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ABSTRACT

We study the relationship between the entropy of intermediate representations and a
model’s robustness to distributional shift. We train two feed-forward networks end-
to-end separated by a discrete n-bit channel on an unsupervised contrastive learning
task. Different masking strategies are implemented that remove a proportion
Pmask Of low-entropy bits, high-entropy bits, or random bits, and the effects on
performance are compared to the baseline accuracy with no mask. When testing
in-distribution (InD) we find that the removal of bits via any strategy leads to an
increase in performance, when masking out a relatively low ppask. We hypothesize
that the entropy of a bit serves as a guide to its usefulness out-of-distribution (OOD).
Through experiment on three OOD datasets we demonstrate that the removal of
low-entropy bits can notably benefit OOD performance. Conversely, we show that
top-entropy masking disproportionately harms performance both InD and OOD.

1 INTRODUCTION

The key challenge that we seek to address is that of identifying features in a model’s intermediate
representation that are more likely to be robust to distributional shift. Our approach starts from aiming
to be robust to a class of distributional shifts where ‘abstract’ features in the learning domain tend
to ‘degrade less’ than more specific features. We measure ‘abstract’ versus ‘specific’ by means of
the entropy of a feature. To give intuition to this motivation, consider some computer-vision task
where representing the feature ‘blue sky’ is useful, and 50% of the training images contain blue sky.
As such, the intermediate representation of this feature has maximum entropy. On the other hand,
suppose that 1% of the images contain a rare species of tree indigenous to the region where the photos
where captured, e.g the ‘Socotra dragon tree’. Representations of this feature would have very low
entropy, but they would be of occasional use in the training distribution. Thus, given a distributional
shift such as moving to another region, the ‘blue sky’ feature would remain useful, but the ‘Socotra
dragon tree’ would not. Put differently, we hypothesize that the low-entropy features tend to be more
niche and domain-specific, and so will become irrelevant or even harmful out-of-distribution (OOD).

The main contributions of this paper are: firstly, demonstrating that the removal of low-entropy
representations via the masking of learned discrete bits can notably improve OOD performance.
Secondly, showing that the removal of high-entropy bits disproportionately damages performance
both in and out of distribution. Finally, showing that even within the training distribution the removal
of some bits can have a positive impact.

As models have increased in performance within the bounds of the i.i.d. assumption, recent years have
seen growing interest in the OOD behaviour of machine learning systems. While many approaches
have studied the effects of external changes to a model’s training regime on OOD behaviour (e.g.
domain randomization or auxiliary loss functions), to the best of our knowledge our proposal of the
entropy of an intermediate representation as a guide to its effects OOD is a novel approach.

In Section 2 we outline the approach that we use to learn discrete representations of an input space
using a contrastive unsupervised method. In Section 3 we present our methodology for removing
parts of the model’s intermediate representations with different ‘masking strategies’, and 4 we discuss
the results from training and analyse the effects of distributional shift (Section 4.3). In Section 5
we review related work, and in Section 6 we conclude with a discussion of limitations and possible
avenues for further work, for instance, applying the insights of our experiments to improve the
out-of-distribution performance of downstream systems built on learned features.
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Figure 1: An example of a contrastive task (k = 3). For a given dataset, the distinguisher is shown k
images, among which k-1 distractor images, and has to predict the correct image.

2 CONTRASTIVE LEARNING METHODOLOGY

2.1 MODEL DESCRIPTION

To learn representations of a domain we train an encoder network to produce a representation r
of a given input x*. This representation is given to a distinguisher network that is tasked with
identifying «* from a set of k images composed of * and k - 1 distractor inputs arranged randomly.
We use the CIFAR-10 dataset (Krizhevsky, 2009) as the training distribution. The labels from the
dataset are discarded and an unsupervised k-contrast task is constructed by pairing each image with
k - 1 distractor images, shuffling, and giving the distinguisher k inputs to choose from. The same
preprocessing is later used when out-of-distribution datasets are introduced. See Figure 1 for an
example of a contrastive task and Figure 2 for the full architecture illustrated.

The encoder network is composed of a
convolutional network (CNN) that takes Correct Possible ~ Possible ~ Possible ~ Possible  Possible
a 32 x 32 x 3 dimensional tensor as in- Answer Answer 1 Answer 2 Answer 3 Answer 4  Answer 5

put (CNN in Figure 2), followed by: a m ‘ H - ~ !
3 x 3 convolutional layer with 64 filters

and ReL.U activation; two 3 x 3 convolu- e e s ot o ==
tional layers with 64 filters, ReLU activa- \i/

B B B B B
tion, and a stride-length of 2; a flatten layer;
and finally a dense layer without any ac- I I I I I
tivation that projects into R!"l, where |r|
is a hyperparameter controlling the ‘repre-
sentation length’ of r. Next, between the r f
encoder and the distinguisher, there is a e l l l l

discretize/regularize unit (Foerster et al., Shgnre’
2016). Following the literature in which
. . Transformer
this component was developed, we will re-
O Ol (] O O
output prediction logits

fer to this as a communication channel (see
in green in Figure 2). The channel is a dif-
ferentiable unit that, during training, ‘soft
discretizes’ activations passed through it by
applying Gaussian white noise (GWN) and
a sigmoid function. Then at test time we
‘hard discretize’ the activations by passing
through a sigmoid function and emitting O if the result is less than 0.5 and 1 otherwise. This enables
the end-to-end learning of a discrete representation via backpropagation from the output of the
distinguisher. We configure the channel with a fixed GWN standard deviation of 0.5 during training.

Figure 2: Architecture diagram (k = 5). The encoder
is shown as the purple and green components, and the
distinguisher is the orange and red.

The distinguisher network is composed of another convolutional network (CNNp in Figure 1) with
exactly the same input and layers as the CNN in the encoder (initialized separately and no parameter
sharing), except projecting to a fixed embedding size of 128. This CNN is shared for each of the
‘possible answer’ images, producing embeddings that are each concatenated with the representation r
from the encoder (i.e. the output of the communication channel) and fed into a transformer network
(Vaswani et al., 2017) as tokens. The transformer is composed of two self-attention encoder layers
with 3 heads of dimension 64, and a dropout rate of 0.1. After the transformer layers each token
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Representation Length
Training k 64 128 256 512
3 0.909 £0.029 0.869 £0.015 0.870£0.052 0.887 +0.015
5 0.797 £0.026  0.688£0.077 0.759 £0.131 0.820 £ 0.166
10 0.866 £0.103 0.579£0.018 0.643£0.231 0.736 £0.171
20 0.662 +£0.170  0.538 £0.230 0.532£0.380 0.481 +0.337

Table 1: Accuracy on CIFAR-10 test set of trained models with different k& and |r| values.

is projected onto a single dimension without activation. This is then taken as the log-probability
(logit) that the corresponding possible answer is correct. The networks are trained together with a
sparse categorical crossentropy loss on these logits and the index of the correct answer. The use of a
transformer and a shared encoder for the input images means that a model trained, for example, on a
3-contrast dataset (k = 3) can be tested on a 5-contrast dataset without any modification.

2.2 IN-DISTRIBUTION TRAINING

We trained 54 independent encoder-distinguisher pairs' for 10 epochs on CIFAR-10 and removed
models that did not converge, resulting in 51 trained models. Models were trained with varying
combinations of representation lengths and number of distractors: (|r|, k) € {64, 128,256,512} x
{3,5,10,20}. See Table 1 for the test accuracy statistics for the models on the k-contrast CIFAR-
10 training distributions. See the Supplementary Material for a full description of the training
methodology.

2.3  MOTIVATION FOR DISCRETE REPRESENTATIONS

While the use of a communication channel to discretize the representations poses optimization
challenges, it also provides a large benefit when it comes to computing the entropy values of each bit
in the representation. The computation is reduced from approximating a continuous integral over
the unit interval to a simple formula for the entropy of a binary variable, as outlined in Section 3.1.
This allows us to run a greater number of experiments with higher precision than if we had used
continuous representations.

2.4 MOTIVATION FOR TASK CHOICE

The choice of this unsupervised contrastive learning task as the setting for analysing our hypotheses
comes down to two reasons. The first is that we need a task that can be easily transferred to different
data distributions. A task such as image classification limits the available datasets as it requires
the out-of-distribution testing data to have the same (or at least overlapping) image labels. On the
other hand, a k-contrast task can be constructed from any unlabelled set of images. Another viable
candidate task with the same property is autoencoding. However, autoencoding is a much harder task
as intermediate representation in the bottleneck needs to incorporate more information. But more
importantly, the contrastive task provides a finer degree of control on the entropy distributions within
the intermediate representation 7, as shown in the following sections. This control allows us to further
investigate the implications of our proposals than would otherwise be possible with autoencoders.

3 ANALYSIS METHODOLOGY

3.1 ENTROPY OF REPRESENTATION BITS

Each representation r produced by an encoder network consists of a number of bits |r|, referred to as
the representation length. By considering each bit at index ¢ as a random variable B; we can compute
the binary entropy of the bit on a given dataset D:

H(B; | D) = —plogy p — (1 — p)logy(1 — p),

'A sweep of 3 runs for each pair of (|r|, k) plus 6 initial separate runs.

where p = P(B; = 1| D). )
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Figure 3: Bit-entropy distributions for models training with different representation length and
training k parameters on the training distribution, plotted as kernel density estimate (KDE) plots’in
Seaborn (Waskom, 2021). On the left, the distribution plots are stratified by k, and on the right by |r|.

Entropy close to 1 means that the bit is 0 or 1 with roughly equal probability of p = 0.5. Very low
entropy means that the bit is either almost always 0 or almost always 1. In Figure 3 we see how
these entropy values are distributed for the trained models with different parameters, when tested on
the training distribution (CIFAR-10). We notice that for smaller representation lengths and/or few
distractors the distribution tends to skew towards higher entropy bits. In separate experiments where
we further varied representation lengths, we find that for smaller || equal to 8, 16 or 32, all bits have
entropy higher than 0.8, which makes studying bits based on entropy variation uninteresting for these
representation lengths. For a visualization of these entropy values see the Supplementary Material.
Representation lengths of 64, 128, 256 and 512 all lead to a wide range of entropy values.

A theoretical analysis of the optimal bit-entropy can be found in the Supplementary Material. We
analyse the case that: the encoder and distinguisher need to decide on a communication protocol
before interacting; each bit corresponds to one ‘feature’; the encoder sends a 1 if a given feature
is present and a O otherwise. In this case, a protocol where all bits have maximal entropy and are
statistically independent is the optimal solution. However, empirically we find wider distributions of
entropy values, including very low-entropy bits (even when discarding zero-entropy bits), echoing
results from other work (Kharitonov et al., 2020).

We suspect that two important drivers towards the occurrence of low-entropy bits in Figure 3 are: 1)
a larger encoding size allows for more redundancy and thereby the system can afford to ignore some
bits; and 2) a larger set of distractors makes it more valuable to communicate specific features (on top
of high entropy features) because the distinguisher needs to more finely differentiate between images.

3.2 BIT MASKING STRATEGIES

In this paper we are interested in the effects of strategically ‘removing’ parts of the model’s inter-
mediate representation, i.e. obscuring bits in r. This is achieved by means of a masking variable
m; € {0, 1} for each bit r; in the representation. The masked bit 7; is then computed:

1
5 2)

In other words, when the masking variable m; = 0 then 7; = 0.5, and otherwise #; = ;. In this
paper we use three masking strategies; Random Masking, Top-Entropy Masking, and Bottom-Entropy
Masking. In order to construct a mask with any of these strategies, we define a masking proportion
Pmask that represents the percentage of bits in 7 that should be masked.

727; zmzn-i-(l—mz)

Firstly, to construct any mask M = {my,...,m, } we will need to choose lnask = | Pmask - |7 ]
bits to remove. For a random mask we draw [,,,sx masking variables from M at random with uniform

*While KDE plots are useful for highlighting the differences between distributions, which is the key reason
we are using them here, they can also introduce unintended artefacts with bounded data. In this case, the
downwards turn of the distributions on the right-hand side is not present in visualizations such as bar charts that
more closely represent the raw data.
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Effect on Accuracy of Different Masking Strategies In-Distribution (CIFAR-10)
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Figure 4: Accuracy for different masking strategies with varying masking proportions. For each
strategy the raw values are plotted with crosses, but at a low transparency to avoid clutter and
misleadingly giving the impression that whichever set that was plotted on top was dominating a
region when it was not. Instead, to show the over all trends, linear regressions are rendered over the
scatter. Finally, the dashed blue line represents no masking, which does not depend on any given
masking proportion and therefore is only shown to provide a visual guide.

probability and without replacement, and set them to 0, we set the remaining |r| — l;, variables
to 1. To construct a fop-entropy mask we compute the entropy for each bit h; = H(B; | D) and
sort these values in descending order. We then take the bits associated with the first /¢ entropy
values (i.e. highest entropy) and set their corresponding masking variables to zero. Likewise, for the
bottom-entropy mask we take the last [,k bits and remove those instead.

We place a constructed masking strategy between a given encoder and distinguisher and create an
equivalent masked model by replacing each r; with 7;, before concatenating the representation to the
output of the convolutional embeddings (Figure 2). We can then measure the mean accuracy of the
masked model (which we will refer to as masking accuracy) for comparison to the unmasked model.

4 EXPERIMENTAL RESULTS

In Section 4.1, we first discuss the effects of different masking strategies on CIFAR-10. In Section
4.2, analyze the changes to accuracy and to the entropy distributions when we apply our trained
models to the OOD datasets. After which we analyse the effects of masking strategies when used
OOD in Section 4.3, and present the result of masking low-entropy bits leading to improved OOD
performance.

4.1 ANALYSIS OF MASKING EFFECTS IN-DISTRIBUTION (IND)

Before moving onto the out-of-distribution case, we will first examine the effects of applying the
different masking strategies to the models that we trained on CIFAR-10, with the CIFAR-10 test data.
For each of the 51 successfully trained models we evaluated the accuracy without any masking, and
with each of the different masking strategies for masking proportions between 0.15 and 0.5 at 0.05
intervals. The results can be seen in Figure 4 for all of the data, and in Figure 5 which shows plots of
the data separated by different values of k.

In this section we discuss three phenomena:

1. Removing top-entropy bits is more damaging than other masking strategies;

2. For low k all masking strategies have similar effects, whereas for large k the difference
between the effects is quite pronounced; and

3. Especially for low k, masking out bits can increase accuracy.
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Effect on Accuracy of Different Masking Strategies on CIFAR-10 by k
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Figure 5: Accuracy for different masking strategies with varying masking proportions. One plot per
value of k.

In Figure 4 we see that for any masking proportion, removing the top-entropy bits is more damaging
to accuracy than masking out bottom-entropy bits. In light of general insights from information theory,
this result is not too surprising. The highest entropy bits necessarily convey the most information,
and so it follows that their removal should lead to the largest drop in performance.

Figure 5 shows that for low values of k the effects of all masking strategies are fairly similar, whereas
for high k the effects come apart. One explanation for this phenomenon might be that, as observed
in Figure 3, the lower-k models tend to have a higher density of high-entropy bits. Therefore even
when we select bits from the lower end of the entropy distribution we are generally taking away more
information from the distinguisher than we do for higher-k values. Thus masking from the top or the
bottom removes bits with similar entropy values.

In general, we did not expect any of the masking strategies to provide a benefit when applied within
the training distribution. Yet, in an unexpected turn of events we see that with a small enough masking
proportion (around pmask < 0.3) we see an increase in accuracy, especially with the random and
bottom-entropy strategies (which yield roughly the same results).

In Figure 5 we break down how the masking accuracy improves for small py,,s in more detail. We see
that the effect is in fact more pronounced for the lower-k values. This is especially remarkable because
the higher starting accuracy values (i.e. with no mask) of the models trained with lower-k values
suggests that there are only diminishing returns to be made in these cases. Our initial hypothesis was
that the masking may be ‘undoing’ overfitting to the training set. But for each of the trained models
we have verified that there is no overfitting (see the Supplementary Material for a visualization). One
driver behind the relationship between k and masking accuracy could be that the contrastive task is
easier for low k, in the sense that representations that convey less information about the target image
should still allow the distinguisher to make the correct guess with high probability. This may cause
more redundancy, which in turn may play a role in the increase in accuracy after masking.

4.2 OUT-OF-DISTRIBUTION BEHAVIOUR

To evaluate the effects of distributional shifts we test our 51 trained models on the CIFAR-100
(Krizhevsky, 2009), Stanford Online Products (Song et al., 2016), Colorectal Histology (Kather
et al., 2016), Plant Village (Hughes & Salathe, 2015), and MNIST (LeCun et al., 1999) datasets.
These datasets were chosen to provide a range of different kinds of images, as judged subjectively.
CIFAR-100, being drawn from the same subset of images as CIFAR-10, was chosen for its expected
closeness to the training distribution. Stanford Online Products is a collection of photographs of items
that contains a wide range of objects not encountered in CIFAR-10. Colorectal Histology is a medical
dataset containing histological close-up photos of human tissue (un)affected with colorectal cancer.
Plant Village contains photographs of individual healthy and unhealthy leaves presented on a neutral
background. This dataset was chosen as an interesting challenge due to the potential familiarity that
the model would have with leaves, as they appear in many CIFAR-10 images (e.g. in close-up photos
of frogs on leaves). Yet, it would be unlikely for any of the models to have needed to distinguish
between types of leaves during training. Finally, we have the MNIST dataset of digital handwritten
numbers, which was chosen to test on non-photographic images.

In Figure 6 we show two visualizations that demonstrate the shift in behaviour that results from
applying the models to the new datasets. In Figure 6a we plot the shift in accuracy values for each
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Figure 6: Two figures illustrating the effects of distributional shift on accuracy and entropy distribu-
tions.

dataset, following Taori et al. (2020). The y = « line is plotted with a black dashed line, however, it
is obscured by the regression lines for CIFAR-100 and Stanford Online Products. This tells us that
there is no distributional shift for these datasets, i.e. no loss in performance. For this reason, we
drop these datasets from all out-of-distribution analysis. For the other datasets, we see in order of
increased degradation: Plant Village, Colorectal Histology, and MNIST.

Figure 6b shows the density of entropy values. We find that the entropy distribution of bits evaluated
on MNIST has much more mass in the low entropy region than CIFAR-10. Bits of models evaluated
on Colorectal Histology and Plant Village both follow more evened-out distributions.

4.3 ANALYSIS OF MASKING EFFECTS OUT-OF-DISTRIBUTION (OOD)

In order to understand the effects of mask-

ing on accuracy in the OOD setting we Masking Accuracy Change for Different Strategies
measure the mean change in accuracy of (With pmask = 0.25, K€ {3, 5}) against Distance O0OD
a masking strategy under various circum- 0.15

stances. We also report the standard devia-

tions associated with these estimates. As in
S . 0.10

the case of in-distribution masking we eval-

uated the masking strategies for a sweep of

masking proportions between 0.15 and 0.5 0:05 —— Masked Bottom Entropy
at 0.05 intervals. We cut-off the maximum T pasked Top Encropy
masking proportion ppnx < 0.25 for all 0.00

further analysis as beyond that threshold
masking has an almost universally negative —0.05
effect. The overall mean accuracy changes
can be seen in Table 2. We see that mask-

Masking AAccuracy

) . -0.10

ing the bottqm—entrppy or random bltS. pro- 0.16 o 0.39
duces the highest increase, albeit with a Plant Colorectal MNIST
]arge variance. Village Histology

] . . Distance Out-Of-Distribution
This variance can be understood and dis-

entangled by separating the low-k models Figure 7: Effect of Masking Further OOD

from the high-k£ models. What we see is

that the benefits of bottom-entropy mask-

ing are more prevalent for low-k models. This is visualized in Figure 8 where we illustrate the
effective robustness of each of the masking strategies on the three OOD datasets. In the Supple-
mentary Material we include plots for all values of k£ and pn,s that we tested. Effective robustness
is a concept introduced by Taori et al. (2020) as a way to understand the efficacy of a method for
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Effective Robustness Plot for k = {3, 5}, pmask = 0.25
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Figure 8: Effective robustness plots for low-k models. y = x shown as black dashed line.

CIFAR-10  Colorectal Histology MNIST Plant Village

Masked Bottom Entropy 1.6 £ 8.0 —2.0+14.3 9.4+15.6 3.0£23.7
Masked Top Entropy —4.3+214 —7.8+19.0 —-16.6+53 —185+21.8
Random Mask 25+123 3.4+£10.9 4.24+13.7 2.1+19.6

Table 2: Mean accuracy shift (in percentage points) after masking with each strategy. After running
paired t-tests we find that all of these accuracy shifts are statistically significant (with p = 0.05).

increasing robustness to distributional shift. By plotting the baseline regression line for unaltered
models with differing in-distribution accuracy values on the diagram we can observe whether a
proposed robustness method moves towards the y = « line (i.e. no degradation). Crucially, with
these plots, we are able to account for each model’s performance on the training distribution. Hence,
despite the large variance in the performance of models trained across various k and |r| values®, we
are able to discern the effects of the masking interventions.

In our case, we see that — as is consistent with previous results — for each dataset the top-entropy
masking moves below the dashed green line showing the baseline unmasked models. On the other
hand, the random masking and bottom-entropy masking lines move closer to y = x (as compared
to the no masking lines). For Plant Village we see that almost all of the in-distribution accuracy is
recovered. For MNIST we find the most substantial jump, and the largest benefit of bottom-entropy
over random masking.

The effect is further illustrated in Figure 7 in which we show the relationship between change in
accuracy due to masking and what we have called ‘distance out-of-distribution’, i.e. the mean
difference between CIFAR-10 accuracy and accuracy on the given dataset. In this plot we see the
regression lines (with 95% confidence intervals) that show the trend in light of the magnitude of
distributional shift away from CIFAR-10 for each of the test datasets. With this context, we most
starkly see the effect that bottom-entropy masking can have for large distributional shifts.

5 RELATED WORK

Our work adds to the toolkit of methods to aid in understanding and improving robustness to
distributional shift, which for example includes forms of data augmentation (Hendrycks et al., 2021)
and abstaining from making a prediction in the face of uncertainty (Thulasidasan et al., 2021). For a
general overview of problems and methods in OOD robustness see Shen et al. (2015).

Below we reference some notable entropy-based methods that have a different purpose than improving
OOD robustness. Chatterjee & Mishchenko (2019) low entropy (or “rare") signals to analyze extent
to which a model is overfitted to the training distribution. Entropy-based methods have also been
used widely in the adjacent problem of OOD detection. For example, predictive entropy measures
the uncertainty of the prediction of a sample given a training distribution and is used to calculate the

3 Accuracy ranging between 0.65 and 0.95 for even the high-performing low-k models, as shown in the
z-axes of Figure 8
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extent to which a sample is OOD (Kirsch & Gal, 2021). However, we apply entropy in an entirely
different context, namely, we calculate the entropy of latent variables to estimate how robust they
will be to distributional shift. Relative entropy (KL-divergence) is a popular measure and is notably
used in the Bits-Back method (Hinton & van Camp, 1993; Flamich et al., 2020) to calculate the
optimal compression rate in latent variables. Images that are traditionally compressed by a variational
auto-encoder have now been compressed with code-length close to this theoretical optimum Flamich
et al. (2020).

There are no clear benchmarks to compare our work with, as to our knowledge OOD robustness on an
unsupervised contrastive task has not been studied before. Our motivation for using this task can be
found in Section 2.4. There has been work applying unsupervised contrastive learning to improving
few-shot classification generalization (Yang et al., 2022), and into self-supervised contrastive learning
(Huang et al., 2021).

Contrastive representation learning takes many forms; in computer vision alone there are many
approaches for applying deep learning to multiple inputs and producing representations to distinguish
between them; see Jaiswal et al. (2020) for a review. For our work where we are dealing with a
discrete channel between the encoder and distinguisher, the most closely related work is in the field
of ‘emergent communication’ where deep learning systems are tasked with solving communication
tasks (Lazaridou et al., 2017; Foerster et al., 2016). In this context, our work is viewed as a Lewis
Signalling Game (Lewis, 1969) with the most similar set-ups being Lazaridou et al. (2017) and
Kharitonov et al. (2020). The entropy of messages in learned communication has been studied by
Kharitonov et al. (2020); Chaabouni et al. (2019), but not with a focus on distributional shift. Finally,
in reinforcement learning (RL) Eysenbach et al. (2021) find that compressing observations for a RL
agent improves the policy’s robustness. Rather than masking out bits, they reduce the number of bits
by adding a cost to communicating a bit.

6 CONCLUSION

In this paper we have investigated the out-of-distribution effects of using different strategies to remove
bits from discrete intermediate representations in an unsupervised contrastive learning task. We have
studied how the difficulty of the task impacts the entropy distribution of the learned representations
and shown the following key results: 1) even in-distribution, removing parts of the intermediate
representations can have a positive effect (Section 4.1); and 2) removing low-entropy bits can greatly
improve the performance of models out-of-distribution (Section 4.3), notably almost entirely restoring
in-distribution performance for one of our datasets (see Figure 8). Additionally, in line with theoretical
results, we did find that across the board, removing high-entropy bits is more harmful than randomly
removing bits or specifically removing low-entropy bits.

However, the results also present mysteries that prompt further experiments and analysis. At the
time of writing, we do not have a clear understanding of why the removal of bits within the training
distribution should increase performance, as we would expect the encoder to learn an optimal protocol.
We have presented some hypotheses in Section 4.1 that suggest that a better understanding of how
redundancy is encoded in the intermediate representations would be a helpful line of further inquiry.
Relatedly, in light of viewing our task from the perspective of emergent communication, studying the
relationship of our findings to compositionality within the representations, i.e. the interdependence
and polysemanticity of bits, would provide valuable insight.

Next, there is a need for a deeper understanding of the conditions in which our results hold. Within
our experimentation, we found that the effect (of harm from low-entropy features OOD) was less
pronounced for models trained on the more difficult tasks (higher numbers of distractors). From our
data, it is unclear if this relationship represents something fundamental or if it is a side-effect of these
models generally performing to a lower standard. One of the most important avenues of further work
is in testing if other systems built on top of the learned representations in this paper inherit the same
OOD robustness under low-entropy masking.

To our knowledge, there are no existing state-of-the-art (SOTA) methods for OOD robustness in
contrastive learning to benchmark our proposals against. When future studies investigate the effects
of entropy-based masking in domains such as classification or control it will be important to compare
our methods to OOD robustness benchmarks for those problems.
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