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Abstract

As large language models (LLMs) increasingly underpin technological advance-
ments, the privacy of their training data emerges as a critical concern. Differential
Privacy (DP) serves as a rigorous mechanism to protect this data, yet its integra-
tion via Differentially Private Stochastic Gradient Descent (DP-SGD) introduces
substantial challenges, primarily due to the complexities of per-sample gradient
clipping. Current explicit methods, such as Opacus, necessitate extensive storage
for per-sample gradients, significantly inflating memory requirements. Conversely,
implicit methods like GhostClip reduce storage needs by recalculating gradients
multiple times, which leads to inefficiencies due to redundant computations. This
paper introduces FlashDP, an innovative cache-friendly method that consolidates
necessary operations into a single task, calculating gradients only once in a fused
manner. This approach not only diminishes memory movement by up to 50% but
also cuts down redundant computations by 20%, compared to previous methods.
Consequently, FlashDP does not increase memory demands and achieves a 90%
throughput compared to the Non-DP method on a four-A100 system during the
pre-training of the Llama-13B model, while maintaining parity with standard DP-
SGD in terms of accuracy. These advancements establish FlashDP as a pivotal
development for efficient and privacy-preserving training of LLMs.

1 Introduction

The transformer architecture [1] has revolutionized fields like natural language processing [2, 3],
embodied AI [4, 5, 6], and AI-generated content (AIGC) [7, 8], with Large Language Models (LLMs)
demonstrating exceptional abilities in text generation, complex query responses, and various language
tasks due to training on massive datasets.

Differential Privacy (DP) enhances data privacy by minimizing individual data points’ influence
through noise addition [9]. In deep learning, Differentially Private Stochastic Gradient Descent (DP-
SGD) [10] is widely used, particularly in LLM fine-tuning [11, 12, 13, 14]. However, its application
in LLM pre-training is limited [15, 11, 12], often constrained by shorter sequence lengths due to high
computational and memory demands, thus not fully leveraging the capabilities of modern LLMs.

Integrating DP into LLM training via DP-SGD/Adam poses significant challenges, particularly due
to per-sample gradient clipping. This crucial privacy technique involves adjusting each data sample’s
gradients to limit their influence on model updates. While critical for maintaining strict privacy
standards, this approach requires computing and storing individual gradients, significantly raising
computational and memory demands. Managing these gradients is especially taxing in LLMs, which
are known for their large parameter spaces. Each gradient must be carefully clipped and aggregated
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before updating model parameters, straining computational resources, and prolonging training times.
These scalability issues are particularly acute in settings with limited hardware, creating significant
barriers to efficiently training privacy-aware LLMs [11, 12].

Figure 1: Comparison of different training methods. (a) Stan-
dard DP-SGD: Stores per-sample gradients G (red explicit
cache), increasing memory usage (blue buffer). (b) FlashDP:
Optimizes gradient processing by consolidating computa-
tions into a single pass, reducing redundancy and memory
use.

Current research on DP-SGD for train-
ing LLMs can be categorized into two
classes: explicit methods like Opa-
cus [16] stand out by directly stor-
ing per-sample gradients. This ap-
proach, while straightforward, signif-
icantly increases the memory foot-
print (Appendix Table 3), which be-
comes prohibitive for state-of-the-art
LLMs characterized by billions of pa-
rameters [17, 18]. Such a substan-
tial increase in memory requirements
hampers scalability and renders these
methods impractical for deployment
in large-scale model training environ-
ments. The direct storage of gradients,
essential for ensuring the privacy guar-
antees of DP, thus poses a substantial
barrier to the efficient implementation
of DP in LLMs.

Conversely, implicit methods, exem-
plified by innovations such as GhostClip [19], address the memory challenge by circumventing the
need for persistent storage of per-sample gradients. These methods segment the DP-SGD process into
multiple discrete computational tasks, ostensibly to mitigate memory demands. However, this strategy
necessitates the frequent recalculation of per-sample gradients, which introduces a high degree of
computational redundancy (Table 3). This redundancy not only undermines training efficiency but
also extends the duration of the training process significantly. For LLMs, which require substantial
computational resources and extended training times, the inefficiencies introduced by such redundant
computations become a critical bottleneck. These implicit methods, while innovative in reducing
memory usage, thus struggle to deliver a practical solution for the privacy-preserving training of
LLMs at scale.

To effectively tackle the challenges presented by existing methods of integrating DP into the training
of LLMs, we introduce FlashDP, a novel, cache-friendly implicit algorithm designed to streamline
the DP-SGD process (Figure 1 (a)). FlashDP uniquely implements a unified computational strategy
that performs the gradient operations required for DP-SGD in a single pass (Figure 1 (b)). Our
contributions can be summarized as follows:

• Enhanced Throughput for Long Sequence LLM training with DP: We propose FlashDP,
which effectively resolves the issue of low throughput in DP-SGD/Adam during the training
of LLMs with long sequence lengths. By optimizing the computational workflow and
integrating more efficient handling of per-sample gradients, FlashDP significantly enhances
the processing speed without compromising the model’s accuracy or privacy integrity.

• Innovative GPU I/O Optimization: Our study pioneers the exploration of DP-SGD from
the perspective of GPU input/output operations. FlashDP’s architecture, which consolidates
the entire DP-SGD process into a single GPU kernel, eliminates redundant computations
and optimizes data flow within the GPU. This approach not only reduces the computational
load but also minimizes the number of GPU memory accesses, setting a new standard for
efficiency in DP implementations.

• Experimental Validation of Efficiency and Scalability: In practical LLM models involving
Llama-13B, FlashDP matches the speed and memory usage of non-DP training methods and
achieves a significant 90% throughput compared with Non-DP methods. This performance is
achieved on a computational platform equipped with four NVIDIA A100 GPUs. Importantly,
it accomplishes this without any degradation in the precision or the privacy guarantees
typically observed in standard DP-SGD implementations. This capability demonstrates
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FlashDP’s effectiveness in scaling DP applications to larger and more complex LLMs
without the usual trade-offs.

2 FlashDP Algorithm Design

This section begins with an overview of relevant literature and foundational concepts, found in
Appendices A and B respectively. Subsequently, we detail our proposed FlashDP algorithm.

Figure 2: Illustration of FlashDP. It depicts the core algorithm design of FlashDP. Its features are
integrated with on-chip per-sample gradient norm calculations. The workflow incorporates block-wise
all-reduce and synchronization to facilitate efficient norm aggregation. SRAM (orange) and HBM
(green) are optimally utilized to manage memory efficiently, addressing the kernel fusion challenges
and reducing computational redundancy inherent in traditional DP-SGD implementations.

FlashDP introduces a suite of algorithmic enhancements designed to reconcile the computational
demands and memory constraints associated with DP-SGD. At the heart of these enhancements is the
Block-wise All-Reduce algorithm, which integrates several critical operations into a unified kernel
execution, thereby optimizing on-chip memory utilization and enhancing computational throughput.

Efficient Kernel Fusion through Block-wise All-Reduce. Central to FlashDP’s strategy is our
proposed Hierarchical Reduction Architecture (HRA), which encompasses more than just reduction
operations. HRA is a structured approach that manages the computation and synchronization of
data across various stages, beginning with intra-block reduction of gradient norms within individual
GPU blocks. This phase employs an HRA-based reduction strategy executed in shared memory,
culminating in a single norm scaler per block. Such a design significantly reduces the data footprint
necessary for subsequent inter-block communications, optimizing the efficiency of the all-reduce
operation across the GPU grid.

Following the compact intra-block reduction, FlashDP coordinates a global all-reduce operation
across blocks, which computes a global gradient norm crucial for consistent gradient clipping across
the entire mini-batch. Efficiently handled in HBM thanks to the minimized data size from earlier
reductions, this step avoids the common memory bottlenecks typically associated with large-scale
data operations in HBM, thus maintaining high computational throughput.

The strategic implementation of HRA not only facilitates these reductions but also orchestrates
synchronized updates and data consistency across the GPU architecture. By managing data flow from
the point of loading through to final computation and storage, HRA ensures that the most intensive
computations are confined to the faster, on-chip memory. This methodical approach leverages the
GPU’s capabilities to facilitate high-performance differentially private training, minimizing memory
and bandwidth overhead.

The practical implementation and operational dynamics of the FlashDP approach are thoroughly
visually depicted in Figure 2. FlashDP innovatively reduces the four distinct stages typically involved
in explicit DP-SGD into a single streamlined stage. This consolidation is achieved without adding
any extra computational steps, thereby enhancing the overall efficiency of the process. Here is a
detailed breakdown of this single streamlined stage:
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Optimized Block Processing and Memory Management. Initially, FlashDP partitions the input
activation tensor X and the output gradient tensor ∇Y into blocks based on the SRAM capacity.
This strategic partitioning is crucial for managing the limited on-chip memory more effectively and
ensuring that data transfers between the HBM and SRAM are minimized.

Fused Computation of Gradients and Norms. Within the GPU’s SRAM, FlashDP simultaneously
computes the per-sample gradients block and their norms square (intra-block reduce) for each block.
This computation leverages the GPU’s powerful batched GEMM operations, enabling it to handle
large data sets efficiently.

Block-wise All-Reduce. After computing the gradient norms, FlashDP performs a Block-wise
All-Reduce operation in parallel to aggregate these norms across all blocks (inter-block reduce).
This all-reduce operation is crucial for obtaining a global view of gradient norms square, which is
necessary for consistent gradient clipping across the entire batch. This step is executed efficiently
within the SRAM, reducing the latency and memory bandwidth requirements typically associated
with inter-GPU communications.

Gradient Clipping and Noise Addition in SRAM. Following the gradient and norm calculations,
clipping is performed directly on the chip. Each gradient is scaled according to the computed norms
and a predefined clipping threshold C, ensuring compliance with DP standards. Immediately after
clipping, Gaussian noise based on the noise scale σ and the clipping threshold is added to each
gradient block.

Efficient Parameter Aggregation. The final step in the FlashDP algorithm involves aggregating
the noisy, clipped gradients across all blocks and batches directly within SRAM. This aggregation is
optimized to minimize memory accesses, ensuring that only the final gradient used for the model
update is transferred back to HBM.

3 Experiments

Our experimental suite is methodically designed to assess the robustness and efficiency of FlashDP
across a range of training paradigms and hardware configurations. We explore FlashDP’s performance
in terms of memory efficiency and throughput under varying batch sizes (Section 3.2), its consistency
across different sequence lengths (Appendix D.2), and its scalability when employing Distributed
Data Parallel (DDP) and Pipeline Parallel (PP) techniques (Appendix D.3, including Llama-13B
experiments).

Table 1: Differential Batch-size Analysis. The table displays a multi-panel comparison of memory
usage and throughput for four differential privacy methods-NonDP, Opacus, GhostClip, BK, and
FlashDPâĂŤacross different batch sizes B (1, 2, 4, and 8) when applied to GPT-2 models of varying
sizes (small, medium, and large). Instances of ‘-’ in the table indicate scenarios where the correspond-
ing method failed to execute due to memory constraints.

Model B Memory Usage (MB x1e4) Throughput (tokens/sec x1e4)
NonDP Opacus GhostClip BK FlashDP NonDP Opacus GhostClip BK FlashDP

GPT2-small 0.50 0.75(x1.50) 0.46(x0.92) 0.53(x1.06) 0.50(x1.00) 2.84 0.91(x0.32) 0.57(x0.20) 1.56(x0.54) 1.83(x0.64)
GPT2-medium 1 1.26 1.53(x1.21) 1.12(x0.89) 1.68(x1.33) 1.26(x1.00) 1.10 0.42(x0.38) 0.39(x0.35) 0.75(x0.68) 0.86(x0.78)

GPT2-large 2.48 3.99(x1.61) 2.17(x0.88) 2.73(x1.18) 2.48(x1.00) 0.58 0.25(x0.43) 0.27(x0.46) 0.40(x0.69) 0.51(x0.89)
GPT2-small 0.87 1.30(x1.49) 0.79(x0.91) 1.01(x1.16) 0.87(x1.00) 3.22 1.68(x0.52) 0.92(x0.29) 1.91(x0.59) 2.32(x0.72)

GPT2-medium 2 2.07 2.89(x1.39) 1.87(x0.90) 2.44(x1.18) 2.07(x1.00) 1.28 0.74(x0.58) 0.59(x0.46) 0.81(x0.63) 1.02(x0.80)
GPT2-large 3.91 4.79(x1.23) 3.53(x0.90) 4.81(x1.23) 3.91(x1.00) 0.68 0.38(x0.56) 0.38(x0.56) 0.45(x0.66) 0.59(x0.87)
GPT2-small 1.53 2.07(x1.35) 1.44(x0.94) 1.68(x1.09) 1.53(x1.00) 3.60 2.42(x0.67) 1.42(x0.39) 2.24(x0.62) 2.59(x0.72)

GPT2-medium 4 3.58 4.26(x1.19) 3.33(x0.93) 4.00(x1.12) 3.58(x1.00) 1.42 0.90(x0.63) 0.81(x0.57) 0.95(x0.67) 1.13(x0.80)
GPT2-large 6.60 - 6.15(x0.93) 6.60(x1.00) 6.60(x1.00) 0.76 - 0.50(x0.66) 0.53(x0.70) 0.64(x0.84)
GPT2-small 2.86 3.44(x1.20) 2.72(x0.95) 2.86(x1.00) 2.86(x1.00) 3.80 2.64(x0.69) 1.92(x0.51) 2.40(x0.63) 2.72(x0.72)

GPT2-medium 8 6.60 - 6.24(x0.95) 6.60(x1.00) 6.60(x1.00) 1.52 - 0.99(x0.65) 1.03(x0.68) 1.19(x0.78)
GPT2-large - - - - - - - - - -

3.1 Experimental Setup

Our experiments utilize the Wikitext dataset [20] and are conducted on NVIDIA A100 (80GB)
GPUs using the PyTorch framework [21]. We assess the performance of FlashDP across various
configurations by comparing it with established explicit methods Opacus [16], and implicit method
GhostClip [19] and BK [12], under different training paradigms. The tested models include GPT-2
[22] with a sequence length of 1024 and the TinyLlama [23] and Llama [17] models, both with a
sequence length of 2048. Our evaluations mainly focus on memory usage (MB) and throughput
(tokens/sec) to determine the efficiency. We also show the loss of the validation data to measure the
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utility of private pre-training. Unless specified otherwise, the settings for each experiment use GPT-2
models with a sequence length of 1024, and Llama models with a sequence length of 2048, employing
the AdamW optimizer as the base. More experimental settings can be found in Appendix C.

3.2 Results of Batch Size & Micro Batch Size

Efficient batch processing is crucial in LLM training due to its high computational and memory
demands. By examining both batch and micro-batch sizes, we assess FlashDP’s ability to manage
memory more effectively and maintain high throughput. This also tests the practicality of gradient ac-
cumulation (GA), which allows larger effective batch sizes by splitting them into smaller, manageable
micro-batches. The experiment results of different micro batch sizes can be seen in Appendix D.1.

In Table 1, FlashDP was benchmarked against traditional DP-SGD methods like Opacus, GhostClip,
and BK, as well as a non-DP (NonDP) configuration, demonstrating superior memory efficiency and
throughput. FlashDP utilized approximately 38% less memory than Opacus and nearly matched the
NonDP configuration while processing the GPT-2 large model at a batch size of 1. It achieved a
throughput nearly double that of Opacus and only slightly lower than NonDP, showcasing its effective
balance between privacy preservation and computational efficiency. Opacus exhibited the highest
memory usage, which escalated with batch size, leading to failure at a batch size of 8. GhostClip,
while more memory-efficient than Opacus, suffered from reduced throughput at higher batch sizes
due to gradient re-computation. BK’s performance was intermediate, lacking distinct advantages.
Overall, FlashDP not only maintained lower memory usage and higher throughput than the DP
methods across all batch sizes but also approached the efficiency of NonDP configurations.

4 Conclusion

In this paper, we introduce FlashDP, a novel approach for integrating differentially private SGD
(DP-SGD) into the training of large language models (LLMs) while enhancing memory efficiency
and computational throughput. By optimizing GPU input/output operations, FlashDP significantly
reduces the memory transaction overhead, allowing it to achieve near-non-private throughput levels
while maintaining strict privacy standards. Central to FlashDP’s strategy is the Block-wise All-
Reduce algorithm, which integrates several critical operations into a unified kernel execution. To
achieve this, we propose a Hierarchical Reduction Architecture (HRA), which encompasses more
than just reduction operations. Moreover, we employ an adaptive kernel approach to implement HRA,
which addresses the limitations of CUDA’s programming model in facilitating block synchronization.
Our experiments demonstrate that FlashDP reduces memory usage to levels comparable with non-
private methods and increases throughput, making the efficient training of substantial models like
the Llama 13B feasible on modern hardware. The minimal interference in the training process and
the maintenance of computational precision suggest that FlashDP could significantly advance the
adoption of DP in sectors where privacy is crucial, making secure and efficient machine learning
more accessible for a wider range of applications.
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A Related Work

Improving Time and Memory Complexities of DP-SGD. The transition from
standard stochastic gradient descent to DP-SGD introduces substantial modifications
in memory and computational demands. In conventional settings, parameter updates
are efficiently computed by aggregating gradients across all samples within a batch.
This approach is both memory-efficient and computationally straightforward. In
contrast, DP-SGD mandates that each sample’s gradients be preserved, clipped,
and subsequently aggregated to uphold privacy guarantees. Recent innovations in
DP-SGD have primarily concentrated on ameliorating its computational and mem-
ory inefficiencies. TF-Privacy vectorizes the loss to calculate per-sample gradients
through backpropagation, which is efficient in terms of memory but slow in execution
[24]. Opacus [16] and [25] enhance the training efficiency by employing the outer
product method [26], albeit at the cost of increased memory usage needed to store
per-sample gradients. This memory overhead is mitigated in FastGradClip [27] by
distributing the space complexity across two stages of backpropagation, effectively
doubling the time complexity. Additionally, ghost clipping techniques [26], [19],
[28] allow for clipping per-sample gradients without full instantiation, optimizing
both time and space, particularly when feature dimensions are constrained. Further-
more, [12] introduces a ’book-keeping’ (BK) method that achieves high throughput
and memory efficiency while falling short in handling the long sequence lengths
typical in LLM training.

While these methodologies have made significant strides in mitigating the extensive
computational and memory demands typically associated with managing per-sample
gradients in DP-SGD, they have not addressed the optimization of DP training
from the perspective of GPU architecture and memory access. Additionally, the
approaches detailed thus far do not cater effectively to the training of today’s long-
sequence LLMs. FlashDP aims to enhance the efficiency and feasibility of training
LLMs with long sequences under the constraints of differential privacy, ensuring
both high performance and adherence to privacy standards.

DP for Large Language Models. The field of privacy-preserving LLMs is char-
acterized by the use or exclusion of DP and its extensions. [29] demonstrated that
public pretraining could facilitate downstream DP fine-tuning, although they did
not explore fine-tuning large pre-trained models using DP-SGD. [30] explored the
fine-tuning of BERT for language understanding tasks under local DP. [31] suggested
the potential for cost-effective private learning through fine-tuning large pre-trained
language models. [32] and [33] extended these studies to BERT, pretraining and
fine-tuning under global DP, respectively, with [32] addressing datasets comprising
hundreds of millions of examples, and [33] reporting on datasets of utterances with
relatively high ϵ values. Our research distinguishes itself by focusing on pre-training
and fine-tuning large language models with high throughput and low memory usage.
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B Preliminaries

B.1 Differential Privacy

Definition 1. (Differential Privacy [34]) Given a data universe X , two datasets
X,X ′ ⊆ X are adjacent if they differ by one data example. A randomized algorithm
M is (ε, δ)-differentially private if for all adjacent datasets X, X ′ and for all events
S in the output space ofM, we have Pr(M(X) ∈ S) ≤ eε Pr(M(X ′) ∈ S) + δ.

Differentially Private Stochastic Gradient Descent (DP-SGD) [10]. DP-SGD
is an adaptation of this principle for machine learning models, where privacy is
preserved during the training process by modifying the gradient computation.

In the context of a model parameterized by weights θ for loss L, the standard SGD
update is modified in DP-SGD to include a mechanism for privacy preservation.
Specifically, the gradient∇L(θ, xi) for each training example xi is first computed,
and then processed as follows to incorporate privacy:

1. Clipping: Each gradient is clipped to a maximum norm C, defined as:
g′i = gimin(1, C

∥gi∥2 ), where gi = ∇L(θ, xi).

2. Noise Addition: Gaussian noise is added to the aggregated clipped gradients
to ensure differential privacy:

g̃ =
1

B

B∑
i=1

g′i +N (0, σ2C2I)

where B is the batch size, and σ is the noise scale, determined by the privacy
budget, subsampling rate, and iteration number.

The model parameters are then updated using the noisy, aggregated gradient: θ ←
θ − ηg̃, where η is the learning rate. This approach to privacy-preserving training
addresses the fundamental trade-off between accuracy and privacy by controlling
the granularity of the updates through the parameters C and σ.

In this work, we actually use Differentially Private Adam (DP-Adam) instead of
DP-SGD. While DP-Adam incorporates the same mechanisms for gradient clipping
and noise addition as described for DP-SGD, it also leverages the adaptive learning
rates characteristic of Adam. The detailed algorithms can be found in Algorithm
1-3.

Algorithm 1 Common Gradient Processing in DP-SGD and DP-Adam

Require: L(θ, xi): Loss function for parameter θ and input xi

Require: C: Clipping threshold
Require: σ: Noise scale
Require: B: Batch size

1: for i = 1 to B do
2: Compute gradient: gi = ∇L(θ, xi)
3: Clip gradient: g′i = gi min(1, C

∥gi∥2
)

4: end for
5: Aggregate clipped gradients and add Gaussian noise: g̃ = 1

B

∑B
i=1 g

′
i +N (0, σ2C2I)
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Algorithm 2 DP-SGD Specific Steps

Require: θ: Model parameters
Require: η: Learning rate

1: for each training step do
2: Perform common gradient processing as in Algorithm 1
3: Update model parameters: θ ← θ − ηg̃
4: end for

Algorithm 3 DP-Adam Specific Steps

Require: m, v: Estimates of the first and second moments (initially 0)
1: for each training step do
2: Perform common gradient processing as in Algorithm 1
3: Update moment estimates: m← β1m+ (1− β1)g̃
4: v ← β2v + (1− β2)g̃

2

5: Compute adaptive learning rate: η̂ = η/(
√
v + ϵ)

6: Update parameters: θ ← θ − η̂m
7: end for

B.2 Transformers

The transformer architecture, proposed by Vaswani et al. [1], is predicated on self-
attention mechanisms that process input tokens in parallel, significantly improving
the performance and training efficiency of sequence-to-sequence tasks. This archi-
tecture has become the backbone of LLMs.

In a transformer model, the input tensor X of size B × T × P (since we are
considering LLM, so we only focus on text data as the input), where B is the batch
size, T is the sequence length (number of tokens), and P is the embedding size of a
token, undergoes a series of transformations through multi-head self-attention and
feedforward neural network blocks. For each token in the sequence, the transformer
computes a weighted sum of all tokens in the input, where the weights are determined
through the self-attention mechanism.

Multi-Head Attention (MHA). The attention mechanism is primarily built upon
linear transformations where the query Q, key K, and value V matrices are obtained
as follows:

Q = XWQ, K = XWK , V = XWV (1)
where WQ, WK , and WV are the weight matrices that are subject to training.

Feedforward Network (FFN). The FFN in the transformer consists of two linear
transformations with a ReLU activation in between:

FFN(x) = ReLU(xW1)W2 (2)
Here, W1 and W2 are the weight matrices, all of which are trainable parameters of
the linear layers within the FFN.

Layer Normalization (LN). LN is applied post-attention and FFN in each layer
of the transformer. It normalizes the output of each neuron to have a mean of zero
and a variance of one, which are then scaled and shifted by the trainable parameter
vectors γ and β, respectively:

LayerNorm(x) = γ ⊙
(

x− µ√
σ2 + ϵ

)
+ β (3)
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where µ and σ2 are the mean and variance calculated over the last dimension of the
input tensor x, ϵ is a small constant added for numerical stability, and ⊙ denotes
element-wise multiplication. The layer normalization parameters γ (scale) and β
(shift) are learned to optimally scale and shift the normalized data.

The key trainable parameters in the transformer model are:

1. Weights of the WHA mechanism, including query WQ, key WK , and value
WV matrices, each of size P × P .

2. Position-wise FFN weights W1 of size P ×H and W2 of size H×P , where
H is the hidden layer size.

3. LN parameters γ and β, which are vectors of size P .

It is important to highlight that the bulk of the trainable parameters in the trans-
former model stems from MHA and FFN modules, both of which consist of linear
transformations. These linear parameters are responsible for the vast majority of
transformations within the transformer and significantly contribute to its parameter
count. In contrast, the trainable parameters in LN represent a relatively smaller por-
tion of the modelâĂŹs total parameters. Therefore, we focus on the linear parameters
gradient computation.

DP-SGD for Training Transformers. The process of adapting DP-SGD to trans-
formers is formalized as follows: For each batch of input data X and corresponding
loss function L, compute the per-sample gradients Gθ for all trainable parameters
θ = {WQ,WK ,WV ,W1,W2,γ,β}:

Gθ = ∇θL(θ,X) ∈ RB×|θ|. (4)

where∇θL(θ,X) denotes the computation of gradients of the loss with respect to
the parameters θ for the batch X .

B.3 GPU Architecture and CUDA Programming

High performance in deep learning, particularly in operations like General Matrix
to Matrix Multiplication (GEMM), is largely attributable to the parallel processing
power of modern Graphics Processing Units (GPUs). The architectural design of
GPUs, with their numerous cores and hierarchical memory systems, is optimized
for the parallel execution of operations, making them ideal for the matrix-intensive
computations required in neural network training.

GPU Architecture. At the heart of GPU’s computational efficiency are its Streaming
Multiprocessors (SMs), which are essentially multiprocessor units that execute a
large number of threads concurrently. Each SM is a powerhouse of performance,
containing a set of processing cores and a block of on-chip memory, primarily
Shared Random Access Memory (SRAM), which includes registers and shared
memory. Shared memory, an ultra-fast SRAM, allows threads within the same block
to exchange data without involving the slower global memory (HBM), thus acting
as a crucial facilitator for matrix blocking.

CUDA and GEMM. The quintessential challenge in optimizing GEMM lies in the
meticulous orchestration of data movement and computation, an endeavor where
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matrix blocking emerges as a pivotal strategy. Leveraging the robust architecture
of GPUs and the sophisticated abstractions provided by CUDA (Compute Unified
Device Architecture), matrix blocking transforms the theoretical prowess of parallel
computation into a practical performance paradigm.

Principles of Matrix Blocking. Matrix blocking, also known as matrix tiling,
is a technique ingeniously conceived to enhance data locality and parallelism. It
systematically partitions extensive matrix operands into smaller, manageable sub-
matrices or ’blocks’ that can be independently dispatched to the GPUâĂŹs SMs. The
judicious use of shared memory within SMs for these blocks reduces the frequency
and volume of global memory accesses, a common bottleneck due to its higher
latency. Blocking is pivotal in minimizing the communication overhead between the
slow global memory and the fast but limited on-chip shared memory. This stratagem
leverages the temporal and spatial locality by reusing data within the fast-access
memory hierarchies, significantly reducing the volume of data shuttled to and from
the global memory, thereby enhancing the computational throughput.

Mathematical Formalization of Blocking GEMM. Consider the GEMM operation
defined as C = A × B, where A ∈ Rm×n, B ∈ Rn×p, and the resultant matrix
C ∈ Rm×p. Blocking decomposes this operation into smaller, tractable computations
over blocks such that:

Cij =
N∑
k=1

Aik ×Bkj, (5)

where N is the number of blocks, and each Cij , Aik, and Bkj represents a sub-matrix
or block within C, A, and B, respectively. The indices i, j, and k denote the specific
block within the partitioned matrices.

The dimensions of each block are chosen based on the GPUâĂŹs shared memory
constraints and the size of the SMsâĂŹ thread blocks, enabling optimal utilization of
resources. These dimensions are represented as Bm ×Bn for Aik and Bn ×Bp for
Bkj , leading to a block BC in size of Bm × Bp for Cij . Hence, the computational
paradigm shifts to:

BCij
=

Bn∑
k=1

(BAik
×BBkj

), (6)

where each multiplication within the summation is an independent block-level
GEMM that can be executed in parallel.

C Additional Experiments Settings

Batch Size & Micro Batch Size For the batch size experiment, we vary the batch sizes
at 1, 2, 4, and 8, using GPT-2 models of small, medium, and large scales to test the
method’s scalability and efficiency. Similarly, in the micro-batch size experiment,
we set the micro-batch sizes at 1, 2, 4, and 8, with a gradient accumulation step of 4.
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Table 2: Micro Batch Size Analysis. Comparing memory and throughput at varying micro batch
sizes B (1, 2, 4, 8) and the same gradient accumulation steps (4) for GPT-2 sizes with differential
privacy methods under consistent settings with Table 1.

Model B Memory Usage (MB x1e4) Throughput (tokens/sec x1e4)
NonDP Opacus GhostClip BK FlashDP NonDP Opacus GhostClip BK FlashDP

GPT2-small 1 0.51 0.97(x1.90) 0.51(x1.00) 0.71(x1.39) 0.51(x1.00) 3.07 1.20(x0.39) 0.60(x0.20) 1.75(x0.57) 1.86(x0.61)
GPT2-medium 1 1.26 1.69(x1.34) 1.25(x0.99) 1.81(x1.44) 1.26(x1.00) 1.27 0.61(x0.48) 0.45(x0.35) 0.86(x0.68) 0.91(x0.72)

GPT2-large 1 2.48 3.64(x1.47) 2.46(x0.99) 3.21(x1.29) 2.48(x1.00) 0.67 0.39(x0.43) 0.32(x0.46) 0.47(x0.69) 0.53(x0.89)
GPT2-small 2 0.87 1.15(x1.32) 1.00(x1.15) 1.06(x1.22) 0.87(x1.00) 3.22 1.68(x0.52) 0.92(x0.29) 1.91(x0.59) 2.32(x0.72)

GPT2-medium 2 2.07 2.88(x1.39) 2.01(x0.97) 2.62(x1.27) 2.07(x1.00) 1.38 0.88(x0.64) 0.65(x0.47) 0.88(x0.64) 1.04(x0.75)
GPT2-large 2 3.91 6.07(x1.55) 3.83(x0.98) 4.43(x1.13) 3.91(x1.00) 0.74 0.46(x0.62) 0.43(0.58) 0.49(x0.66) 0.59(x0.80)
GPT2-small 4 1.53 2.10(x1.37) 1.48(x0.97) 1.73(x1.13) 1.53(x1.00) 3.72 2.49(x0.67) 1.50(x0.40) 2.30(x0.62) 2.59(x0.70)

GPT2-medium 4 3.58 5.51(x1.54) 3.46(x0.97) 4.04(x1.13) 3.58(x1.00) 1.48 0.97(x0.66) 0.86(x0.58) 0.99(x0.67) 1.29(x0.87)
GPT2-large 4 6.60 - 6.45(x0.98) - 6.60(x1.00) 0.79 - 0.53(x0.67) - 0.65(x0.82)
GPT2-small 8 2.86 4.00(x1.40) 2.78(x0.97) 3.06(x1.07) 2.86(x1.00) 3.87 2.60(x0.67) 1.99(x0.51) 2.44(x0.63) 2.73(x0.71)

GPT2-medium 8 6.60 - 6.37(x0.97) 7.16(x1.08) 6.60(x1.00) 1.55 - 1.03(x0.66) 1.05(x0.68) 1.19(x0.77)
GPT2-large 8 - - - - - - - - - -

D More Experimental Results

D.1 Results of Micro Batch Size

Table 2 further explores the impact of varying micro batch sizes, a crucial factor for
managing memory in constrained environments and optimizing the use of gradient
accumulation steps. FlashDP consistently displayed minimal memory footprint
increases and maintained high throughput efficiency, even as micro batch sizes
increased. For example, at a micro batch size of 8 for the GPT-2 medium model,
FlashDPâĂŹs memory usage was 6.49 × 104 MBâĂŤmarginally higher than its
usage at smaller micro batch sizes and significantly lower than Opacus at the same
size. This robust performance underscores FlashDPâĂŹs effective management
of memory, which is essential for scaling up the training of large models without
excessive hardware requirements.

To be specific, 1) Opacus showed a consistent increase in memory usage as micro
batch sizes increased, which is indicative of its inefficient memory handling under
fragmented gradient computations. 2) GhostClip, while better in memory usage
compared to Opacus, didn’t scale as well in throughput, which decreased noticeably
with larger micro batches, reflecting the computational cost of gradient recalculations.
3) BK displayed trends similar to Opacus but generally used slightly less memory and
provided slightly better throughput, suggesting a more optimized handling of gradient
accumulation steps. 4) FlashDP maintained minimal increases in memory usage
with increasing micro batch sizes and consistently provided the highest throughput,
highlighting its effective integration of operations within the computational workflow.
To summarize, as the micro batch size increases, FlashDP’s memory usage increases
only slightly and still maintains the highest throughput, demonstrating its efficient
memory management techniques.

D.2 Results of Sequence Length

In the training of LLMs, the ability to process long sequences of data is crucial for
enhancing the model’s capability to understand and generate coherent, contextually
rich text.

Memory Usage Analysis. As illustrated in Figure 3 (a), there is a clear trend of
increasing memory usage with longer sequence lengths across all methods, which is
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(a) Memory Usage (b) Throughput

Figure 3: Memory and Throughput Comparison for TinyLlama with Varied Sequence Lengths
Using Flash Attention. (a) Memory usage across sequence lengths of 1024, 2048, 4096, and 8192.
(b) Throughput measured in tokens per second across the same sequence lengths.

expected due to the larger computational requirements. However, FlashDP always
maintains the same GPU memory usage as NonDP, especially at the highest sequence
length of 8192. This indicates that FlashDPâĂŹs method is particularly effective at
managing the increased memory demands, thus facilitating the scalability of models
trained with long sequences.

Throughput Performance. Figure 3 (b) highlights throughput in terms of tokens
per second at varying sequence lengths. FlashDP consistently maintains higher
throughput compared to Opacus and BK across all sequence lengths, with its perfor-
mance closely approaching that of the NonDP method. This efficiency in throughput
underlines FlashDP’s capability to handle larger sequence lengths without significant
compromises in processing speed, a critical factor for training usable and responsive
LLMs.

The experimental data clearly demonstrates FlashDPâĂŹs superior memory man-
agement and throughput efficiency across a range of sequence lengths. The ability
of FlashDP to handle longer sequences with minimal increase in memory usage and
only slight reductions in throughput is particularly impressive.

D.3 Results of Distributed Training

Distributed Data Parallel (DDP) [35] and Pipeline Parallel (PP) [36] are two advanced
techniques crucial for scaling the training of LLMs efficiently across multiple GPUs
or nodes.

Distributed Data Parallel (DDP). Figure 4 in Appendix illustrates the performance
of different methods in a DDP setting across GPT-2 models of varying sizes. FlashDP
showcases superior memory usage efficiency and higher throughput across all model
sizes when compared to Opacus and BK. Notably, even as the model size increases,
FlashDP maintains a competitive edge close to the NonDP benchmarks, highlighting
its effective parameter distribution and gradient computation across multiple GPUs.
This is crucial in scenarios where training speed and model scalability are priorities.

Pipeline Parallel (PP). In the PP scenario depicted in Figure 5, FlashDP was tested
with Llama models varying from 3 billion to 13 billion parameters. The results
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(a) Memory Usage (b) Throughput

Figure 4: Memory and Throughput for GPT Models Using Distributed Data Parallel Training.
(a) Memory usage for GPT-samll, GPT-medium, and GPT-large models. (b) Throughput in tokens
per second across these model sizes. A value of 0 indicates out of memory.

(a) Memory Usage (b) Throughput

Figure 5: Memory and Throughput for Llama Models Using Pipeline Parallel Training. (a)
Memory usage for Llama-3B, Llama-7B, and Llama-13B models. (b) Throughput in tokens per
second across these model sizes. A value of 0 indicates out of memory.

indicate that FlashDP not only scales efficiently with increasing model size but also
demonstrates significant throughput improvements compared to Opacus and BK.
Particularly, FlashDPâĂŹs ability to handle the largest model (Llama-13B) with
minimal throughput degradation illustrates its robustness in managing extensive
computational loads, characteristic of PP environments.

E Additional Tables

Table 3: Comparison of Backward Propagation Methods.

Method Per-sample Gradient Implicit Fusion
Cache Recalculation

Non-DP × × ✓
Explicit-DP ✓ × ×
Implicit-DP × ✓ ✓

FlashDP × × ✓
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