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Abstract

AI-driven materials discovery that couples automated experimentation with algo-
rithmic decision-making requires process aware recipe to property predictors that
are accurate, calibrated, and physically admissible. We approach this as a reasoning
problem with large reasoning models (LRMs). To instill reasoning capability into
language models, we curate reasoning traces from a teacher model to train a student
model. However, most training pipelines select reasoning traces using binary cor-
rectness or learned preference signals that poorly reflect physical admissibility. We
introduce Physics-aware Rejection Sampling (PaRS), a training-time trace selection
scheme that favors traces consistent with fundamental physics and numerically
close to targets, with lightweight halting to control compute. We instantiate our
framework with a large student model fine-tuned on traces synthesized by a larger
teacher model, and evaluate under matched token budgets against various rejec-
tion sampling baselines. Our method improves accuracy and calibration, reduces
physics-violation rates, and lowers sampling cost relative to baselines. These
results indicate that modest, domain-aware constraints combined with trace-level
selection provide a practical path toward reliable, efficient LRMs for process-aware
property prediction and closed-loop materials design.

1 Introduction

A central goal in materials discovery is to compress the experimental loop by coupling automated
experimentation with algorithmic decision making. Within this loop, property prediction is the
core module. Accurate models that map composition, structure, and process/recipe variables to
target properties (e.g., materials properties or device-level figures of merit) convert combinatorial
exploration into tractable optimization and enable closed-loop design via bayesian optimization,
provided that the models expose calibrated uncertainty and lightweight physics constraints to keep
proposals physically admissible [1, 2, 3, 4, 5, 6]. Prior work has largely targeted properties from
composition or crystal structure [7, 8] and, more recently, has explored text- or instruction-conditioned
surrogates with LLMs [9]; yet scaling these predictors to process-aware, recipe to property tasks at
the device level remains challenging [10, 11, 12].
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Recently, large reasoning models (LRMs)—language models trained and/or reinforced to produce
reliable reasoning traces—have shown dominant performance in diverse areas such as math, coding
and scientific QA [13, 14, 15]. Their step-wise reasoning capabilities are a natural fit for recipe to
property prediction, where multi-step physical arguments along the classic chemical composition →
process→micro-structure→ property chain are essential and well established in integrated computa-
tional materials engineering [16]. Despite the promise, the leveraging LRMs on property prediction
task remains underexplored relative to LLM and naive knowledge extraction [17, 9]. In this paper,
we study how to train LRMs that reason effectively about materials recipes and output numerically
correct, physically grounded properties.

A prevailing strategy for training LRMs to reason is to use filtered or re-weighted training signals
based on the quality of teacher generated traces, complemented by test-time scaling [18]. Concretely,
models are fine-tuned on self-generated rationales kept only when they reach correct outcomes
[19, 20], or on samples ranked by a learned reward/verifier [21, 22, 23], or they aggregate multiple
samples at decoding [24]. These methods work as standard building blocks for LRMs along with
SFT-only pipelines and RL-style post-training [25, 26].

We argue that training property prediction LRMs from generated reasoning traces requires more
sophisticated, physcially grounded rejection sampling. Two characteristics of this task drive the
need: (1) High combinatorial design space. The composition, process, structure, property chain
creates high-dimensional, multi-mechanism spaces; inverse maps are often non-unique, yielding
traces that seem plausible yet are scientifically incorrect [27, 28, 29, 30, 31]. Therefore, effective
learning requires sufficient exploration that searches both the design and reasoning trace space. (2)
Physically grounded outputs. Targets are physical quantities whose magnitudes are constrained by
physics and even small numeric deviations matter. Filters must therefore enforce admissible ranges
and physical constraints from conservation laws and constitutive relations rather than rely solely on
binary correctness.

Motivated by these challenges, we propose Physics-aware Rejection Sampling (PaRS), a domain-
tailored approach to optimize reasoning traces. Unlike prior methods that depend on binary correct-
ness or learned reward models, our method couples rejection sampling with task-native, continuous
error metrics derived from wet-lab experiments. Concretely, for each device recipe, we sequentially
generate candidate traces, accepting the first trace that satisfies physics-aware acceptance gates and
halting sampling early when further candidates show negligible variance or improvement.

We adopt Qwen3-32B 2 as the backbone model, fine-tuned via supervised fine-tuning (SFT) on
internal prompts, with teacher reasoning traces synthesized from Qwen3-235B 3 [15]. We benchmark
against various rejection sampling methods under matched token budgets. Empirically, our method
achieves the highest overall accuracy and calibration, while also delivering superior compute efficiency
compared to existing baselines.

Our contributions are threefold.

• We formulate recipe to property prediction as a reasoning task where physics-aware verification is
essential.

• We propose novel physically grounded rejection sampling for optimizing reasoning traces, intro-
ducing the combination of powerful gating and halting techniques.

• We conduct (1) a teacher-side ablation, comparing our physics-aware sampler against six baselines
in terms of trace accuracy and sampling efficiency, and (2) a student-side evaluation, fine-tuning an
open-source LRM to demonstrate consistent gains in accuracy, calibration, and compute efficiency
over all baselines.

2 Related Work

LLMs for materials design. Recent advances in large language models (LLMs) have demonstrated
strong generalization capabilities in materials design, drawing on interdisciplinary knowledge from
chemistry, physics, and engineering [32, 33]. Beyond general-purpose LLMs, domain-specific models
such as MatSciBERT [34], MatBERT [35], and MELT [36] have been trained on large-scale materials

2https://huggingface.co/Qwen/Qwen3-32B
3https://huggingface.co/Qwen/Qwen3-235B-A22B
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science corpora, successfully capturing fundamental concepts that link structure, properties, processes,
and performance. A key step in the materials design pipeline is accurate property prediction from
symbolic representations, which serves as a surrogate for expensive experiments and enables rapid
candidate screening. Leveraging their ability to process unstructured scientific data, recent studies
have applied LLMs to this task without the need for elaborate feature engineering. For example,
LLM-Prop [37] employs LLMs to predict crystalline material properties, while Li et al.[38] integrate
LLMs with graph neural networks for improved prediction accuracy. In the context of quantum-dot
materials, Choi et al.[39] developed LLM-based synthesis protocol generation and property prediction
models, fine-tuned on proprietary synthesis datasets. LLMs have also been explored as surrogate
models in optimization frameworks. LLAMBO [40] utilizes the exploration capability of LLMs
within Bayesian optimization, and BOPRO [41] incorporates LLM-based search strategies that exploit
evolving uncertainty estimates to propose promising candidates in each iteration, thereby accelerating
the discovery of globally optimal solutions.

Large Reasoning Models (LRMs). The paradigm of next-token prediction has undergone a signifi-
cant shift with the introduction of "thought" concept—a sequence of intermediate steps representing
a model’s internal reasoning process [14, 13, 15, 18]. This innovative approach enables LLMs to
mimic complex human reasoning, such as reflective thinking and tree search. Chain-of-Thought
(CoT) prompting [42] initially demonstrated that few-shot rationales could unlock sophisticated
reasoning in LLMs, while Self-Consistency [43] further enhanced reliability by marginalizing over
multiple reasoning paths. Tree-of-Thoughts (ToT) [44] later reframed inference as a search over
partial thought sequences, incorporating look-ahead and backtracking. Beyond prompting, process
supervision has emerged as a powerful technique, training step-level verifiers or reward models to
guide the reasoning process. This approach has been shown to outperform models trained with
outcome-only labels, particularly in mathematical reasoning tasks [45]. More recently, GPT-o1 [14],
Qwen3 [15], and DeepSeek-R1 [13] have popularized modern Large Reasoning Models (LRMs)
by integrating long-form thinking with process supervision, RL-based post-training, and test-time
scaling. Building on these foundational advances, our work adapts these reasoning mechanisms to the
domain of materials design, specifically targeting physically grounded recipe to property prediction.

Rejection sampling for LLMs. Rejection sampling is widely recognized as an effective data-filtering
method that promotes higher-quality supervision. In the context of RLHF and preference-optimization,
it narrows multiple generated outputs per prompt to only the high quality responses, as determined
by a reward model during post-training adjustments. For example, RAFT[46] aligns generative
models efficiently by using a reward model and abundant candidate samples; it discards outputs
demonstrating undesired behaviors and fine-tunes the model solely on the selected high-quality
subset. Building on this, Reinforce-Rej[47] proposes a minimalist policy-gradient extension that
filters out both entirely incorrect and entirely correct samples, enhancing stability and efficiency. In
reasoning tasks, STAR-like models[48, 49, 50] eliminate expensive human annotations by employing
a self-taught reasoning loop—generating chain-of-thought traces, self-verifying correctness, and
fine-tuning only on reliable examples. Additionally, Rejection Sampling Fine-Tuning (RFT)[51]
enhances mathematical reasoning by incorporating model-generated reasoning traces filtered for
correctness into training.

3 Method

3.1 Task Definition

a Quantum dot light-emitting diodes (QD-LEDs) are electroluminescent devices that use colloidal
semiconductor quantum dots as the emissive layer, offering narrowband spectra and composition tun-
able color [52, 53]. In practice, closed-loop materials design must optimize figures of merit measured
at the device level—e.g., peak external quantum efficiency and operational stability—because these
metrics ultimately determine application viability for emissive displays and lighting (e.g., televisions,
monitors) [54, 55, 53]. We therefore frame inputs as complete device recipes: a multi-layer stack
typically consist of anode/ITO, hole-injection layer (HIL), hole-transport layer (HTL), quantum-dot
emitting layer (EML), electron-transport layer (ETL), electron-injection layer/cathode with per layer
materials and process parameters. Each layer records identifiers (material, formulation), geometric
parameters (e.g., thickness), and process variables (e.g., solution concentration, spin profile, bake/an-
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QD-LED recipe:
substrate:

type: ITO/glass, thickness_nm: 150, rsheet_ohm_sq: 15, roughness_Rq_nm: 1.5
pretreat: UV-ozone, 10 min; solvent rinse (IPA); 120 C annealing 10 min

stack:
[HIL layer]

substances: PEDOT:PSS (AI4083), thickness_nm: 40, filtration_um: 0.45
work_function_eV: 5.1, process: spin (4000 rpm, 60 s -> 8000 rpm, 5 s ramp)
annealing (150 C, 10 min, air)

[HTL layer]
substances: Poly-TPD, thickness_nm: 20, HOMO_eV: -5.2
solution: 8 mg/mL, chlorobenzene (99.8%, anhydrous), filtration_um: 0.2
process: spin(3000 rpm, 45 s); annealing(120 C, 10 min, N2)

[EML layer]
substances: CdSe/ZnS core/shell QDs (green), emission_peak_nm: 525,
FWHM_nm: 22, core_diameter_nm: 5.5, ligand_primary: oleic acid / oleylamine,
solution_conc_mg_mL: 25, solvent: octane (anhydrous, <10 ppm H2O)
filtration_um: 0.2 PTFE, target_areal_density_ug_cm2: 40, thickness_nm: 25,
process: spin (2000 rpm, 30 s); annealing (80 C, 5 min), film_roughness: 1.8
PLQY_solution_fraction: 0.92, PLQY_film_fraction: 0.80

[ETL layer]
substances: ZnO nanoparticles (sol-gel/colloidal), mean_particle_diam_nm: 5
thickness_nm: 30, solution: 10 mg/mL, isopropanol
process: spin(3000 rpm, 30 s); annealing (90 C, 5 min, N2)

...

Figure 1: Structured QD-LED recipe example.

You are a world-class expert in quantum-dot light-emitting-diode (QD-LED) device
physics and fabrication.

<Query QD-LED recipe>

TASK: Predict external quantum efficiency for a QD-LED device fabricated by the
query recipe.

Final output format (only json output)
Please provide your final report in a structured JSON format.
{

"answer": <PREDICTED_VALUE> %
}

Figure 2: Prompt for the property prediction task with large reasoning models (LRMs).

neal temperature and duration, atmosphere), along with post-process steps (e.g., UV–ozone, plasma,
solvent rinse). See Figure 1 for a recipe example.

We formulate QD-LED device property prediction as a reasoning LLM task. Let D = {(xi, yi)}Ni=1
where xi is a QD-LED recipe as above and yi ∈ R is a device-level target; in this work we focus on
max external quantum efficiency (i.e., yi = EQEmax). Given a task-specific prompt (See Figure 2)
and recipe xi, a large reasoning model fθ produces a reasoning trace τ along with a numeric prediction
ŷ:

fθ(prompt, xi) → (τ, ŷ). (1)

3.2 PaRS: Physics-aware Rejection Sampling

For training LRMs, the supervision signal extends beyond the final answer to include the sampled rea-
soning traces themselves. Achieving high-quality supervision for reasoning LLMs therefore requires
rejection sampling to filter out suboptimal traces. As illustrated in Figure 3, we propose Physics-
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QD-LED 
recipe (𝑥𝑖)

Prompt

Teacher LRM
Reasoning trace (𝜏)

Predicted value ( ො𝑦)

1) Range 0~100%

2) Near truth 

3) Physics envelope

1) Low Variance

2) No improvement

3) Budget reached

Training data

Pass

Gating

Halting

Fail

No Yes Stop 
sampling

Next sampling round

Figure 3: PaRS workflow: the teacher generates a mini-batch of candidates; a candidate is accepted
only if it passes gates (range, near-truth tolerance, physics envelope). If none pass, halting checks
decide whether to stop or raise temperature and continue to next sampling round. Accepted traces
supervise the student model as training data.

aware Rejection Sampling (PaRS), which integrates physics-aware gating and halting mechanisms to
optimize reasoning traces

Physics-aware Gating. For each recipe xi, we generate reasoning traces sequentially from the
teacher model up to K. We accept the first sample that satisfies all of following acceptance gates:

ŷ(k) ∈ [0, 100], (2)∣∣ŷ(k) − yi
∣∣ ≤ εMAE, (3)

As EQEmax is reported as a percentage, Eq. (2) enforces range consistency. Unlike categorical
correctness filters [19, 20, 21, 24, 18], Eq. (3) uses a continuous error against wet-lab ground truth,
yielding richer learning signals.

With external quantum efficiency (EQE) as the prediction target, we can define an empirical upper
bound U(x) as follows. EQE is commonly factorized as EQE = ηout · ηrad · γ with ηout ≤ 1 and
γ ≤ 1 by definition. In regimes where solid-state PLQY limits the radiative yield, the conservative
relation ηrad ≤ PLQY holds, implying EQE ≤ PLQY [56, 57, 58]. PLQY (photoluminescence
quantum yield) denotes the ratio of emitted to absorbed photons; we use the solid-state PLQY of the
EML under device-relevant conditions. We therefore define an empirical, recipe-specific upper bound
as U(x)=UPL(x), where UPL(x) is instantiated by the highest measured film photoluminescence
quantum yield of the emissive layer in the recipe x. We add this upper bound to the acceptance gates:

ŷ(k) ≤ U(xi) (4)

It prevents reasoning traces that predict physically implausible overshoots for target property. If no
sampled candidate satisfies Eq. (2)–(4), we discard the example.

Adaptive Halting. We sample in mini-batches of size b and proceed round by round until
the total budget Kmax is exhausted. In round r (r = 1, 2, . . .), we draw exactly b candidates
{(τ (r,j), ŷ(r,j))}bj=1 at temperature Tr. For each candidate, we apply the acceptance gates in Eqs. (2)–
(4). If any candidate passes, we accept the earliest passing one and terminate sampling.

If no candidate in the mini-batch passes, we apply two halting checks before proceeding. (i) Variance-
based halting (from round 1): stop when the within-batch error variance falls below a threshold,
indicating insufficient diversity to justify further exploration. (ii) Improvement-based halting (from
round 2): stop when the best error in the current round fails to improve over the previous round by
at least a small margin. We also halt once the cumulative number of sampled candidates reaches
Kmax. If none of these conditions trigger, we increase Tr and continue to the next round to encourage
exploration. Refer Appendix A.1 for the details of halting methods.
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Table 1: Analysis of reasoning trace selection. All traces are generated with QWEN3-235B. Higher
LLM-as-a-Judge score and lower MAE is better. Kavg is the average number of generated reasoning
traces per prompt. Our Halting logic yields Kavg=6.4 on average (fewer tokens/calls per accepted
trace). ‘Budget→selected” counts teacher generates per prompt and the number retained after
selection.

Method Kavg
Budget
(→ selected)

LLM-as-a-Judge
(score, 0–10) MAE

No sampling 1.0 1 → 1 5.97 2.440
Random sampling 12.0 12 → 1 5.86 2.327
Longest rationale selection 12.0 12 → 1 6.10 2.274
Self-consistency selection 12.0 12 → 1 5.78 1.829
LLM-as-a-Judge 12.0 12 → 1 6.55 2.223
Multi-sampling 12.0 12 → 12 5.89 2.356

PaRS (ours) 6.4 12 → 0.8† 7.51 0.829
† We drop the around 20% of sample that not passed our acceptance logic in Sec. 3.2 thus 0.8 traces kept per
prompt on average.

4 Experiments

4.1 Baselines

We curate 11k QD-LED device dataset and split into 10k for training and 1k for testing. We construct
prompts from all 11k dataset for a property prediction task and query 10k train prompts with QWEN3-
235B to sample teacher reasoning traces. To ensure fair comparison, each reasoning trace has a same
sampling budget of K=12, except for no sampling. We compare the following methods for selecting
reasoning traces including our method.

1. No sampling: use the first generated trace.

2. Random sampling: uniformly sample one of the K traces.

3. Self-consistency aggregation: select the trace whose final answer is closest to the median across
all K answers [24].

4. Longest trace: select the trace with the largest token length.

5. LLM-as-a-judge: score all traces with a larger judge model (DeepSeek-R1 4) and select the
top-ranked trace [59]. Refer Appendix. A.2 for details of the LLM-as-a-Judge prompting.

6. Multi-sampling: retain all K traces as supervision [60].

7. PaRS (ours): mini-batch size b=4 with a temperature schedule T ∈ {0.6, 0.8, 1.0} increasing
by 0.2 per round. We set εMAE=1, εvar=1 and δimp=1 by analyzing the data distribution. If no
candidate passes the gates within the budget, the example is discarded.

After rejection sampling, we fine-tune QWEN3-32B as the student model for a single epoch on the
traces selected by each method, using AdamW (learning rate 2×10−5) on 32×A100 (80 GB) GPUs;
unless stated otherwise, all other training hyperparameters are shared across methods.

Evaluation metrics. We report two groups of metrics. (1) Teacher-side trace quality: mean absolute
error of the selected trace’ prediction, and the average number of sampled traces per prompt to
quantify the cost of constructing the selected traces. To further assess trace quality, we also employ a
larger LLM (DeepSeek-R1) as an external judge, providing external evaluation of reasoning quality
on a 0–10 scale. (2) Student-side performance: MAE, R2, Spearman’s ρ, and a physics violation
rate—the fraction of predictions that fall outside [0, 100] or exceed the empirical upper bound U(x)
on the hold out test set.

For each test prompt, we run five independent inferences with the trained student models and take
the median of the five predictions before computing MAE, R2, and Spearman’s ρ. For the physics

4https://huggingface.co/deepseek-ai/DeepSeek-R1-0528
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Table 2: QD-LED property prediction with QWEN3-32B trained on teacher traces selected by each
method from QWEN3-235B. Lower MAE is better; higher R2 and Spearman ρ are better. Viol.% is
computed on test predictions without post hoc clipping to U(x). # train is the number of supervision
traces used for SFT: multi-sampling retains all K=12 traces per example (thus 12× larger), whereas
our method keeps only candidates that pass our gates, resulting in fewer traces.

Training data (prompt + reasoning trace) # train MAE (pp) R2 Spearman ρ Viol. (%)

no rejection sampling 10 000 2.001 0.376 0.607 35.8
random sampling 10 000 1.961 0.358 0.621 35.2
longest sampling 10 000 1.942 0.375 0.614 35.3
self-consistency sampling 10 000 1.933 0.377 0.629 36.8
LLM-as-a-Judge 10 000 1.889 0.408 0.667 35.4
multi-sampling 120 000 1.984 0.335 0.632 36.6

PaRS (ours) 8000 1.808 0.424 0.705 27.7

violation rate, we evaluate the constraint indicator on each of the five predictions and report the
average violation frequency across all ensemble. Details of the LLM-as-a-Judge prompting procedure
are provided in Appendix A.2.

4.2 Results

0 0.5 1 1.5 2 2.5

0

1

2

empirical pareto-front

Avg. tokens to generate trace (105)

M
A

E

PaRS (ours)
Self-consistency
Random
LLM-as-a-Judge

Figure 4: Compute–accuracy frontier for rejection sam-
pling methods. Our approach achieves the lowest
teacher MAE with substantially fewer required tokens,
forming the empirical Pareto front. The x-axis shows
average required tokens for generating reasoning trace
per prompt and the y-axis shows teacher MAE. See Ap-
pendix A.3 for details.

Our experiments show that PaRS effec-
tively optimize the teacher’ reasoning
traces to induce reasoning capability for
property prediction on student model. We
present our findings in two parts: first, an
analysis of the trace selection process itself,
and second, an evaluation of the trained stu-
dent LRMs on property prediction task.

Analysis of reasoning trace sampling.
We assess rejection sampling strategies on
traces generated by the teacher QWEN3-
235B. As summarized in Table 1, PaRS
achieves lower prediction error while re-
quiring fewer generations on average, plac-
ing it on the empirical quality–efficiency
Pareto front (Fig. 4). A simple MAE gate
could make low error appear trivial, yet an
external judge that is not optimized for our
metric still assigns PaRS the highest overall
score. Self-consistency, which often low-
ers MAE, receives the weakest judge score
among baselines. This gap suggests that generic preference signals do not fully align with physics-
grounded proximity to ground truth. By combining physics-aware gates with temperature scheduling
and early stopping, PaRS concentrates supervision on high-fidelity, physically admissible traces rather
than on merely “good-looking” rationales.

Evaluation of trained LRMs. Training the student QWEN3-32B on traces selected by our method
yields consistent gains in accuracy, correlation with ground truth, and physical admissibility, while
using substantially fewer supervision traces than competing approaches (See Table 2). The LLM-as-
a-Judge baseline is competitive in error and correlation but does not match the reduction in violations
or the calibration gains achieved by PaRS. Retaining all traces increases supervision volume yet
underperforms, consistent with amplified label and reasoning noise when traces remain unfiltered.

These improvements arise from aligning the acceptance rubric with a continuous, physically grounded
target. The range check in Eq. (2) and the empirical envelope in Eq. (4) for target EQE suppress
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implausible overshoots. The continuous gate in Eq. (3) rewards numerical proximity to wet-lab
measurements rather than binary correctness. Since the mapping from recipe to property is many to
one and complex, enforcing zero error steers supervision toward outliers and collapses trace diversity.
The tolerance εMAE instead admits near-correct and physically plausible traces, which preserves
multiple valid pathways, improves calibration, and lowers violation rates. The halting logic further
reduces redundant sampling and concentrates supervision on diverse, high-fidelity trajectories.

4.3 Discussion

This result clarifies why general LRM training strategies are hard to directly transfer to process aware
property prediction. Recent work [18] shows that curated rationales and test time scaling can yield
strong results even when only about 53% of traces are correct, likely because tasks such as math,
coding, and QA have binary correctness and explicit derivations. For property prediction, categorical
correctness is a weak proxy for supervision quality because two traces may follow different discrete
steps yet end within 1% of the true EQE, which is the signal the model must learn. OpenThoughts
[60] finds that multi sampling often helps by preserving reasoning diversity, but for recipe to property
the same unfiltered diversity amplifies label and trace noise, increases physics violation rate and
weakens calibration. PaRS reconciles these views by keeping diversity where it matters, namely
multiple near correct physical pathways, while trimming supervision to numerically consistent traces
that respect simple physics. The result is a better accuracy and admissibility trade-off with about 15×
fewer traces than the multi sampling baseline.

5 Conclusion

We cast recipe to property prediction for materials discovery as a reasoning problem and introduce
Physics-aware Rejection Sampling (PaRS) to curate supervision signals that are numerically accurate,
calibrated, and physically admissible. PaRS replaces binary correctness and generic reward models
with domain-grounded gates—range checks, a recipe-specific physical envelope, and a continuous
error tolerance and adds variance and improvement-based halting. Instantiated with a QWEN3-
235B teacher and a QWEN3-32B student on QD-LED device recipes, PaRS consistently optimize
teacher-trace quality and yields student LRMs with lower MAE, higher correlation, better calibration,
and markedly fewer physics violations. These gains are achieved with substantially less sampling,
indicating a favorable quality–efficiency trade-off. While our experiments focus on EQE in QD-LEDs,
the framework naturally extends to other device-level properties (e.g., lifetime, luminance) and to
materials systems beyond optoelectronics. An important next step is to evaluate PaRS at larger scale
and across diverse domains. We also envision coupling PaRS with RL-based adaptive exploration to
enable closed-loop recipe design, where models not only predict reliably but also guide autonomous
exploration of materials space under explicit physical guarantees.
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<Prompt>: Device recipe
<Response>: Model’s reasoning trace + final prediction.

# Role
You evaluate QD-LED EQE prediction responses (especially reasoning trace) quality

with following rubric. Judge only against the provided device prompt.

# Scoring rubric (0~10)
1. Groundedness to Prompt (0~2.5): Quote prompt substrings for all used parameters;

mark extra info as Assumption.
- 0.0~0.5: Largely ungrounded; few/no quotes; multiple unstated details.
- 0.6~1.3: Some quotes, but several parameters not cited; occasional unstated claims
- 1.4~2.0: Mostly grounded; 1-2 minor misses; assumptions called out but one is

vague
- 2.1~2.3: Fully grounded with trivial omissions only
- 2.4~2.5: Every device parameter quoted; zero unstated details

2. Causal Reasoning Quality (0~2.0): Link given factors -> mechanisms -> EQE impact;
separate Given / Inference / Implication.

- 0.0~0.4: Descriptive or hand-wavy; leaps from factors to EQE without mechanism.
- 0.5~1.0: Some correct factor->effect links but gaps and mixing of Given/Inference.
- 1.1~1.5: Coherent chains for most factors; clear separation with one notable gap
- 1.6~1.8: Mechanism-first, no unjustified jumps; discusses main loss channels
- 1.9~2.0: Exemplary: prioritizes the limiting mechanism.

3. Numerical & Unit Discipline (0~2.0): Show steps; keep %/nm/eV consistent;
sensible rounding of final EQE.

- 0.0~0.4: Arithmetic or unit errors ; missing key steps.
- 0.5~1.0: Mostly correct; one error or unit slip.
- 1.1~1.5: Correct math; consistent units; minor omission .
- 1.6~1.8: Fully worked steps (e.g., IQE x outcoupling); sanity checks.
- 1.9~2.0: Clean, reproducible pipeline; precision noted where relevant.

4. Assumption Quality (0~2.0): Assumptions explicit, minimal, non-contradictory,
each briefly justified.

- 0.0~0.4: Many hidden or contradictory assumptions.
- 0.5~1.0: Several assumptions; some lack justification.
- 1.1~1.5: Only necessary assumptions; short, credible justifications.
- 1.6~1.8: Minimal & well-justified; references common baselines.
- 1.9~2.0: Parsimonious and transparent; each assumption tied to its EQE impact;

brief sensitivity note if applicable.

5. Clarity & Structure (0~1.5): Use sections: Given / Assumptions / Reasoning /
Result; keep high signal-to-noise.

* 0.0~0.3: Disorganized; sections missing; EQE result absent or hard to find.
* 0.4~0.7: Sections present but uneven; some redundancy; result line imprecise.
* 0.8~1.1: Clear sections; stepwise logic; minor verbosity or formatting slips.
* 1.2~1.3: Crisp, concise, well-formatted; Result line prominent.
* 1.4~1.5: Polished, minimal, easy to audit; bullets/tables used judiciously.

Figure 5: Prompt for evaluating reasoning traces with DeepSeek-R1. We report the sum of average
score of the five metrics to Table 1.

A Implementation details

A.1 Sampling schedule

For an example (xi, yi) and rounds r = 1, 2, . . . with mini-batch indices j = 1, . . . , b, draw
candidates (τ (r,j), ŷ(r,j)) and define the per-candidate error er,j := |ŷ(r,j) − yi|. For each round,
let ēr := b−1

∑b
j=1 er,j , s2r := (b − 1)−1

∑b
j=1(er,j − ēr)

2, and e⋆r := min1≤j≤b er,j ; for r ≥ 2,
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define the improvement ∆r := e⋆r−1 − e⋆r . The total candidate budget is Kmax, and Tr denotes the
sampling temperature in round r.

A candidate is accepted if it satisfies all gates in Eqs. (2)–(4), namely ŷ(r,j) ∈ [0, 100], |ŷ(r,j)− yi| ≤
εMAE, and ŷ(r,j) ≤ U(xi). If multiple candidates pass within the same round, accept the one with
the smallest j and terminate for that example.

If no candidate is accepted in round r, the procedure halts early under any of the following conditions:
variance small enough, s2r ≤ εvar (available from r = 1); lack of improvement, ∆r ≤ δimp (available
from r = 2); or budget exhausted, r b ≥ Kmax.

The temperature follows a capped, monotone increase to encourage exploration, for example Tr+1 =
min{Tmax, γTr} with γ > 1, or Tr+1 = min{Tmax, Tr + ∆T} with ∆T > 0, starting from
T1 = Tmin.

The overall procedure is: at round r = 1, sample b candidates at temperature Tr and apply the
acceptance gates; if none pass, compute s2r , e⋆r , and (for r ≥ 2) ∆r; if no halting condition triggers,
update the temperature according to the schedule and continue to r+1. Discard the example if no
candidate is accepted before the budget is spent.

A.2 Prompt for LLM-as-a-Judge

We use DEEPSEEK-R1-0528-671B as the LLM-as-a-Judge. The prompt in Fig. 5 instructs the judge
to evaluate synthesized reasoning traces against five rubrics and to return a numeric score for each
rubric on a 0–10 scale with a brief justification. For the LLM-as-a-Judge selection baseline, we score
all candidate traces generated for a prompt, compute a composite judge score by averaging the five
rubric scores, and select the best one per prompt. For the summary metric reported in Table 1, we
evaluate the set of traces selected by each method with the same judge prompt. We compute the
composite score for each trace as the mean over the five rubrics and then report the mean across all
evaluated prompts. This yields a single 0–10 score per method that is comparable across rejection
sampling methods.

A.3 Token accounting for trace selection

For each prompt, let Tteach,in and Tteach,out denote the teacher’s input tokens and average output
tokens per generated trace. Let K be the generation budget, G the random number of traces actually
generated before acceptance or budget exhaustion, and Kavg := E[G]. Let Tselect capture any extra
token cost due to a selection pass (if present). Finally, let racc ∈ [0, 1] be the probability that a prompt
yields at least one accepted trace.

Expected tokens per prompt. The expected token cost per prompt, regardless of whether a trace is
accepted, is

E[tokens per prompt] = Kavg
(
Tteach,in + Tteach,out

)
+ Tselect. (5)

For offline selection methods (random, self-consistency, and ours), the selection pass is negligible,
so Tselect ≈ 0. By contrast, LLM-AS-A-JUDGE performs an additional inference pass over the
concatenated set of generated traces. Approximating the judge pass as comparable in length to the
teacher pass yields

E[tokens per prompt]judge ≈ 2Kavg
(
Tteach,in + Tteach,out

)
. (6)

Expected tokens per accepted trace. When some prompts produce no accepted trace, it is useful to
normalize by the acceptance rate racc. The expected tokens per accepted trace are

E[tokens per accepted] =
E[tokens per prompt]

E[accepted traces per prompt]
≈

Kavg
(
Tteach,in + Tteach,out

)
+ Tselect

racc
,

(7)

with the judge variant obtained by substituting Eq. (6) into Eq. (7).

Under online acceptance (our method), generation halts immediately upon acceptance or when the
budget K is reached. Thus G follows a truncated geometric-like process, and Kavg reflects both early

13



acceptance on easy prompts and full-budget usage on hard prompts. Methods that commit to a fixed
K without early stopping have Kavg ≈ K.

In compute versus accuracy frontiers (e.g., Fig. 4), the x-axis reports the per-prompt token cost
in Eq. (5). When comparing methods with materially different racc, we additionally report the
per-accepted-trace cost using Eq. (7).

As a concrete example, suppose Tteach,in=900, Tteach,out=2000, Kavg=6.4, and racc=0.8. Then the per-
prompt cost for offline selection is 6.4× (900 + 2000) = 18,560 tokens. The judge variant is about
2 × 18,560 = 37,120 tokens per prompt. Normalizing by acceptance rate, the per-accepted-trace
costs are approximately 23,200 (offline) and 46,400 (judge).
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