use 062

advances in graph neural networks ((Li et al., 2020), 063

(Zhang et al., 2020c), etc.). Others have utilised the 064

benefits of transformers in their modelling ((Liang 065

et al., 2021), (Piękos et al., 2021), etc.). We will 066

explore these models in detail. 067

Since this is a problem that has consistently at- 068

tracted attention, ostensibly right from the birth of 069

the field of NLP, a survey of the problem solving 070

techniques offers a good horizon for researchers. In 071

the last three years, the authors were able to collect 072

30+ papers on deep learning for word problem solv- 073

ing, presented at premier NLP venues. Each paper 074

has its own unique intuition and achieves similar 075
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performances. These kind of parallel publications076

has made it hard to ascertain what are the State-077

of-the-Art (SOTA) results. The way the research078

has progressed at break-neck speed has caused a079

clustering of models around similar performance080

values. Hence, a broad overview of the techniques081

employed gives a good grounding for further re-082

search. Similarly, understanding the source, set-083

tings and relevance of datasets is important. For084

example, there are many datasets that are often re-085

ferred to by multiple names at different points in086

time. Also, the problem setting varies across sys-087

tems (whether multiple equations can be solved,088

whether it is restricted to algebra or more domains089

etc.) In this survey, we systematically analyse the090

models, list the benchmark datasets and examine091

them thoroughly under a critical lens.092

1.1 Related Surveys093

There are two seminal surveys that are cited in094

this field. One, (Mukherjee and Garain, 2008),095

has a detailed overview of the symbolic solvers096

for this problem. The second, more recent one097

(Zhang et al., 2020a), covers models proposed up098

until 2020. In the last two years, there has been099

a sharp spike in algorithms developed, that focus100

on various aspects of deep learning, to model this101

problem. Our survey is predominantly based on102

these deep learning models, and takes a hard-look103

at why they are often brittle, and how that is a104

symptom of deficient dataset design, as well as105

model design, and finish with some directions for106

mitigating the same in future.107

2 Symbolic Solvers108

We begin our discussion with traditional solvers109

that employ a rule-based method to convert text110

input to a set of symbols. Starting with STU-111

DENT (Bobrow, 1964) program, and other at-112

tempts ((Fletcher, 1985), (Dellarosa, 1986), (Bak-113

man, 2007), etc. mapped the natural language in-114

put to an underlying pre-defined schema, i.e., a115

mechanism that identifies common expectations of116

language, word problems and the corresponding117

mathematical notation. Commonly, this involved118

setting up a slot-filling mechanisms that mapped119

the main entities of the word problem to a set of120

equations. An example of a schema for algebraic121

MWP is shown in Table 2.122

The advantage is that these systems are robust in123

handling irrelevant information. In addition, multi-124

Problem John has 5 apples. He gave 2 to
Mary. How many does he have
now?

Template [Owner1] has [X] [obj].

[Owner1] [transfer] [Y] [obj] to
[Owner2].

[Owner1] has [Z] [obj].

Z = X - Y

Slot-Filling [John] has [5] [apple].

[John] [give] [2] [apple] to [Mary].

[Mary] has [Z] [apple].

Z = 5 - 2

Answer Z = 3

Table 2: Workflow of Symbolic Solvers

ple works were proposed to customize these sym- 125

bolic systems for various domains (Mukherjee and 126

Garain, 2008). As one can observe, the rules would 127

need to be exhaustive to capture the myriad nuances 128

of language. Moreover, they did not generalise well 129

on the language front. Since each system was de- 130

signed for a particular mathematical complexity of 131

solving, without the use of datasets, it was difficult 132

to evaluate performance across systems. 133

3 Statistical Solvers 134

As with many tasks in natural language process- 135

ing, statistical machine learning techniques to solve 136

word problems started dominating the field from 137

2014. The central theme of these algorithms is to 138

score a number of potential solutions (may be equa- 139

tions or expression trees as we will see presently) as 140

an optimisation problem, and subsequently arrive 141

at the correct mathematical model for the given text. 142

This poses the problem as a structure prediction 143

problem. 144

P (y|x; θ) = eθ.ϕ(x,y)∑
y′∈Y eθ.ϕ(x,y′)

(1) 145

As with optimization problems, Equation 1 146

refers to the problem of learning parameters θ, 147

which relate to the feature function ϕ. Consider 148

labeled dataset D consisting of n pairs (x, y, a) 149

where x is the natural language question, y is the 150

mathematical expression and a is the numerical 151

answer. The task is to score all possible expres- 152

sions Y , and maximise the choice of the labelled 153

y through an optimisation setting. This is done by 154

modifying the parameters θ of the feature function 155
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Figure 1: Types of Word Problem Solvers

ϕ(x, y). Different models propose different formu-156

lations of ϕ. In practise, beam search is used as a157

control mechanism. We grouped the prolific algo-158

rithms that were developed, based on the type of159

mathematical structure y - either as equation tem-160

plates or expression trees. Equation templates were161

mined from training data, much like the slot filling162

idea of symbolic systems. However, they became a163

bottleneck to generalizability, if the word problem164

at inference time, was from an unseen equation165

template. To address this issue, expression trees,166

with unambiguous post-fix traversals, were used to167

model equations. Though they restricted the com-168

plexity of the systems to single equation models,169

they offered wider scope for generalizability.170

3.1 Equation Templates171

To begin with, (Kushman et al., 2014), used struc-172

ture prediction to score both equation templates173

and alignment of the numerals in the input text to174

coefficients in the template. Using a state based175

representation, (Hosseini et al., 2014) modelled176

simple elementary level word problems with em-177

phasis on verb categorisation. (Zhou et al., 2015)178

enhanced the work done by (Kushman et al., 2014)179

by using quadratic programming to increase effi-180

ciency. (Upadhyay and Chang, 2017) introduced a181

sophisticated method of representing derivations in182

this space.183

3.2 Expression Trees184

Expression tree based methods converge faster, un-185

derstandably due to the diminished complexity of186

the model. Some solvers (such as (Roy and Roth,187

2016)) had a joint optimisation objective to iden-188

tify relevant numbers and populating the expres-189

sion tree. On the other hand, (Koncel-Kedziorski190

et al., 2015; Mitra and Baral, 2016) used domain191

knowledge to constrain the search space.192

4 Neural Solvers 193

The solvers described until now, involved an over- 194

head of converting the input text into the feature 195

space through a myriad of ways. With the ad- 196

vent of distributed representations for text (Le and 197

Mikolov, 2014; Peters et al., 2018; Pennington 198

et al., 2014; Devlin et al., 2018), including do- 199

main specific ones like (Sundaram et al., 2020), 200

deep learning algorithms entered the fray. Starting 201

with (Ling et al., 2017), which designed a Seq2Seq 202

model that incorporated learning a program (as an 203

intermediate step) as well, there has been a flurry 204

of activity. Almost all the deep learning solvers 205

model the problem as a language translation task, 206

i.e., translating from the input natural language text 207

to a sequence of characters representing either the 208

equation or a sequence of predicates. This design 209

choice has severely restricted the choice of math- 210

ematical problems that can be attempted by this 211

architecture. To illustrate, equation systems that 212

involve solving multiple equations are not modeled 213

well. A notable exception to this is the popular 214

baseline MathDQN (Wang et al., 2018), which em- 215

ploys deep reinforcement learning. 216

4.1 Seq2Seq Solvers 217

The ubiquitous Seq2Seq ((Sutskever et al., 2014)) 218

architecture is widely popular for automatic word 219

problem solving. From early direct use of LSTMs 220

(Hochreiter and Schmidhuber, 1997) / GRUs (Cho 221

et al., 2014) in Seq2Seq models ((Huang et al., 222

2017), (Wang et al., 2017)) to complex models that 223

include domain knowledge ((Ling et al., 2017), , , 224

(Chatterjee et al., 2021), (Qin et al., 2020), (Chiang 225

and Chen, 2019), (Qin et al., 2021) etc.), diverse 226

formulations of this basic architecture have been 227

employed. 228
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4.2 Graph-based Solvers229

With the advent of graph modeling (Xia et al., 2019)230

and the scope of multi-modal processing, the graph231

became a vehicle for adding knowledge to solvers.232

One way of doing that was to model the input prob-233

lem as a graph ((Feng et al., 2021), (Li et al., 2020),234

(Yu et al., 2021), (Hong et al., 2021)). This incor-235

porates domain knowledge of (a) language inter-236

actions pertinent to mathematical reasoning or (b)237

quantity graphs stating how various numerals in the238

text are connected. Another way is to model the239

decoder side to accept graphical input of equations240

((Xie and Sun, 2019), (Lin et al., 2021), (Zaporo-241

jets et al., 2021), (Cao et al., 2021), (Liu et al.,242

2019), (Wu et al., 2021b)). The natural extension is243

to use graph neural networks for both encoder and244

decoder ((Zhang et al., 2020c), (Wu et al., 2020),245

(Wu et al., 2021a), (Shen and Jin, 2020)).246

4.3 Transformers247

Transformers (Vaswani et al., 2017) have revolu-248

tionised the field of NLP. Word problem solving249

has been no exception. Through the use of BERT250

(Devlin et al., 2018) embeddings or through trans-251

former based encoder-decoder models, a few sys-252

tems use concepts from transformers ((Liu et al.,253

2019), (Kim et al., 2020)) . In some cases, the trans-254

lation is from text to explanation ((Piękos et al.,255

2021), (Griffith and Kalita, 2020)), or from text to256

equation ((Shen et al., 2021), (Liang et al., 2021)).257

4.4 Contrastive Solvers258

With the introduction of Siamese networks, (Koch259

et al., 2015), the idea of building representations260

that contrast between vectorial representations, that261

reflect that contrast between various classes in data.262

In the context of word problem solving, a few trans-263

former based encoder-decoder models ((Li et al.,264

2021), (Hong et al., 2021)) have been proposed,265

that utilize the concept of contrastive learning (Le-266

Khac et al., 2020).267

4.5 Teacher-Student Solvers268

The paradigm of knowledge distillation, in the269

wake of large, generic end-to-end models, has be-270

come immensely popular (add citation). Since271

word problem datasets are of comparatively smaller272

size, it is but logical that large generic networks can273

be fine-tuned for downstream processing of word274

problem solving, as favourably demonstrated by275

(Zhang et al., 2020b) and (Hong et al., 2021).276

5 Domain-Niche Solvers 277

A small set of works, amongst both statistical 278

solvers and deep models, focus on the pertinent 279

characteristics of a particular domain in mathemat- 280

ics, such as probability word problems (Dries et al., 281

2017; Suster et al., 2021; Tsai et al., 2021), number 282

theory word problems (Shi et al., 2015), geometry 283

word problems (Seo et al., 2015; Chen et al., 2021), 284

age word problems (Sundaram and Abraham, 2019) 285

and so on. 286

6 Datasets 287

Datasets used for math word problem solving are 288

listed in Table 3 with their characteristics. The top 289

section of the table describes datasets with rela- 290

tively less number of problems, sufficient for algo- 291

rithm that employed statistical learning techniques. 292

The bottom half consists of more recent datasets 293

that are more suitable for deep learning algorithms. 294

295

6.1 Small Datasets 296

The pioneering work in solving word problems 297

(Kushman et al., 2014), introduced a comprehen- 298

sive dataset (Alg514) of 514 word problems, across 299

various domains in algebra (such as percentages, 300

mixtures, speeds etc). This dataset was annotated 301

with multiple equations per problem. AddSub was 302

introduced in (Hosseini et al., 2014), with simple 303

addition/subtraction problems, with limited lan- 304

guage complexity. SingleOp (Roy et al., 2015) 305

and MultiArith (Roy and Roth, 2016) were pro- 306

posed such that there is a control over the operators 307

(single operator in the former and two operators 308

in the latter). SingleEq (Koncel-Kedziorski et al., 309

2015) is an interesting dataset, which incorporates 310

long sentence structures for elementary level school 311

problems. AllArith (Roy and Roth, 2017) is a sub- 312

set of the union of AddSub, SingleEq and SingleOp. 313

"Perturb" is a set of slightly perturbed word prob- 314

lems of AllArith and finally Aggregate is the union 315

of AllArith and Perturb. MAWPS (A Math Word 316

Problem Solving Repository) (Koncel-Kedziorski 317

et al., 2016) is a curated dataset (with deliberate 318

template overlap control) that is comprised of all 319

the proposed datasets till that date. A single equa- 320

tion subset of MAWPS has been studied (Miao 321

et al., 2021), for diagnostic analysis of solvers. Sim- 322

ilarly, the critique offered by (Patel et al., 2021) was 323

demonstrated using their newly proposed dataset 324

SVAMP. All the mentioned datasets are annotated 325
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Dataset Type Domain Size Source

Alg514 (SimulEq-S) Multi-equation (+,-,*,/) 514 (Kushman et al., 2014)
AddSub (AI2) Single-equation (+,-) 340 (Hosseini et al., 2014)

SingleOp (Illinois, IL) Single-equation (+,-,*,/) 562 (Roy et al., 2015)
SingleEq Single-equation (+,-,*,/) 508 (Koncel-Kedziorski et al., 2015)
MAWPS Multi-equation (+,-,*,/) 3320 (Koncel-Kedziorski et al., 2016)

MultiArith (Common Core, CC) Single-equation (+,-,*,/) 600 (Roy and Roth, 2016)
AllArith Single-equation (+,-,*,/) 831 (Roy and Roth, 2017)
Perturb Single-equation (+,-,*,/) 661 (Roy and Roth, 2017)

Aggregate Single-equation (+,-,*,/) 1492 (Roy and Roth, 2017)
DRAW-1k Multi-equation (+,-,*,/) 1k (Upadhyay and Chang, 2017)
AsDIV-A Single-equation (+,-,*,/) 2373 (Miao et al., 2021)
SVAMP Single-equation (+,-,*,/) 1000 (Patel et al., 2021)

Dolphin18k Multi-equation (+,-,*,/) 18k (Huang et al., 2016)
AQuA-RAT Multiple-choice - 100k (Ling et al., 2017)
Math23k* Single-equation (+,-,*,/) 23k (Huang et al., 2017)
MathQA Single-equation (+,-,*,/) 35k (Amini et al., 2019)
HMWP* Multi-equation (+,-,*,/) 5k (Qin et al., 2020)

Ape210k* Single-equation (+,-,*,/) 210k (Liang et al., 2021)
GSM8k Single-equation (+,-,*,/) 8.5k (Cobbe et al., 2021)
EW10k Single-equation (+,-,*,/) 10k (Chatterjee et al., 2021)

CM17k* Multi-equation (+,-,*,/) 17k (Qin et al., 2021)

Table 3: Datasets
(*Chinese Datasets)

with both the equation and the answer. While run-326

ning experiments and creating cross-validation sets,327

one must keep in mind various subsets and super-328

sets.329

6.2 Large Datasets330

Dolphin18k (Huang et al., 2016) is an early propri-331

etary dataset that was evaluated primarily with the332

statistical solvers. AQuA-RAT (Ling et al., 2017)333

introduced the first large crowd-sourced dataset for334

word problems with rationales or explanations.335

The setting is quite different from the aforemen-336

tioned datasets, not only with respect to size, but337

also in the wide variety of domain areas (span-338

ning physics, algebra, geometry, probability etc).339

Another point of difference is that, the annotation340

involves the entire textual explanation, rather than341

equations alone. MathQA (Amini et al., 2019) crit-342

ically analysed AQuA-RAT and selected the core343

subset and annotated it with a predicate list. Once344

again, care must be taken that MathQA is a subset345

of AQuA-RAT. GSM8k (Cobbe et al., 2021) is a re-346

cent single-equation dataset, that is the large scale347

version of AsDIV-A (Miao et al., 2021). Math23K348

is a popular Chinese dataset for single equation349

math word problem solving. A recent successor is350

Ape210k (Liang et al., 2021).351

7 Performance of Deep Models 352

In this section, we describe the performance of 353

neural solvers. 354

Evaluation Measures: The most popular metric 355

is answer accuracy, which evaluates the predicted 356

equation and checks whether it is the same as the 357

labelled one. The other metric is equation accu- 358

racy, which predominantly does string matching 359

and matches the equation to the annotated equa- 360

tions. 361

We have listed the performance of the deep mod- 362

els in Table 4, on two major datasets - Math23K 363

and MAWPS. Some of these deep models report 364

scores on other datasets as well. For concise- 365

ness, we have chosen the most popular datasets 366

for deep models. We see that, in general, the mod- 367

els achieve around 70-80 percentage points on an- 368

swer accuracy. (Shen et al., 2021) outperforms 369

all other models on Math23k whereas RPKHS (Yu 370

et al., 2021) is the best model for MAWPS till date. 371

Apart from these algebraic datasets, multi-domain 372

datasets MathQA and AquA are also of special 373

interest. This is described in Table 5. The in- 374

teresting takeaway is that, the addition of BERT 375

modelling to AQuA (Piękos et al., 2021), still per- 376

formed slightly worse than the Seq2Prog (Amini 377
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et al., 2019) model, which is a derivative of the378

Seq2Seq paradigm. This suggests that while the379

results are commendable, a closer look reveals that380

there is much scope for improving word problem381

modelling.382

Model
Name

Math23k MAWPS Source

GTS 74.3 - (Xie and Sun,
2019)

SAU-
SOLVER

74.8 - (Chiang and
Chen, 2019)

Group-att 69.5 76.1 (Li et al., 2019)
Graph2Tree 77.4 - (Li et al., 2020)
KA-S2T 76.3 - (Wu et al.,

2020)
NS-Solver 75.67 - (Qin et al.,

2020)
Graph-To-
Tree

78.8 - (Li et al., 2020)

TSN-MD 77.4 84.4 (Zhang et al.,
2020b)

Graph-To-
Tree+Teacher

79.1 84.2 (Liang and
Zhang, 2021)

NumS2T 78.1 - (Wu et al.,
2020)

Multi-E/D 78.4 - (Shen and Jin,
2020)

EPT - 84.5 (Kim et al.,
2020)

Seq2DAG 77.1 - (Cao et al.,
2021)

WARM 80.1 - (Chatterjee
et al., 2021)

EEH-D2T 78.5 84.8 (Wu et al.,
2021a)

Generate
and Rank

85.4 84.0 (Shen et al.,
2021)

HMS 76.1 80.3 (Lin et al.,
2021)

RPKHS 83.9 89.8 (Yu et al., 2021)
CL 83.2 - (Li et al., 2021)
GTS+RODA 77.9 - (Liu et al.,

2022)

Table 4: Answer Accuracy of Deep Models

8 Analysis of Deep Models383

In this section of the paper, we analyze the pros and384

cons of applying deep learning techniques to solve385

word problems automatically. At the outset, two386

layers of understanding are imperative (i) linguistic387

structures that describe a situation or a sequence of388

events and (ii) mathematical structures that govern389

these language descriptions. Though deep learning390

models have rapidly scaled and demonstrated com-391

mendable results for capturing these characteristics,392

Model AQuA-RAT MathQA Source
AQuA 36.4 - (Ling et al.,

2017)
Seq2Prog 37.9 57.2 (Amini

et al., 2019)
BERT-NPROP 37.0 - (Piękos

et al., 2021)
Graph-To-Tree - 69.65 (Li et al.,

2020)

Table 5: Performance on Large Multi-Domain Datasets

when one examines the problem more closely, a 393

plethora of insights are available for further explo- 394

ration. The predominant modus-operandus is to 395

create a deep model that converts the input natu- 396

ral language to the underlying equation. In some 397

cases, the input is converted into a set of predicates 398

(Amini et al., 2019) or explanations (Ling et al., 399

2017). 400

8.1 What Shortcuts are being Learned? 401

Shortcut Learning (Geirhos et al., 2020) is a re- 402

cently well-studied phenomenon of deep neural 403

networks. It describes how deep learning models 404

learn patterns in a shallow way and fall prey to 405

questionable generalizations across datasets (an ex- 406

ample is an image being classified as sheep if there 407

was grass alone; due to peculiarities in the dataset). 408

This is a function of the low-level input we provide 409

to such models (pixels, word embeddings etc.). In 410

the context of word problems, (Patel et al., 2021) 411

exposed how removing the question and simply 412

passing the situational context, leads to the correct 413

equation being predicted. This suggests two things, 414

issues with model design as well as issues with 415

dataset design. The datasets have high equation 416

template overlap, as well as text overlap. Word 417

problem solving is a hard because two otherwise 418

identical word problems, with a small word change 419

(say changing the word give to take), would com- 420

pletely change the equation. Hence high lexical 421

similarity does not translate to corresponding simi- 422

larity in the mathematical realm (Patel et al., 2021; 423

Sundaram et al., 2020). 424

8.2 Is Language or Math being Learned? 425

The question that looms large is whether adequate 426

mapping of language to math has been modelled, 427

whether linguistic modelling has been unfavourably 428

highlighted or that the mathematical aspects have 429

been captured succinctly. We claim that both lan- 430

guage and math have not yet been modelled ade- 431
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Problem Solved?

John has 5 apples. Mary has 2 apples
more than John. How many apples does
Mary have?

Yes

John has 5 apples. Mary has 2 apples
more than John. Who has less apples?

No

What should be added to two to make it
five?

No

Table 6: Behaviour of Baseline BERT Model

quately. Apart from the perturbations experiment432

done by SVAMP (Patel et al., 2021), which exposes433

that the mapping between linguistic and mathe-434

matical structures is not captured, we suggest two435

more experiments that expose flaws in linguistic436

and mathematical modelling alone. The first one437

involves imposing a question answering task on438

top of the word problem as a probing test. For ex-439

ample, a baseline BERT model that converts from440

input language to equation (Table 6), trained on441

MAWPS, can solve a simple word problem such as442

"John has 5 apples. Mary has 2 apples more than443

John. How many apples does Mary have?", but can-444

not answer the following allied question "John has445

5 apples. Mary has 2 apples more than John. Who446

has less apples?". One reason is of course, dataset447

design. The governing equation for this problem is448

"X = 5-2". However, the text version of this, "What449

should be added to two to make it five?", cannot450

be solved by the baseline model. Similarly, many451

solvers wrongly output equations such as "X = 2 -452

5" (Patel et al., 2021), which suggests mathemati-453

cal modelling of subtraction of whole numbers is454

not up to the mark. Hence, we observe, that deep455

translation models neither model language, nor the456

math sufficiently.457

8.3 Is Accuracy Enough?458

As suggested by the discussion above, a natural line459

of investigation is to examine the evaluation mea-460

sures, and perhaps the error measures for the deep461

models, in order to bring about a closer coupling462

between syntax and semantics. High accuracy of463

the models to predicting the answer or the equation464

suggests a shallow mapping between the text and465

the mathematical symbols. One direction of ex-466

ploration is data augmentation with a single word467

problem annotated with multiple equivalent equa-468

tions. Metrics that measure the soundness of the469

equations generated, the robustness of the model to470

simple perturbations (perhaps achieved using a de-471

noising autoencoder) and the ability of the model to 472

discern important entities in a word problem (per- 473

haps using an attention analysis based metric), are 474

the need of the future. An endeavour has been done 475

by (Kumar et al., 2021), where adversarial exam- 476

ples have been generated and utilised to evaluate 477

SOTA models. 478

8.4 Are the Trained Models Reproducible? 479

Most of the SOTA systems come with their own, 480

well-documented repositories. Though an aggre- 481

gated toolkit (Lan et al., 2021) (open-source MIT 482

License) is available, running saved models in in- 483

ference mode, to probe the quality of the datasets, 484

proved to be a hard task, with varying missing 485

hyper-parameters or missing saved models. This, 486

however, interestingly suggests that API’s that can 487

take a single word problem as input and computes 488

the output, would be highly useful for application 489

designers. This has been done in the earlier sys- 490

tems such as (Roy and Roth, 2018) and (Wolfram, 491

2015). 492

9 Analysis of Benchmark Datasets 493

In this section of the paper, we explore the various 494

dimensions of the popular datasets (Table 3). 495

9.1 Low Resource Setting 496

Compared to usual text related tasks, the available 497

datasets are quite small in size. They also suffer 498

from a large lexical overlap (Amini et al., 2019). 499

This taxes algorithms, that now have to generalise 500

from an effectively small dataset. 501

9.2 Annotation Cost 502

The datasets currently have little to no annotation 503

costs involved as they are usually scrapped from 504

homework websites. There are some exceptions 505

that involve crowd-sourcing (Ling et al., 2017) or 506

intermediate representations apart from equations 507

(Amini et al., 2019). Some efforts include remov- 508

ing the need for basic equation annotation, and 509

relying only on the answer (Chatterjee et al., 2021). 510

9.3 Template Overlap 511

Many studies (Zhang et al., 2020a) have demon- 512

strated that there is a high lexical and mathemati- 513

cal overlap between the word problems in popular 514

datasets. Consequently, many strategies have been 515

adopted to mitigate this. Early attempts include 516

controlling linguistic and equation template over- 517

lap ((Koncel-Kedziorski et al., 2016), (Miao et al., 518
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2021)). Later ideas revolve around controlled de-519

sign and quality control of crowd-sourcing (Amini520

et al., 2019).521

10 Road Ahead522

In this section, we describe exciting frontiers of523

research for word problem solving algorithms.524

10.1 Semantic Parsing525

As rightly suggested by (Zhang et al., 2020a), the526

closest natural language task for word problem527

solving is that of semantic parsing, and not trans-528

lation as most of the deep learning models have529

modelled. The mapping between extremely long530

chunks of text to short equation sentences has the531

advantage of generalising on the decoder side, but532

equally has the danger of overloading many in-533

volved semantics into a simplistic equation model.534

To illustrate, an equation may be derived after ap-535

plying a sequence of steps that is lost in a simple536

translation process. A lot of efforts have already537

been employed in adding such a nuance. One way538

is to model the input intelligently ((Peng et al.,539

2021), (Liang et al., 2021)). The intermediate repre-540

sentations include simple predicates (Roy and Roth,541

2018), while others involve a programmatic de-542

scription ((Ling et al., 2017), (Amini et al., 2019)).543

Yet another way is to include semantic information544

in the form of graphs as shown in ((Huang et al.,545

2018), (Chiang and Chen, 2019), (Qin et al., 2020),546

(Li et al., 2020), etc.)).547

10.2 Informed Dataset Design548

As most datasets are scraped from websites, there549

is bound to be repetition. Some effort, if invested550

into designing datasets that expose (a) different ver-551

sions of the same problem, (b) different equivalent552

equation types, (c) semantics of the language and553

the math. A step in this direction has been explored554

by (Patel et al., 2021), which provides a challenge555

dataset for evaluating word problems, and (Kumar556

et al., 2021) where adversarial examples are auto-557

matically generated.558

10.2.1 Dataset Augmentation559

A natural extension of dataset design, is dataset560

augmentation. Augmentation is a natural choice561

when we have datasets that are small and focused562

on a single domain. Then, linguistic and mathe-563

matical augmentation can be automated by domain564

experts. While template overlap is a concern in565

dataset design, it can be leveraged in contrastive566

designs as in ((Sundaram et al., 2020), (Li et al., 567

2021)). A principled approach of reversing oper- 568

ators and building equivalent expression trees for 569

augmentation has been explored here (Liu et al., 570

2022). 571

10.2.2 Few Shot Learning 572

This is useful if we have a large number of non- 573

annotated word problems or if we can come up 574

with complex annotations (that capture semantics) 575

for a small set of word problems. In this way few 576

shot learning can generalise from few annotated 577

examples. 578

10.3 Knowledge Aware Models 579

We propose that word problem solving is more 580

involved than even semantic parsing. From an intu- 581

itive space, we learn language from examples and 582

interactions but we need to be explicitly trained 583

in math to solve word problems (Marshall, 1996). 584

This suggests we need to include mathematical 585

models into our deep learning models to build gen- 586

eralisability and robustness. As mentioned before, 587

a common approach is to include domain knowl- 588

edge as a graph ((Chiang and Chen, 2019), (Wu 589

et al., 2020), (Qin et al., 2020), (Qin et al., 2021)). 590

11 Conclusion 591

In this paper, we surveyed the existing math word 592

problem solvers, with a special focus on deep learn- 593

ing models. Deep models are predominantly mod- 594

eled as encoder-decoder models, with input as text 595

and decoder output as equations. We listed sev- 596

eral interesting formulations of this paradigm - 597

namely as Seq2Seq models, graph-based models, 598

transformer-based models, contrastive models and 599

teacher-student models. We then explored in de- 600

tail the various datasets in use. Subsequently, we 601

analysed the various approaches of modelling word 602

problem solving, followed by the characteristics of 603

the popular datasets. We concluded that the brit- 604

tleness of the SOTA models was due to (a) tough 605

modelling decisions and (b) tough dataset design. 606

This is an exhaustive survey, but the authors ac- 607

knowledge that there may be methods that have 608

escaped their attention. They also caution that the 609

analysis provided, is but qualitative. Finally, we 610

mentioned few avenues of further exploration such 611

as the use of semantically rich models, informed 612

dataset design and incorporation of domain knowl- 613

edge. 614
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