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Abstract

From the latter half of the last decade, there
has been growing interest in developing algo-
rithms for automatically solving mathematical
word problems (MWP). It is an exciting lan-
guage problem which demands not only sur-
face level text pattern recognition but requires
coupling with mathematical reasoning as well.
In spite of the dedicated effort, we are still
miles away from building robust representa-
tions of elementary math word problems. In
this paper, we critically examine the various
models that have been developed for solving
word problems, their pros and cons and the
challenges ahead. In the last two years, a lot of
deep learning models have come out with com-
peting results on benchmark datasets. We take
a step back and analyse why, in spite of this,
the predominantly used experiment and dataset
designs are a stumbling block and provide a
road-map for the future.

1 Introduction

Natural language processing has been one of the
most popular and intriguing Al-complete sub-fields
of artificial intelligence. One of the earliest systems
arguably was the PhD Thesis on automatically solv-
ing arithmetic word problems (Bobrow, 1964). The
challenge lay on two fronts (a) analysing uncon-
strained natural language and (b) mapping infinite
text patterns onto a small mathematical vocabulary
and reasoning framework.

Right up until 2010, there has been prolific explo-
ration of MWP solvers, for various domains (such
as algebra, percentages, ratio etc). These solvers
relied heavily on hand-crafted rules for bridging

Input Kevin has 3 books. Kylie has 7 books.

How many books do they have together?

Answer 10

Table 1: Typical Example

the gap between language and the corresponding
mathematical notation. As can be surmised, these
approaches did not generalise well. Moreover, due
to the lack of well accepted datasets, it is hard to
measure the relative performance across proposed
systems (Mukherjee and Garain, 2008).

The pioneering work by (Kushman et al., 2014)
employed statistical methods to solve word prob-
lems, which set the stage for the development of
automatic MWP solvers using traditional machine
learning methods. The work also introduced the
first dataset, popularly referred to as Alg514, that
used multiple linear equations for solving the prob-
lem. The machine learning model mapped the co-
efficients in the equation to the numbers in the
problem. Hence, the dataset comprised of the nat-
ural language question, equation set and the final
answer.

Mirroring recent trends in NLP, there has been
an explosion of deep learning models for MWP.
Some of the early ones (Wang et al., 2017; Ling
et al., 2017) modeled the task of converting the
text to equation as a Seq2Seq problem. In this
context, increasingly complex models have been
proposed to capture semantics beyond the surface
text. Some have captured structural information
(pertaining to input text, domain knowledge, output
equation structure) in the form of graphs and use
advances in graph neural networks ((Li et al., 2020),
(Zhang et al., 2020c), etc.). Others have utilised the
benefits of transformers in their modelling ((Liang
et al., 2021), (Pigkos et al., 2021), etc.). We will
explore these models in detail.

Since this is a problem that has consistently at-
tracted attention, ostensibly right from the birth of
the field of NLP, a survey of the problem solving
techniques offers a good horizon for researchers. In
the last three years, the authors were able to collect
30+ papers on deep learning for word problem solv-
ing, presented at premier NLP venues. Each paper
has its own unique intuition and achieves similar



performances. These kind of parallel publications
has made it hard to ascertain what are the State-
of-the-Art (SOTA) results. The way the research
has progressed at break-neck speed has caused a
clustering of models around similar performance
values. Hence, a broad overview of the techniques
employed gives a good grounding for further re-
search. Similarly, understanding the source, set-
tings and relevance of datasets is important. For
example, there are many datasets that are often re-
ferred to by multiple names at different points in
time. Also, the problem setting varies across sys-
tems (whether multiple equations can be solved,
whether it is restricted to algebra or more domains
etc.) In this survey, we systematically analyse the
models, list the benchmark datasets and examine
them thoroughly under a critical lens.

1.1 Related Surveys

There are two seminal surveys that are cited in
this field. One, (Mukherjee and Garain, 2008),
has a detailed overview of the symbolic solvers
for this problem. The second, more recent one
(Zhang et al., 2020a), covers models proposed up
until 2020. In the last two years, there has been
a sharp spike in algorithms developed, that focus
on various aspects of deep learning, to model this
problem. Our survey is predominantly based on
these deep learning models, and takes a hard-look
at why they are often brittle, and how that is a
symptom of deficient dataset design, as well as
model design, and finish with some directions for
mitigating the same in future.

2 Symbolic Solvers

We begin our discussion with traditional solvers
that employ a rule-based method to convert text
input to a set of symbols. Starting with STU-
DENT (Bobrow, 1964) program, and other at-
tempts ((Fletcher, 1985), (Dellarosa, 1986), (Bak-
man, 2007), etc. mapped the natural language in-
put to an underlying pre-defined schema, i.e., a
mechanism that identifies common expectations of
language, word problems and the corresponding
mathematical notation. Commonly, this involved
setting up a slot-filling mechanisms that mapped
the main entities of the word problem to a set of
equations. An example of a schema for algebraic
MWP is shown in Table 2.

The advantage is that these systems are robust in
handling irrelevant information. In addition, multi-

Problem John has 5 apples. He gave 2 to

Mary. How many does he have
now?

[Owner ] has [X] [obj].

[Owner:] [transfer] [Y] [obj] to
[Ownerz].

[Owner; ] has [Z] [obj].
Z=X-Y

[John] has [5] [apple].

[John] [give] [2] [apple] to [Mary].
[Mary] has [Z] [apple].

Z=5-2

7=3

Template

Slot-Filling

Answer

Table 2: Workflow of Symbolic Solvers

ple works were proposed to customize these sym-
bolic systems for various domains (Mukherjee and
Garain, 2008). As one can observe, the rules would
need to be exhaustive to capture the myriad nuances
of language. Moreover, they did not generalise well
on the language front. Since each system was de-
signed for a particular mathematical complexity of
solving, without the use of datasets, it was difficult
to evaluate performance across systems.

3 Statistical Solvers

As with many tasks in natural language process-
ing, statistical machine learning techniques to solve
word problems started dominating the field from
2014. The central theme of these algorithms is to
score a number of potential solutions (may be equa-
tions or expression trees as we will see presently) as
an optimisation problem, and subsequently arrive
at the correct mathematical model for the given text.
This poses the problem as a structure prediction
problem.

el-o(z.y)
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As with optimization problems, Equation 1
refers to the problem of learning parameters 6,
which relate to the feature function ¢. Consider
labeled dataset D consisting of n pairs (z,y,a)
where x is the natural language question, y is the
mathematical expression and « is the numerical
answer. The task is to score all possible expres-
sions Y, and maximise the choice of the labelled
y through an optimisation setting. This is done by
modifying the parameters 6 of the feature function

P(yla; 0) = ey
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Figure 1: Types of Word Problem Solvers

¢(z,y). Different models propose different formu-
lations of ¢. In practise, beam search is used as a
control mechanism. We grouped the prolific algo-
rithms that were developed, based on the type of
mathematical structure y - either as equation tem-
plates or expression trees. Equation templates were
mined from training data, much like the slot filling
idea of symbolic systems. However, they became a
bottleneck to generalizability, if the word problem
at inference time, was from an unseen equation
template. To address this issue, expression trees,
with unambiguous post-fix traversals, were used to
model equations. Though they restricted the com-
plexity of the systems to single equation models,
they offered wider scope for generalizability.

3.1 Equation Templates

To begin with, (Kushman et al., 2014), used struc-
ture prediction to score both equation templates
and alignment of the numerals in the input text to
coefficients in the template. Using a state based
representation, (Hosseini et al., 2014) modelled
simple elementary level word problems with em-
phasis on verb categorisation. (Zhou et al., 2015)
enhanced the work done by (Kushman et al., 2014)
by using quadratic programming to increase effi-
ciency. (Upadhyay and Chang, 2017) introduced a
sophisticated method of representing derivations in
this space.

3.2 [Expression Trees

Expression tree based methods converge faster, un-
derstandably due to the diminished complexity of
the model. Some solvers (such as (Roy and Roth,
2016)) had a joint optimisation objective to iden-
tify relevant numbers and populating the expres-
sion tree. On the other hand, (Koncel-Kedziorski
et al., 2015; Mitra and Baral, 2016) used domain
knowledge to constrain the search space.

4 Neural Solvers

The solvers described until now, involved an over-
head of converting the input text into the feature
space through a myriad of ways. With the ad-
vent of distributed representations for text (Le and
Mikolov, 2014; Peters et al., 2018; Pennington
et al., 2014; Devlin et al., 2018), including do-
main specific ones like (Sundaram et al., 2020),
deep learning algorithms entered the fray. Starting
with (Ling et al., 2017), which designed a Seq2Seq
model that incorporated learning a program (as an
intermediate step) as well, there has been a flurry
of activity. Almost all the deep learning solvers
model the problem as a language translation task,
i.e., translating from the input natural language text
to a sequence of characters representing either the
equation or a sequence of predicates. This design
choice has severely restricted the choice of math-
ematical problems that can be attempted by this
architecture. To illustrate, equation systems that
involve solving multiple equations are not modeled
well. A notable exception to this is the popular
baseline MathDQN (Wang et al., 2018), which em-
ploys deep reinforcement learning.

4.1 Seq2Seq Solvers

The ubiquitous Seq2Seq ((Sutskever et al., 2014))
architecture is widely popular for automatic word
problem solving. From early direct use of LSTMs
(Hochreiter and Schmidhuber, 1997) / GRUs (Cho
et al.,, 2014) in Seq2Seq models ((Huang et al.,
2017), (Wang et al., 2017)) to complex models that
include domain knowledge ((Ling et al., 2017), , ,
(Chatterjee et al., 2021), (Qin et al., 2020), (Chiang
and Chen, 2019), (Qin et al., 2021) etc.), diverse
formulations of this basic architecture have been
employed.



4.2 Graph-based Solvers

With the advent of graph modeling (Xia et al., 2019)
and the scope of multi-modal processing, the graph
became a vehicle for adding knowledge to solvers.
One way of doing that was to model the input prob-
lem as a graph ((Feng et al., 2021), (Li et al., 2020),
(Yuetal., 2021), (Hong et al., 2021)). This incor-
porates domain knowledge of (a) language inter-
actions pertinent to mathematical reasoning or (b)
quantity graphs stating how various numerals in the
text are connected. Another way is to model the
decoder side to accept graphical input of equations
((Xie and Sun, 2019), (Lin et al., 2021), (Zaporo-
jets et al., 2021), (Cao et al., 2021), (Liu et al.,
2019), (Wu et al., 2021b)). The natural extension is
to use graph neural networks for both encoder and
decoder ((Zhang et al., 2020c), (Wu et al., 2020),
(Wu et al., 2021a), (Shen and Jin, 2020)).

4.3 Transformers

Transformers (Vaswani et al., 2017) have revolu-
tionised the field of NLP. Word problem solving
has been no exception. Through the use of BERT
(Devlin et al., 2018) embeddings or through trans-
former based encoder-decoder models, a few sys-
tems use concepts from transformers ((Liu et al.,
2019), (Kim et al., 2020)) . In some cases, the trans-
lation is from text to explanation ((Pigkos et al.,
2021), (Griffith and Kalita, 2020)), or from text to
equation ((Shen et al., 2021), (Liang et al., 2021)).

4.4 Contrastive Solvers

With the introduction of Siamese networks, (Koch
et al., 2015), the idea of building representations
that contrast between vectorial representations, that
reflect that contrast between various classes in data.
In the context of word problem solving, a few trans-
former based encoder-decoder models ((Li et al.,
2021), (Hong et al., 2021)) have been proposed,
that utilize the concept of contrastive learning (Le-
Khac et al., 2020).

4.5 Teacher-Student Solvers

The paradigm of knowledge distillation, in the
wake of large, generic end-to-end models, has be-
come immensely popular (add citation). Since
word problem datasets are of comparatively smaller
size, it is but logical that large generic networks can
be fine-tuned for downstream processing of word
problem solving, as favourably demonstrated by
(Zhang et al., 2020b) and (Hong et al., 2021).

5 Domain-Niche Solvers

A small set of works, amongst both statistical
solvers and deep models, focus on the pertinent
characteristics of a particular domain in mathemat-
ics, such as probability word problems (Dries et al.,
2017; Suster et al., 2021; Tsai et al., 2021), number
theory word problems (Shi et al., 2015), geometry
word problems (Seo et al., 2015; Chen et al., 2021),
age word problems (Sundaram and Abraham, 2019)
and so on.

6 Datasets

Datasets used for math word problem solving are
listed in Table 3 with their characteristics. The top
section of the table describes datasets with rela-
tively less number of problems, sufficient for algo-
rithm that employed statistical learning techniques.
The bottom half consists of more recent datasets
that are more suitable for deep learning algorithms.

6.1 Small Datasets

The pioneering work in solving word problems
(Kushman et al., 2014), introduced a comprehen-
sive dataset (Alg514) of 514 word problems, across
various domains in algebra (such as percentages,
mixtures, speeds etc). This dataset was annotated
with multiple equations per problem. AddSub was
introduced in (Hosseini et al., 2014), with simple
addition/subtraction problems, with limited lan-
guage complexity. SingleOp (Roy et al., 2015)
and MultiArith (Roy and Roth, 2016) were pro-
posed such that there is a control over the operators
(single operator in the former and two operators
in the latter). SingleEq (Koncel-Kedziorski et al.,
2015) is an interesting dataset, which incorporates
long sentence structures for elementary level school
problems. AllArith (Roy and Roth, 2017) is a sub-
set of the union of AddSub, SingleEq and SingleOp.
"Perturb” is a set of slightly perturbed word prob-
lems of AllArith and finally Aggregate is the union
of AllArith and Perturb. MAWPS (A Math Word
Problem Solving Repository) (Koncel-Kedziorski
et al., 2016) is a curated dataset (with deliberate
template overlap control) that is comprised of all
the proposed datasets till that date. A single equa-
tion subset of MAWPS has been studied (Miao
etal., 2021), for diagnostic analysis of solvers. Sim-
ilarly, the critique offered by (Patel et al., 2021) was
demonstrated using their newly proposed dataset
SVAMP. All the mentioned datasets are annotated



Dataset Type Domain  Size Source
Alg514 (SimulEg-S) Multi-equation (+,-,%,) 514 (Kushman et al., 2014)
AddSub (A2) Single-equation (+,-) 340 (Hosseini et al., 2014)
SingleOp (lllinois, IL) Single-equation  (+,-,%,/) 562 (Roy et al., 2015)
SingleEq Single-equation  (+,-,*%,/) 508  (Koncel-Kedziorski et al., 2015)
MAWPS Multi-equation (+,-,*/) 3320 (Koncel-Kedziorski et al., 2016)
MultiArith (Common Core, CC) ~ Single-equation  (+,-,%,/) 600 (Roy and Roth, 2016)
AllArith Single-equation  (+,-,%,/) 831 (Roy and Roth, 2017)
Perturb Single-equation  (+,-,%,/) 661 (Roy and Roth, 2017)
Aggregate Single-equation  (+,-,%,/) 1492 (Roy and Roth, 2017)
DRAW-1k Multi-equation (+,-,%)) 1k (Upadhyay and Chang, 2017)
AsDIV-A Single-equation  (+,-,*%,/)) 2373 (Miao et al., 2021)
SVAMP Single-equation  (+,-,%,/) 1000 (Patel et al., 2021)
Dolphin18k Multi-equation (+,-,%)) 18k (Huang et al., 2016)
AQuA-RAT Multiple-choice - 100k (Ling et al., 2017)
Math23k* Single-equation  (+,-,*%,/) 23k (Huang et al., 2017)
MathQA Single-equation  (+,-,%,/) 35k (Amini et al., 2019)
HMWP#* Multi-equation (+,-,%)) 5k (Qin et al., 2020)
Ape210k* Single-equation  (+,-,*%,/) 210k (Liang et al., 2021)
GSM8k Single-equation  (+,-,*%,/) 8.5k (Cobbe et al., 2021)
EW10k Single-equation  (+,-,%,/) 10k (Chatterjee et al., 2021)
CM17k* Multi-equation (+,-,%)) 17k (Qin et al., 2021)

Table 3: Datasets

(*Chinese Datasets)

with both the equation and the answer. While run-
ning experiments and creating cross-validation sets,
one must keep in mind various subsets and super-
sets.

6.2 Large Datasets

Dolphin18k (Huang et al., 2016) is an early propri-
etary dataset that was evaluated primarily with the
statistical solvers. AQuA-RAT (Ling et al., 2017)
introduced the first large crowd-sourced dataset for
word problems with rationales or explanations.
The setting is quite different from the aforemen-
tioned datasets, not only with respect to size, but
also in the wide variety of domain areas (span-
ning physics, algebra, geometry, probability etc).
Another point of difference is that, the annotation
involves the entire textual explanation, rather than
equations alone. MathQA (Amini et al., 2019) crit-
ically analysed AQuA-RAT and selected the core
subset and annotated it with a predicate list. Once
again, care must be taken that MathQA is a subset
of AQuA-RAT. GSMS8k (Cobbe et al., 2021) is a re-
cent single-equation dataset, that is the large scale
version of AsDIV-A (Miao et al., 2021). Math23K
is a popular Chinese dataset for single equation
math word problem solving. A recent successor is
Ape210k (Liang et al., 2021).

7 Performance of Deep Models

In this section, we describe the performance of
neural solvers.

Evaluation Measures: The most popular metric
is answer accuracy, which evaluates the predicted
equation and checks whether it is the same as the
labelled one. The other metric is equation accu-
racy, which predominantly does string matching
and matches the equation to the annotated equa-
tions.

We have listed the performance of the deep mod-
els in Table 4, on two major datasets - Math23K
and MAWPS. Some of these deep models report
scores on other datasets as well. For concise-
ness, we have chosen the most popular datasets
for deep models. We see that, in general, the mod-
els achieve around 70-80 percentage points on an-
swer accuracy. (Shen et al., 2021) outperforms
all other models on Math23k whereas RPKHS (Yu
et al., 2021) is the best model for MAWPS till date.
Apart from these algebraic datasets, multi-domain
datasets MathQA and AquA are also of special
interest. This is described in Table 5. The in-
teresting takeaway is that, the addition of BERT
modelling to AQuA (Pigkos et al., 2021), still per-
formed slightly worse than the Seq2Prog (Amini



et al., 2019) model, which is a derivative of the
Seq2Seq paradigm. This suggests that while the
results are commendable, a closer look reveals that
there is much scope for improving word problem
modelling.

Model Math23k MAWPS  Source

Name

GTS 74.3 - (Xie and Sun,
2019)

SAU- 74.8 - (Chiang  and

SOLVER Chen, 2019)

Group-att 69.5 76.1 (Lietal., 2019)

Graph2Tree 77.4 - (Li et al., 2020)

KA-S2T 76.3 - (Wu et al,
2020)

NS-Solver 75.67 - (Qin et al,
2020)

Graph-To- 78.8 - (Li et al., 2020)

Tree

TSN-MD 77.4 84.4 (Zhang et al.,
2020b)

Graph-To- 79.1 84.2 (Liang and

Tree+Teacher Zhang, 2021)

NumS2T 78.1 - (Wu et al,
2020)

Multi-E/D 78.4 - (Shen and Jin,
2020)

EPT - 84.5 (Kim et al,
2020)

Seq2DAG 77.1 - (Cao et al,
2021)

WARM 80.1 - (Chatterjee
et al., 2021)

EEH-D2T 78.5 84.8 (Wu et al,
2021a)

Generate 85.4 84.0 (Shen et al.,

and Rank 2021)

HMS 76.1 80.3 (Lin et al.,
2021)

RPKHS 83.9 89.8 (Yu et al., 2021)

CL 83.2 - (Lietal., 2021)

GTS+RODA 77.9 - (Liu et al.,

2022)

Table 4: Answer Accuracy of Deep Models

8 Analysis of Deep Models

In this section of the paper, we analyze the pros and
cons of applying deep learning techniques to solve
word problems automatically. At the outset, two
layers of understanding are imperative (i) linguistic
structures that describe a situation or a sequence of
events and (ii) mathematical structures that govern
these language descriptions. Though deep learning
models have rapidly scaled and demonstrated com-
mendable results for capturing these characteristics,

Model AQuA-RAT MathQA Source
AQuA 36.4 - (Ling et al.,
2017)
Seq2Prog 37.9 57.2 (Amini
et al., 2019)
BERT-NPROP 37.0 - (Pigkos
et al., 2021)
Graph-To-Tree - 69.65 (Li et al,
2020)

Table 5: Performance on Large Multi-Domain Datasets

when one examines the problem more closely, a
plethora of insights are available for further explo-
ration. The predominant modus-operandus is to
create a deep model that converts the input natu-
ral language to the underlying equation. In some
cases, the input is converted into a set of predicates
(Amini et al., 2019) or explanations (Ling et al.,
2017).

8.1 What Shortcuts are being Learned?

Shortcut Learning (Geirhos et al., 2020) is a re-
cently well-studied phenomenon of deep neural
networks. It describes how deep learning models
learn patterns in a shallow way and fall prey to
questionable generalizations across datasets (an ex-
ample is an image being classified as sheep if there
was grass alone; due to peculiarities in the dataset).
This is a function of the low-level input we provide
to such models (pixels, word embeddings etc.). In
the context of word problems, (Patel et al., 2021)
exposed how removing the question and simply
passing the situational context, leads to the correct
equation being predicted. This suggests two things,
issues with model design as well as issues with
dataset design. The datasets have high equation
template overlap, as well as text overlap. Word
problem solving is a hard because two otherwise
identical word problems, with a small word change
(say changing the word give to take), would com-
pletely change the equation. Hence high lexical
similarity does not translate to corresponding simi-
larity in the mathematical realm (Patel et al., 2021;
Sundaram et al., 2020).

8.2 Is Language or Math being Learned?

The question that looms large is whether adequate
mapping of language to math has been modelled,
whether linguistic modelling has been unfavourably
highlighted or that the mathematical aspects have
been captured succinctly. We claim that both lan-
guage and math have not yet been modelled ade-



Problem ‘ Solved? ‘

John has 5 apples. Mary has 2 apples Yes
more than John. How many apples does
Mary have?

John has 5 apples. Mary has 2 apples No
more than John. Who has less apples?

‘What should be added to two to make it No
five?

Table 6: Behaviour of Baseline BERT Model

quately. Apart from the perturbations experiment
done by SVAMP (Patel et al., 2021), which exposes
that the mapping between linguistic and mathe-
matical structures is not captured, we suggest two
more experiments that expose flaws in linguistic
and mathematical modelling alone. The first one
involves imposing a question answering task on
top of the word problem as a probing test. For ex-
ample, a baseline BERT model that converts from
input language to equation (Table 6), trained on
MAWPS, can solve a simple word problem such as
"John has 5 apples. Mary has 2 apples more than
John. How many apples does Mary have?", but can-
not answer the following allied question "John has
5 apples. Mary has 2 apples more than John. Who
has less apples?". One reason is of course, dataset
design. The governing equation for this problem is
"X =5-2". However, the text version of this, "What
should be added to two to make it five?", cannot
be solved by the baseline model. Similarly, many
solvers wrongly output equations such as "X =2 -
5" (Patel et al., 2021), which suggests mathemati-
cal modelling of subtraction of whole numbers is
not up to the mark. Hence, we observe, that deep
translation models neither model language, nor the
math sufficiently.

8.3 Is Accuracy Enough?

As suggested by the discussion above, a natural line
of investigation is to examine the evaluation mea-
sures, and perhaps the error measures for the deep
models, in order to bring about a closer coupling
between syntax and semantics. High accuracy of
the models to predicting the answer or the equation
suggests a shallow mapping between the text and
the mathematical symbols. One direction of ex-
ploration is data augmentation with a single word
problem annotated with multiple equivalent equa-
tions. Metrics that measure the soundness of the
equations generated, the robustness of the model to
simple perturbations (perhaps achieved using a de-

noising autoencoder) and the ability of the model to
discern important entities in a word problem (per-
haps using an attention analysis based metric), are
the need of the future. An endeavour has been done
by (Kumar et al., 2021), where adversarial exam-
ples have been generated and utilised to evaluate
SOTA models.

8.4 Are the Trained Models Reproducible?

Most of the SOTA systems come with their own,
well-documented repositories. Though an aggre-
gated toolkit (Lan et al., 2021) (open-source MIT
License) is available, running saved models in in-
ference mode, to probe the quality of the datasets,
proved to be a hard task, with varying missing
hyper-parameters or missing saved models. This,
however, interestingly suggests that API’s that can
take a single word problem as input and computes
the output, would be highly useful for application
designers. This has been done in the earlier sys-
tems such as (Roy and Roth, 2018) and (Wolfram,
2015).

9 Analysis of Benchmark Datasets

In this section of the paper, we explore the various
dimensions of the popular datasets (Table 3).

9.1 Low Resource Setting

Compared to usual text related tasks, the available
datasets are quite small in size. They also suffer
from a large lexical overlap (Amini et al., 2019).
This taxes algorithms, that now have to generalise
from an effectively small dataset.

9.2 Annotation Cost

The datasets currently have little to no annotation
costs involved as they are usually scrapped from
homework websites. There are some exceptions
that involve crowd-sourcing (Ling et al., 2017) or
intermediate representations apart from equations
(Amini et al., 2019). Some efforts include remov-
ing the need for basic equation annotation, and
relying only on the answer (Chatterjee et al., 2021).

9.3 Template Overlap

Many studies (Zhang et al., 2020a) have demon-
strated that there is a high lexical and mathemati-
cal overlap between the word problems in popular
datasets. Consequently, many strategies have been
adopted to mitigate this. Early attempts include
controlling linguistic and equation template over-
lap ((Koncel-Kedziorski et al., 2016), (Miao et al.,



2021)). Later ideas revolve around controlled de-
sign and quality control of crowd-sourcing (Amini
et al., 2019).

10 Road Ahead

In this section, we describe exciting frontiers of
research for word problem solving algorithms.

10.1 Semantic Parsing

As rightly suggested by (Zhang et al., 2020a), the
closest natural language task for word problem
solving is that of semantic parsing, and not trans-
lation as most of the deep learning models have
modelled. The mapping between extremely long
chunks of text to short equation sentences has the
advantage of generalising on the decoder side, but
equally has the danger of overloading many in-
volved semantics into a simplistic equation model.
To illustrate, an equation may be derived after ap-
plying a sequence of steps that is lost in a simple
translation process. A lot of efforts have already
been employed in adding such a nuance. One way
is to model the input intelligently ((Peng et al.,
2021), (Liang et al., 2021)). The intermediate repre-
sentations include simple predicates (Roy and Roth,
2018), while others involve a programmatic de-
scription ((Ling et al., 2017), (Amini et al., 2019)).
Yet another way is to include semantic information
in the form of graphs as shown in ((Huang et al.,
2018), (Chiang and Chen, 2019), (Qin et al., 2020),
(Li et al., 2020), etc.)).

10.2 Informed Dataset Design

As most datasets are scraped from websites, there
is bound to be repetition. Some effort, if invested
into designing datasets that expose (a) different ver-
sions of the same problem, (b) different equivalent
equation types, (c) semantics of the language and
the math. A step in this direction has been explored
by (Patel et al., 2021), which provides a challenge
dataset for evaluating word problems, and (Kumar
et al., 2021) where adversarial examples are auto-
matically generated.

10.2.1 Dataset Augmentation

A natural extension of dataset design, is dataset
augmentation. Augmentation is a natural choice
when we have datasets that are small and focused
on a single domain. Then, linguistic and mathe-
matical augmentation can be automated by domain
experts. While template overlap is a concern in
dataset design, it can be leveraged in contrastive

designs as in ((Sundaram et al., 2020), (Li et al.,
2021)). A principled approach of reversing oper-
ators and building equivalent expression trees for
augmentation has been explored here (Liu et al.,
2022).

10.2.2 Few Shot Learning

This is useful if we have a large number of non-
annotated word problems or if we can come up
with complex annotations (that capture semantics)
for a small set of word problems. In this way few
shot learning can generalise from few annotated
examples.

10.3 Knowledge Aware Models

We propose that word problem solving is more
involved than even semantic parsing. From an intu-
itive space, we learn language from examples and
interactions but we need to be explicitly trained
in math to solve word problems (Marshall, 1996).
This suggests we need to include mathematical
models into our deep learning models to build gen-
eralisability and robustness. As mentioned before,
a common approach is to include domain knowl-
edge as a graph ((Chiang and Chen, 2019), (Wu
et al., 2020), (Qin et al., 2020), (Qin et al., 2021)).

11 Conclusion

In this paper, we surveyed the existing math word
problem solvers, with a special focus on deep learn-
ing models. Deep models are predominantly mod-
eled as encoder-decoder models, with input as text
and decoder output as equations. We listed sev-
eral interesting formulations of this paradigm -
namely as Seq2Seq models, graph-based models,
transformer-based models, contrastive models and
teacher-student models. We then explored in de-
tail the various datasets in use. Subsequently, we
analysed the various approaches of modelling word
problem solving, followed by the characteristics of
the popular datasets. We concluded that the brit-
tleness of the SOTA models was due to (a) tough
modelling decisions and (b) tough dataset design.
This is an exhaustive survey, but the authors ac-
knowledge that there may be methods that have
escaped their attention. They also caution that the
analysis provided, is but qualitative. Finally, we
mentioned few avenues of further exploration such
as the use of semantically rich models, informed
dataset design and incorporation of domain knowl-
edge.
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