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ABSTRACT

Accurately estimating and simulating the physical properties of objects from real-
world audio observations is of great practical importance in the fields of vision,
graphics, and robotics. However, previous differentiable rigid or soft body simu-
lations cannot be directly applied to modal sound synthesis due to the high sam-
pling rate of sound, and previous audio synthesizers do not fully model the phys-
ical properties of objects behind the modal analysis. We propose DIFFSOUND,
a differentiable sound simulation framework for physically based modal sound
synthesis. Our framework can solve a wide range of inverse problems due to the
differentiability of the entire pipeline, including a variety of object’s properties
embedded and their gradients backpropagation. Experimental results demonstrate
the effectiveness of our approach, highlighting its ability to reproduce the target
sound accurately and reason the physical parameters such as material, geometry
shape, and impact position. Our differentiable sound simulator serves as a valu-
able tool for applications requiring sound synthesis and analysis.

1 INTRODUCTION

The concept of differentiable simulation has become increasingly popular in the graphics and ma-
chine learning communities in recent years (Popović et al., 2003; de Avila Belbute-Peres et al., 2018;
Toussaint et al., 2019; Degrave et al., 2019; Qiao et al., 2020; Xu et al., 2021). A differentiable simu-
lation framework allows for gradient-based optimization and can be integrated into a neural network
for end-to-end learning.

Our work focuses on differentiable sound simulation, which addresses a unique challenge compared
to standard differentiable rigid or soft body simulations (Hu et al., 2020; Geilinger et al., 2020; Du
et al., 2021; Degrave et al., 2019; Qiao et al., 2020; Xu et al., 2021) due to the high sampling rate of
sound. While previous audio synthesizers (Engel et al., 2020; Clarke et al., 2021) can optimize for
many audio and physical-based properties, they are unable to explicitly model more fundamental
physical properties such as Young’s modulus, Poisson’s ratio, size or shape, and impact position,
which are critical for realistic modal sound synthesis.

Inferring these objects’ properties from real sound recordings can potentially enable various Real-
to-Sim applications. For example, we can accurately infer material parameters from real-world
recordings and use them to create realistic virtual objects, such as those in Gao et al. (2021; 2022;
2023). We can also leverage a differentiable sound simulation framework to design the shape and
material of virtual objects to produce the desired sound, and then transfer the results back to real
objects using 3D printing technology (Bharaj et al., 2015). The information about an object’s shape,
material, and impact position can also complement visual perception, particularly in cases of low
visual resolution or poor lighting, for multisensory robotic applications (Clarke et al., 2021; Li et al.,
2022a).

Towards this end, we introduce DIFFSOUND, a differentiable simulator for physically-based modal
sound synthesis, which employs a high-order finite element method to model the physical properties
of objects and establish a seamless, fully differentiable connections between the recorded audio and
these physical properties.

Our DIFFSOUND differentiable sound simulation framework consists of three main components.
First, we propose a differentiable shape representation that combines implicit neural representation
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and explicit 3D tetrahedral mesh representations for sound simulation. Second, we introduce a
high-order finite element analysis module that allows for incorporating differentiable material and
shape parameters. Finally, we design a differentiable audio synthesizer with a hybrid loss strategy
to enable smooth optimization of the entire differentiable simulation framework.

We demonstrate the effectiveness of our differentiable sound simulation framework through a wide
range of inverse problems, including physical parameter estimation, impact position estimation, and
object shape estimation, from synthetic data or real sound recordings.

2 RELATED WORK

Our work is closely related to the simulation of modal sounds and its applications and high-order
FEM in computer graphics. It is also relevant to the recently developed differentiable simulation
methods in the graphics and machine learning communities.

Modal Sound Synthesis Modal sound synthesis is a technique that has been used to synthesize
sounds of rigid bodies (van den Doel et al., 2001; O’Brien et al., 2002; Raghuvanshi & Lin, 2006).
These methods compute the vibration modes of a 3D object through a generalized eigenvalue de-
composition. Based on the basic modal sound method, many complex sound phenomena can be
simulated, such as knocking, sliding, and friction sound (van den Doel et al., 2001), acceleration
noise (Chadwick et al., 2012), complex damping sound (Sterling et al., 2019), and high-quality
contact sound (Zheng & James, 2011).

Our work also relates to previous endeavors focused on estimating material parameters using pre-
recorded audio clips (Ren et al., 2013; Zhang et al., 2017). In contrast to earlier approaches, our work
offers an end-to-end optimization-based solution to these problems, resulting in enhanced accuracy.
Compared with prior methods that optimize object shapes to achieve desired sounds (Bharaj et al.,
2015), our approach optimizes all modes of the generated sound, rather than focusing on a single
fundamental frequency. Additionally, our approach provides more flexibility in shape optimization,
going beyond simple scaling and stretching.

High-Order FEM In engineering, higher-order methods are often preferred over lower-order
methods due to their superior accuracy and convergence properties. In computer graphics, finite
element methods (FEM) with linear shape functions is prevalent due to its simplicity and computa-
tional efficiency. While limited prior work demonstrates that higher-order methods have the potential
to produce better simulation results (Mezger et al., 2008; Bargteil & Cohen, 2014; Schneider et al.,
2019; Longva et al., 2020), they are not commonly used in the field.

To the best of our knowledge, the sole previous attempt at incorporating high-order FEM into modal
sound synthesis is documented in (Bharaj et al., 2015), where results from the engineering software
COMSOL (COMSOL AB, Stockholm, Sweden, 2005) are employed directly. In contrast, within our
differentiable framework, we implement a high-order FEM approach to guarantee both high-quality
sound simulation and differentiability.

Differentiable simulation Differentiable simulation has recently gained much popularity in the
graphics and machine learning communities. Several advances have been made in this field with
differentiable simulators designed for rigid-body dynamics (Popović et al., 2003; de Avila Belbute-
Peres et al., 2018; Toussaint et al., 2019; Degrave et al., 2019; Qiao et al., 2020; Xu et al., 2021),
soft-body dynamics (Hu et al., 2019; Hahn et al., 2019; Hu et al., 2020; Geilinger et al., 2020; Du
et al., 2021), fluid dynamics (Treuille et al., 2003; McNamara et al., 2004; Wojtan et al., 2006;
Schenck & Fox, 2018; Holl et al., 2020), and cloth (Liang et al., 2019; Murthy et al., 2021; Li et al.,
2022b).

There are also differentiable rendering methods proposed for signal processing (Engel et al., 2020)
and modeling impact sound (Clarke et al., 2021). These methods can capture various physical-based
properties, such as modal response and force profiles. However, they do not explicitly consider the
fundamental physical properties of objects, such as shape, material, size, and impact position. An-
other promising approach uses neural networks to approximate the modal analysis process (Jin et al.,
2020; 2022). Although neural networks are inherently differentiable, ensuring physical accuracy can
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Figure 1: Our DIFFSOUND simulation pipeline. The differentiable tetrahedral mesh representation
is employed to directly optimize the topology of a tetrahedral mesh. Subsequently, a differentiable
high-order finite element analysis module is utilized to analyze the vibration frequencies of the
tetrahedral mesh. Finally, a differentiable additive synthesizer produces the impact sound, and a
hybrid loss function optimizes all learnable modules separately or simultaneously.

be challenging and accurate modal analysis may not be achieved just through neural network opti-
mization.

3 DIFFERENTIABLE SOUND SIMULATION

This section elucidates the core algorithms of our differentiable sound simulation framework, as
illustrated schematically in Fig. 1. Our model hinges on a specialized differentiable tetrahedral
mesh for sound simulation, as detailed in Sec. 3.1. Subsequently, in Sec. 3.2, we expound on the
differentiable high-order finite element method (FEM) for modal analysis. Finally, we delineate the
optimization process’s loss function in Sec. 3.3.

3.1 DIFFERENTIABLE TETRAHEDRAL REPRESENTATION

We propose a differentiable tetrahedral mesh representation designed for our differentiable simu-
lations, building upon the foundation of Deep Marching Tetrahedra (DMTet) (Shen et al., 2021;
Munkberg et al., 2022). Our approach involves the representation of a shape through a Signed Dis-
tance Field (SDF) implicitly encoded by a Multilayer Perceptron (MLP) (Sec. 3.1.1), which is then
transformed into an explicit tetrahedral mesh using a deformable tetrahedral grid (Sec. 3.1.2).

3.1.1 IMPLICIT NEURAL REPRESENTATION

Given the inherent limitations in precisely associating the sound of an object with its exact shape,
there is a potential for significant ambiguity in the resulting geometry when optimized by sound. To
tackle this challenge, we utilize a Multilayer Perceptron (MLP) to parameterize the SDF values. This
implicit parameterization effectively serves to regularize both the SDF and the overall smoothness of
the reconstructed shape. Furthermore, the degree of smoothness can be controlled by adjusting the
frequency of the positional encoding proposed in Neural Radiance Fields (Mildenhall et al., 2020),
which is applied to the inputs of the MLP.

3.1.2 FROM IMPLICIT TO EXPLICIT REPRESENTATION

We customize the Marching Tetrahedra (MT) (Doi & Koide, 1991) algorithm to convert the encoded
Signed Distance Function (SDF) into an explicit tetrahedral mesh. The vertices in the background
tetrahedral cells are also deformable within a half-cell size range, allowing for stronger geometric
expression capability. By utilizing the SDF values of the vertices within a tetrahedron obtained
from the MLP, MT discerns the surface typology within the tetrahedron based on the signs of the
SDF values. Our modification focuses on identifying the internal tetrahedron rather than the sur-
face typology, as depicted in Figure 2. This process results in a total of five distinct configurations,
accounting for rotation symmetry. The location of surface vertices is computed through linear inter-
polation along the edges of the tetrahedron, similar to the methodology employed in DMTet (Shen
et al., 2021; Munkberg et al., 2022). If the internal subregion is more complex than a tetrahedron, we
subdivide it into smaller tetrahedrons. Finally, we extract the largest connected tetrahedral mesh to
eliminate high-frequency noise interference from the sound of small fragments during optimization.
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3.2 DIFFERENTIABLE HIGH-ORDER FEM

Outside (positive SDF)Inside (negative SDF)

Figure 2: Five configurations of the interface between
background tetrahedrons and internal ones. If the in-
ternal subregion is more complex than a tetrahedron, it
will be subdivided into smaller tetrahedrons.

Prior studies (Hughes, 2012; Bharaj et al.,
2015) have noted the limitations of lin-
ear tetrahedral finite elements in produc-
ing accurate solutions, even with refined
simulation discretization. In this work,
we propose the use of differentiable high-
order FEM for greater accuracy and gen-
erality.

We compute the mass and stiffness matri-
ces for the tetrahedral mesh (introduced in
the above Sec. 3.1) to be differentiable
with respect to the material coefficients,
namely Young’s modulus, density, and Poisson’s ratio as introduced in Sec. 3.2.1. Subsequently,
in Sec. 3.2.2, we compute the gradient from the eigenvalues obtained through eigendecomposition
with respect to these two matrices. For a comprehensive derivation of these matrices, please refer
to (Sifakis & Barbic, 2012; Zhu, 2018).

3.2.1 MASS AND STIFFNESS MATRIX

To obtain the mass matrix, we initially compute the element matrix for each individual tetrahedral
element, followed by the assembly process to construct the mass matrix for the entire tetrahedral
mesh. Let V denote the volume occupied by a tetrahedral element, ρ represents its density, and the
shape function value at position x with respect to node i is denoted as Ni(x). The element mass
matrix Me is defined as follows:

Mij
e = ρ

∫∫∫
x∈V

Ni(x)Nj(x)dx. (1)

To compute this volume integral, we employ the Gaussian numerical integration method, select-
ing t Gaussian integration points gk within the tetrahedral element, with corresponding Gaussian
integration weights wk. The unit mass matrix can be calculated as follows:

Mij
e = ρV

t∑
k=1

Ni(gk)Nj(gk)wk. (2)

For a high-order tetrahedral element containing n nodes, the algorithm described above yields a unit
mass matrix Me of size 3n× 3n. Now, for the entire tetrahedral mesh with a total of m nodes, it is
only necessary to add each element Mij

e computed for each tetrahedron to the corresponding entries
Mij of the overall mesh’s mass matrix M. This assembles a 3m× 3m mass matrix M.

Following the defined process for the mass matrix, let E denote Young’s modulus and ν denote
Poisson’s ratio. The element stiffness matrix Ke of size 3n× 3n for a tetrahedral element is defined
as follows:

Ke =

t∑
k=0

wkVD(gk)
TB(E, ν)D(gk). (3)

Here, B(E, ν) is the elasticity matrix representing the material model, and we adopt the linear elastic
model (Sifakis & Barbic, 2012). D(gk) is a matrix derived from the shape functions at point gk. To
construct the overall stiffness matrix K for the entire tetrahedral mesh, we add each element in Ke

computed for each tetrahedron to the corresponding entries of the overall mesh’s stiffness matrix K.
This assembles a 3m× 3m stiffness matrix K.

We employ PyTorch (Paszke et al., 2017) to efficiently batch calculate both the element mass ma-
trix and element stiffness matrix. Subsequently, these element matrices are assembled into global
Coordinate Format (COO) sparse matrices for further processing. Notably, it’s essential to highlight
that these computations are automatically differentiable, enabled by PyTorch. Additionally, both the
mass and stiffness matrices exhibit differentiability with respect to the material properties (ρ in the
mass matrix and B(E, ν) in the stiffness matrix), as well as the geometry derived from our differ-
entiable tetrahedral mesh (Ni(x) in the mass matrix and D(gk) in the stiffness matrix, as well as V
in both cases).
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3.2.2 EIGENVALUE DECOMPOSITION

Now, we perform a generalized eigenvalue decomposition on the mass and stiffness matrices as:

KU = MUΛ, (4)

where U is a stack of k eigenvectors, and Λ is the diagonal matrix of k eigenvalues. The ith
eigenvector, denoted as ui, represents the surface vibration distribution of the ith mode, while the
ith eigenvalue, λi, determines its frequency and satisfies Kui = λiMui.

Taking the derivative of both sides with respect to λi in the equation Kui = λiMui, we obtain:

∂Kui +K∂ui = λiM∂ui + λi∂Mui + ∂λiMui , (5)

By pre-multiplying both sides by uT
i and rearranging the terms, we obtain:

∂λi = uT
i (∂K− λi∂M)ui . (6)

Now, we establish a connection between the gradient of vibration frequencies and the gradient of
the mass and stiffness matrices.

3.3 LOSS FUNCTION FOR OPTIMIZATION

At this stage, we can optimize the material properties and geometry of the object using target eigen-
values. This optimization is performed by employing the loss function defined as:

Li = ||λpred
i − λgt

i ||1, (7)

where λgt
i is the ground truth eigenvalue of mode i and λpred

i denotes the predicted eigenvalue.

For generality, we proceed to compute the predicted sound signal from the predicted eigenvalues as
detailed in Sec. 3.3.1. Subsequently, we utilize a hybrid loss function to calculate the loss of the
sound signal as detailed in Sec. 3.3.

3.3.1 DIFFERENTIABLE ADDITIVE SYNTHESIZER

The sound produced by a rigid-body object can be effectively modeled as a bank of damping sinu-
soidal oscillators. For the i-th mode, denoting its damping factor as di and its amplitude as Ai, its
frequency can be obtained by:

fi =

√
λi − d2i
2π

. (8)

Let h be the time step size, the sound signal si(n) over discrete time steps, n, can be computed as:

si(n) = Aie
−dinh sin(2πfinh) . (9)

Finally, the sound is produced by summing the sound signals for all modes. It’s important to note that
amplitudes and damping factors are designed to be learned from ground truth data, and amplitudes
can implicitly include the acoustic transfer function (James, 2016). Additionally, the eigenvalues
λi play a crucial role in connecting the sound signal to the physical properties of the object. The
computations defined in Equations 9 and 8 are evaluated in parallel along both the time and mode
dimensions using PyTorch, enabling automatic differentiation.

When dealing with naturally recorded sounds that contain noise, we enhance the output of the ad-
ditive synthesizer by combining it with noise filtered by an LTV-FIR filter (Engel et al., 2020). The
parameters of this filter are also learnable, enabling it to adapt to real-world noise characteristics.

3.3.2 HYBRID LOSS FUNCTION

As suggested in previous differential audio synthesizers (Engel et al., 2020; Clarke et al., 2021), a
multi-scale spectral loss is effective for measuring the difference between two audios. Given the
ground-truth and predicted sound signals, we compute their spectrogram Si and Ŝi, respectively,
using a specified FFT size i. The loss is then defined as the sum of the L1 difference between Si and
Ŝi, as well as the L1 difference between their respective log spectrograms:

Li = ||Si − Ŝi||1 + || logSi − log Ŝi||1 . (10)
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Ground
Truth

Initial Multi-scale
L1 Loss

Optimal Transport
Based Loss
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Loss

Scale/RMSE 0.50 / - 1.00 / - 1.06 / 51.48 0.51 / 19.61 0.50 / 6.84

Scale/RMSE 2.00 / - 1.00 / - 1.05 / 31.85 2.11 / 24.04 2.00 / 2.12

Scale/RMSE 1.50 / - 1.00 / - 0.99 / 35.96 1.53 / 16.59 1.50 / 4.61

Ceramic

Iron

Steel

Scale/RMSE 0.70 / - 1.00 / - 0.93 / 34.50 0.71 / 9.18 0.70 / 4.73

Glass

Figure 3: Ablation study on loss functions. We present the spectrograms, scaling factor, and RMSE
with different setups. Across all setups, our hybrid loss function consistently outperforms, while the
single multi-scale L1 loss or optimal transport-based loss shows limited effectiveness.

The total reconstruction loss is the sum of all the spectral losses with different FFT sizes, which
provide varying frequency and temporal resolutions.

Traditional L1 or L2 loss can result in difficult convergence when the initial and ground truth object
locations or frequencies significantly differ Xing et al. (2022). This issue also arises in differentiable
sound rendering. For instance, if the initial frequency far deviates from the ground truth frequency,
there may be no overlapping pixels in the spectrogram between the initial mode and target mode,
causing the L1 or L2 loss to yield zero gradients and potentially leading to undesired local minima.

To address this issue, we first treat the spectrogram pixel in each frequency bin as a high-dimensional
point. To measure the distance between the ground truth and predicted spectrograms, we utilize the
optimal transport (Wasserstein) distance. This distance metric considers the cost of moving mass
from one distribution to another. In our context, we define the unit moving cost from one frequency
bin to another as their corresponding point distance. For efficiency, we employ an efficient algorithm
for approximating optimal transport distances using Sinkhorn divergences (Feydy et al., 2019).

As the optimal transport-based loss tends to be less effective when the initial and target spectrograms
are already well-aligned, we initially use it to achieve sufficient convergence. Subsequently, we
switch to the multi-scale spectral loss for fine-tuned optimization.

4 INVERSE PROBLEMS AND EXPERIMENTS

We define three reasoning tasks and conduct corresponding experiments to showcase the power of
our differentiable framework. First, we perform an ablation study on the loss function to validate
our approach (Sec. 4.1). Next, we utilize our differentiable framework to reason about the physical
parameters (Sec. 4.2), geometric shape (Sec. 4.3), and impact position (Sec. 4.4) of the object.
Please refer to the supplementary video for the results of our experiments.
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The real-world object data used in the experiments is sourced from the ObjectFolder-Real
dataset (Gao et al., 2023), which contains multisensory data collected from 100 real-world house-
hold objects. The data for each object includes its high-quality 3D mesh, impact sound recordings,
and the accompanying video footage for each impact.

Our DIFFSOUND differentiable framework is implemented in PyTorch and utilizes the Adam opti-
mizer for optimization.

4.1 ABLATION STUDY ON LOSS FUNCTIONS

We first conduct an ablation study to validate the effectiveness of the hybrid loss function compared
to either using a single multi-scale L1 loss or a single optimal transport-based loss.

We set up a simple case where the predicted eigenvalues can only be changed proportionally through
a trainable scaling factor. We aim to optimize this scaling factor from an initial value of 1.0 to
a predefined target value. We select four meshes from the dataset and manually set the material
parameters, following the guidelines presented in (James, 2016).

As depicted in Figure 3, the results indicate that the optimal transport-based loss shows high effec-
tiveness for optimizing from a bad initial state where the multi-scale L1 loss cannot work. Addition-
ally, our hybrid loss function achieves the best performance compared to either single loss function
in all experiments.

4.2 MATERIAL PARAMETERS REASONING

Target
Convergence

Figure 4: Training process of estimating the damping
curve: We utilize 256 initial modes to comprehensively
cover all target modes. After training, degraded modes
are subsequently removed.

In this task, we aim to infer the mate-
rial parameters from the impact sound of
an object, assuming the object’s geomet-
ric model is known. Initially, we estimate
the damping curve. Subsequently, we op-
timize the other material parameters by
minimizing the loss between the produced
sound of our simulation framework and
the target sound. To estimate the damping
curve, we train numerous random modes
to fit the target spectrogram using our dif-
ferentiable additive synthesizer, following
the approach outlined in (Engel et al.,
2020) (see Figure 4). Degraded modes are
then removed based on amplitude thresh-
olds, and the damping coefficients of the
remaining modes are interpolated to ob-
tain the damping coefficients curve.

In our experiments, the material parame-
ters include Young’s modulus-to-density ratio (referred to as Ê) and Poisson’s ratio (referred to as
ν). Prior work (Ren et al., 2013) relied on first-order FEM and assumed a fixed Poisson’s ratio,
which could lead to inaccuracies. To address this limitation, we set different baselines for com-
parison with our method using data synthesized by second-order FEM on 16 objects. The material
parameters of these objects are randomly selected from a reasonable range. Additionally, we evalu-
ate the effectiveness of our approach using data obtained from two real-world ceramic objects.

We used relative error as a metric for Ê, ν, and sound spectrogram, defined as l = ||g−p||2
||g||2 for

ground-truth g and prediction p. We present the quantitative results in Table 1 for synthetic data,
along with qualitative examples for real-world data in Figure 5. Our DIFFSOUND demonstrates
substantial improvements over all baselines across all metrics, showcasing high effectiveness even
in real-world data.
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FEM order Learnable ν Ê Err. ν Err. Spec. Err.

baseline 1 1 ✗ 0.51 0.68 26.43
baseline 2 2 ✗ 0.10 0.68 11.21
baseline 3 1 ✓ 0.51 0.66 27.00
DIFFSOUND 2 ✓ 0.07 0.26 7.95

Table 1: Material parameter reasoning using synthetic data. Our method outperforms all baselines
in terms of relative errors.

Recorded TransferredRecorded Baseline 1 Ours

Figure 5: (Left) Material estimation from real-world recorded sound with our DIFFSOUND method
and the basic baseline. (Right) Transfer of the material parameters optimized from a ceramic bowl
to a plate with the same material, with additional fine-tuning of the noise filter and mode amplitude.

4.3 SHAPE GEOMETRY REASONING

In differentiable rendering, shape geometry reasoning is generally stable, as a few rendered images
can largely determine the shape. However, determining the shape from sound is challenging because
different shapes can produce similar sounds upon impact (Kac, 1966). Therefore, to improve shape
reasoning, we have fixed material coefficients and imposed additional geometry constraints to ensure
a stable optimization process.

In this task, we infer the shape geometry from the eigenvalues of vibration modes, which are directly
related to frequencies (Eq. 8). Additionally, we constrain the tetrahedral mesh during optimization
using a coarse voxel grid. Specifically, we query the SDF values from the MLP and ensure that the
SDF of grid points inside the mesh is negative, while those outside are positive. This is enforced
using a loss defined as the sum of absolute SDF values of those points whose SDF sign differs from
the expected sign. The loss for sound constraint is defined as the L1 loss between the ground truth
eigenvalues and the predicted eigenvalues of the first k modes, divided by the norm of the ground
truth.

In our experiments, we generate synthetic data for three objects from (Crane et al., 2013) applying
a ceramic material parameter. We sample a grid of 163 points within the bounding box of the mesh
and choose the mode number k to be 16, 32, and 64. The resolution of background tetrahedral mesh
grid is 323. We conduct separate experiments for each object and mode number. The geometric
shape can be successfully recovered from impact sound, as illustrated by the quantitative results
in Figure 6. Our approach demonstrates its ability to restore geometric features, particularly sharp
detail, from sound data. This capability compensates for the loss of such details in the initial coarse
mesh. The high accuracy of our approach can also be validated in the accompanying demo video,
closely aligning with the ground truth.

4.4 IMPACT POSITION REASONING

Impact position is not explicitly optimized as a learnable parameter. However, the learnable mode
amplitude A in Equation 9 implicitly encodes information about the impact position.

In this task, we aim to infer the impact position from the recorded sound, given that the ob-
ject’s mesh is known. First, we optimize the material parameters from sound following the pro-
cess outlined in Sec. 4.2. Simultaneously, we optimize the amplitudes of all modes, denoted as
A = [A0, A1, ..., An]. Then, using the estimated material parameters, we apply forward modal
sound simulation, which includes acoustic transfer (Jin et al., 2022), to obtain the simulated ampli-
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Figure 6: Optimizing shape geometry constraint through sound modes and a coarse voxel grid. We
present the geometry mesh along with the relative error (RE) of eigenvalues. Our DIFFSOUND
method demonstrates its capability to restore shape details from sound modes. The last three
columns show results of using coarser voxel constraints, which makes the problem ill-posed. In
such cases, multiple plausible shapes can produce the same sound, potentially resulting in uncon-
ventional shapes with eigenvalues closely resembling those of the ground truth.

tudes of all modes Âi when impacting each mesh vertex vi. We use the similarity between A and
Âi to measure the likelihood that the impact position corresponding to the recorded sound is near
vertex vi.

In our experiments, we choose recorded real data of a ceramic bowl from ObjectFolder (Gao et al.,
2022) for our test. We use cosine similarity to measure the likelihood and compute the surface
likelihood distribution, as visualized in Figure 7. Our method predicts a high likelihood around the
ground truth impact position.

5 CONCLUSION

Figure 7: Visualization of the surface likelihood
distribution of the impact position on the object’s
surface for an example object.

We have presented a differentiable sound simu-
lator that enables inverse reasoning by comput-
ing the gradient of the simulation function with
respect to input physical parameters (e.g., mate-
rial parameters). We have verified the effective-
ness of our loss strategy with ablation experi-
ments and demonstrated the generality and di-
versity of DIFFSOUND in three application sce-
narios: material estimation, impact position es-
timation, and shape estimation. This advance-
ment holds the potential to propel the fields of
robotics and embodied AI.

Nonetheless, our framework currently faces
challenges in handling complex shapes, partic-
ularly thin shells, and may not accurately model
heavily nonlinear sounds. Additionally, opti-
mizing the rendering speed to support real-time applications remains a priority. In future endeavors,
we envision the development of a more comprehensive and efficient differentiable sound simulation
framework, building upon the foundation laid by our DIFFSOUND.
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