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ABSTRACT

Forecasting future events based on evidence of current conditions is an innate skill
of human beings, and key for predicting the outcome of any decision making. In
artificial vision for example, we would like to predict the next human action be-
fore it actually happens, without observing the future video frames associated to
it. Computer vision models for action anticipation are expected to collect the
subtle evidence in the preamble of the target actions. In prior studies recurrence
modeling often leads to better performance, and the strong temporal inference
is assumed to be a key element for reasonable prediction. To this end, we pro-
pose a unified recurrence modeling for video action anticipation by generalizing
the recurrence mechanism from sequence into graph representation via message
passing. The information flow in space-time can be described by the interac-
tion between vertices and edges, and the changes of vertices for each incoming
frame reflects the underlying dynamics. Our model leverages self-attention for all
building blocks in the graph modeling, and we introduce different edge learning
strategies that can be end-to-end optimized while updating the vertices. Our ex-
perimental results demonstrate that our modeling method is light-weight, efficient,
and outperforms all previous works using the large-scale EPIC-Kitchen dataset.

1 INTRODUCTION

Video action recognition is a long-standing problem in computer vision. It predicts the action from
experienced frames by understanding the contexts in the observations. However, having the pre-
diction after the whole observation of action is insufficient to evaluate the outcome of any decision
making. Predicting future human activities and interactions of objects are receiving research inter-
ests in these years, in assisting navigation systems (OhnBar et al., 2018), robotics (Park et al., 2016),
entertainment (Liang et al., 2015; Taylor et al., 2020) and autonomous vehicles (Hirakawa et al.,
2018).

Different from action recognition, the video action anticipation is required to give the predictions
strictly before the action frames being observed. Models, in this case, are expected to collect the
subtle evidence in the preamble of target actions (Furnari et al., 2018; Furnari & Farinella, 2020;
Rodin et al., 2021). In the high-level viewpoint, the objective of anticipating is not only to understand
the actual content in the observations but seeking to associate the minor details to the next possible
action. Figure 1 illustrates the definition of the video anticipation problem.

In the absence of target action frames, pretrained models for the robust feature extraction from
RGB inputs are often deployed on video anticipation, either pretrained from image classification
or video action recognition. On top of the pretrained models, recurrent neural networks are the
widely adopted options to model the temporal relationship in anticipation problems and lead to better
performance than clip based modeling methods. Unlike the action recognition settings, where the
relevant frames associated with the target action are not necessary in the end of observation and may
locate in any action duration. video anticipation predicts the action that always performs in the future
of observations, making the accumulated information gains aligned with the temporal orders. To
this end, we propose a unified recurrence modeling for video action anticipation by generalizing the
recurrence mechanism from a sequence into graph representation via message passing. We utilize
self-attention as the universal building block in the graph modeling. In the graph point of view, self-
attention can be treated as the information routing between vertices. The attention weight derived by
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Figure 1: Illustration of video action anticipation problem. The context of action may be different
than the preamble of action. Models can only observe some frames before action actually starts,
which is strictly ensured by an inaccessible ”Skip” period, and based on the evidence collected to
predict the following action.

the scaled dot-product, which computes the correlation of vertices, can be explained as an adjacency
estimation implicitly. However, in this way, the representation of edges is limited and purely based
on the similarity in input tensors. Therefore, we propose three explicitly edge learning strategies
trying to escape to the trivial estimation by bringing the flexibility of edge representations. They are
end-to-end optimized and can be jointly trained with the main task. In the experimental results, we
show our proposed unified recurrent modeling outperforms several state-of-the-art methods on large-
scale egocentric video dataset EPIC-Kitchen on video anticipation. Combining with edge learning
strategies, the performance can even boost to the next level.

2 RELATED WORKS

2.1 VIDEO ACTION ANTICIPATION

Early works in video anticipation model the problem with recurrent neural networks (Gao et al.,
2017; Farha et al., 2018; Miech et al., 2019). Some prior works also leverage the future frames
for learning the representations (Vondrick et al., 2016; Fernando & Herath, 2021). A self-regulated
learning framework for action anticipation in the egocentric video is presented in (Qi et al., 2021).
RU-LSTM (Furnari & Farinella, 2019) deploys two LSTMs and behaves like an encoder-decoder,
where the first progressively summarizes the observed together with the second that unrolls over
future predictions without observing. (Osman et al., 2021; Tai et al., 2021) both integrate unrolling
mechanism as RU-LSTM does, but replace the rolling part in RU-LSTM with SlowFast (Feichten-
hofer et al., 2019) and higher-order recurrent networks, respectively. (Sener et al., 2020) aggregates
the predictions by pooling over different granularity of temporal segments. (Girdhar & Grauman,
2021) combine causal self-attention with the look ahead prediction on successive frames.

2.2 MESSAGE PASSING NEURAL NETWORK

The concept of message passing is first published in (Gilmer et al., 2017), where it was originally
designed for molecular property prediction. It assumes an undirected graph structure with data-
independent, equal edge contributions. To address this limitation, (Ma et al., 2020) deploys two
encoders separately for vertex and edge estimation and aggregates them by a self-attention readout.
Some prior works use attention or dedicated network design to learn the directed edge representa-
tions to improve the model capability (Jørgensen et al., 2018; Withnall et al., 2020; Gong & Cheng,
2019). Recently, (Arnab et al., 2021b) express the non-local attention (Wang et al., 2018) and GAT
(Veličković et al., 2017) as message passing functions and apply them to video understanding task.
Differently, we view the message passing framework as the generalized recurrent models and spe-
cialize it for edge representations learning in this work.
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2.3 SELF-ATTENTION

(Vaswani et al., 2017) first propose a recurrence free sequence learning architecture by stacking sev-
eral self-attention layers, which can achieve remarkable performance in the NLP domain. (Dehghani
et al., 2018) demonstrates that the self-attention can be treated as the recurrent unit which unfolds
to input sequences to processes with shared weights. On the other hand, (Dosovitskiy et al., 2020)
propose Vision Transformer (ViT), an architecture with only self-attention for image classification.
(Zhou et al., 2021) improves ViT by re-attending the multi-heads information in the post-softmax
step to enable the deeper configuration. Some recent studies explore ViT based models on video
action recognition (Arnab et al., 2021a; Bertasius et al., 2021), and also video anticipation (Girdhar
& Grauman, 2021). Unlike these prior works, our proposed model processes the video in a flexible
graph representation and fits into the message passing framework. It is lightweight and only contains
few self-attention layers which sequentially process each timestep.

3 METHODOLOGY

3.1 BACKGROUNDS

3.1.1 MESSAGE PASSING

Given an undirected graph G, the Message Passing algorithm involves two-phase forwarding pro-
cesses, message passing phase with message function M and update function U , and readout phase
with readout function R. The message passing phase can run arbitrary T step with the following
definition:

mt+1
v =

∑
w∈N(v)

Mt(h
t
v, h

t
w, avw) (1)

ht+1
v = Ut(h

t
v,m

t+1
v ) (2)

where v is the vertex in G, and N(v) defines the neighbors of v. avw is the connection strength
bonding between vertex v and w. The readout phase then extract the features of the whole graph,
abstracted from the message passing phase, at time T ,

ŷ = R(hTv |v ∈ G). (3)

Our proposed method inherits these three core functions (e.g., message, update, and readout). How-
ever, the most notable difference is that we treat the whole anticipation predicting as a chain of
messages conveyed in space-time, with the constant strengthening of the signal by the RGB inputs
in each time-step. The readout function is called when the prediction is required at any time t.

3.1.2 SELF-ATTENTION

Self-Attention (SA) forms theQ,K, V tokens (for query, key, and value) from the same source input
x1. The output of the attention is the linear combination of the value, based on the attention weight
computed by the scaled dot-product between the query and key followed by a softmax.

Q,K, V = xW i
Q, xW

i
K , xW

i
V (4)

SAi(x) = softmax(
QTK√
D

)V, (5)

where scaled factor D default to the input feature dimension, W i
Q,W

i
K ,W

i
V are the trainable em-

beddings. We use superscript i to note the embeddings are associated to each self-attention layer.

Multi-Head Self Attention (MHSA) performs n-way self-attention in parallel, where n is the total
number of heads. An additional aggregation function, with parameters Wagg , is adopted to fuse the
information computed from each head.

MHSA(x) = [H1, . . . ,Hn]Wagg, (6)
where Hi = SAi(x)

1Some literature uses self-attention no matter the inputs Q,K, V comes from the same source. We use the
term, self-attention, strictly when Q,K, V is formed by the same source input.
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Figure 2: Overview of proposed unified recurrent model. The message function, update function,
and readout function leverage multi-head self-attention. Our proposed message function is designed
to be flexible to work in conjugation with explicit edges information provided.

where the [., .] presents the concatenation.

Following the transformer-style architecture, a Feed-Forward Network (FFN) performs after each
attention layer to project the attention output and bring the non-linearity. The FFN computes:

FFN(x) = σ(xW1 + b1)W2 + b2 (7)
where σ can be any arbitrary nonlinear function.

Our proposed model utilizes multi-head self-attention and deeply integrates into the message passing
design. We use multi-head self-attention as the information routing between vertices of a graph.
Note in this case, the resulting graph is bi-directed, because the dot-product between Q and K is not
symmetric.

3.2 UNIFIED RECURRENT MODELING

Self-Attention Block: We implement the self-attention building block in prenorm style (Xiong
et al., 2020), as implemented in many transformer-style architecture, where the normalization layer
is placed before MHSA and FFN and not counts in shortcuts. Figure 2 left shows the self-attention
block

fMHSA(x) = x+MHSA(LayerNorm(x)) (8)
fFFN (x) = x+ FFN(LayerNorm(x)) (9)

SABlock(x) = fFFN (fMHSA(x)) (10)
We can optionally expose the edge information, in matrix A, into SABlock(.;A). In this case, the
extension definesMHSA(x;A) where the matrixA is fused into the step after the softmax of scaled
dot-product computation. We rewrite the equation 5 and equation 6 to

MHSA(x;A) = [H1, . . . ,Hn]Wagg, (11)
where Hi = SAi(x;A)

SAi(x;A) =

(
softmax(A) + softmax(

(xW i
Q)

T (xW i
K)

√
D

)

)
(xW i

V ) (12)

NoteA is unique and shared in multi-heads self-attention. Although the probability comes with post-
softmax becomes twice larger, such difference may not cause an issue because trainable weights,
Wagg,WV , are able to absorb the impact.
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Recurrent Cell: Figure 2 shows the overall architecture. Given the frame features xt at time t, with
shape (H , W , C), which is transformed by a backbone model, we define the vertices etv by taking
a nonlinear transformation of xt and flatten into 1D, resulting in the shape (HW , C). The position
encoding Wpe is added on top of etv . We then leverage SABlock(.;A) to message function M with
optionally matrix A, and SABlock(.) to update function U for computing the hidden states htv ,

etv = fse(σ(x
tWx + b)) +Wpe (13)

gtv = fh([e
t
v, h

t−1
v ]) (14)

mt
v = SABlock(gtv;A

t) (15)
htv = tanh(SABlock([etv,m

t
v])) (16)

where fse is a Squeeze-and-Excitation (SE) module (Hu et al., 2018) performs on vertices dimen-
sion, and fh is a linear transformer to reduce the feature size from concatenated 2C into C. Note
we bound the hidden states by the tanh to ensure the value stability in temporal propagation. For
the readout function, we leverage SABlock(.) to abstract the information from the hidden state
representation htv ,

yt = SABlock(fscale(h
t
v)). (17)

where fscale is a fully-connected transformation to scale the values of htv . We assume every vertex
in the graph G is accessible by any other vertex to maintain the maximal possibility without prior.
In this case, N(v) ≡ v in equation 1. The edges, presents by adjacency matrix A = {avw;∀w ∈
N(v), v ∈ G}, can be optionally provided, explicitly, else implicitly derived in self-attention.

Implicit Edge Estimation: The scaled dot-product original in the self-attention operator can be
treated as implicit estimation of edges, which computes the pairwise similarity by correlation mea-
surement of vertices on-the-fly with the parametric trainable embeddings of inputs.

Explicit Edge Estimation: On the other hand, edge information can also be provided by feeding a
adjacency matrix A during the attention computation as discussed in equation 11 and equation 12.
All edge learning strategies introduced in the following all belong to explicit edge estimation cate-
gory.

3.3 EDGE LEARNING

We propose three different learning strategies to construct the edge information (see Figure 3). Edge
attention decouples the attention operator in message function into vertex and edge estimation sep-
arately. Class token projection performs the outer-product of a trainable vector with supervision
signal from class labels, and template bank obtains the edge matrix by the linear combination of
trainable templates, based on a selecting module conditions on inputs.

3.3.1 EDGE ATTENTION

We can model the adjacency matrix by deploying a dedicated SABlock for edge matrix. In this
case, we put two separate self-attention layers in parallel, one for vertex estimation (with subscript
v) and another one for edge estimation (with subscript e). Applying to equation 15, we have

Ât = SABlocke(g
t
v)) (18)

mt
v = SABlockv(g

t
v; Â

t)) (19)

where the Ât is the estimated edge information used in the message function.

3.3.2 CLASS TOKEN PROJECTION

With class token accompanied with supervision signals received, we can span an edge matrix by
applying outer-product of class token. Consider a class token, xcls, with dimension (1, C), the
projection can be done by a linear transformation, fproj , from C dimension toN . The outer-product
of the token then spans it into a matrix with shape (N , N ), which serves as the edge matrix.

P = fproj(xcls) (20)

Ât = P ⊗ P, (21)

where the ⊗ is the outer-product operator.
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Figure 3: Propose edge learning extensions to the multi-head self-attention layer. The three block
diagrams present the (left) edge attention, (middle) class token projection, and (right) template bank,
respectively.

3.3.3 TEMPLATE BANK

We define a template bank B with bank size S indicates the number of templates contained. Each
template in the bank is the map with the shape (N , N ) where N is the number of vertices. During
the forward process, the edge information is formed by weighted sum of S templates by a selecting
module, fselect(.), a Multi-Layer Perception (MLP) followed by a sigmoid to produce the selecting
ratio conditioned on inputs and apply to the bank:

etv =
1

N

N∑
i=0

etv,i (22)

I = sigmoid(fselect(etv)) (23)

Ât =

S∑
i=0

I:,:,i ·Bi,:,: (24)

where etv is the average of etv over the vertex dimension. The edge estimation Ât, in the combination
of the template bank B, is then fed into the message function the equation 15.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We based the pretrained BN-Inception model of (Furnari & Farinella, 2019) as backbone and kept it
frozen during training. All input frames are resized to 256x454 and fed through a proposed model
followed by an unrolling classifier forming the verb, noun, and action prediction. The unrolling
classifier is a widely adopted design in action anticipation (Furnari & Farinella, 2019; Osman et al.,
2021; Tai et al., 2021), which unfolds the final output over the unobserved interval with a LSTM, till
the moment where the action is expected to start, and then computes the predictions. The outputs are
supervised by comparing predictions with ground-truth labels with cross-entropy in the last 8 antic-
ipate interval for each individual verb, noun, and action. Note in the class token projection scheme,
the class token for action is used, otherwise mean-pool over the output from readout function is per-
formed. For training details, RandAugment (Cubuk et al., 2020) augmentation scheme is applied in
all experiments. AdaBelief (Zhuang et al., 2020) in combination with look-ahead optimizer (Zhang
et al., 2019) is adopted. Weight decay is set to 0.001. Learning rate is initially set to 1e-4 and cosine
annealed to 1e-7 on the last 25% of epochs. We use 4 × NVIDIA V100 32GB GPUs for training,
with batch size set to 32 and run in total 50 epochs.
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Table 1: EK55 Action Anticipation validation results using RGB at different τa in Top-5 action
accuracy.

METHODS
TOP-5 ACCURACY (%) AT DIFFERENT τa

2 1.75 1.5 1.25 1.0 0.75 0.5 0.25
DMR - - - - 16.86 - - -
ATSN - - - - 16.29 - - -
MCE - - - - 26.11 - - -
VN-CE - - - - 17.31 - - -
SVM-TOP3 - - - - 25.42 - - -
SVM-TOP5 - - - - 24.46 - - -
VNMCE+T3 - - - - 25.95 - - -
VNMCE+T5 - - - - 26.01 - - -
ED 21.53 22.22 23.20 24.78 25.75 26.69 27.66 29.74
FN 23.47 24.07 24.68 25.66 26.27 26.87 27.88 28.96
RL 25.95 26.49 27.15 28.48 29.61 30.81 31.86 32.84
EL 24.68 25.68 26.41 27.35 28.56 30.27 31.50 33.55
RU-RGB 25.44 26.89 28.32 29.42 30.83 32.00 33.31 34.47
HORST 25.38 26.37 27.82 29.16 30.69 31.54 32.52 33.45
HORST-URL 25.95 27.03 28.24 29.81 31.58 32.68 34.21 35.56
SRL 25.82 27.21 28.52 29.81 31.68 33.11 34.75 36.89
SF-RU (αs= 1

8 ) 24.53 25.63 27.30 28.97 30.96 32.23 33.49 35.02
SF-RU (αs= 1

2 ) 26.39 - 28.40 - 30.94 - 32.87 -
SF-RU (αs= 1

2 ,
1
8 ) 26.78 - 29.25 - 32.05 - 34.34 -

OURS (IMPLICIT) 27.25 27.76 29.36 30.63 31.68 32.76 34.41 36.65
OURS (EDGE ATTENTION) 27.25 27.98 29.24 30.29 31.52 32.92 34.77 36.95
OURS (TEMPLATE BANK) 26.67 27.76 29.32 30.49 32.02 33.47 34.71 36.85
OURS (CLS PROJECTION) 26.87 27.90 29.44 30.63 31.96 33.19 34.92 37.05

4.2 EPIC-KITCHEN DATASET

EPIC-Kitchen 55 (EK55) (Damen et al., 2018) is a large scale egocentric video dataset, captured by
32 subjects in 32 kitchens. The data split scheme is inherited from (Furnari & Farinella, 2019) for
action anticipation tasks, resulting in 23492 action segments for training and 4979 for validation. All
unique verb-noun pairs, of 125 verbs and 352 nouns. define 2513 action categories. The top-1 and
top-5 accuracy at 1s are the major evaluation metrics used on EK55. We also include the specific
performance metrics at 1s, with additional mean top-5 recall reported. We sample 14 frames from
each clip with a fixed stride of αs = 0.25 (4 fps), resulting in 3.5s context in each sample. We use
τa to indicate anticipation time.

4.3 EXPERIMENTAL RESULTS

Baselines. We consider the baselines methods, all in RGB inputs, including Deep Multimodal Re-
gressor (DMR), (Vondrick et al., 2016), TSN-based models MCE (Furnari et al., 2018) and ATSN
(Damen et al., 2018), deep network trained with top-k classifier (SVM-Top3/5) (Berrada et al.,
2018), Verb-Noun Marginal Cross Entropy (VNMCE) (Furnari et al., 2018), and several LSTM
variants, Encoder-Decoder LSTM (ED) (Gao et al., 2017), Feedback Network LSTM (FN) (Geest
& Tuytelaars, 2018), LSTM with Ranking Loss (RL) (Ma et al., 2016), and LSTM with Expo-
nential Anticipation Loss (EL) (Jain et al., 2016). We also compare the state-of-the-art Rolling-
Unrolling LSTM (RU) (Furnari & Farinella, 2020), ImagineRNN by predicting future feature (Wu
et al., 2020), Higher-Order Recurrent Space-Time Transformer (HORST) (Tai et al., 2021), Self-
Regulation Learning (SRL) (Qi et al., 2021), SlowFast with unrolling classifier (SF-RU) (Osman
et al., 2021), and previous winners in EPIC-Kitchens anticipation challenge (in Table 3), Action-
Banks in 2020 challenge (Sener et al., 2020) and Anticipative Video Transformer (AVT) in 2021
(Girdhar & Grauman, 2021). Some methods cannot query the accuracy at any time (i.e., DMR,
ATSN, MCE, VN-CE, SVM-Top3/5, VNMCE) and some are constraint by the specific sampling
rates (i.e., SF-RU, AVT). The αs in SF-RU presents the data sampling rate used in the algorithm.

Results. From Table 1, we can observe that our proposed method with implicit edge estimation
already performs strongly compared to previous methods on EK55. Using edge learning strategies
discussed in section 3.3, we found template bank and class token projection methods with significant
improvements. Table 2 shows the specific performance at 1s, which is the widely used evaluation
criteria in the EPIC-Kitchen, we provide the top-5 accuracy, and also top-5 recall, for each individ-
ual verb, noun, and action. We can clearly see our proposed unified recurrent modeling outperforms
previous methods, not only on the accuracy but also on the recall. Equipped with the explicit edge
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Table 2: EK55 Action Anticipation validation results using RGB at 1s in Top-5 accuracy and recall
for noun, verb, and action.

METHODS
TOP-5 ACC. (%) @ 1s MEAN TOP-5 REC. (%) @ 1s

VERB NOUN ACTION VERB NOUN ACTION
DMR 73.66 29.99 16.86 24.50 20.89 03.23
ATSN 77.30 39.93 16.29 33.08 32.77 07.06
MCE 73.35 38.86 26.11 34.62 32.59 06.50
VN-CE 77.67 39.50 17.31 34.05 34.50 07.73
SVM-TOP3 72.70 28.41 25.42 41.90 34.69 05.32
SVM-TOP5 69.17 36.66 24.46 40.27 32.69 05.23
VNMCE+T3 74.05 39.18 25.95 40.17 34.15 05.57
VNMCE+T5 74.07 39.10 26.01 41.62 35.49 05.78
ED 75.46 42.96 25.75 41.77 42.59 10.97
FN 74.84 40.87 26.27 35.30 37.77 06.64
RL 76.79 44.53 29.61 40.80 40.87 10.64
EL 75.66 43.72 28.56 38.70 40.32 08.62
RU-RGB - - 30.83 - - -
HORST 77.67 46.34 30.69 36.54 44.33 10.94
HORST-URL 78.80 46.54 31.58 42.62 45.68 12.18
SRL 78.90 47.65 31.68 42.83 47.64 13.24
SF-RU (αs= 1

8 ) - - 30.96 - - -
SF-RU (αs= 1

2 ) - - 30.94 - - -
SF-RU (αs= 1

2 ,
1
8 ) - - 32.05 - - -

OURS (IMPLICIT) 78.66 47.93 31.68 43.67 47.93 13.19
OURS (EDGE ATTENTION) 78.54 47.91 31.52 44.57 46.87 12.84
OURS (TEMPLATE BANK) 78.60 46.86 32.02 43.63 46.86 13.58
OURS (CLS PROJECTION) 78.74 47.59 31.96 44.96 47.19 13.61

Table 3: EK55 Action Anticipation validation results using RGB with top-1 and top-5 action accu-
racy at τa = 1s.

METHOD BACKBONE PRETRAIN TOP-1 (%) TOP-5 (%)
RU-RGB BNINC IN1K 13.1 30.8
ACTIONBANKS BNINC IN1K 12.3 28.5
IMAGINERNN BNINC IN1K 13.7 31.6
AVT-H BNINC IN1K 13.1 28.1
AVT-H AVT-B IN21+1K 12.5 30.1
AVT-H IRCSN152 IG65M 14.4 31.7
HORST BNINC IN1K 12.6 30.7
HORST-URL BNINC IN1K 12.8 31.6
OURS (IMPLICIT) BNINC IN1K 13.5 31.7
OURS (EDGE ATTENTION) BNINC IN1K 13.9 31.5
OURS (TEMPLATE BANK) BNINC IN1K 13.8 32.0
OURS (CLS PROJECTION) BNINC IN1K 13.6 32.0

estimation, template bank and class token projection even shows significant improvements. Table 3
reveals top-1 accuracy at 1s and compared with additional candidates who won the EPIC-Kitchen
official challenge in recent two years (ActionBanks and AVT). Despite the AVT trained with ad-
vanced backbone deployed, and with different sampling rate αs = 1 (1 fps) for 10s for each sample,
our proposed methods are with superior accuracy in both top-1 and top-5 accuracy over all the meth-
ods using the same BN-Inception backbone. It is worth noting although the edge attention is not as
strong as template bank and class token projection proposals in top-5 comparison, it gets the best
amongst all top-1 accuracy.

4.4 ABLATION STUDY

From the previous section, we found edge learning with template bank achieved overall best accord-
ing to accuracy and recall among all experiments. In this section we compare and discuss the two
major hyper-parameters set in this model, the bank size and the feature dimension.

4.4.1 BANK SIZE

Table 4 shows the experimental results on setting different bank sizes for the template bank edge
learning. We manipulate the bank size ranges from 1 to 2048. In the case of bank size being equal to
1, a unique edge matrix is shared globally across all samples and each timestep. It can be explained
as placing a strong regularization to the intermediate representations before feeding into the message
function, forcing the vertex constrained to the specific representation that is able to co-work with the
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Table 4: Ablation on different bank sizes is set on EK55. All the numbers are in % and at 1s
anticipate interval.

BANK SIZE
TOP-1 ACC. TOP-5 ACC. MEAN TOP-5 REC.

ACTION VERB NOUN ACTION VERB NOUN ACTION
1 13.22 78.34 47.39 31.38 44.07 45.86 12.99
32 12.99 78.96 47.49 31.68 43.60 46.43 12.62
64 13.05 78.42 47.51 31.58 42.77 46.91 13.20
128 13.37 79.04 48.17 31.84 44.70 47.15 13.07
256 13.44 78.80 48.07 31.98 44.18 48.08 13.13
512 13.84 78.60 46.86 32.02 43.63 46.86 13.58
1024 13.31 78.38 48.23 32.08 42.76 47.75 13.34
2048 12.89 78.98 47.18 31.23 42.35 45.76 12.63

Table 5: Ablation on various feature dimensions set in model on EK55. All the numbers are in %
and at 1s anticipate interval.

FEAT. DIM
TOP-1 ACC. TOP-5 ACC. MEAN TOP-5 REC.

ACTION VERB NOUN ACTION VERB NOUN ACTION
HEAD DIM=32 (0.25X) 11.14 78.10 45.25 28.80 38.76 43.79 09.28
HEAD DIM=64 (0.50X) 12.57 78.74 47.28 30.85 41.33 47.28 11.83
HEAD DIM=128 (1.00X) 13.84 78.60 46.86 32.02 43.63 46.86 13.58
HEAD DIM=256 (2.00X) 12.49 78.78 47.47 30.95 44.08 47.18 12.60
HEAD DIM=512 (4.00X) 13.31 78.34 47.73 30.85 41.87 48.34 11.87

global edge matrix. When the bank size is larger than 1, the constraint becomes weaker, bringing
additional flexibility to the representations. We can see when the bank size is greater than 64, top-
1/5 accuracy and top-5 recall are showing better results than the global template used. The peak
performance is at bank size 512, and showing no improvement with more templates.

4.4.2 FEATURE DIMENSIONS

Table 5 shows the performance difference while varying the width of the proposed model. By
default, the feature dimension is set to 1024, which is aligned with the output dimension of BN-
Inception backbone. We adjust the feature dimension from 0.25x to 4x. This adjustment also affects
the feature dimension used in multi-head self-attentions. From the table results, we can observe the
best configuration falls in the 1024 feature dimension, which is equivalent to setting each attention
head to 128 feature dimensions. This ablation suggests setting the appropriate feature dimension is
needed for a specific task.

4.5 PARAMETERS AND COMPUTATION EFFICIENCY

Our model contains only three multi-head self-attention layers with linear transformations for di-
mension reduction or selection. Compared to other transformer-based models, which often stack
multiple self-attention layers, our modeling is lightweight and efficient. The total parameters in
our model, excluding the backbone, classifier, and normalization layers, are only about 21C2 (21M
when C=1024). The template bank brings about additional 6.5M parameters, including a selector
with parameters 1

4C(S + C), and templates that occupy SN2. In the EPIC-Kitchen dataset with
(256, 454) input dimension based on BN-Inception backbone, N is 112. The total computation is
about 40 GFLOPs per timestep.

5 CONCLUSION

In this work we present a unified recurrent modeling which only uses self-attention as building block
to represent features through graph, and which leverages edge learning to estimate vertex semantics.
On the large-scale egocentric EPIC-Kitchen dataset for the video action anticipation, we surpass
the current state-of-the-art in action anticipation. Proposed model is simple, lightweight, and thus
embodies the flexibility for further extensions.
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