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Abstract
We introduce MMORE, an open-source
pipeline for Massive Multimodal Open Retrieval-
Augmented Generation and Extraction, designed
to ingest, transform, and retrieve knowledge
from heterogeneous document formats at scale.
MMORE supports more than fifteen file types,
including text, tables, images, emails, audio,
and video, and processes them into a unified
format to enable downstream applications
for LLMs. The architecture offers modular,
distributed processing, enabling scalable paral-
lelization across CPUs and GPUs. On processing
benchmarks, MMORE demonstrates a 3.8-fold
speedup over single-node baselines and 40%
higher accuracy than Docling on scanned PDFs.
The pipeline integrates hybrid dense-sparse
retrieval and supports both interactive APIs and
batch RAG endpoints. Evaluated on PubMedQA,
MMORE-augmented medical LLMs improve
biomedical QA accuracy with increasing retrieval
depth. MMORE provides a robust, extensible
foundation for deploying task-agnostic RAG
systems on diverse, real-world multimodal data.

1. Introduction
As of 2025, the public web is conservatively estimated
to host more than 2.5 trillion PDF documents, alongside
petabytes of mixed-modality slide decks, spreadsheets, im-
ages, and audiovisual artefacts (CloudFiles). Yet fewer than
one percent of these resources are represented in popular
machine-learning corpora as they are remain locked behind
brittle, heterogeneous formats that frustrate automated pars-
ing at scale. Existing pipelines rely on ad hoc mosaics of
format-specific utilities, limiting throughput, reproducibility,
and long-term maintainability.

As data-supply forecasts estimate that the pool of high-
quality human-generated text could be exhausted by prevail-
ing scaling trends as early as 2026 (Villalobos et al., 2022;
2024), it has become essential to find more format-agnostic
preprocessing workflows. Much of this data, particularly in
specialized or institutional settings, is unavailable for train-
ing but remains crucial for improving the verifiability of
LLM outputs through RAG. Hallucinations (OpenAI, 2025)

and factual drift (Huang et al., 2025) remain significant chal-
lenges, and robust RAG pipelines are increasingly explored
as a means to mitigate these issues, thereby reducing the bur-
den of manual validation and better aligning model outputs
with trustworthy source material.

To address these limitations, we introduce MMORE an
open-source tool for Massive Multimodal Open Retrieval-
Augmented Generation and Extraction, a unified pipeline
for scalable extraction, transformation, and retrieval of mul-
timodal data. MMORE supports diverse formats such as
documents, presentations, spreadsheets, and multimedia and
integrates them into a structured knowledge base, enabling
LLMs to access accurate, contextually grounded informa-
tion via the RAG paradigm.

Designed for modularity and scalability, our pipeline na-
tively supports parallelized processing across multi-node
architectures and distributed environments such as Kuber-
netes clusters. Compared to Docling demonstrates more
than 2-fold faster end-to-end processing, while achieving
40% higher layout accuracy on scanned PDFs. In distributed
mode, we show that our pipeline processes 720 pages in
185s using four nodes, resulting in 3.8-fold speedup over
single-node mode. The results demonstrate MMORE’s ef-
fectiveness as a scalable, high-accuracy solution for multi-
modal document processing in real-world deployment.

2. Related Work
Large-scale transformation of unstructured documents into
structured, machine-readable format has attracted substan-
tial attention. We group prior work into two strands: (i)
document ingestion and parsing pipelines, and (ii) RAG
frameworks. To our knowledge, neither line of work si-
multaneously offers the modality coverage and end-to-end
throughput required for industrial- and small-scale multi-
modal assistants that we target with MMORE.
Document Ingestion Pipelines. GPU-accelerated microser-
vice suites such as NV-Ingest (Team, 2024) convert PDFs
and office documents into page-level JSON enriched with
text blocks, tables, and graphics, and can optionally export
embeddings for downstream indexing. Docling (Auer et al.,
2024) extends the modality set to spreadsheets, and other
common formats, but executes primarily on a single node
and therefore exhibits limited throughput in production set-
tings. Classical OCR tools like doctr (Mindee, 2021) handle
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Figure 1. The end-to-end pipeline from file-type–specific processing to retrieval-augmented generation (RAG).

text detection and recognition but rely on external systems
for layout, embeddings, and indexing. Surya (Paruchuri &
Team, 2025) adds multilingual OCR and layout analysis
but lacks built-in multi-GPU or cluster parallelism. Com-
mercial services such as LLMWhisperer (Unstract, 2025)
offer similar functionality behind a paywall, which restricts
reproducibility and hinders open experimentation. In con-
trast, MMORE combines extraction, transformation, em-
bedding, and indexing into a single open-source pipeline
that natively parallelizes across multi-node, multi-GPU de-
ployments. Moreover, MMORE uniquely handles audiovi-
sual assets, enabling unified RAG over text, images, and
time-based media.
RAG Frameworks. Open-source libraries such as
LangChain (Chase, 2022) and LlamaIndex (Liu, 2022) pro-
vide high-level abstractions for chunking, embedding, re-
trieval, and prompting. However, they rely on external load-
ers for modality-specific parsing and give no guidance on
efficient high-throughput ingestion. Several recent pipelines,
such as Unstructured.io (uns, 2025) and Haystack (Pietsch
et al., 2019) for document parsing, or M3IT (Li et al.,
2023) and OpenFlamingo (Awadalla et al., 2023) for multi-
modal model alignment, address specific components of this
pipeline. Yet none provide an integrated, open-source frame-
work that supports ingestion, transformation, and retrieval
across heterogeneous, real-world file types at scale.

MMORE combines a scalable ingestion layer with a task-
agnostic retrieval API, unifying document processing and
RAG tools to enable multimodal assistants from raw enter-
prise data in one library.

3. Architecture
MMORE provides an end-to-end platform, enabling users
to process large document collections, build retrieval in-
dices, and query LLMs with relevant multimodal content,
all within a unified framework, as illustrated in Figure 1.

3.1. Processing

At the core of MMORE lies a modular, scalable processing
pipeline, designed for efficient, multimodal data extraction.
Importantly, MMORE reuses open-source extraction tools
such as Surya (Paruchuri & Team, 2025) for PDF parsing,
Whisper (Radford et al., 2023) for audio transcription, and
standard Python libraries for office file formats, allowing
us to focus on scalable orchestration and integration. A
complete list of supported extractors is provided in Ap-
pendix A.1. The design prioritizes three main strengths: (i)
multimodal document processing, (ii) extensibility to new
file types, and (iii) high-throughput distributed execution.
Multimodal Data Extraction. The processor module
extracts heterogeneous content from documents and stan-
dardizes it into a unified JSON-based format, referred to as
the MultimodalSample (see Appendix A.2). Each sample
consists of plain text interleaved with modality placehold-
ers (e.g. images) and a list of the extracted modalities,
preserving their type and location. Embedded media are
extracted and saved to disk, with placeholder tokens (e.g.,
<attachment>) inserted at the corresponding positions
within the text. This design supports downstream tasks that
require text with tightly linked visual elements, such as mul-
timodal pre-training or RAG.
Extensibility. To facilitate extensibility, we designed a
common processor interface that abstracts file-specific han-
dling into modular components. Adding support for a new
file type requires only implementing a lightweight subclass,
promoting long-term maintainability and community-driven
contributions. Each processor needs to define a class that
takes a file path as input and outputs a MultimodalSample,
leveraging the standardized output format across the system.
To date, MMORE supports more than 15 file types, includ-
ing, but not limited to, PDFs, DOCX, PPTX, spreadsheets,
media files, emails, and HTML pages.
Distributed Processing. MMORE natively supports both
intra-node and inter-node parallelization, exploiting all avail-
able CPU and GPU resources without requiring manual
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configuration from the user. The system is built on top of
Dask (Dask Development Team, 2016), enabling automatic
workload balancing, fault tolerance, and seamless scaling
across deployment settings, from standalone machines to
large multi-node clusters. This design scales across use
cases, from individual researchers to large organizations. To
further support both ends of the spectrum, MMORE offers
two processing modes: a fast mode for speed and a default
mode for accuracy, allowing users to balance performance
and fidelity as needed.

3.2. RAG

The RAG pipeline is composed of three independent com-
ponents: (i) post-processing, (ii) indexing and retrieval, and
(iii) an integrated RAG service. Each part is modular and
can be run independently.

Post-processing. This stage filters the extracted text to im-
prove quality for downstream tasks. MMORE exploits the
existing datatrove (Penedo et al., 2024), a high-throughput
filtering library, and includes native support for several post-
processing components, including Named Entity Recogni-
tion, Chunking, and Tagging.
Indexing and Retrieval. Indexing is crucial to RAG perfor-
mance, as retrieval relies on how documents are represented.
MMORE uses a hybrid indexing strategy, storing both sparse
and dense embeddings for each document. Sparse represen-
tations support lexical matching and improve interpretabil-
ity, while dense embeddings enable semantic search using
neural similarity. This duality allows users to choose or
combine retrieval embeddings depending on their down-
stream task. The retriever is accessible via our integrated
RAG system or as a standalone API.
Integrated RAG system. The RAG system supports
both API-based querying and offline batch processing. In
batch mode, users provide a JSONL file containing retrieval
queries; the system processes each entry and saves the re-
sults to a new JSONL file. Both modes allow customization
of the model, prompt template, index source, and other
parameters via configuration files or API options.

4. Evaluation Setup
We evaluate MMORE’s processing and RAG modules inde-
pendently. Below, we detail our methodology for assessing
efficiency, accuracy, and scalability.

4.1. Processing

The processing module is evaluated along two axes: effi-
ciency and accuracy, versus Docling (Auer et al., 2024) as a
baseline due to its popularity and ease of use.

Efficiency. We benchmark processing speed using a single
A100 80GB. For scalability analysis, we use an 18-page

paper and synthetically generate longer documents by du-
plicating its content to reach 36, 54, 90, to 720 pages. This
setup allows us to test throughput for both single-device
and distributed processing. The distributed experiments are
conducted on a Kubernetes cluster with 1 vs 4 nodes (1
A100 per node) to evaluate parallelization efficiency. To
highlight MMORE’s strength in handling heterogeneous
data, we also evaluate its performance across a diverse set
of 19 files, spanning 9 unique file types.

Accuracy. To assess text extraction quality, we create a
benchmark using public-domain books from Project Guten-
berg (Project Gutenberg, 1971) by pairing PDF inputs with
their corresponding plain-text ground truths. We select
two contrasting cases: ”The Blue Castle” (a clean, digital-
friendly PDF) and ”The Great Gatsby” (a scanned, image-
based file). Each document is truncated to 50k characters
to ensure computational feasibility, particularly for met-
rics like Levenshtein distance. We report standard metrics:
BLEU (Papinesi, 2002) for n-gram overlap, ROUGE-L (Lin,
2004), and character error rate (CER) (Navarro, 2001). Met-
ric formulations are provided in the Appendix A.3

4.2. RAG

To evaluate our RAG pipeline, we focus on the Pub-
MedQA benchmark (Jin et al., 2019), a biomedical question-
answering task. We construct a retrieval corpus by indexing
all PubMed abstracts and conclusions into a dense vector
database using MMORE. At inference time, the top-k most
relevant documents are retrieved using a similarity search
and prepended to the original question as context for the
language model. We experiment with both Meditron3-8B
and Meditron3-70B (Sallinen et al., 2025), evaluating how
different values of k affect downstream accuracy. This setup
isolates the effect of retrieval depth on performance within
a consistent biomedical knowledge source.

5. Results
5.1. Processing

Efficiency. Figure 2 shows comparison of Docling and
MMORE. On short documents (36 pages) Docling is
marginally faster than MMORE (default). The difference
disappears at 90 pages and shifts in favor of MMORE
beyond 180 pages, where our pipeline scales almost lin-
early while Docling slows down super-linearly. The fast
mode, which omits OCR, delivers an additional speed-up of
roughly two to three times. Running the default pipeline on
four nodes achieves a 3.8-fold reduction in latency compared
to the single-node baseline, surpassing even the single-node
fast mode and clearly demonstrating the efficiency and scal-
ability of the distributed execution in MMORE. It is also
worth mentioning that the batch size is user-configurable.
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The Blue Castle (digital PDF) The Great Gatsby (scanned images)

Method BLEU↑ ROUGE-L↑ CER↓ BLEU↑ ROUGE-L↑ CER↓
MMORE 0.8608 0.9940 0.0241 0.7973 0.9813 0.0295
MMORE (fast) 0.8639 0.9963 0.0206 0.0000 0.0000 1.0000
Docling 0.8643 0.9959 0.0199 0.5451 0.6582 0.5518

Table 1. Accuracy evaluation on two Project Gutenberg books: “The Blue Castle” and “The Great Gatsby”.
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Figure 2. Processing time vs. PDF length for Docling and
MMORE. MMORE (1 node-fast) disables OCR for performance,
and MMORE (4 nodes) uses distributed processing.

The experiments presented here used a conservative default,
leaving around 65GB of the 80GB GPU unused. This high-
lights the potential for further optimization, as users can
adjust the configuration to fully exploit available hardware
resources. Table 2 further illustrates the performance advan-
tage of MMORE across multiple file types. In default mode,
MMORE reduces the total processing time by 45.48% com-
pared to Docling, with the fast mode achieving an even more
pronounced improvement of 155.38%.

Metric Docling MMORE default MMORE fast

Total Time (s) 522.98 358.93 204.57
Num. of Unsupported Files 5 0 0

Relative Efficiency baseline +45.48% +155.38%

Table 2. Processing speeds for 9 unique file types - PDF, DOCX,
EML, MD, MP4, MP3, PPTX, TXT, XLSX (19 files in total).

Accuracy. Table 1 reports BLEU, ROUGE-L, and CER
on two Project Gutenberg titles. On the digitally formatted
”Blue Castle” book, all three systems achieve near-perfect
scores, with Docling attaining the lowest CER (1.99%);
however, differences remain negligible. The scanned ver-
sion of ”The Great Gatsby”, an image-based document re-
quiring OCR, provides a greater challenge. Here, MMORE
fast predictably fails, as it omits OCR entirely. In contrast,
MMORE default maintains high extraction fidelity, clearly
outperforming Docling, whose CER of 55% indicates sig-
nificant OCR errors. Although these results demonstrate the

accuracy of our pipeline, further benchmarking on a larger
and more diverse set of documents is necessary to robustly
validate its generalization capabilities.

5.2. RAG
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Figure 3. Effect of retrieved documents (k) on PubMedQA accu-
racy for Meditron models using MMORE’s built-in RAG.

To evaluate RAG performance, we test the Meditron-3
model family with various RAG configurations on the Pub-
MedQA benchmark. Figure 3 shows that both Meditron-
3[8B] and Meditron-3[70B] (Sallinen et al., 2025) consis-
tently improve accuracy with RAG, especially as the number
of retrieved documents k increases. These results demon-
strate that our RAG pipeline effectively injects domain-
specific context at inference time, improving answer accu-
racy.

6. Conclusion
MMORE is a scalable, open-source pipeline for retrieval-
augmented generation over diverse, real-world data. It
supports more than 15 file types, including PDFs, spread-
sheets, images, audio, and video, and enables structured,
high-throughput integration into LLM workflows.

Our results show that MMORE outperforms Docling in
both speed and layout fidelity, particularly in OCR-heavy
documents, and improves biomedical QA accuracy on Pub-
MedQA via efficient RAG pipelines.

Built for extensibility and deployment at scale, MMORE
provides a flexible foundation for verifiable, multimodal
LLM applications. Future work will expand support for
multilingual retrieval, audiovisual alignment, and federated
processing in privacy-sensitive settings.
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A. Appendix
A.1. Document Ingestion

To better situate MMORE within the ecosystem of document ingestion systems, Table 3 presents a fine-grained comparison
with two representative alternatives: Docling and NV-Ingest (part of NeMo Retriever). We evaluate them across modality
support, indexing capabilities, and RAG integration. Green cells indicate native support, while grey cells denote the absence
of the corresponding capability.

Feature Docling NV-Ingest1 MMORE

Supported Modalities

PDF ✓ ✓ ✓
DOCX ✓ ✓ ✓
PPTX ✓ ✓ ✓
XLSX / spreadsheets ✓ ✓
TXT ✓ ✓ ✓
HTML ✓ ✓
Markdown ✓ ✓
CSV ✓ ✓
Images (PNG/JPEG/SVG/TIFF/BMP) ✓ ✓ ✓
Audio ✓
Video ✓
EML ✓

Indexing & Embedding

Native engine included ✓ ✓
LangChain / LlamaIndex connector ✓ ✓ ✓

RAG

Built–in RAG pipeline ✓
Plugin–based RAG ✓ ✓

Open–Source license MIT Apache 2.0 Apache 2.0

Table 3. Fine-grained comparison of Docling, NV-Ingest, and MMORE document-ingestion pipelines. Green cells indicate native support;
grey cells indicate absence of the capability.

MMORE supports a wide range of file formats through modular extractors. For each supported type, we define a default
mode prioritizing accuracy and a fast mode optimized for speed. When no alternative tool is available, the fast mode is left
unspecified (–). A complete list of tools used per file type is shown in Table 4.

File Type Default Mode Tool(s) Fast Mode Tool(s)

DOCX python-docx for text and image extraction –
MD markdown for text, markdownify for HTML conversion –
PPTX python-pptx for text and image extraction –
XLSX openpyxl for table and text extraction –
TXT Python built-in open() –
EML Python built-in email module –
Audio/Video (MP4, MP3, etc.) moviepy for frames, whisper-large-v3-turbo for transcription whisper-tiny
PDF marker-pdf for OCR/structured data PyMuPDF
HTML BeautifulSoup –

Table 4. Overview of supported file types and extraction tools in MMORE. Full URLs are included in the project documentation.

A.2. Multimodal Sample

The format provides a standardized representation for processed documents, combining extracted text with references
to non-text elements. As shown in the example, the ”text” field contains the document’s content with <attachment>
placeholders (which are configurable) marking modality locations, while the modalities array contains all embedded objects
with their types and storage paths.

1NeMo Retriever Documentation
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Format Example:

{
"text": "A report containing a cool image <attachment> and a chart <attachment>...",
"modalities": [
{

"type": "image",
"value": "chart_url_2.png"

},
{

"type": "image",
"value": "chart_url_1.png"

}
]

}

The standardized format for document processing.

A.3. Processing Accuracy - Metrics

To quantify extraction accuracy, we used a combination of machine translation, summarization and string similarity metrics.
Their definitions are given below.

BLEU Score (bilingual evaluation understudy) (Papinesi, 2002): The BLEU score evaluates the overlap between the
n-grams (sequences of words of length n) between the extracted text and the ground truth. It is defined as:

BLEU = BP · exp

(
N∑

n=1

wn log pn

)
(1)

where pn is the precision for n-grams of length n, ranging from [1 to 4], wn are the weights (uniform), and brevity penalty
(BP), given by:

BP =

{
1 if c > r

exp
(
1− r

c

)
if c ≤ r

(2)

Here, c is the length of the candidate (extracted) text, and r is the length of the reference (ground truth). BLEU considers
how much of the extracted text matches the reference text in terms of word sequences, while also penalizing outputs that are
too short.

ROUGE-L (recall-oriented understudy for gisting evaluation) (Lin, 2004): ROUGE-L measures the quality of the
extracted text using the longest common subsequence (LCS) between the extracted text and the ground truth. The LCS is
the longest sequence of words appearing in the same order in both texts (though not necessarily consecutively). ROUGE-L
is calculated as:

ROUGE-L = Fmeasure =
(1 + β2) · Precision · Recall
β2 · Precision + Recall

(3)

where β is a weighting factor (set to 1 for equal weighting), and:

Precision =
LCS

Length of Extracted Text
,

Recall =
LCS

Length of Ground Truth
.

(4)
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Levenshtein distance - character error rate (CER) (Navarro, 2001): Given two strings, s1 (extracted text) and s2 (ground
truth), the Levenshtein distance d(s1, s2) measures the minimum number of insertions, deletions, or substitutions required
to transform s1 into s2. We normalize this distance over the length of the ground truth and is defined as:

CER =
d(s1, s2)

|s1|
(5)
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