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ABSTRACT

In 2018, researchers proposed the use of generalized entropy indices as a unified
approach to quantifying algorithmic unfairness at both the group and individual
levels. Using this metric they empirically evidenced a trade-off between the two
notions of fairness. The definition of the index introduces an array of new pa-
rameters; thus, while the construction of the metric is principled, its behavior is
opaque. Since its publication, the metric has been highly reproduced in the litera-
ture, researched and implemented in open source libraries by IBM, Microsoft and
Amazon; thus demonstrating traction among researchers, educators and practi-
tioners. Advice or grounded justification around appropriate parameter selection,
however, remains scarce. Nevertheless, the metric has been implemented in li-
braries with default or hard-coded parameter settings from the original paper with
little to no explanation.

In this article we take an intentionally data agnostic (rational, rather than empiri-
cal) approach to understanding the index, illuminating its behavior with respect to
different error distributions and costs, and the effect of placing constraints on it.
By adding the simple requirement that the the resulting fairness metric should be
independent of model accuracy, we demonstrate consistency between cost sensi-
tive learning and individual fairness in this paradigm. By viewing a classification
decision as a transaction between the individual and the decision maker, and ac-
counting for both perspectives, we prove that, with careful parameter selection, the
concepts of utility and (group and individual) fairness can be firmly aligned, estab-
lishing generalized entropy indices as an efficient, regulatable parametric model
of risk, and method for mitigating bias in machine learning.

1 INTRODUCTION

The proliferation of data driven algorithmic solutions in social domains has been a catalyst for
research and development of fairness metrics in recent years. Applications in high stakes decisions in
criminal justice |Larson et al.[|(2016), predictive policing Ensign et al.| (2018)), healthcare (Obermeyer,
et al.| (2019), finance Mukerjee et al.| (2002), employment |Cohen et al.| (2020) and beyond, have
fueled the need for formal definition of fairness notions, metrics, and bias mitigation techniques.

Early methods for quantifying fairness, motivated by the introduction of anti-discrimination laws
in the US |Cleary| (1968)); Einhorn & Bass| (1971)); |(Cole| (1973)); Novick & Petersen| (1976); [Fried-
man & Nissenbaum| (1996); Zliobaite| (2015)), fall under what has since become known as group
fairness |Barocas et al.| (2019). This class of metrics considers differences in treatment (outcomes
or errors) across subgroups of a population defined by sensitive or protected features. Informally,
individual fairness is the notion that similar individuals should be treated similarly. Individual fair-
ness is not concerned with protected features, but rather the consistency with which decisions are
made Dwork et al.[(2011); |[Zemel et al.| (2013); Mukherjee et al.[|(2020). This tells us that for fair-
ness, predictions must be randomized. Like these works we agree that the fairest model is the most
accurate model, where accuracy is measured against some unknown ground truth Y, and not the
target in our training data Y. Since the 60’s the application have been

In a recent survey on fairness in machine learning, authors highlight five major dilemmas regard-
ing progress in the space |Caton & Haas| (2023)). The first two of these concern trade-offs between
different metrics. The first discusses the difficulty in reconciling trade-offs between fairness and
model performance |Hajian & Domingo-Ferrer| (2012); |Corbett-Davies et al.| (2017)); |Calmon et al.
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(2017); Haas| (2019). The second discusses trade-offs between different notions of fairness [Dar-
lington| (1971)); [Chouldechoval (2016); |[Kleinberg et al.| (2016); Hardt et al.| (2016)); Murgai| (2023))
and the difficulty in determining which metric is most appropriate for a given problem. The latter
is credited with stifling progress in the space in the 1970’s |Cole & Zieky| (2001)); [Hutchinson &
Mitchelll (2019). Thus, clarity around the equivalence and compatibility of different fairness and
performance measures are important in moving the field forward.

In 2018 [Speicher et al.| (2018)) proposed generalized entropy indices [Shorrocks| (1980) as a unified
measure of both group fairness and individual fairness. For any partition of a population into (mu-
tually exclusive) subgroups, the inequality measure can be additively decomposed into a between-
group component and a within-group component. The former can then be thought of a measure
of group unfairness and the index (sum of both components), a measure of individual unfairness.
Using the metric, they provide empirical evidence of the trade-off between group and individual
fairness.

In this paper we revisit the metric proposed by [Speicher et al.[(2018) and mathematically prove its
value in the fair measurement of risk, and regulation of it. In order to do this we use two hypothetical
examples which constitute different applications of a sociotechnical system Barocas et al.| (2019).
In the first, the algorithm is punitive, it is used to allocate harm, by determining whether or not to
incarcerate individuals on trial. In the second, the algorithm is assistive (or preventative |Saleiro
et al.[(2019)), it is used to distribute employment opportunities. With these examples in mind, we
consider the question of how an unfairness index should behave, knowing that a cap on the index can
be efficiently integrated into any convex optimization, pre-training Heidari et al.| (2018)). We take
an intentionally data agnostic (rational as opposed to empirical (Church|(2011)) approach to under-
standing the index. Instead we focus on the abstraction of risk, represented by generalized entropy
indices, and its relationship with better known performance metrics for different index parameter
choices.

The proposed index measure in the original paper increases the parametric representation of risk
by the generalization parameter . One must define a mapping from predictions to benefits (as
usual when calculating risk), and specify the generalization parameter «. Authors in the origi-
nal paper, and works that have followed, make somewhat arbitrary choices for parameters in their
experiments. Thus, while the construction of the metric is principled, its behavior for different pa-
rameter choices remains opaque. Nevertheless, the metric has been implemented in open source
libraries IBM| (2018)); [Microsoft| (2020); Amazon Web Services| (2024). It has traction among re-
searchers|Heidar1 et al.| (2018)); Jin et al.| (2023)) and educators|Deho et al.| (2022), and is described in
recent surveys |Pessach & Shmueli| (2022)); (Caton & Haas|(2023). More recently Jin et al.| (2023) de-
scribe a fair empirical risk minimization algorithm, in which the index is constrained during model
optimization and demonstrate its promise in reducing bias.

We argue that generalised entropy indices (GEI) present a valuable family of functions (the *com-
plete* set of subgroup decomposable functions according to Shorrocks (1980)) which warrant much
closer inspection, before moving on to other welfare functions Heidari et al.| (2018). We aim to
prove that they parametrically extend the notion of risk, in a principled and continuous way that al-
lows us to manage the multiple requirements of model accuracy, fairness (differing error costs) and
between-group fairness (by choice of o). We believe that GEI provide a parametric language (b;;
and o) suited to algorithmic governance at a high level. They can be computed with very little infor-
mation, (g, y) or better still (p, y). Such a model can be used to limit the feasible models of utility
in a rational way, simply by choosing parameters reasonably and capping the index accordingly.
The efficiency saving which results from using a well reasoned choice of parameters would be O(n),
since it would eliminate the need to iterate over the training data to determine the cap/threshold,
which is derived analytically before training. Individual fairness, as originally defined by [Dwork
et al. (2011}, measures similarity by the features. In order to calculate it, one must define or learn a
similarity metric. This is, computationally, a significantly more expensive task Zemel et al|(2013));
Lahoti et al.|(2019).

The contributions of this work can be summarized as follows.

* We derive new representations of the measure, in which its relationship with important perfor-
mance metrics (error rates and model accuracy and acceptance rate) are explicit. Previously these
relationships were understood empirically for a limited set of parameter choices.
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* We argue that in order to represent individual fairness as defined by |Dwork et al.|(2011)) as faith-
fully as possible, the index must be orthogonal to model accuracy. For the parameter choices
made |Speicher et al.| (2018), we show that the index is a linear function of model accuracy, and
thus cannot represent individual fairness according to this constraint. We conclude that the em-
pirical evidence presented by [Speicher et al.| (2018)) does not support the existence of a trade-off
between group and individual fairness, and more likely is a manifestation of the well documented
trade-off between accuracy and fairness.

* By viewing a classification decision as a transaction between the individual and the decision
maker, and accounting for the perspective of the individuals subjected to the algorithm (in addition
to that of the decision maker), this work reconciles the trade-off between fairness and accuracy
with a subset of utility functions (generalized entropy indices) which account for both.

* For practitioners and legislators, we provide tools to visualize the behavior of any given benefit
matrix and utility function. Those readers who wish to reproduce any part of this paper, can find
all relevant code and resources on GitHub. All proofs can be found in the Appendix.

The rest of this paper is organized as follows. In Section [2| we describe the metric under investiga-
tion [Speicher et al.| (2018)); its properties, parameter requirements, calculation and decomposition.
We also summarize the parameter space and datasets explored in works that have followed. In
Section |3] we present analysis of several higher level representations of the index, which we use
to narrow down parameter choices, to those which satisfy three specified criteria for the metric;
namely that, it is independent of model accuracy, that different types of errors are appropriately
weighted, and that a cap on the index corresponds to a meaningful limit on the distribution of errors.
In Section 4] we discuss our findings.

2 MEASURING ALGORITHMIC UNFAIRNESS WITH INEQUALITY INDICES

In the standard supervised learning setting, which is is typical for high-stakes sociotechnical systems,
the algorithm is learned from a data set of observations for n individuals, D = {(z;,y;)},. For
each individual 7, we have an m dimensional feature vector x; € X, a target y; € ) and a model or
algorithm ¢ : X — ) which predicts the target value, given the feature vector for any individual,
9 = ¢(x). We shall denote the random variable Z € X' as the most advantaged class in our
sample, indicated by those who score highest on our test. Though we focus on the case of binary
classification ) = {0, 1}, the work presented can be extended to consider multi-class classification
|Y| > 2 and regression Y = R problems.

The proposed algorithmic unfairness metric is calculated for the population of n individuals in two
steps. First, a benefit function must be defined which maps each individual ¢ to a benefit b;. Second,
an inequality index I : RZ, — R, is applied to the benefit array b = (b1, b, ..., by, ), to measure
how unequally they are distributed. The index provides a measure of algorithmic unfairness. The
larger the value of I(b), the greater the inequality. We use p to denote the mean benefit. Below we
describe each of the two steps starting with the measurement of inequality.

2.1 GENERALIZED ENTROPY INDICES
There are many indices I(b) for measure inequality which all share the following properties:

 Symmetry: I(b) = I(b’) for any permutation b’ of b = (b, ba, ..., by,).

* Zero-normalization: /(b) > 0and I(b) =0 < b; = p V.

* Transfer principal: Transferring benefit from rich to poor, must decrease I(b), provided the
individuals don’t switch places in their ranking as a result of the transfer. That is, for any 1 <
i<j<nwhereb; <b;Vijand0 < ¢ < (b; —b;)/2, we must have I(by,...,b; +6,...,b; —
Oy vy b)) < I(b).

* Population invariance: The measure depends on the distribution of benefits but not the size of
the population n. That is, if ¥’ = (b, b, ..., b) € R’g@ is a k-replication of b, then I(b') = I(b).

Generalized entropy indices are the complete single parameter («) family of inequality indices with
the additional properties of subgroup decomposability and scale invariance [Shorrocks|(1980).
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* Subgroup decomposability: For any partition G of the population into subgroups, the measure
can be additively decomposed I(b) = I§ (b) + IS (b) into a between-group component I, and a

within-group component I&. The between group component is the contribution from variations in
the mean benefit, between subgroups. The within-group component is the contribution from the
variation in individual benefits, within the subgroups.

* Scale invariance: For any constant ¢ > 0, I(cb) = I(b).

Index Calculation Given benefits b = (by, bo, ..., b, ) with mean benefit u, the generalized entropy
index can be calculated as,
—Ilnzx if a=0
1 & b; zlnzx if a=1
Ib)==> fa <u> , fal@)=q ge ' (1)
i=1 otherwise.
ala—1)
We note that the index is essentially the integral 1(b) = E[f,(B/u)], where B is the random
variable that generates the b; and 1 = E(B), computed over a discrete set of data points.

The Generalization Parameter In Fig.[2| we plot the function f,,(z), for different choices of a.
It shows that the contribution to the index, from individuals that receive the mean benefit, is always
zero, that is, fo(1) = 0 V «a. In addition we can show that, () « < 1 = f!(z) < 0, (ii)
a=1 = f,(r)isminimal atz = e~ !, (iii) « > 1 = f.(z) > 0,and (iv) f/(z) >0V o, = >
0 = fa(x) is convex. Functional analysis of f, () is presented in Appendix

The parameter « controls the weight applied to different parts of the benefit distribution. f, (b;/u)
is the cost (to equality) associated with the benefit b;. For o > 1 the contribution to the index grows
faster than the benefit (prioritizing equality among the rich) and slower for o« < 1 (prioritizing
equality among the poor). Values of o < 1 assert diminishing returns on benefits and thus presents
a logical bound for o in measuring social welfare as a function of income. As o — —o0, the
index increasingly prioritizes the poor and the associated distribution rankings "correspond to those
generated by Rawls” maximin criterion” [Shorrocks| (1980).

Index Decomposition For any partition G of the population into subgroups, the generalized en-
tropy index I, is additively decomposable, into a within-group component /&, and between-group
component [ as follows, I(b) = IS (b) + I§ (b), where,

G

R SR (A NONCES ST C R @

g=1 H g=1 a

Relative importance of between-group and within-group fairness From Eq. we can see
that the between-group component of the index I g is always a true weighted average over the sub-
groups, since the coefficients (n,/n) always sum to unity; however the same cannot be said for
the coefficients in the within-group component, (n,/n)(uy/1)*. IS, is a true weighted sum of the
index values for the subgroups, only when @ = 0 or « = 1. When a = 0, the index value for
each subgroup in the within-group component I, is weighted by the proportion of the population
in the subgroup. When a = 1, the index for each subgroup in the within-group component 5,
is weighted by the proportion of the total benefit in the subgroup, effectively placing proportion-
ally greater weight on equality within wealthier groups. For « ¢ {0, 1}, the sum of coefficients
of the within group component, is linearly dependent on the between-group component. That is,

[}
I,,le Ze (%) =1+ a(a — 1)I§(b;). For a € (0,1) the sum of coefficients of IS is less
than unity, and minimized when o = 1/2. Consequently, the relative contribution to the index from
the between-group component is maximized when o = 1/2. Thus between-group fairness is max-

imally prioritized by the index, when o« = 1/2. Here, the sum of coefficients in the within group
component of the index is 1 — I /4.

2.2  MAPPING PREDICTIONS TO BENEFITS

A key component of the measure, is the definition of the mapping from algorithmic prediction to
benefit. Benefits are floored at zero and the mean benefit must be greater than zero. Benefits are
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relative, they must be defined on a ratio scale, as oppose to an interval scale, to ensure that relative
comparisons of benefits are meaningful. On a ratio scale, zero represents a true minimum. On an
interval scale, zero is arbitrarily chosen, nevertheless differences can be interpreted meaningfully.
An example is temperature, for which Kelvin is a ratio scale; Celsius and Fahrenheit are different
local interval scales. If we are interested in global solutions, we should use Kelvin.

One can imagine that there is almost always some benefit or cost to any decision; that benefit is the
information gained from the process, which guides both the benefit provider and recipient to their
next decision. Every decision is useful, even the bad ones, assuming we live to learn a lesson from
it. So as long as the decision is not death, and some information was shared by both parties, we
can assume there is some, potentially small, positive benefit, regardless of our position. The same
algorithm with a higher minimum benefit would be preferred by any reasonable measure of utility.
How does one increase the minimum benefit? With more relevant information exchange and a path
for recourse if necessary.

Given two arrays, the farget data y and model prediction g, of size n, all n individuals can be
categorized in a confusion matrix. A benefit function can then be defined by simply assigning a
non-negative benefit value, to each element of the matrix b;; = benefit(y = ¢,y = j). Since the
generalized entropy index is scale invariant, we can choose any one of these to be unity, leaving
|V|? — 1 degrees of freedom in the definition of the benefit matrix.

It’s easiest to reason about the matrix from the perspective of one stakeholder at a time. We shall
assume stakeholders include three broad parties. These are, the benefit providers, benefit recipients
and the regulator. The decision maker and subject could be the either the recipient or provider
of benefits. Neither benefit provider nor recipient can see beyond the decision, under one of the
two outcomes. For the employer, the cost is the same regardless of whether the chosen candidate
was worthy. Similarly, the cost of incarcerating a person is the same, regardless of how much the
defendant earned when they were free. From any one perspective, two of the four outcomes look
the same [Elkan| (2001)). Thus, we can reduce the complexity of the analysis, by assuming that two
of the four possible outcomes ¢,y € {0,1} are of unit benefit. More specifically, we will assume
a ternary model of benefits, where the benefit associated with an outcome could be one of three
values, b;; € {b_,by,1} and by, = b < b. One final constraint is that of convexity, for which
the benefit must be monotonic in g Heidari et al.[(2018)).

In this paper, we shall play the role of regulator. The decision maker exerts power and influence
through deployment of their model at scale. They are, in some sense, the navigators and the stake-
holders are (in most cases involuntary) passengers. As regulator, we must consider both perspectives.
We accept the decision makers right to navigate (optimize), within reason or risk appetite. We must
take, longer term view to protect everyone (including foreseeable future stakeholders) and avert dis-
aster by constraining the direction of travel. The regulator must decide the relative importance of

precision P(Y = 1Y = 1) versus recall P(Y = 1|Y = 1) based on the mission, context and law.
We can assume an unregulated decision maker would almost certainly be greedy. As the regula-
tor, we can impose the minimum legal benefit. In some sense, every decision can be viewed as a
transaction or bet; an investment (or divestment) in an entity, which may yield a return, (or prevent
a loss). The model score is an indication of the present value of the subject, based on incomplete
and potentially erroneous information about them. As a regulator we can preclude predatory pric-
ing models, based on our own definition of utility, ultimately setting risk appropriate bounds on the
decision space for a given application.

Table |1| summarizes the datasets and parameters explored empirically by researchers in previous
works. It shows that b;; € {b_, by, 1} is sufficiently broad to encompass parameter choices made
in all known prior works, summarized in Table E] above, and more. All prior works in Table E]
assume that accurate predictions are equally beneficial, that is, b;; = benefit(§ = i,y = j) =
((1,b-), (bs, 1)) where b are the false positive and negative benefit respectively. Two of the papers
use by = 0. The choice of a zero benefit (unlike when calculating empirical risk [Elkan| (2001))) is
problematic. From a practical perspective, it limits one’s ability to set two differing relative weights;
one between the error types, and another between an error verses an accurate prediction. The case
where the decision has the most impact Y = 1, is rationally prioritized by all stakeholders. Zero
benefits also prohibit choices of o < 0, and it’s is not clear, at this stage, why such a choice should
be unreasonable.
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Table 1: Explored parameter space and datasets in prior works.

2

= &0

5 0 %

Ref (bFNabFP) o < O O
Spelcheretal (2018) (0,2) 2 e o

Heldarl et al. (2018) (0,{5,2}) 10,%,%,%,%,1} o o
| rin et a1 (2023)¢ (be=1+{2,2,3}) | {0,1,2} o o

% Identifying high earners Becker & Kohavil (1996). ° Predicting recidivism risk [Larson|(2016). ¢ Predicting
crime rates Redmond| (2009). ¢ Jin et al. also looked at two more datasets, predicting bar exam
success Wightman| (1998)) and identifying individuals with prestigious occupations|Van der Laan|(2017).

We shall describe the proportion of individuals receiving the unit benefit as the unit reward rate and
denote it as \. We do not know what the rewards b are, they may be more or less than unity. The
unit rewards could correspond to a column, row or diagonal. In each case, b4 correspond to different
elements of the benefit matrix. In Theorem[3.3] we will see a representation of the index in terms of
w1 and A which allows us to consider any of the possibilities.

3  METRIC ANALYSIS

In this section we present several higher level representations of the index. The first is as a function
of the mean benefit ;1 and the unit reward rate A. We then consider three cases. In the first we
assume that only accurate predictions yield the unit reward A = IP’(Y =Y) (as in all previous works
summarized in Table[T). In the next two examples, we assume unit rewards corresponds to arow in
which case the unit benefit is the maximum benefit. If the algorithm is punitive then A = }P’( =0).

For assistive or preventative algorithms A\ = ]P’(Y = 1). Under each of the latter two cases, we
derive the benefit function and subset of generalization parameter values for which a cap on the
index, corresponds to a meaningful limit on the distribution of errors. We begin by clarifying the
connection between risk and fairness.

3.1 RISK AND FAIRNESS

In the standard supervised learning setting, the predictions § = ¢(x) are generated by a model
¢ : X — Y which is learned via empirical risk minimization. For binary classification, we start
with a model hypothesis, usually in the form of a class of parametric functions # € ©, where
6 : X — (0,1) maps features  to a probability §(x) = P(Y = 1|z, 0) = p. If we know the target
value y, we can calculate the loss £(0(x),y) € R>( for a given model 6. The optimal model §* is
that which minimizes the empirical risk (expected loss over all individuals 7 in the training data set),

0* = aregenéin {]E(X)y) [ﬁ(Q(X),Y)}} where Ex y)[£(0(X),Y)] = %ZE(Q(%)M%)

A common choice of loss function is the log loss, Lo(p,y) = —InP(Y = y|x,0) = —ylnp —
(I —y)In(1 — p), which is defined on p € (0, 1]. Another valid choice is the squared error loss,
La(p.y) = (p—y)* = y(1 = p)* + (1 — y)p*, which is defined on p € [0, 1].

There is an important difference between the calculation of the index and empirical risk. To calculate
the index, we divide by the mean benefit before calculating the expected value. The index can
be written as E[f,(B/u)] where p = E[B] and f,(b/u) is the contribution to the cost from an
individual with benefit b. We can write the index E[f,,(B/u)] as a function of E[f, (B)] as follows.

Theorem 3.1 (Influence of the Mean Benefit on the Generalized Entropy Index).

5oy = [, (2)] - ELBL o) 5

‘LLOt
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where B is the random variable that generates b; and f,, is defined in Eq. (I)). Proof in Appendix
A2

Consider the simplest case, where only accurate predictions are rewarded, that is, b(p,y) = P(Y =
yle,8) = yp + (1 — y)(1 — p). In this case, the mean benefit x is exactly the model accuracy,
and substituting Eq. (I) into (3) we see that for & = 0, we can write the index as a function of
the cross entropy loss. I(b;0) = E[Lo(p,y)] + In u. If we rewrite the benefit in terms of the cost,
b(p,y) = 1—c(p,y), where c(p, y) = P(Y # y|x, 0) = y(1—p)+(1—y)p. we see that for « = 2 the
index can be written as a function of the squared error loss, 1(b;2) = (E[L2(p, y)]—(1—u)?)/(2u2).
The values o = 0 and o = 2 represent the only two special cases of generalized entropy for which
the loss E(B) = L, (p,y) is Fisher consistent Cox & Hinkley| (1974); Buja et al.| (2005). That is
to say that the expected loss is minimized when E(p) = E(y), ensuring that the resulting predictor
provides a statistically unbiased estimate of Y.

Together with Theorem [3.1] we conclude that the unfairness index is able to express linear functions
of empirical risk, where the gradient and intercept depend on an additional (new) parameter L.
Different values of « correspond to different choices of loss function. For values of « ¢ {0, 2}, the
estimator which results from maximizing for accuracy is biased. Finally, note that when p = 1, the

index is equivalent to I(b; o) = E[fo(B)] = E[La(p, y)]-

3.2 REPRESENTATIONS

Theorem 3.2 (Index as a function of y and \). For benefits b; € {b_,by, 1}, the index I(b; &) can
be written as a function of the mean benefit |1 and unit reward rate X\ as follows,

I(b; ) = [(Aa + Ba)(1 = A) + Balp = 1) = falpw)] /p® )
where Aa = f(x(bi) - biﬁa and Ba = w &)
+ — 0

A, and B, are respectively the intercept and the gradient of the secant line passing through f,(b_)
and fo(by). Proof in Appendix

From Eq. we see that I(b; o) must depend on \. Thus Theorem tells us that, all benefit
functions of the form b;; = ((1,brn), (brp, 1)) will result in a metric that is dependent on model

accuracy P(Y = Y) = 4. In fact, the unfairness index is proportional to the model error 1 —
when p = 1. This result is consistent with literature which demonstrates a trade-off between model
accuracy ~v and fairness [Hajian & Domingo-Ferrer (2012); |Corbett-Davies et al.| (2017); (Calmon
et al.| (2017); Haas| (2019). Ideally, we want the unfairness index to be orthogonal to . Below we
analyze the behavior of the metric with respect to p and .

Domain The unit reward rate is bounded, A € (0,1). Since b_ < b the total number of benefits
is minimized when all benefits are b_, and maximized when all benefits are either unity or b,
depending on which is larger. Thus, for b_ < b, and unit reward rate \, the mean benefit ; must
satisfy the following bounds,

b < b+ (1-0)N < p < byr+(1—-bp)A < max(by,1). (6)
As the unit reward rate A increases, the range of possible values y can take, decreases. The domain
space is then a triangle, the illustration in Fig. |l|assumes that b_ < b;. If p = P(Y = 1) is known,
the domain space is reduced to a quadrilateral with two parallel sides.
Corollary 3.2.1 (Behavior with respect the unit reward rate). For benefits b; € {b_, b, , 1} and fixed

mean benefit i, the index is a linear function of the unit reward rate, for by < 1, it is increasing and
for by > 1, it is decreasing. When either of by = 1, the index is independent of unit reward rate.

Proof in Appendix[C.2]
Corollary 3.2.2 (Behavior with respect to the mean benefit). For benefits b; € {b_, by, 1} and fixed
A, the index has a single turning point at p = [1(\), where,

N for a=0

A~ + a f B 1

AA) = Oé(; - 11)[(Aa Jrlﬂa))‘ —Aa] -1 oi:zerzjise v
(a—1)%fa '
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Figure 1: Visualization of index domain assuming b4 > 1 and by < 1 respectively.

In most cases the turning point is a maximum turning point. In the special case where b_ = 0, as
we increase b, the turning point changes from a minima (for b, < 1) to an inflection point (at
by = 1), and finally a maxima (for by > 1). Proof in Appendix|C.2]

Corollary [3.2.1] and [3.2.2] show that the unfairness index can exhibit a wide enough variety of
behaviors that, poorly chosen parameters could result in a metric that behaves nonsensically. Next
we derive expressions for the index in terms of the error rates under different interpretations of the
unit rate A.

Theorem 3.3 (Index as a function of the error rates for A = P(Y = Y)). For the benefit function
bi; = ((1,bpn), (brp, 1)), where 0 < bpny < 1 < bpp, the index I(b; ) can be written as a
Sfunction of the false positive (F PR) and false negative (F'N R) rates,

I(b;a) = [fa(brN)PFNR A+ fo(brp)qF PR — fo(p)] /pn 3
where p=1+(bpy —1)pFNR+ (bpp — 1)gFPR 9)

p =P =1)and q = p — 1. Proof in Appendix|C.2}

Theorem shows that the data reward rate p = P(Y = 1) affects the relative weight of F"PR and
FNRin u, and fo (b1 ) in I(b; @).

Next we consider the two cases where the unit rewards correspond to a row, making the mean benefit
orthogonal to model accuracy. For convexity both b must be less than unity. Intuitively, we know
that if b_ is close to zero and b is close to one, whichever a benefit of b_ will have the greatest cost
to equality, and so this is best placed on the error type we wish to avoid in the confusion matrix. For
punitive algorithms, we wish to avoid false positives, and for assistive

3.2.1 Avoiding harm with punitive algorithms In this example the decision maker incarcerates
high risk subjects. Thus, benefits should be decreasing in y. As regulator, we wish to avoid false

positives, thus A = § = P(Y = 0) and (b_, b, ) = (bpp, brp). From Eq. (4) we know that,
I(b;a) = [(Aa + Ba)p + Ba(p — 1) = falp)] /u®. (10)

Theorem 3.4 (Index as a function of the error distribution for A = § = }P’(Y = 0)). For the benefit
function b;; = ((1,1), (bpp,brp)), where bpp < brp € (0,1), the index I1(b; o) can be written as
a function of the false negative (F'N R) and positive (F PR) rates,

I(b;a) = [p(1 = FNR) fa(brp) + ¢F PRfo(brp) — fa(p)] /1® (11
p=1-(1—brp)p(1— FNR) — (1 bpp)gFPR. (12)

where p=P(Y = 1) and ¢ = 1 — p. Proof in Appendix|C.2]
From Corollary we know that the index is decreasing in p = 1 — A = P(Y = 1). According to

Blackstone’{] formulation, “It is better that ten guilty persons escape than that one innocent suffer.”
We can interpret this as meaning that the probability of a person being wrongfully convicted (FP)

!"The famous British jurist, upon whose legal theories, the American legal system was built.
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should be no more than one tenth of the probability that a guilty person escapes conviction (FN).
That is, kFFPR < FNR. Let us denote the chosen ratio as «, where x = 10 corresponds to
Blackstone’s ratio. From Eq. (I2)) we know that

— b 1-b
M:FNR—ﬂFPR>O & pu>q+pbrp
(1—brp)p (1—=>brp)p
1-b 1-b
where &:ﬂ = b,:bppzl—ﬂ. (13)
(1—=brp)p q

Defining ¢ meaningfully, costs us one degree of freedom in the benefit matrix. We can satisfy
Blackstones’s constraint by simply ruling out all models for which p < ¢ 4+ bppp. If the index is
strictly decreasing in p, capping the index where 1 = ¢ + pbrp, will have the desired effect. How
can we ensure the index is decreasing in x with the two remaining degrees of freedom (brp and «)?
From Corollary we know the index has a maxima where . = fi(\). If the turning point falls
below the index domain, thatis p = (A\) < b_ 4+ (1 —b_)\ = I(b;a) | pand we have achieved
the goal.

3.2.2 Avoiding harm with assistive algorithms In this example, the decision maker hires high
scoring subjects. Thus, benefits should be increasing in y. As regulator, we wish to avoid false
negatives. Thus, A = p and (b_,by) = (bpn, brn). From Eq. (4) we know that,

I(b; ) = [(Aa + Ba)(1 = p) + Balp — 1) = falw)] /1 (14)

Theorem 3.5 (Index as a function of the error rates for A = p). For the benefit function b;; =
((brn,brnN), (1,1)), where bpy < bry € (0, 1), the index I(b; ) can be written as a function of
the false negative (F'N R) and positive (F PR) rates,

I(b;a) = [pFNRfa(brn) + q(1 = FPR) fa(brn) — fo(u)] /pn® (15)
/JZ1—(1—bTN>q(1—FPR)—(1—bFN)pFNR (16)

where p =P(Y = 1), g = 1 — p. Proof in Appendix
From Corollary we know that the unfairness metric is increasing in the model reward rate p.

This time we wish to avoid false negatives kE'NR < F'PR. As before defining the mean benefit
meaningfully costs us a degree of freedom. From Eq. (I6) we know that

— b 1-b
p=tabrn) _ ppp U =brnPpnp oo o st gbew.
(1—-"brn) (1—brn)g
where K:m = bfszN=1—m, (17
(1—-brn)g D

We want to rule out models for which p < p+bpngq. If the index is strictly decreasing in p, capping
the index where © = p + gbpn has the desired effect. If the turning point falls below the index
domain I(b; ) | p, this must be the case.

Summary From Egs. and we know that b, and b_ are related, leaving only one degree
of freedom in the benefit matrix. For brevity, we denote,

bo=1-(1—-b )i = 0<b_<1—1/&<by (18)

where & = kp/q or K = kq/p depending on whether we wish to avoid false positives or negatives
respectively. Substituting for b_ in the equations allows us to drop the benefit subscript. We can
write the both the difference 6 = by — b_ and ratio ¢ = b_ /by interms of by = b.

0=(F—-1)(1—-b) and p=1—-0/b=1—¢€ where e=0d/b=(k—1)(1—-0b)/b. (19)
Note that 6, ¢ € (0, 1).

3.2.3 Ensuring the index is monotonic in the mean benefit Intuitively, we know that if b_ is
close to zero and b is close to one, this will teach the algorithm to avoid whichever error type is
assigned the benefit b_. In general, a regulator must prioritize the errors a greedy decision maker
will ignore. We have one degree of freedom left, in the benefit matrix. A natural limit to set as a
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regulator is the minimum benefit b_. In law we already employ the concept of a minimum legal
benefit which guarantees a reasonable minimum information exchange from decision makers to
subject. In many countries and some US states such as California, there is a requirement that salary
bands are shared on all job postings. An an entirely reasonable piece of information that potential
candidates should have, to enable them to filter job postings. Similarly, some jurisdictions require a
reason to be provided to the applicant, when a loan is rejected. The minimum benefit increases with
transparency - it saves the masses time and provides them with the opportunity to rectify erroneous
information about them. These provide examples of policies which decision makers can implement
to raise the minimum benefit b_ in their benefit matrix. The question is only one around how to
communicate the value of a policy for a given application.

We still need to choose . Ideally we would make some sensible choice of «, and then use the
remaining benefit to ensure the index is monotonic. What is a sensible choice of a? We know
that when minimizing risk, @ = 0 provides a well reasoned choice and is a natural starting point
for investigation. That said, given only binary arrays, we must choose @ > 0. We also know
from Section [2] that values of o € (0,1), discounts the total contribution from the within group
component, such that the discount is greatest when v = 1/2. Looking at Eq. (2, we see that for
a group g, the contribution of the group I(b,) to the within-group component I3 (b) of the index,
is multiplied by a factor of (14/pt)%, let’s call this the grit factor. Like a discount factor, which is
applied to a future cashflow to calculate its present value, the grit factor adjusts the within-group
contribution from group g, I(b,) . Unlike the discount factor, the grit factor discounts some scores
and inflates others. We can see that the grit factor is always one for mean scoring groups.

‘We can calculate

e " =(ug/1)* = r=aln(u/pg)=allnp—Inpu,
is the continually compounding interest rate, or grit rate, on a future cashflow of I(b,) and is pro-
portional to c. The grit rate is always zero for mean scoring groups, it is positive for py < 1, and
negative for y1, > p. Like the mean (Eq. @), the group mean p, € [b_,1] and consequently the
gritrate r € [aIn(u), oln(u/b_)] are bounded.

If that each individual has access to the average utility of their peers, values of o a adjustment
factor to reflect its actual value, assuming the test is biased. The grit factor inflates low scores, and
discounts high scores proportionally. Eq. (Z) shows that the size of a subgroup, greatly influences
its contribution to the between-group component Ig of the inequality index. We know that variance
scales linearly. When we calculate the mean benefit of each group, we divide by the number of
observations in the group ny, which reduces the variance by 1/n,4, and mean estimation error by
1/,/mg. Taking the square root, after calculating the mean replaces the lost variance in p,/p I ¢,
thus ensuring all groups (regardless of size) contribute the same variance, ultimately accounting for
representation bias.

4 DISCUSSION

The findings of this paper and the works which led to it affect all of us, several times a day. Every
time we make a judgment about a person (especially an emotive one), how can we be less biased?
From prior works we know that using a conventional (both evidence based and biased) model of util-
ity with a binary outcome, a decision maker cannot be fair [Friedler et al.|(2016). From Barocas et al.
(2019), we know that introducing a third possible outcome (increasing the size of our outcome space
from binary to ternary), makes satisfying independence (Y L Z) and separation (Y LZ |Y) possible.
What third outcome could there possibly be? Surely, someone either is or it isn’t something? No.
There is always another possibility. More fundamentally, this result says that, any scale on which
we measure or represent people, cannot be binary.

There is one remaining degree of freedom in the generalization parameter «. In all societies, per-
sonal and social wealth tend to be correlated. Here we define personal and social wealth to be
b;/u and 4/ p respectively in Eq. . A targeted advertising algorithm for luxury goods, would
indeed need to be a good predictor of how wealthy an individual is, and rich people tend to have
rich friends, so a true value of o > 0 makes sense, but rich # will purchase thus « < 1. In truth, the
target Y is generally a positively correlated proxy for the thing we (as the decision maker) would

like to measure Y. By choosing @ = 0, we ensure the model Y is an unbiased estimator of Y, but

10



Under review as a conference paper at ICLR 2025

Y isn’t really what we want, Y is. If our test Y is biased toward some dimension Z, then we would
expect the differences ¥ — Y = €(Z) to be increasing in Z. The greater the reliance on the proxy
Y, the more exaggerated the bias. In theory if we could estimate «, and account for it; resulting in a
more accurate measure of utility.
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Figure 2: f,(x) for varying c.
A GENERALIZED ENTROPY INDICES
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Differentiating f,,(x) in equation (T) with respect to z gives,

f’(x)— 1+Inz fora=1
o) 2971 /(e — 1) otherwise,

and f/(z) = 272 > 0V «, x. Thus, f,() is convex.
In Fig. |2} we plot the function f, (), for different choices of a.

A.1 INTEGRAND BEHAVIOR

Theorem A.1 (Behavior of the Integrand).

a <1 = fqo(x)is strictly decreasing.

a=1 = fo(z)is minimal at v = e *.

a>1 = fo(x) is strictly increasing.
Proof. For a =0,
, 1
fo(z)=—In(z) = fy(z)=——<0 for >0
x
= fo(z) strictly decreasing for x > 0

folx)=0 & z=1
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Fora =1,
1

filx)=2zlnz = filz)=14+hz=0 <& z=-.
e

1
= {'(sc)z;>0 Va>0

o 1
= fi(x)is minimal at x = —
e

filz)=0 < ze{0,1},
= fi(z) >0 forz>1 and
fi(xz) <0 for xz < 1
Fora ¢ {01}

z® =1 , x
ala—1)

( a—1

(z) >0if a>1 and
)<0ifa<l

strictly decreasing for o < 1

fa(z

4

~

strictly increasing for o > 1

A.2 RELATIONSHIP WITH RISK

Theorem [3.1] (Influence of the Mean Benefit on the Generalized Entropy Index)

)

where fo, is defined in equation ([I).
Proof. From equation (),

a=0 = I(b;a)E[ln(f)}IE[lnB]Jrlnu.

a=1 = Iba)=E [Bln <B>} = lIE[BlnB—Bln/,L]
poo \p u

= i[E(BlnB) — plnpyl.

ag {01} = Iba)=— E KB>Q_1] _E(BY) —p®

ala—1) I ala—1)pe
CE(BY) -1 (6 - )
ala—1)pe '

B INDEX FOR TWO BENEFIT LEVELS

Here we consider the simplest case where there is one degree of freedom (or equivalently two benefit
levels) in the matrix, a high benefit and a low benefit. Since the index is scale invariant we can choose
one of these to be unity, and denote the other benefit as b > 0. For known b, the benefit distribution
(and thus index behavior) can be characterised with a single variable, the proportion of individuals
receiving unit benefit, which we denote p. In theory, any of the elements b;; could be unity, leading
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to a different interpretation of p. Two important cases include, model accuracy (if the diagonal § = y
results in unit benefit) and the acceptance rate (if the row ¢ = 1 results in unit benefit).

Note that for a benefit matrix with more than two benefit levels, all benefit matrices fall into one
of two types. Either one of the diagonals dominates, or one of the rows dominates. If a diagonal
dominates we can reasonably assume it is the leading diagonal (accurate predictions being more
beneficial than errors). If a row dominates, we can assume without loss of generality that it is
positive predictions that are most beneficial. We consider the simplest case, b = 0 first.

B.1 BINARY BENEFITS

Theorem B.1 (Index Behavior for Binary Benefits). For a binary benefit array b, with mean benefit

w € (0,1], the index 1(b; o) is a strictly decreasing function of the mean benefit. See appendix
for the proof.

Proof. For binary benefits, with mean benefits i, nu of the n individuals receive a benefit of one
and the remaining n(1 — p) receive a benefit of zero. Thus, we can write the value of the index as,

1(B50) = (1= p)fa(0) + 1/ (;) |

Substituting in the index yields,

—Inpu fora=1
I(b; ) = 7ﬂ17& -1 for o > 0 @D
ala—1) '

Note that for binary benefits we must have & > 0. From equation (21)), for & = 1 it is straightforward
to see that the index is decreasing in . For o > 1, the exponent of p is negative. For « € (0, 1), the
exponent is positive but the denominator is negative.

Theorem [B.T]tells us that for binary benefits, the generalized entropy index is a monotonic decreas-
ing function of the mean benefit, regardless of the choice of .. The value of applying inequality
indices for binary benefits then is questionable, since the index calculation introduces a free pa-
rameter «, and the index value is far more opaque in meaning than the mean benefit itself. For
b;; = ((1,0),(0,1)), the mean benefit ;1 is exactly the model accuracy and the index ranks the
fairness of models in order of accuracy. For b;; = ((0,0), (1,1)), the mean benefit y is exactly the
acceptance rate and the index ranks the fairness of models in order of acceptance rate. For binary
benefits, the only one way to achieve equality is if all individuals receive a benefit of one, since the
index is undefined for 4 = 0; when b > 0, this is no longer the case and there are two ways to
achieve equality in benefits.

B.2 TwoO NON-ZERO BENEFIT LEVELS

Theorem B.2 (Index Behavior for Two Benefit Levels). Let p be the proportion of individuals which
receive unit benefit, and b be the benefit the remaining individuals receive; the index I(b; @) is zero
for p = 1. For b > 0, the index is also zero for p = 0, and takes its maximal value for some

p=pb;a) € (0,1).

a<—1= jba)lb,
a=-1= pba)=1/2
and a>-1 = pb,a)1b
. 0 fora >0
p(b,a)—){ afla—1) fora<0 } asb =0
R 1 >0
and p(b,oz)%{ 1/(1 - a) ;Z:ZEO } as b — oo.
0<b<l = pha)t ina
and b>1 = pb,a)l ina.
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Proof. From equation (3), since f, (1) = 0, we can write the value of the index as,

For symmetric benefits, with mean benefits i, of n individuals, np receive a benefit of one and the

remaining n(1 — p) receive a benefit b. Thus,

p=p+1—=pb < p=(1-0bp+bd
p—b 1—p

RO e S S el gy

Substituting for 1 — p in the expression for the index above gives,

I(ba) = L) = (L= b fa(u)

(I —b)u~
Substituting for f,, from equation (1)) yields,
1—p)nd
lnu—( 1ﬁ)bn fora=0
blnd /1
I(b;) = ek (| —Inp fora =1
1—-b\p
A= —1) -1 -b)(p*—1)
0.W.
ala—1)(1 —b)u~
Rearranging gives,
1—p)lnd
lnu—( 1ﬁ)bn fora=0
blnd (1
I(b;a) = S | —Inp fora=1
1—-b\p
b a—1 S N- _ _ a
(b =)= (b == (=t
ala—1)(1 —=b)u>

17
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Differentiating equation (22) with respect to ,

1 Inb
ﬁ+1—b
dr blnbd 1
du -
ab(l1 — v — (a—1)(1 =)
ala—1)(1 = b)patt

b—1
D fora =0
dI A binb
du n=p b1 fora=1
ab(b*~1 —1) o
(a—-Dee—1) W
%—ﬁ fora =0
. b—p b Inb B
& p(b,a)—m— b—l(l_b—1> fora=1
b a(bo=! —1)
bl(L_mIWﬂD) oW
blnb— (b—1)
i S f _
(b—1)Inb ora =0
) b(b—1—Inb
& pba)= bip—1-Inb) = 1)2n ) fora =1
b(a—1)(b™ — 1) — (b~ = 1)] o
(a—Db—1)(b>—1) W
blnb— (b—1)
i S f _
(b— 1)Inb ora =0
& plba) = Lo ras 23)
bl(a — 1)b* — ab®~t + 1] o
R

We plot p(b, «) as a function of b for varying « in Figure

BEHAVIOR WITH RESPECT TO «
BEHAVIOR WITH RESPECT TO b

We want to know the location of the index maxima (b, ) in the extremes when b = 0 and b = 1.
Finding the behavior of 5(b, «) as b — 0 is straightforward.

0 foraa >0

ﬁ(b’a)_){a/(a—l) fora<0} as b—0 (24)

18
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Benefit associated with errors b
Figure 3: p(b, «) as a function of b for varying «.. See equation

From equation , we can see that for b = 1, 5(b, «) is indeterminate. Applying I’Hopital’s rule
gives,

Inb
1+Inb—1/b fora=0
A _ 2(b—1) —Inb
%er% {p(b,a)} = SN fora=1
(a—1)(a+1)b* —a?b 1 +1 ow
(a—D[(a+1)b> —abe—t —1] 7
1/b
m fora =0
2—-1
= 5 /b fora=1
ala+ 1)1 — o?pe—2 o
ala+ 1)1 —a(a— 12 777
shows that
pb,a) =1/2 forb=1 Va. (25)

We note that if b > 1 then the unit benefit no longer dominates. Since the index is scale invariant,
dividing all benefits by b, does not change the value of the index; but then 1 — p (as oppose to p) of
the individuals receive unit benefit and the remaining p receive a benefit of 1/b. Thus,

lim {p(b, a)} = Tim {1~ p(1/b,a)} = 1  lim (b, a)}.
b—oo b— 00 b—0
From equation (24)

. 1 fora >0
p(b,a)—>{ 1/(1 - a) fora<0} as b— oo (26)

O

Theorem tells us that, when b > 0 both p = 0 and p = 1 are perfectly fair models for which
the index value is zero. In the case where accurate predictions dominate the benefit matrix, this
corresponds to a model accuracy of zero or one. That said, for any reasonable binary classifier, the
model accuracy must be greater than 1/2, and since for & > —1, the maxima occurs for a model
accuracy of less than 1/2, the index I (b; ) remains a decreasing function of model accuracy for any
reasonable model. In the case where positive predictions dominate, these two perfectly fair scenarios
correspond to rejecting everyone or accepting everyone.

19
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C INDEX FOR THREE BENEFIT LEVELS

C.1 Two NON-ZERO BENEFIT LEVELS

Theorem C.1 (Index for b_ = 0). Given the benefit matrix

10
bij:(m 1)

the generalized entropy index is defined for o > 0 and can be written as:

(1—/\>lnb+—1n,u fora=1
I(p,\) = ¢ 1 1
M=) et e -
M[(ﬂ) —a)\—1‘| fora>0

Proof. Let’s suppose the model makes n. correct predictions (in which case b = 1); n, false
positive predictions (in which case b = b ); and the remaining n — n. — ny predictions are false
negative (in which case b = 0). We can write the value of the index as,

I(bia) = [(n e = 14) fa(0) + nfu (;) s (f’;ﬂ .

n

Using equation (1) we can show that,

~(ne+bing)lnp n bynyInby for o — 1

L n w np
I(b;a) = 1 nc—i—bi?u_l for o > 0
ala—1) nue '

Let us denote the model accuracy with A\. We have,

b b
A= "¢ and M:M O L Y
n n n

Substituting completes the proof. O

Theorem C.2 (Index turning point). The index has exactly one turning point for o« > Q at p = i
where, i = g(by, @)\ and,

Inby fora=1

— el —1
g(by, ) 07( + _3 for oo >0
(a— DB

The stationary point is an inflection point if by = 1, a minima if by < 1, and maxima if by > 1.

Proof. Differentiating equation (@),

1
8]7 E(z\lnb_,_—,u) fora=1
op ) adt =DA—(a—1)p "
fi
alo —T)port ora >0
ol
8TL:0 & p=p=gla)

20



Under review as a conference paper at ICLR 2025

Differentiating again,

1
021 1 3 [t —2A1n b+3 fora=1
9.2 bS~ HBT -1
Ip? +2 —(OH_ )% — ))\ for a > 0
et (a—1)b%
1I1b+
az[ —A73>\ fora=1
= a 9 = a—1
ou?|, _. (s —1)
H=H m)\ fora >0
2] >0 for b+ <1
= a5 =0 forbyr =1 YVa>0.
W= | <0 for by >1
O
Theorem C.3 (The Deviation Region).
AT (g, An) <0 = p<h (by,a)X @7
ATt (pu,sn) <0 = pu>ht(by,a))
where,
{by —Inby i oa=1
+ b+ —1 F h’lb+
h*(by, ) = (28)

alby — 1) - 1)
[(a—1)(bs — 1) F1p5T £1

if a>0,a#l.

Proof. Eq. (4) provides an expression for I(u, A). Substituting for A and y in the case o = 1 gives,
b 1 A1 s\ !
I(ui,A> - [1 () (u) ]m
n n Loonp np

—1n,u—1n(1:|:6).
ni

For a > 0, we get,
a—1 -«
et D) s () ()
n n ala—1) 1] ni

V1) /X1 s\ °
DG (ed)
1t B np ny
We showed earlier that we must have, A < u < by 4 (1 — b4 ), in addition, any reasonable model
should satisfy 0.5 < A < 1. We deduce that we must have 0.5 < p < by + 0.5 and so u = O(1).

Then for large n, we can be sure that nu is large and its reciprocal € = 1/(nu) is small. For large n,
we can write the cost of an error as

AL (1, A n) = €, Ne + O(€2)

where,
(1:t5)\>lnb+:|:5 fora=1
ga(ﬂ )‘) = "
’ [+ (1—a)d]b ' —1u£ad(d —1)A
for a > 0.
ala—1pe—1
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C.2 THREE NON-ZERO BENEFIT LEVELS

Theorem (Index as a function of the error distribution when A = }P’(Y =Y)). For the benefit
function bij = ((1,b_), (b4, 1)), the index I1(b; ) can be written as a function of the false positive
and false negative rates, F PR and F'N R respectively,

I(b;a) = [fa(b-)pFNR+ fo(by)qgF PR — fo(p)] /u® @
p=1+(b_—1)pFNR+ (bs — 1)gFPR. ©)

wherep =P(Y =1)andq=1—p.
Proof. Let the proportion of accurate, false negative and false positive predictions be denoted by A,

p— and p. respectively. Since f, (1) = 0V «, from equation (3) we know

I(b;a) = [p— fa(b-) +pyfalby) — falp)]/u®. (29)

where p is the probability of the benefit b1 . Note that, any of the elements b;; could be assigned
one of the three benefits, and not affect the validity of this representation. We also know,

Adp-+pp =1, (30)
and given the mean benefit p,
o= )\—i-b,p, +b+p+. (31)
We can use equation (30) to eliminate A from equation (31) giving,
p=1+(b— —1)p— + (by — L)p4. (32)
For convenience we write our probability matrix in terms of the subject relevant errors:
([ 4¢q1-FPR)  pFNR
P(y—z,y—])—( ¢FPR p(1— FNR) |- (33)
A=P(Y =Y), p,=qFPR and p_=pFNR.
Substituting into equations (29) and (32) completes the proof. O

Theorem [3.2|(Index as a function of \ and p1) For the benefits b; € {b_,b;,1}, where b_ < b, the
index I(b; ) can be written as a function of the mean benefit p and the unit reward rate \

I(b;a) = [(Aa + Ba)(1 = A) + Ba(p = 1) = fa ()] /0 @)

where Ao, = fo(by) — b1 B and Bo, = [fa(by) — fa(b-)]/(by —b_). An and B, are respectively
the intercept and the gradient of the straight line passing through (b_, fo,(b—)) and (b, fo(by)).

Proof. We can use equation (30) to eliminate p, from equation (3T) giving,
pr=1—-XA—p- = pu=A+p_b_+(1-A—p_)bs
— by —(be — DA (bs —b_)p_

Rearranging allows us to write p_ as a function of x and A,

by —p— (b — DA

_ 34
= P b — b (34)
We can now eliminate both p4 from equation (29), starting with p.;,
peI(b; ) = (L= N falby) = p-[fa(bs) = fa(b-)] = falp)-
Substituting equation (34) to eliminate p_ gives,
pI(b; ) = (1 =X falby) = [by — p = (by = DABa — fa(p),
where 8, = [fa(bs) — fa(b-)]/(bs — b_). Grouping terms in A, and rearranging gives,
I(b; o) = [(by — 1) (ra(p, by) = Ba) = (b — 1)(ra(l, by) — Ba)Al/p®. (35)
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Figure 4: Index surface in (p, \) space for varying benefit functions and generalization parameter
values. Here we hold b_ = 0.5 constant and vary b and o.

Since f, is convex, we know that r, is strictly increasing. Looking at equation (33), since both £ and
unity are both greater than b_, all the terms in square parenthesis are positive; as is the denominator
n®. Thus we can see that I(b; «) is linear with respect to A. The index is a linearly decreasing
function of accuracy for b > 1 and increasing for by < 1.

pI(bya) = falby) = fa(p) = (b4 — 1)Ba — [fa(bs) = (b4 = 1)Ba]A
= ﬂa:u' - foz(:u) + f(x(b-‘r) - b+5a - [fa(b+) - b+/8a + 5@])‘
= Aq + Bap — (Aa + ﬂa))\ - fa(,u)

In Fig. [ we plot the index surface as a contour plot for a variety of parameter choices. O

Corollary (Behavior with respect to unit reward rate) For benefits b; € {b_, b, , 1} and fixed
1, the index is a linear function of the unit reward rate, for by < 1, it is increasing and for by > 1,
it is decreasing. When b = 1, the index is independent of the unit reward rate.

Proof. Figure[2]illustrates the behavior of f,(z) around z = 1, where f, (1) = 0. We can write the
equation of the secant line passing through f, (b_) and f, (b4 ) asy = A, + Bax. Thus, A, + Ba
is the value on this line at © = 1. Since f,(1) = 0, and f, () is convex, we know that A, + (3, is
negative for by < 1 and positive for b, > 1. Importantly A, + 5, = 0 only if one of b_ = 1 or
by =1. O

Corollary (Behavior with respect to the mean benefit). For benefits b; € {b_,b,, 1} and
fixed ), the index has a single turning point at = [1(\), where,

—1/Bo for a=0
o) (AL BN = Ay for a=1
AN =1 ala = DA + BN — A~ 1 . o
otherwise.
(= 1)?Ba
In most cases the turning point is a maximum turning point. In the special case where b_ = 0, as

we increase b, the turning point changes from a minima (for by < 1) to an inflection point (at
by = 1), and finally a maxima (for by > 1).

Proof. Proof here. O
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Theorem (Index as a function of the error distribution for A\ = p). For the benefit function
bij = ((bs,b-),(1,1)), the index I(b; o) can be written as a function of the false positive (FPR),

negative (F'N R) and data and model reward ratesp =P(Y = 1) and p =P(Y = 1)

I(b;a) = [pPFNRfo(b-) + q(1 = FPR) fo(by) — fa()] /1
p=1-—(1-b.)q(1—FPR)—(1—b_)pFNR.

Proof. Egs. and still hold true but now p_ = pFNR and p; = ¢(1 — FPR). Substituting
completes the proof. O

Theorem 3.4 (Index as a function of the error distribution for A\ = 1 — p). For the benefit function
bi; = ((1,1), (bs,b_)), the index I(b; o) can be written as a function of the false positive (F PR),

negative (F'N R) and data and model reward ratesp =P(Y = 1) and p =P(Y = 1)

I(b;0) = [p(1 = FNR)fa(b-) + ¢F' PRfa(bs) — fa )] /1
p=1—(1-b_)p(l—FNR)— (1—by)qFPR.

Proof. Egs. and still hold true but now p_ = p(1 — FNR) and p, = ¢F PR. Substituting
completes the proof. O

The subset of benefit functions and generalization parameters which result in a metric which
can be used to satisfy error distribution bounds pre-training . For the benefits in {¢b,b, 1}
and values of o € (0, 1) the index is a monotonic function of the mean benefit p, provided ensures
the the probability of an undesirable error is at most k times the probability of a benign error.

Proof. Recall, the index maxima location is given by Eq. (7)),

—1/Bo for a=0
N (Ar + B)A — Ay for a=1
A=Y afa — D[(Aa +Bu)d — Ag] ~ 1 | @
otherwise.
(a - 1)25(1
Let’s consider the behavior of the maxima /i(\) for different possible values of «, starting with the
simplest,
] —Ilngp I .o =1 p-1
a=0= () = =—F"— (1) = p=—= b 36)
RSP T Y (
o=l = () = f=lnbt 2L 4 e,
| p—1 p—1
[ X plnyp
= (1) = ,u(/\):(AH—ﬂl))\—Alz(p_l[b+(1—b)/\]+)\1nb (37)
] O (b — 1) — 1) — (p* — 1)b°
a 0,1} = () = Bo=—"—-—-"F——, A,=
#1={ ala—Dlp—1) ala—Dip -1
A _ _ pl-«o _
Lo Aa (DO Ay 1 :(go 1_1)b
Ba > —1 Ba ala—1)Ba * —1
] « A, A, 1
0 = — 4+ 1| A==+ —
- z = AN a_l[(5a+ ) <6a+a(a_1)ﬂa)]
@ e—1 0 ey e
:su()\)a_lk(pa_l(b b ™) b+1>>\+<1 (pa_1>b]
l-a _ 2pl—a _ ~ 2 _
oA = al(b ob b+ @)b)A+ (1 — p)b] where & — 1—¢ .
a—1 1 — >
(33)
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Putting together Eqs. (36)-(38).

wilb for a=0
lrllgp
a(\) = ‘pnf[b+(1—b)A]+A1nb for a=1
o
afb+(L=b)N _agbll+ (G —DN
a—1 a—1

Avoiding harm  For the benefit matrix b;; = ((1, 1), (¢b, b)). The index is strictly increasing in p
if and only if (X)) > b+ (1 —b)A.

N A(A) = [b+ (1—=b)A] >0
—1
7 —1)b—(1—b)>\ for a=0
lnp
& wlnf—l)[b—k(l—b))\]—k)\lnb for a=1 >0

otherwise.

b=1—¢ and p=1—-€e<1 and 1n<p=ln(1—6)=—€<1+§—|—O(€2))

-1 1
> F— = (1+5+40(@) =1-5+0() <1

Inp 2
plnp € 9 € 9
— (1 — 14+ — =1—= =
= 1 ( e)<+2—|—0(6)) 1 2—i—O(e)<1

= ¢=(1-p)l-p") =el-(1-e)"
= p=c¢ {1— (1—ae+a(a_1)€2+0(63)>]_1 :e<ae—a(a_1)62+0(63)>_1

2 2
—1 ~1
= ap=1+ (a 5 )e +0() = ap-1= (0427)6—1—0(62).
For «>1 weneed, a@bll+ (O™ —1A < [b+ (1 —b))
& (ap—1)b < [1—b+apb(l—b"*))A
& (ap— Db < [(ap — 1)b— (apb'™™ — 1)\
b<l = b7°>1 = 0<ap-—1l<apb™@—1
bl — 1
& b< (b—%>A<(b—1)/\<0
ap—1
For a <1 weneed, (ap —1)b > [(ap — 1)b — (apb'™™ — 1)]A

b<l = bd7%<1 = ap—1<aphl™—-1<0

PYN T
& O<b<(b—M1>A
ap —1
@bt — 1 s l—a Ay —1
k. 1—
< b ap 1 (1—adb =) (1 - ap)

-5 o] (252 )

o b2 (1—b1‘“+(1_2a)6b1‘“> + OC(e)

(1—a)e
210" 14 _ (=D -0
= b>W+b +O(€) Where G—T
2b(1 — bt
s b> b=-b—) + 07 + O(e)

F-DI-)(1-0)
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Figure 5: F PR against F'N R when b;; = [[0.9,0.01], [1, 1]] and o = 0.5.

Avoiding undue credit For the benefit matrix, b;; = ((¢b, ), (1, 1)), the index is strictly decreas-
inginpu < (M) < b+ (1 — ¢b)A. Equality holds when,

& [1, gob—l— (1—¢b)\ =
1n<p —(1-=0b)A for a=0
1
if“’ b—|—(1—b))\]+)\lnb for a=1 p=0
b+ (1 —0b)A —acpbl[l—}-(b — 1A otherwise.
P

1.0 1.75
1.50 1.5 1
0.8
1.25
0.6 1 1.00 =1.01
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0.0 0.00 0-01

0.2

Figure 6: Birds-eye view (left) and side view (right) of the index surface when o = 0.5 and b;; =
[[0.9,0.01], [1, 1]].

26



Under review as a conference paper at ICLR 2025

('“072*)‘+%) (Mi—l.,/\+%>
o (1,A)
+FN/ \-FP
e °
(/ﬁui—j-/)\—%) (u+i—j,/\—%>

Figure 7: Finite difference grid showing those models neighbouring that at (u, A) given n, when
(1, A) is not on an edge.

The Deviation Region In this section we will identify the deviation region, that is, the part of
model performance space for which fairness and accuracy are opposed. To do this, we need to know
the cost of an error as a function of the mean benefit 1 and the model accuracy, A. Fairness and
accuracy are opposed when the cost of an error becomes negative. Let us denote the cost of an error
as,

AT*(b;a) = I(bT) — I(b; ). (39)

Here b¥ differs from b by one prediction only, containing one less correct prediction, and one more
erroneous one. An additional error decreases the accuracy by 1/n and changes the mean benefit
by 6+ /n, where 6% = by — 1. Since b_ < 1, §_ < 0; while 6, may be positive or negative.
The discrete grid of points that we can reach through a small change in model performance on a
set of n individuals (given p, ), is shown in Figure [/l Again, for illustration purposes only, we
assume by > 1. Together Figures[I|and[7|provide a global and local view of the model performance
space which is traversed during model training. The bottom left corner of the triangle is the model
for which all errors are false negatives, that is the algorithm rewards no one (or harms everyone),
and the bottom right corner is the model which rewards everyone (or harms no one), assuming the
p = 50%. At the top of the triangle is the oracle, a model which is able to perfectly separate positive
and negative classes in the training data. If we apply a threshold on the proportion of individuals
who are rewarded, as we increase the threshold from zero to one, the oracle traverses the top edges
of the triangle, from the bottom left corner, to the top and down the right edge. For any given model,
making one additional error moves us downwards and parallel to the left or right edge of the triangle,
depending on whether the error is a false negative of false positive respectively.

Using this we can calculate the cost of different errors as a function of x and A.

Theorem C.4 (The Cost of Errors). For benefits b;; = ((1,b_), (b4, 1)) and large n, the cost of an
error can be written as

AT (p,A) = €5 (, \)/n+ O(1/n?)
where,
EE(, A) = (bx — 1)(CEp+ Chx — Co) /T, (40)

and
Cir =ra(Lbs) — afs + L(a — 1),

Cy = a(4s + Ba), “4n
Co=aAs+[1-1(a—1)]/(a—1).
A, and B, are defined in equation (5) and 1(x) = 1 if x = 0 and zero otherwise. For o = 0, and
b+ = 1, C)\ = 0 making the cost of an error independent of the unit reward rate \. We can write
equation (@I} as,
& (1, A) = (bx = 1)Cr [ — p (V)] (42)

where,
1 (A) = (Co — Cx\)/CiE. 43)
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Thus, the cost of an error is zero for bL = 1, C’j[ = 0, and when p = p’ (). See appendix for
the proof.
Proof. Egs. and provide an expression for I(b; a).

I(bya) = [fa(b-)p— + fa(bi)p+ — falm)] /1
where p =1+ (b —Dp_ + (b4 — 1)py

b differs from b by one prediction only, containing one less correct prediction, and one more
erroneous (either a false positive or negative) one. An additional error decreases the accuracy by
1/n and changes the mean benefit by 01 /n, where 6+ = by — 1. Thus,

1(b%) = [faw)p F folby)py + 12002)

bl 0en) e

sincefu (+ %) = 1ulo) + 12t () +0

n

and <1+5i> —1—5i—a [ ]
ni

= I(b%) = [[(b; o+ fa(bi)nuiif/( ] ( 6;:) o

falbe) =0 fo(p)  dral(bjo) n
nus nuy

=I(b;a) +

For large n, we can write the cost of an error as
AT (p, Ain) = &5 (, ) /n+ O(1/n?)

where,
& (1, A) = [[falbs) = 01 fo ()] — Sxap®I(b; )] /u .
We know that, f,(by)/0+ = ro(1,b1), thus
& (1 A) = 0 [[ra(1,02) = fL(w)lp — au®I(b; )] /ot
Substituting equation () for I(b; cx)
€ (1, ) = 0 [[ra(1,b2) — fo ()l
— alAa(l =) + Balit = A) = fal)]]/n*!
= delra(L,bs) = aBali = [f4(n) = afa(s0)
—aldq — (Ao + BQ)A]]/NQ-H
where A, and f3, are defined in equation (5. Using equation (20) we can show,

=t ={ 1)l 1) oo
Substituting gives,
a=1= & () =0[ri(Lbs) — (B + 1)y
— [Ar = (As + BN /12,
a# 1 = & (A = 0xflra(l,bz) — afa]
—[1/(a=1) + ada — a(Aa + Ba)N] /™
where 64+ = by — 1. Therefore we can write,
& (1, A) = (b = 1)(Ciu + CxA = Co) /i *.

0B
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D EMPIRICAL EVIDENCE

D.1 ADULT DATASET

Model Performance Metrics In Fig.[8] we plot the accuracy and error rates on the left plot and
their differences on the right.

Comparing Indices with Model Performance Metrics
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Figure 8: .
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