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ABSTRACT

Transformers have been successfully applied to learned image compression (LIC).
In fact, dense self-attention is difficult to ignore contextual information that de-
grades the entropy estimations. To overcome this challenging problem, we incor-
porate dynamic attention in LIC for the first time. The window-based dynamic
attention (WDA) module is proposed to adaptively tune attention based on the
entropy distribution by sparsifying the attention matrix. Additionally, the WDA
module is embedded into encoder and decoder transformation layers to refine at-
tention in multi-scales, hierarchically extracting compact latent representations.
Similarly, we propose the dynamic-reference entropy model (DREM) to adap-
tively select context information. This decreases the difficulty of entropy estima-
tion by leveraging the relevant subset of decoded symbols, achieving an accurate
entropy model. To the best of our knowledge, this is the first work employing dy-
namic attention for LIC. Extensive experiments demonstrate the proposed method
outperforms the state-of-the-art LIC methods.

1 INTRODUCTION

Vision Transformer (ViT) has achieved tremendous advancements in the field of computer vision,
with many studies applying it to learned image compression (LIC) methods (Zhu et al., 2022; Qian
et al., 2022a;b; Liu et al., 2023). Efficient self-attention between all sequence elements helps the
model pay attention to long-range information. There are mainly two aspects of works transferring
CNN-based learned image compressions to ViT architectures. Utilizing Swin Transformers (Swin-
T) (Liu et al., 2021b) in main encoder-decoders to build powerful nonlinear transforms (Liu et al.,
2023; Zhu et al., 2022; Zou et al., 2022; Lu et al., 2022). On the other hand, some works leverage
ViTs in entropy models to capture global contextual information, supporting a more accurate prob-
ability estimation of the latent representation distributions (Qian et al., 2022a; Koyuncu et al., 2022;
Kim et al., 2022). However, the rate-distortion (RD) performance improvements of these methods
are marginal.

Nonlinear transformations and entropy models are the key components of LIC. Despite ViTs enables
attention to more distant context, it does not guarantee compact transformations and accurate entropy
estimation. Adjacent features exhibit stronger causal relationships and the previous work (Minnen
et al., 2018) reveals that convolution kernel sizes larger than 5 × 5 (with larger receptive fields)
unexpectedly compromise the RD performance. The works (He et al., 2021; Zou et al., 2022) also
prove that redundancy primarily exists in local regions. Some redundancy information indeed exists
in distant regions (Qian et al., 2022b), but referring global contextual information increases the risk
of overfitting. Previous works have focused solely on the long-range modeling capabilities of ViTs,
ignoring the issue of overfitting.

In this paper, we analyze the challenge of applying ViTs to image compression, and a novel method
is proposed: dynamically sparsifying attention. Plain Swin-T compute paired attention between
all elements in local windows. In other works, all decoded symbols in a window are considered
when decoding the current node. Different from recognition tasks, the goal of compression is to
remove redundancy. Reference to irrelevant content can mislead probability estimations. We claim
that the core contradiction of overfitting is that the attention-pattern space of ViTs is much large than
redundancy-pattern space. To overcome this problem, we sparsify the attention-pattern space and
propose a compression model adopts adaptive attention patterns learning from the entropy distribu-
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tion of the image. Specifically, the model is built on the window-based dynamic attention (WDA)
module, which tunes the attention matrix to ignore useless references in local windows. The WDA
module works in multiple feature scales to hierarchically tune long-range attention patterns. Further-
more, the dynamic-reference entropy model (DREM) is proposed, which builds upon the concept
of dynamic attention patterns, adaptively selecting reference contextual information for the current
encoding element based on the known entropy distribution. The aggregation of relevant decoded
symbol subsets significantly reduces the difficulty of probability estimation in the entropy model.

To the best of our knowledge, we first focus on the overfitting issue of transformer-based learned
image compression methods and modulate the attention by the means of dynamic sparsification
patterns. In summary, our contributions can be concluded as follows:

• We first integrate dynamic attention into learned image compression, which narrows the
gap of attention space and redundancy space. Sparse attention patterns ignore globally
irrelevant contexts, reducing the risk of overfitting.

• We propose the window-based dynamic attention (WDA) module, which adaptively learns
attention patterns from entropy information of latent representations. The WDA modulates
the attention matrix at different scales in a fine-to-coarse manner.

• We present the dynamic-reference entropy model (DREM) to select subsets of decoded
symbols, which provide enough contextual information and simultaneously reduce the op-
timization difficulty.

• Experiment results demonstrate that our proposed method achieves 13.42%, 17.74% and
12.93% BD-rate gains over VTM-17.0 on the Kodak, Tecnick and CLIC datasets respec-
tively and outperforms the state-of-the-art LIC method MLIC++.

2 RELATED WORK

2.1 LEARNED IMAGE COMPRESSION

Early LIC methods adopt convolutional neural networks (CNNs) in both encoder-decoders and en-
tropy models (Ballé et al., 2018; Minnen et al., 2018; Lee et al., 2018). (Cheng et al., 2020) first
incorporates the attention mechanism into LIC, which pays more attention to regions with com-
plicated textures. However, the local receptive field of CNNs limits their ability to capture long-
range spatial dependencies. Some global methods utilize non-local networks (Chen et al., 2021) and
content-weighted attention masks (Li et al., 2018; Mentzer et al., 2018) to alloacte bits across the
entire image, leading to an overall improvement in RD performance. With the rise of transformers,
ViTs are gradually emerging in LIC. The global self-attention constructs more powerful nonlinear
transformations (Lu et al., 2022; Zhu et al., 2022; Liu et al., 2023; Zou et al., 2022) and provide rich
contextual information in entropy models (Qian et al., 2022a; Kim et al., 2022; Liu et al., 2023).
However, the downside of global information is that irrelevant context increases the difficulty of
entropy estimation and the risk of overfitting. We propose the WDA module to dynamically sparsify
the attention patterns to address the problem.

2.2 DYNAMIC ATTENTION

Previous works have demonstrated that a significant amount of computational redundancy exists
in ViTs. Only a small proportion of tokens contribute to the final prediction, thus removing those
useless tokens improves the computational efficiency without harming the performance (Chen et al.,
2023; Wei et al., 2023). Following that, some sparse attention methods are proposed to accelerate
ViTs, including token sampling (Rao et al., 2021; Fayyaz et al., 2022; Tang et al., 2022) and atten-
tion masking (Liu et al., 2021a; Kitaev et al., 2019). Among those methods, static sparse methods
(Tay et al., 2020; Kong et al., 2022) introduce heuristic sparse attention patterns with challenging of
generalization. While dynamic methods (Yin et al., 2022; Venkataramanan et al., 2023; Lee et al.,
2024) learn dynamic attention patterns from data in a flexible way. Our work is inspired by dynamic
sparse attention but applied in a different domain. Specifically, we apply the dynamic sparse at-
tention to more efficiently eliminate representation redundancy rather than to reduce computational
complexity.
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Figure 1: Overall framework of the proposed Window-based Dynamic Attention Learned Image
Compression (WDA-LIC). ga and gs denote analysis and synthesis transforms consist of multiple
Conv Blocks and WDA modules. Conv Blocks extract local features and the WDA modules capture
long-range contextual information with dynamic attention patterns. N denotes output channel num-
bers in every layers.

2.3 CONTEXT ENTROPY MODELING

In LIC entropy models replace the marginal probability distribution of latent variables by the joint
probability distribution with prior variables to reduce entropy (Ballé et al., 2018; Minnen et al., 2018;
Lee et al., 2018). Due to the sequential property of decoding, leveraging previously decoded fea-
tures (i.e., context) to provide predictive information for the current decoding step can significantly
reduce the joint entropy. And an optimal contextual pattern determines the upper bound of predic-
tion accuracy. Some works divide feature channels into multiple slices and remove redundacy by
leveraging correlations between channels (Minnen & Singh, 2020; He et al., 2022; Zhu et al., 2022).
In terms of spatial redundancy, CNN-based methods capture local correlations between neighboring
representations (He et al., 2021; Zou et al., 2022; Guo et al., 2021) and transformer-based methods
calculate relevant information over longer ranges (Liu et al., 2023; Lu et al., 2022). Although rele-
vant information may exist in global regions, previous works (He et al., 2021; Minnen et al., 2018)
show that adjacent pixels are likely to have a stronger causal relationship. Focusing on too much
irrelevant information increases the difficulty of prediction. Some methods select top-K elements in
global regions to centralize attention (Qian et al., 2022a;b; Ma et al., 2021). However, this fixed-
number reference pattern fails to adapt to sample differences. We propose the dynamic-reference
entropy model (DREM) to adaptively select reference subsets with entropy information.

3 METHODS

3.1 PROBLEM FORMULATION

The architecture of our proposed Window-based Hierarchical Dynamic Attention Learned Image
Compression (WDA-LIC) is shown in Figure 11. The overall algorithmic can be formulated as
follows:

y = ga(x; θga), ŷ = Q(y), x̂ = gs(ŷ; θgs), (1)

where the encoder ga with parameters θga transforms the input image x to latent represetation y.
Following that y is quantizied to ŷ, which is modeled as a single Gaussian distribution with esti-
mated parameters (µ, σ) to be entropy encoded. The decoder gs with parameters θgs utilizes ŷ to
reconstruct x̂. It is so critical to accurately estimate the distribution parameters µ and σ. We adopt
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the hyperprior model (Ballé et al., 2018) and the channel-wise autoregression entropy model (Min-
nen & Singh, 2020; He et al., 2022) to estimate the Gaussian parameters (µ, σ). The hyperprior
model is used to capture side information:

z = ha(y;ϕha
), ẑ = Q(z), ψh = hs(ẑ;ϕgs), (2)

where ψh denotes the side information provided by the hyperprior model. A mount of redundancy
exists between channels and the decoding process is sequential, we follow provious works (He et al.,
2022; Jiang et al., 2023) to divided latent variables y into S slices {y0, y1, . . . , ys−1} so that encoded
slices provide contextual information to help the entropy estimation of currently encoding slice as
shown in Figure 3. During the process of encoding slice yi, all its front slices {ŷ0, ŷ1, . . . , ŷi−1}
and the side information ψh are fed into the proposed Dynamic-Reference Entropy Model (DREM)
to estimate the Gaussian parameter of current slice as follows:

Φi = e(ψh, ŷ
<i, yi)

= (µi, σi), (3)

where e is the DREM. Therefore, the probability of current slice is considered as follows:

pŷi|ẑ,ŷ<i(ŷi | ẑ, ŷ<i) ∼ N (µi, σi), (4)

Since the entropy bottleneck Ψ is used to encode ẑ as pẑ|Ψ(ẑ | Ψ), the overall rate-distortion (RD)
loss function is defined as:

L = R(ŷ) +R(ẑ) + λ · D(x, x̂)

= E[−log2(pŷ|ẑ(ŷ | ẑ))] +E[−log2(pẑ|Ψ(ẑ | Ψ))]

+ λ · D(x, x̂), (5)

where λ is a Lagrangian multiplier to control the RD tradeoff. D(x, x̂) denotes the distortion term
such as Mean squared error (MSE) loss. R(ŷ) and R(ẑ) are the bit rates of latent representations ŷ
and ẑ.

3.2 DYNAMIC ATTENTION-BASED TRANSFORMATION

We build the nonlinear transformations in a CNN-Transformer mixed way, as shown in Figure . At
each stage, the Conv Block extracts features through a CNN, followed by a Swin-T based WDA
module to fuse features within a local window. Specifically, the WDA module adopts adaptive at-
tention patterns with the instruction of entropy distribution in local windows. With smaller feature
scales, the WDA module tunes the attention locations in a larger receptive field during the trans-
forming. The following sections elaborate our proposed WDA module.

3.2.1 WINDOW-BASED DYNAMIC ATTENTION MODULE

The WDA module is illustrated in Figure 2 and can be viewed as a Swin-T with dynamic attention
patterns. Given an input feature X ∈ RH×W×C , the vanilla Swin-T divides X into non-overlapping
partitions [X1, . . . ,XM ] with K ×K size windows or shifted-windows and arrange them into the
feature matrix, where Xi ∈ RN×C , N = K ×K, 1 ≤ i ≤ M and M = H

K × W
K . The multi-head

self-attention is conducted within each window Xi as follows:

Q,K,V = XiW
Q,XiW

K,XiW
V,

A(Xi) = softmax(
Q ·KT

√
dk

), (6)

O(Xi) = A · V ,

where WQ,WK,WV ∈ RC×dk are learnable parameters and dk is the intermediate feature di-
mension. The above formula calculates the self-attention of each token with all other tokens in the
sequence and the final output is a weighted average of all tokens within the window. Obviously,
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Figure 2: Proposed window-based dynamic attention module. The attention pattern is a 0−1 matrix
with the same size of attention matrix. ⊗ denotes the matrix multiplication operation and ⊙ denotes
the Hadamard dot multiplication operation.

spatial structure exists in attention and awful context spreads the distribution of latent features, in-
creasing the entropy. This is not supposed to happen when coding. The correct approach is to focus
attention on tokens with rich mutual information, which makes the latent features more compact
and reduces entropy. Though some previous methods (Qian et al., 2022a;b) utilize Top-K scheme to
select K-most relevant reference elements, this fixed attention pattern cannot adapt to the diversity
of image distributions, thus the improvement of RD performance is marginal. Intuitively, regions
with complex texture should reference more contextual information. Our WDA module adopt dy-
namic attention patterns. For each window, we can easily obtain the covariance matrix between
latent variables before computing the attention matrix V as follows:

V =
1

c− 1
(Xi − µ)(Xi − µ)T ,

with µ =
1

C

C∑
j=1

Xj
i , (7)

where V ∈ RN×N , µ is the mean of each token, C is the number of channels. The diagonal el-
ements of V represent the variance of each variable, where larger variances correspond to higher
entropy. The other elements indicate the correlation between pairs of variables. Although the co-
variance matrix only represents linear correlations, it is sufficient as a clue for attention aggregation.
To dynamically sparsify the attention matrix, we obtain the mask matrix M as follows:

M(i, j) =

{
0 if | V (i,j)

V (i,i) |≥ t,

−inf otherwise,
(8)

where t is the threshold, and is set to be 0.8. It is obvious that the attention pattern is dynamic due
to the diversity of entropy (i.e., V (i, j)). Following that the mask matrix modulates the attention
matrix as follows:

Â(Xi) = softmax(
Q ·KT

√
dk

+M), (9)

It is equal to adopt the Hadamard operation with 0 − 1 masks shown in Figure 2. And the final
output of the WDA module is as:

Ô(Xi) = Â · V , (10)
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3.2.2 HIERARCHICAL ATTENTION MODULATION

As the features are downsampled, the receptive field of each window corresponding to the original
image gradually increases. To modulate the attention pattern in a hierarchical way, we apply the
WDA module to multiple feature scales. When tuning attention at features with d-downsampled
scales, the receptive filed to the image can be expressed as:

F = (
3

2
K × 3

2
K × d)2, (11)

where F denotes the resolution of the original image K is the window size. The factor 3
2 is due to

the shifting-window operation. Larger K have a larger receptive field with more irrelevant tokens,
thus the threshold t tends to increase to abandon those tokens.

3.3 DYNAMIC-REFERENCE ENTROPY MODEL
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Figure 3: Pipeline of the Dynamic-
Reference Entropy Model (DREM).
where gch, ggl, glc, gen are networks
and Φi

ch,Φ
i
gl,Φ

i
lc,Φ

i
a,Φ

i
na denote con-

text latent variables. More network ar-
chitecture details can be found in Ap-
pendix A.

Figure shows the pipeline of the Dynamic-Reference En-
tropy Model (DREM). To encode the latent slice yi, all
previously encoded slices ŷ<i and hyperprior context ψh

are utilized. Specifically, we split yi into two parts (i.e.,
yia and yina in the checkerboard spatial pattern following
the previous works (He et al., 2021; Jiang et al., 2023).
After coding ŷia, it provides local spatial information to
yina. Channel-wise and global spatial context are pre-
dicted from previously encoded slices ŷ<i. All context
representations are concatenated in channel dimension
and fed into the entropy estimation network to predict the
distribution parameters (µ, σ).

The dynamic-reference is reflected in the selection of
global contextual information. As equation 8, we lever-
age the WDA module in the global context network to
dynamically select a subset of tokens in ŷ<i according to
the current entropy distribution of yi. The workflow of
DREM can be summarized as follows:

Φi
ch = gch(ŷ

<i),Φi
gl = ggl(ŷ

<i),

Φi
a = (µi

a, σ
i
a) = gen(Φ

i
ch; Φ

i
gl;ψh),

ŷia = AD(Φi
a),Φ

i
lc = glc(ŷ

i
a), (12)

Φi
na = (µi

na, σ
i
na) = gen(Φ

i
ch; Φ

i
gl; Φ

i
lc;ψh),

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We implement the proposed compression method based on the platform CompressAI 1 (Bégaint
et al., 2020). The proposed model is trained on the Flickr2W (Liu et al., 2020) dataset for 2M
steps. We crop images into 256 × 256 patches and set batch size as 8. The Adam optimizer
is utilized and the learning rate is fixed as 1e−4 for the former 1.5M steps. Then, the learning
rate is divided by two if the validation loss hits a bottleneck (we use a wait for 20 steps). The
model is trained with the RD loss in Equation 5. Following the settings of CompressAI, λ is set
as 0.0018, 0.035, 0.0067, 0.013, 0.025, 0.0483 for MSE and 2.4, 4.58, 8.73, 16.64, 31.73, 60.5 for
MS-SSIM. For evaluation we conduct test on Kodak (Kodak, 1993), CLIC Professional Validation
(Toderici et al., 2020) and Tecnick datasets (Asuni et al., 2014).

4.2 RATE-DISTORTION PERFORMANCE

1https://interdigitalinc.github.io/CompressAI/
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Figure 4: RD performance on the Kodak dataset (left:PSNR, right:MS-SSIM).

Table 1: BD-rate results over VTM-17.0
of state-of-the-art LICs. The evaluation is
conducted on the Kodak dataset.

Methods PSNR MS-SSIM

VTM-17.0 - -
Cheng(CVPR2020) +5.58 -44.21
He(CVPR2022) -5.59 -44.60
Zou(CVPR2020) -2.48 -47.72
Liu(CVPR2023) -10.14 -48.94
Jiang(ACMMM2023) -13.39 -53.63

Ours -13.42 -53.96

Table 2: BD-rate results over VTM-17.0 on
the CLIC Valid dataset of different models.

Methods Params(M ) BD-rate

w/o Atten 50.34 -9.08
w/ Atten 60.48 -11.64
w/ WDAtten (n=1) 52.75 -12.08
w/ WDAtten (n=4) 60.48 -12.93

VTM-17.0 - 0

Six popular LIC methods (Jiang et al., 2023; Liu
et al., 2023; Zou et al., 2022; He et al., 2022; Cheng
et al., 2020; Ballé et al., 2018) and the traditional
codec VTM-17.0 is compared. The R-D perfor-
mance of the Kodak dataset is shown in Figure 4.
The results of CLIC and Tecnick datasets are pre-
sented in Figure in the Appendix. To comprehen-
sively compare the RD performance of two comres-
sion methods, we utilize the BD-Rate (Bjontegaard,
2001) metric.

4.3 ABLATION STUDY

Effectiveness of the WDA module. We remove the
WDA module in analysis and synthesis transforma-
tions as the baseline and compare the BD-rate over
VTM-17.0. The results are displayed in Table 2,
which illustrates the efficiency of the WDA module.
Atten denotes plain attention patterns that discards
masks. w/ WDAtten (n=1) represents the method
that maintains the last WDA module and w/ WDAt-
ten (n=4) maintains all WDA modules. The WDA
module is lightweight and is easy to be compatible
with other networks. The results further shows that
retaining the last WDA module still keeps perfor-
mance advantage. The visualization of latent distri-
butions are shown in Figure 5. It is obvious that the WDA module compacts the distribution of latent
representations.

Performance of DREM. DREM is proposed to dynamically selecting reference subsets of tokens
in global range. To illustrate the performance of DREM, we compare our proposed method with
different global attention patterns. The global context network is abandoned to build the baseline.
The highlight of DREM is adaptivity. Therefore we compare with fixed attention patterns as shown
in Table 3. To illustrate the importance of global context informarion, the global context network
is discarded. The fully method computes pairwise correlations without attention masks. The Top-K
method maintain K most relevant tokens in each prediction and the number K is chosen empirically
(Qian et al., 2022a;b), lacking of flexibility.
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Table 3: Comparison of different attention patterns. The RD perfermance on Kodak datasets are
displayed.

Methods BPP PSNR

w/o ggl 0.311 30.875
Fully 0.279 32.118
Top-K 0.288 31.980
DREM 0.271 32.376
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Figure 5: The average scaled deviation σ and feature y across channels. The model (w/o Atten)
abandons the WDA module and (w/ Atten) and (w/ WDAtten) denote adopt vanilla attention patterns
and dynamic sparse attention patterns with the WDA module respectively.

5 CONCLUSION

In this paper we first adopt dynamic attention into learned image compression. Based on the as-
sumption that the redundancy information densely distributes in local regions and sparsely exists in
long-range distance, we propose the WDA module to dynamically sparsifying the attention matrix
in Swin-T blocks, making adaptive attention patterns learned from data possible. This is reasonable
because of the diversity of image entropy distribution. The WDA module dynamically modulate
the contextual information according to the local entropy, where regions with large entropy could
be allocated more long-range context. Appling the WDA into the entropy model, the proposed
dynamic-reference entropy model select a subset of reference tokens, sparsifing the optimization
space and decreases the risk of overfitting. Extensive experiments demonstrate the performance ad-
vantage of our method and proves the possibility for compression networks to evolve in a dynamic
and flexible direction in the future.
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A APPENDIX

A.1 DETAILS OF THE ARCHITECTURES
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Figure 6: The architecture of gch.
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Figure 7: The architecture of gen.
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Figure 8: The architecture of ggl.
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Figure 9: The architecture of glc.

A.2 MORE RD PERFORMANCE RESULTS
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Figure 10: RD performance results on clic professional valid dataset.
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Figure 11: RD performance results on the Tecnick dataset.
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