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ABSTRACT

Understanding how neural networks transform inputs into outputs is crucial for
interpreting and manipulating their behavior. Most existing approaches analyze
internal representations by identifying hidden-layer activation patterns correlated
with human-interpretable concepts. Here we take a direct approach to exam-
ine how hidden neurons act to drive network outputs. We introduce CODEC
(Contribution Decomposition), a method that uses sparse autoencoders to decom-
pose network behavior into sparse motifs of hidden-neuron contributions, reveal-
ing causal processes that cannot be determined by analyzing activations alone.
Applying CODEC to benchmark image-classification networks, we find that con-
tributions grow in sparsity and dimensionality across layers and, unexpectedly,
that they progressively decorrelate positive and negative effects on outputs. We
further show that decomposing contributions into sparse modes enables greater
control and interpretation of intermediate layers, supporting both causal manipu-
lations of network output and human-interpretable visualizations of distinct image
components that combine to drive that output. Finally, by analyzing state-of-the-
art models of retinal activity, we demonstrate that CODEC uncovers combinato-
rial actions of model interneurons and identifies the sources of dynamic receptive
fields. Overall, CODEC provides a rich and interpretable framework for under-
standing how nonlinear computations evolve across hierarchical layers, establish-
ing contribution modes as an informative unit of analysis for mechanistic insights
into artificial neural networks.

1 A FRAMEWORK FOR UNDERSTANDING BIOLOGICAL AND ARTIFICIAL
NEURAL NETWORKS

Biological and artificial neural networks both produce computations using cascading nonlinear op-
erations that do not lend themselves to simple interpretations. Despite the widespread study and use
of neural networks, there is no standardized framework to understand how a given network output is
generated from its input through its intermediate stages. Understanding the mechanisms by which
networks behave promises to accelerate studies of the nervous system, lead to more effective design
of efficient networks, reveal general principles of information processing in complex systems, and is
also important for guiding the development of safe AI systems ( Murdoch et al. (2019); Doshi-Velez
& Kim (2017); Lipton (2017); Rudin (2019)).

An essential aspect of both artificial and biological neural networks is that their behavior is cre-
ated by hierarchical sets of internal components. The question we approach here is: How do the
components of a network act to construct the output from the input?

KEY PRINCIPLES FROM A CENTURY OF STUDIES OF THE NERVOUS SYSTEM

The historical roots of modern ANNs lie in the attempt to model the computational properties of
biological neurons (McCulloch & Pitts (1990)). We highlight three key concepts that have been
applied to the characterizations of biological neural circuits:
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1. Neural coding: Considering a neuron as an intermediary between stimulus and behavior, the
action of a neuron is a combination of two computational stages: the effect of the stimulus on the
neuron, its receptive field, and the effect of the neuron on the downstream network or behavior, its
projection field ( Lehky & Sejnowski (1988)). 2. Cell-type specialization: Neural function in the
brain relies on over 5,000 diverse cell types with unique genetic, anatomical, and computational traits
( Yao et al. (2023)). Whereas architectures like CNNs use implicitly contain cell-type specialization
in the form of channels, there has been little attempt to analyze the computations therein using
cell-type (channel) as a basis.

3. Population coding: Single-neuron analysis is limited due to redundancy, synergy, cancellation
and interactions in neural circuits ( Edelman & Gally (2001)). Understanding the synthesis of a
computation requires a description of how all neural contributions are used to produce the given
output ( Olshausen & Field (2004)).

Figure 1: Understanding the contribution of an interme-
diate component to downstream computation (A) Bio-
logical and (B) artificial neural circuits construct compu-
tations by combining sets of upstream components in an
input-dependent manner. The action of a network compo-
nent Z is a composition of its receptive field, or sensitivity
to input, X and its its projective field, or effect on output,
Y . Measuring both is required to explain how the interme-
diate component contributes to the overall behavior of the
system.

Like cell types in biology, hidden
units in neural networks encode fea-
tures whose meaning comes from
how they shape downstream circuits.
Understanding a network thus re-
quires not just identifying features
in the internal representation, but
also explaining how combinations of
those features are used to construct
different outputs.

EXISTING
TOOLS FOR INTERPRETING ANNS

For ANNs, a key challenge is iden-
tifying meaningful units within non-
linear systems of millions of param-
eters, as computational intermediates
are poorly defined. In both biologi-
cal and artificial networks, much at-
tention has been devoted to studying
the latent representations at interme-
diate stages in the network by ana-
lyzing the network activity. Although

these methods have found patterns in activations via clustering or sparse autoencoders ( Fel et al.
(2023)), such approaches to analyzing representations fundamentally do not address the causal ques-
tion of how internal elements act to influence the output.

More recently, mechanistic interpretability methods like Integrated Gradients, SmoothGrad, and
Grad-CAM focused on input attribution through saliency maps, highlighting influential features
(Selvaraju et al. (2020); Smilkov et al. (2017); Sundararajan et al. (2017)). However, they offer
limited insight into how intermediate representations contribute to computations. Component visual
features such as edges and textures may be needed to discriminate an object, but those same visual
features in other areas of an image may not be related to the target object yet still represented in
the intermediate activations. Thus, compared to the analysis of activations, analysis of contributions
distinguishes between building blocks of computation that causally drive the output, and those that
are irrelevant. Thus, a key gap is understanding how networks integrate distributed latent features
across channels and neurons to generate outputs, similar to how biological cells derive functional
effects from circuit interactions, rather than just representing the input.

A NEUROSCIENCE-INSPIRED ANN INTERPRETABILITY FRAMEWORK

We introduce a method for analyzing how intermediate neurons contribute to a network’s output.
First, using attribution techniques like Integrated Gradients on internal layers, we compute each
hidden neuron’s contributions across all stimuli, capturing the combined effects of their receptive
and projective fields. These contributions represent the actions neurons take to construct the output.
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Figure 2: Hidden-neuron contributions in a deep convolutional network. (A) Pipeline of com-
puting contributions for an image processed through ResNet-50. Single contribution targets includ-
ing entropy, sum of top-k logits, and individual class logits are used as scalar objectives to compute
gradient-based attribution. (B) Spatial map of activations and contributions of a single channel in
Layer 5. (C) Mean positive, negative and net contribution for each channel. (D - E) Same as (B - C)
for Layer 8.

Next, we decompose these contributions across inputs into a set of modes reflecting coordinated neu-
ronal actions, an approach we call contribution decomposition (CODEC). Unlike prior methods
that analyze activations, CODEC directly captures causal effects on outputs and can be applied to
any trained feedforward model without access to training data or labels, unlike methods such as the
Average Gradient Outer Product ( Radhakrishnan et al. (2024)). This general-purpose framework
quantifies how groups of neurons drive behaviors. In the context of visual image recognition, the re-
ceptive fields of hidden neurons define visual features that are building blocks, and the contribution
modes are the assembly instructions that show how those components are used to construct classes.

CODEC is a general framework composed of different stages that can be adapted for artificial and
biological neural networks:

1. Contribution target: Identifying the specific output neuron or behavior (a scalar function
of output neurons) whose computational basis we wish to understand.

2. Contribution algorithm: Quantifying how each hidden unit contributes to the target out-
put for a given input.

3. Decomposition of contributions: Identifying the core computational modes and deter-
mining the patterns of how modes are combined across inputs and outputs.

4. Visualization in input space: Reveal how the key channels or neurons within each mode
are being used for output identification by mapping contribution back to input space.

Using these methods, we introduce a new interpretability tool that examines the intermediate neu-
rons in a network, identifies what input features they are sensitive to and their individual effects on
network output, and reveals how their combined actions ultimately influence the network’s behavior.

2 MEASURING CONTRIBUTIONS OF HIDDEN-LAYER NEURONS

The contribution of a hidden neuron to network output is a composition of its overall input and its
overall output (Fig 1) , and several methods have been used to calculate such effects. Integrated Gra-
dients have most commonly been applied from network output to input Sundararajan et al. (2017),
but have also been applied to analyze the effects of hidden neurons in models of biological networks
(see Supp. material for derivation) ( Tanaka et al. (2019); Maheswaranathan et al. (2023)). An
alternative attribution method, ActGrad, is inspired by GradCAM ( Selvaraju et al. (2020)) and nat-
urally operates on hidden units. It is defined as the element-wise product of activations and gradients
(ActGradj = hj · ∂y

∂hj
) where hj is the activation of hidden unit j (which could be the input). The
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Figure 3: Channel contributions through the network become more sparse, single-signed and
high dimensional. (A) Matrix of mean contributions and activations for all chanenls and images
from four classes. (B) Hoyer sparsity index for contributions and activations across network layers.
(B) Evolution of mean Hoyer sparsity across all network layers. (C) Scatter plots of positive and
negative contribution magnitudes of each channel across the three layers, showing the relationship
between the magnitude of positive and negative contributions. (D) Correlation coefficient between
positive and negative contributions of individual channels across network depth. (E) Cumulative
fraction of explained variance across all class-averaged channel weightings for layer 2 and layer 14
(F) Number of components required to reach 95 percent fraction of explained variance (FOEV).

key difference between ActGrad and GradCAM is that GradCAM performs a global average pool of
the gradients over spatial dimensions before multiplying them with the activations, contracting the
channel index and yielding a saliency map over space for an intermediate layer. ActGrad obtains the
contribution for each hidden unit directly, preserving both the spatial and channel indices.

Formulating a single contribution target was crucial to avoid intractable 3D decompositions, which
would occur if contributions were computed separately for each logit, producing an array of shape
ninputs × nneurons × nlogits for an intermediate layer. To efficiently capture the network’s motifs,
we use two network-wide objectives: (1) the sum of top-k output neurons, reflecting the model’s
confidence in its strongest predictions, and (2) the entropy of the output distribution, measuring
prediction uncertainty.

CONTRIBUTIONS OF CONVOLUTIONAL LAYERS IN IMAGE-CLASSIFICATION NETWORKS

Biological visual systems, such as the retina, primary visual cortex, and inferotemporal cortex, share
many architectural features with CNNs (Yamins et al. (2014)). Thus, we aimed to characterize the
computational structure of each layer in benchmark CNNs such as ResNet-50 by analyzing neuronal
contributions.

Starting with an input image, we compute the contributions of all hidden neurons to the sum of top-1
logits (Fig 2A), which indicates how hidden units drive the network’s confidence in its strongest
predictions. We applied different algorithms (ActGrad, Integrated Gradients, SmoothGrad) with
target different outputs (e.g., class logits, top-k confidence, entropy), and found that contributions
were consistently spatially sparse compared to activations ( Fig 2B,D) (Supplementary Figure 1).
A key property of Integrated Gradients is completeness: contributions sum to the scalar output tar-
get. Thus, spatially summing contributions within a channel gives its net effect on the prediction,
enabling assignment of a single contribution value per channel, or cell type (Fig 2C). Applying
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Figure 4: Sparse autoencoder decomposition of network contributions. (A) Schematic diagram
of contribution decomposition. Channel contributions are spatially summed and an autoencoder
is trained to reconstruct the matrix of channel contributions for each image. Loadings are passed
through a sigmoid and thresholded and regularized to encourage sparsity. (B) Loadings from the
mode that maximally correlated with the class ”panda” for contributions (top, black) and activations
(bottom, blue). Inset shows the loadings for 50 images of panda and 100 images of other classes.

this procedure across the entire 50,000 ImageNet validation dataset produced matrices of channel
contributions for selected network blocks throughout ResNet-50, with each matrix having dimen-
sionality d channels × 50,000 images, where d corresponds to the number of channels in each layer
(Fig 1A). For the remainder of this paper, we use both ActGrad and Integrated Gradients with the
sum of top-1 logits as our standard attribution method, as results are anecdotally similar between the
two methods.

3 LAYERWISE EVOLUTION OF NEURAL CONTRIBUTIONS IN CNNS

To ask how the actions of the network evolve throughout its layers, we first examined the sparsity of
channel contributions using the Hoyer sparsity index, a normalized measure that computes the ratio
of L1 to L2 norms, and ranges from 0 (all channels equally active) to 1 (only one channel active). At
all layers, contributions consistently showed high sparsity across channels than activations, indicat-
ing that only a small subset of channels are functionally relevant for each classification decision (Fig
1B). Furthermore, the contributions showed a sparsification of channel contributions throughout the
network, aligning with the intuition that feature selectivity emerges with hierarchical depth.

Hidden unit activations are constrained by ReLU nonlinearities to be positive. However, contribu-
tions can be positive or negative, indicating whether a spatial position increases or decreases the
likelihood of the target output. Thus, a highly active unit in the activation map can be used to in-
hibit the network’s output, as revealed by its contribution. These opposing influences, similar to
excitatory and inhibitory interactions in biological vision (e.g., on-off receptive fields), are essential
to neural computation but hidden in activation patterns. We therefore examined the relationship be-
tween positive and negative contributions across layers in ResNet50. Importantly, contribution sign
reflects the net impact on network output, not the polarity of synaptic weights.

To compare positive and negative contributions, we computed the contribution at each spatial lo-
cation (Fig 2B-E), and then separated the contribution into positive and negative components prior
to spatial summation. We found that in channels of earlier layers, the magnitude of positive and
negative contributions were highly correlated. However, through the network, positive and nega-
tive contributions became progressively decorrelated (Fig 1C-D). One possible explanation for this
shift is that lower-level features such as edges and textures encoded in earlier layers exhibit strong
spatial correlations, necessitating that individual channels contribute both positively and negatively
to remove these correlations, as do center-surround receptive fields (Pitkow & Meister (2012)) and
object motion sensitivity (Ölveczky et al. (2003)).

We examined the dimensionality of activations and contributions using principal components anal-
ysis on spatially summed values. Both contributions and activations increased in dimensionality
through the network, but contributions showed considerably higher dimensionality than activations
as measured by eigenvalues needed to reach 95 % variance (Fig 1E-F). Throughout the network,
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Figure 5: Emergence of meaningful contribution-modes in intermediate layers. (A) Histograms
of each mode’s maximum correlation with binary class indicators for contributions (grey) and acti-
vations (blue). (B) Same as (A) for the correlation of individual channel contributions or activations
with class indicators. (C) Number of modes and channels with a correlation to a class of greater than
0.2. (D) Median of the maximal class-correlation as a function of layer.

contributions increased in sparsity, decorrelated their positive and negative effects, and increased in
dimensionality.

4 DECOMPOSING CONTRIBUTIONS INTO COMPUTATIONAL MODES

To uncover structure within these contributions, we decomposed them into a set of modes using an
autoencoder consisting of an encoder network fenc : Rd → Rk, and a non-negative dictionary D ∈
Rd×k

+ , where k is the number of modes (also called atoms) typically k = N · d for an overcomplete
representation with expansion factor N . Each column mi ∈ Rd of D defines one mode.

Given contributions c ∈ Rd, the encoder computes pre-activation loadings (also called codes) zpre =
fenc(|c|), where | · | ensures non-negative inputs. To enforce sparsity, we apply hard thresholding:
zi = zpre,i if zpre,i ≥ τ , and zi = 0 otherwise. The reconstruction is ĉ = Dz, and the autoencoder
is trained to minimize the loss L = ∥c − ĉ∥22 = ∥c − Dz∥22, with optional L1 regularization
applied to the loadings and modes. Non-negativity constraints are imposed on the dictionary D.
Decomposition of contributions resulted in a set of k modes of dimension d, and a set of n loadings
for each mode reflecting the weighting of those modes for each image that reconstructed the matrix
of contributions with high accuracy, (average R2 = 0.85 and 0.84 for contributions and activations,
respectively) across all layers (Supplementary Figure 2).

To measure how closely related these modes of were related to specific network outputs, we corre-
lated the loadings over the entire dataset (50,000 validation images) with a binary vector indicating
whether a given image belonged to a given class (Fig ). This resulted in a k by 1000 correlation
matrix, representing the correlation of each mode with each ImageNet category. We found that con-
tributions were more correlated with network output than activations, in particular at intermediate
layers (Fig 5A-C). In addition, we found that contribution modes, despite not having access to class
label during optimization were more correlated with classes than individual channels. This indicates
the success of CODEC at revealing patterns of contributions that had relevance to specific network
outputs (Fig 5D).

5 CONTROLLING NETWORK BEHAVIOR USING CONTRIBUTION MODES

To test the causal link between contribution modes and ImageNet classification, we perturbed
ResNet-50 by targeting channels identified through CODEC analysis. For each class, we iden-
tified the mode most correlated with that class, then measured classification accuracy under two
conditions: ablation (removing the top-weighted channels) and preservation (retaining only those
channels). We quantified these effects across all 1000 ImageNet classes by calculating the dif-
ference in accuracy between unperturbed and ablated networks for each class. For the “black
widow” class, ablating 2% of salient channels identified from the top 2 most correlated modes
greatly reduced target-class accuracy while leaving off-target classification performance largely un-
affected.(Fig 6C(bottom)). Additionally, preservation analysis yielded networks that could accu-
rately classify only the targeted class (Fig 6C(top)). We randomly sampled the Imagenet validation
dataset and compared perturbation performance for a given mode and target class, and a random
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Figure 6: Contribution-targeted network control (A) Single mode most correlated with the “black
widow” class, showing channel weightings. (B) Sorted channel weightings from (A) with few top
channels highlighted for selection. (C) Results for “black widow” classification: Top shows preser-
vation analysis (accuracy when keeping only selected channels), bottom shows ablation analysis (ac-
curacy when removing selected channels). (D) Normalized accuracy change for target class when
ablating (left) or preserving (right) channels from the most correlated contribution mode (black),
activation mode (blue), or random class (red, representing non-target/off-target performance). (E)
Performance score quantifying perturbation effectiveness as the area between target and off-target
curves from (D) across all blocks, normalized to the off-target area.

off-target class, while varying the percentage of channels perturbed. Targeting channels by contribu-
tion modes more reliably identified necessary and sufficient channels for classification compared to
activation-based analyses, requiring fewer channels to completely ablate target-class computation.
(Fig 6D). A sharp increase in ablation efficacy was observed between blocks 6 and 7, potentially
suggesting a shift in how semantic information is represented at this depth (Fig 6E). Additionally,
we demonstrated that our approach generalizes beyond the 1000 ImageNet classes, successfully ab-
lating / preserving specific taxonomic categories, indicating that CODEC can identify non-labled
computational pathways even within broader semantic groupings (Supplementary Figure 3).

6 VISUALIZING INPUTS THAT CAUSE HIDDEN CONTRIBUTIONS

Attribution methods such as Integrated Gradients compute gradients from outputs to inputs to iden-
tify regions most influential to a decision. We extend this idea to hidden channels: what features of
the input does a channel use to drive the output for a given image? Using CODEC-selected salient
channels, we isolated the gradient pathway from outputs to inputs that passes only through channels
of interest, decomposing traditional input-output saliency into interpretable, channel-specific contri-
butions. For each c of mode m and each p, the input sensitivity is A(c,p)

i = Jy,hc,p
Jhc,p,xi

, where
hc,p is the activation at position p in channel c Jy,hc,p

= ∂y
∂hc,p

and Jhc,p,xi
=

∂hc,p

∂xi
. Aggregating

over all selected channels and positions yields A(m)
i =

∑
c∈mm

∑
p A

(c,p)
i . Whereas A(m)

i captures
output sensitivity to pixel i, the contribution map viewed in input space reflects sensitivity weighted
by the input: C

(m)
i = A

(m)
i ⊙ xi. This highlights regions that most strongly drive contributions

within the mode’s most relevant channels. Figure 7 shows example visualizations of pixels used
by hidden layers to drive network output for a specific class. We expect that further analysis of the
structure of these modes in input space will reveal meaningful visual components of objects used to
construct visual classes.
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Figure 7: Visualizing stimuli acting through contribution modes By summing the product of
receptive and projective fields over channels, we can visualize the saliency map of stimuli passing
through individual mode with respect to a given output logit. Here, we show the saliency map of sev-
eral images of black-widows (A) to the black-widow logit, through one of several highly-correlated
black-widow modes (B). Individual channels convey unique features (C) from the stimulus, and
together, convey an interpretable visualization of a black widow.

7 INTERPRETING BIOLOGICAL NEURAL NETWORK MODELS WITH CODEC

We then used contribution decomposition to interpret the structure of computation in the biological
neural circuits of the early visual system. Previous results Maheswaranathan et al. (2023) have
shown that three layer convolutional neural network models capture the responses of retinal ganglion
cells to natural scenes, and are interpretable in that hidden units are highly correlated with recordings
from retinal interneurons not used to fit the model. We therefore applied CODEC to these CNN
models to interpret how groups of model interneurons contributed to retinal output.

The CNN model consisted of 3 layers, with 8 channels (cell types) in the first two layers, yielding a
response of 4–17 recorded ganglion cells (Fig. 8A). In order to choose a single contribution target,
rather than choosing the entropy as we did in the case of the image classification network, we chose
the surprisal, or self-information, I(x) = − log2 P (x), an information theory measure that reflects
how unexpected a response is. Estimated from the covariance of the output, I(x) varies with the
Mahalanobis distance of the population response from the mean, (x − µ)⊤Σ−1(x − µ), plus a
constant term, where Σ is the covariance matrix and µ is the mean response. With this target,
positive contributions are those that create a more unexpected response.

CODEC identified sets of modes in the first two layers of the model that combined to drive cells
at different times, as measured by computing the correlation between cell firing rates and mode
loadings(Fig 8B-C). This allowed a clustering of cell types by the average pattern of active modes
that drove the cell. Clustering of the active mode pattern in the first and second layer yielded very
similar results, indicating the robustness of identifying pathways in the model that drove different
cell types (Fig 8C). We further analyzed at different times the instantaneous receptive field (IRF) of
ganglion cells, which is the gradient of a cell’s response with respect to the stimulus (Fig 8B,D).,
revealing the visual feature driving the cell for a particular stimulus. We found that individual
modes could contribute similar IRF patterns across different ganglion cells. Interestingly, when
multiple modes simultaneously drove a given ganglion cell, the resulting IRF dynamically varied
according to the specific combination of active modes, with patterns ranging from familiar center-
surround structures to oriented or textured responses (Fig 8D). As the units of this model are highly
correlated with actual interneuron recordings ( Maheswaranathan et al. (2023)), these results serve
as an automatically generated hypothesis for the combined activity of neural pathways that can be
tested by neural recordings and perturbation.
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Figure 8: Contribution modes generate dynamic receptive fields in the retina. (A) Convolutional
neural network trained to predict retinal ganglion cell responses to natural scene stimuli, from (Ding
et al. (2023)). CODEC is performed for hidden layer units to single target outputs including surprisal
(self-information) of the population or from single cell responses. (B) Model firing rate predictions
for an example cell (top) aligned with the matrix of contributions, and with loadings for two example
modes after SAE decomposition (bottom). Also shown are instantaneous receptive fields (IRFS)
of the cell computed at two time points. (C) Clustering of cells using their contribution modes.
Matrix shows the correlation of firing of each cell with the loading of each mode. Three clusters
computed using k-means remain consistent across layers. The number of clusters was selected
using the silhouette value. (D) Instantaneous receptive fields during sparse mode combinations.
Left column: IRFs when one specific mode was active alone for four different cells at different
times. Right: IRFs for example cells at times when 5 or fewer modes were active and cells were
firing more than 1 Hz. Each row is from a different cell.

8 CONCLUSION

Contribution decomposition identifies how hidden units construct specific outputs, revealing both
the input components that causally drive model behavior and how the effects of those features are
summed across outputs. Our approach thus achieves both a deeper understanding of the computa-
tion than results from examining representations alone, along with more effective manipulation of
those networks. Our analysis reveals insights into the structure of neural computation, in particular
at intermediate layers of networks that have been difficult to analyze and interpret. In biological
networks such as the retina, CODEC allows an analysis of how dynamic sensitivity to visual input
arises from the coordinated actions of model interneurons. In artificial networks, the emergence
of sparse, interpretable motifs suggests that network output can be understood in terms of a rel-
atively small set of input-specific computations. Future work might leverage these computations
as building blocks for more efficient architectures or transfer learning approaches. In the nervous
system, the ability to relate computational building blocks to a downstream computation, combined
with experimental measurements and manipulations at different levels could reveal how informa-
tion is recombined across diverging and converging neural pathways. Such a unified approach to
neural computation could bridge the gap between computers and biology, potentially enabling more
powerful AI systems and deeper insights into biological intelligence.

8.1 LIMITATIONS AND ETHICAL CONCERNS

Whereas we focused on image classification, our approach lays the groundwork for extensions to
other architectures and applications. One significant limitation is that our decomposition technique
is sensitive to hyperparameters, including hidden layer size and regularization, which may require
tuning for different architectures. Further, our experiments on ResNet-50 were limited to specific
blocks rather than analyzing the entire network, and although CODEC is architecturally agnostic
and could be applied to more complex models such as LLMs, we have not yet empirically validated
this extension.
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8.2 REPRODUCIBILITY STATEMENT

Our CODEC framework implementation, including code for computing hidden-layer contributions
using ActGrad, Integrated Gradients, and InputGrad methods, will be made available as supple-
mentary materials. The sparse autoencoder decomposition algorithms and visualization tools for
mapping contributions back to input space are documented in the supplement, with mathematical
derivations provided. The retinal neural network models analyzed are publicly available on GitHub
as referenced in the citations. All experimental configurations, including autoencoder architectures,
sparsity constraints, and statistical analysis procedures, are documented to enable direct to encour-
age replication of our findings across both artificial and biological network interpretations.
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Figure 9: Comparison of attribution methods and targets reveals consistent channel contribu-
tion patterns. (A) Spatial maps of activations, gradients, and contributions computed using different
attribution methods (ActGrad, IntGrad) and targets (sum of all logits, most-active logit, most-active
logit with softmax, entropy) for Channel 39. All methods show similar spatial sparsity. (B) Excita-
tory and inhibitory contribution maps for Channel 39 in Layer 5 for a single image demonstrating
the separation of exication and inhibition in an early layer. (C) Contribution values across channels
for one image showing the distribution of net excitatory and inhibitory effects for Layer 5. (D)
Same as (B) but for Channel 369 in Layer 11, illustrating consistent excitatory/inhibitory patterns
across different channels. (E) Same as (C) but for Layer 11, showing how the excitatory/inhibitory
decorrelation evolves across network depth.
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Figure 10: Sparse autoencoder decomposition performance and sparsity analysis across net-
work layers. (A) Reconstruction accuracy (R²) of sparse autoencoder decompositions for contribu-
tions (black) and activations (blue) across network layers. Both show high reconstruction fidelity,
with contributions maintaining slightly higher R² values in intermediate layers. (B) Number of
modes discovered by the sparse autoencoder decomposition as a function of network depth for con-
tributions (black) and activations (blue). The number of modes increases through the network, with
contributions yielding more modes than activations in deeper layers. (C) Comparison of the most
correlated panda mode with the average contribution pattern during presentation of panda images.
The decomposition identified a mode (black) that shows similar contribution patterns to the class-
average contributions when panda images are presented (r=0.6) (D) Median Hoyer sparsity index
of learned modes (channel atoms) across network layers for contributions (black) and activations
(blue). Contribution modes maintain higher sparsity than activation modes throughout the network.
(E) Median Hoyer sparsity index of mode loadings across network layers. Loading sparsity drops
sharply in early layers then stabilizes
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Figure 11: Validation of contribution modes through targeted channel manipulation. (A) Ab-
lation experiment: A binary mask was created for all presented images containing dogs, then corre-
lated with mode loadings to identify the top dog-correlated mode. Removing channels from this dog
mode in an intermediate layer eliminates the network’s ability to classify dog images while leaving
other classes largely unaffected. (B) Preservation experiment: Using the same dog mode identified
through correlation analysis, retaining only channels from this mode allows the network to correctly
identify only dog images, with all other classes showing near-zero accuracy.
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CODEC IN DEPTH

The fundamental algorithmic innovation of our work is that we design an approach to address the
question of how combinations of hidden neurons drive network output. This contrasts with an anal-
ysis of activations, which at any level and for any input are not guaranteed to drive network output.
Here, we provide additional details of our methods.

9.1 ADDITIONAL DETAILS ON CONTRIBUTION ALGORITHMS AND THEIR COMPLETE
DECOMPOSITIONS IN INPUT SPACE

We revisit and describe the motivation behind our several contribution algorithms, which are inspired
by gradient-based attribution methods, and we derive their complete decompositions in input space.
For notation, let hi be the hidden units in a specific layer L. All attribution methods need a scalar
output target, typically a select output neuron or a scalar function of the output neurons. Let T
denote the target (for example the output logit of a target class or some general scalar function of
the output neurons) and y := fT be the neural network with a scalar output y corresponding to T .
For clarity, we define the complete input space decomposition of hidden units:
Definition 1 (Complete input space decomposition of hidden units). Let Cj be the contribution of
hidden unit j and C̃ij be an input space decomposition of Cj , i.e., C̃ij is the part of Cj assigned to
input pixel i. Then, we call this input space decomposition complete if∑

i

C̃ij = Cj . (1)

We derive the complete input space decomposition of ActGrad, InputGrad, and Integrated Gradients
under this definition, which will naturally generalize to mode contributions by linearity as a simple
sum over the all the hidden units in that mode.

A note about ActGrad To be consistent with the rest of the derivation, we slightly generalize
ActGrad to account for possible nonzero baselines:

ActGradj = (hj − h′
j) ·

∂y

∂hj
, (2)

where hj is the activation of hidden unit j (which could be the input) at input x and h′
j is the hidden

activation at baseline input x′. For image classification, we usually take a baseline hidden activation
of zero, which is the definition in the main text and what we used in experiments.

Input × Gradient (InputGrad) Used in Ref. Shrikumar et al. (2017) as a baseline, this is a
special case of ActGrad where Act is the input values. However, seeing InputGrad this way means
it can only attribute to the input layer. We naturally extend InputGrad to hidden layers to obtain
contributions by defining the decomposition:

˜InputGradij :=
∂y

∂hj

∂hj

∂xi
(xi − x′

i) (3)

= ((Jy)j(Jz)ji) · (xi − x′
i), (4)

where Jy := ∂y
∂hj

is the Jacobian from the output to the hidden layer and Jz :=
∂hj

∂xi
is the Jacobian

from the hidden layer to the input. If we sum over i, we obtain a contribution algorithm to hidden
neurons:

HInputGradj :=
∑
i

˜InputGradij. (5)

Under this definition of InputGrad contribution, the decomposition is trivially complete. This is a
well-motivated extension of InputGrad because we recover input space InputGrad by summing over
j instead:

InputGradi =
∑
j

˜InputGradij. (6)
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This natural extension rests on the chain rule of partial derivatives, where we essentially postpone
summing gradients over the hidden layer until after multiplying by the input element-wise. In-
putGrad as a contribution algorithm may seem a bit ad hoc, but it will turn out to have the most
computationally efficient input space decomposition that we consider and we theoretically motivate
it later by showing a connection to Integrated Gradients.

Integrated Gradients (IG) Sundararajan et al. (2017) IG assigns attributions to input pixels by
calculating the integral of gradients along a straight-line path from a baseline input x′ to the actual
input x:

IGi = (xi − x′
i)×

∫ 1

α=0

∂y(x′ + α(x− x′))

∂xi
dα. (7)

IG satisfies the (output) completeness property, often desired in attribution methods:∑
i

IGi = y(x)− y(x′). (8)

In words, completeness means that the attributions to each input pixel sum up to the (change in)
output. In this original form, IG only works for the input layer. We present two ways to extend IG
to hidden layers:

• Treat the hidden layer as the input and follow through. This is the extension by Lucas
et al. (2022), where they combine this extension of IG with GradCAM. Mathematically,
the “hidden integrated gradients” (HIG) is defined as

HIGj = (hj − h′
j)×

∫ 1

α=0

∂y(h′ + α(h− h′))

∂hj
dα, (9)

where h is the hidden layer activation vector at input x, and h′ is the hidden layer activation
vector at input x′.

• Take the same path in input space but decompose the gradients at the hidden layer and
sum over the input layer. Tanaka et al. (2019) first introduced this method and applied it
to the first hidden layer of a model of the retina. Here, we use it on any hidden layer.
Mathematically, first, we decompose the gradients over the hidden layer:

H̃IGij := (xi − x′
i)×

∫ 1

α=0

∂y(x′ + α(x− x′))

∂hj

∂hj

∂xi
dα, (10)

where i indexes the input pixels and j indexes the hidden neurons. Note that we can recover
standard IG by summing over j due to the linearity of the integral and chain rule of partial
derivatives:

IGi =
∑
j

H̃IGij , (11)

which motivates this extension. Now, to obtain attributions over the hidden layer, we simply
sum over i instead of j:

HIGj :=
∑
i

H̃IGij . (12)

In practice, we approximate the integral using a Riemann sum with m steps. For standard IG, we
have

IGi ≈ (xi − x′
i)×

1

m

m∑
k=1

∂y(x′ + k
m (x− x′))

∂xi
. (13)

This approximation extends straightforwardly to the first method of HIG, simply by replacing x

with h. For the second method, we could naively discretize in input space to get H̃IGij first, but that
would involve a backward pass for each hidden neuron at each step. Instead, we analytically derive
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an approximation that still only involves one backward pass at each step. We have

HIGj =
∑
i

(xi − x′
i)×

∫ 1

α=0

∂y(x′ + α(x− x′))

∂hj

∂hj

∂xi
dα (14)

=

∫ 1

α=0

∑
i

[
∂y

∂hj

∂hj

∂xi

∂xi

∂α

]
x′+α(x−x′)

dα (15)

=

∫ 1

α=0

[
∂y

∂hj

∑
i

∂hj

∂xi

∂xi

∂α

]
x′+α(x−x′)

dα (16)

=

∫ 1

α=0

[
∂y

∂hj

∂hj

∂α

]
h(x′+α(x−x′))

dα. (17)

Note that this is precisely IG treating h as the input layer with the important distinction that the
path is not a straight line (it is warped by the nonlinear functional relationship between x and h).
The crucial advantage of computing HIG this way over the first method is the complete input space
decomposition (Equation 10) we get for free. To approximate this line integral with a Riemann sum,
we have

HIGj ≈
m∑

k=1

∂y

∂hj

∣∣∣∣
h(α= k

m )

dhj , (18)

where we can compute h(α = k
m ) at each k in a forward pass and dhj = hj(α = k

m )−hj(α = k−1
m )

in a single backward pass.

Complete input space decomposition of ActGrad It is a bit more nuanced to define a complete
input space decomposition for ActGrad in hidden layers. The idea is to use IG to attribute Act to
inputs, which we then multiply by Grad to get the decomposition. Mathematically, we exploit the
output completeness of IG to express Act as an integral of gradients, which we can then naturally
decompose linearly in input space. We define the input space decomposition as

˜ActGradij := (xi − x′
i)

∂y

∂hj

∣∣∣∣
x

∫ 1

α=0

∂hj

∂xi
dα, (19)

where we take a straight-line path in input space parameterized by α. We can prove that this decom-
position is complete by recovering the standard ActGrad for hidden layers if we sum over i:∑

i

˜ActGradij =
∑
i

(xi − x′
i)

∂y

∂hj

∣∣∣∣
x

∫ 1

α=0

∂hj

∂xi
dα (20)

=
∂y

∂hj

∣∣∣∣
x

∑
i

(xi − x′
i)

∫ 1

α=0

∂hj

∂xi
dα (21)

=
∂y

∂hj

∣∣∣∣
x

(hj − h′
j) (due to the output completeness of IG) (22)

= ActGradj , (23)

where the second-to-last step is true even though the path in h space is not necessarily straight by the
fundamental theorem of calculus for line integrals. Note that if we summed over j instead, we would
obtain a new attribution method for the input layer that is like a hybrid between IG and InputGrad.
We do not explore that method any further as we are primarily interested in contributions of hidden
neurons.

InputGrad and ActGrad as approximations to IG The unifying connection behind all three
contribution algorithms is that they are the same for a linear network. The three algorithms rep-
resent successively more comprehensive ways to capture the nonlinearity of the network in their
contribution assignments. Recall the definition of HIG (Equation 17):

HIGj =

∫ 1

α=0

[
∂y

∂hj

∂hj

∂α

]
h(x′+α(x−x′))

dα. (24)
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If we assume that the downstream network is linear along the integration path, i.e., the downstream
gradients ∂y

∂hj
are constant, we recover ActGrad:∫ 1

α=0

[
∂y

∂hj

∂hj

∂α

]
h(x′+α(x−x′))

dα =
∂y

∂hj

∣∣∣∣
x

∫ 1

α=0

[
∂hj

∂α

]
h(x′+α(x−x′))

dα (25)

=
∂y

∂hj

∣∣∣∣
x

(hj − h′
j) (26)

= ActGradj . (27)

If we further assume the whole network is linear along the integration path, i.e., all gradients are
constant, we recover InputGrad:∫ 1

α=0

[
∂y

∂hj

∂hj

∂α

]
h(x′+α(x−x′))

dα =

∫ 1

α=0

[
∂y

∂hj

∑
i

∂hj

∂xi

∂xi

∂α

]
x′+α(x−x′)

dα (28)

=

[
∂y

∂hj

∑
i

∂hj

∂xi

∂xi

∂α

]
x

∫ 1

α=0

dα (29)

=
∑
i

∂y

∂hj

∂hj

∂xi
(xi − x′

i) (30)

=
∑
i

˜InputGradij (31)

= InputGradj . (32)

By taking the full integral, IG has the output completeness property
∑

j HIGj = y−y′ that ActGrad
and InputGrad don’t have. Furthermore, IG alleviates the saturation problem where a zero gradient
counterintuitively leads to a zero attribution (and therefore contribution) Shrikumar et al. (2017);
Srinivas & Fleuret (2019).

Under our definition, a mode’s contribution is the sum of the contributions of its top-k channels.
Due to the linearity of sums and integrals, the complete input space decompositions derived above
for individual hidden units naturally generalize to those of modes.

The key insight that underlies completeness is the chain rule of partial derivatives and linearity of
integrals and sums (and additionally the output completeness of IG for ActGrad decomposition).
The high-level procedure is:

1. When computing the contribution of each hidden unit, do not sum the gradients over the
input space just yet; save the full contribution tensor with the input index.

2. Sum over the input space and cluster to find modes.
3. Go back to the unsummed contributions and sum over each mode to get a complete decom-

position of mode contributions in input space.

Practically, IG is more computationally expensive than ActGrad due to the integration, and we find
ActGrad to perform well enough, so we use ActGrad to discover features for all our experiments.
Furthermore, we use the input space decomposition of InputGrad as an approximation to that of
ActGrad, again due to the computational cost of integration. Ref. Selvaraju et al. (2020) notes that
ActGrad at earlier layers produce less clear heatmaps of attributions, but since we use ActGrad at
the hidden layer first to identify modes, we do not expect the loss in quality to be as significant
by switching to InputGrad just for visualization. Empirically, our experimental visualizations show
sufficient quality for our purposes. However, our theoretical framework allows for a principled,
complete decomposition if necessary for the application at hand.

9.2 SPATIAL AGGREGATION AND E/I SEPARATION

Once the contributions have been computed using the chosen contribution method and target, we
obtain a map of the intermediate layer of the same size as the layer’s activations. For convolu-
tional layers, we perform spatial summation over the height and width dimensions to derive a single
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contribution value per channel:

ChanC =

H∑
h=1

W∑
w=1

IG:,h,w, (33)

where “ChanC” means “channel contribution”. We further reduce these contributions into excitatory
(positive) and inhibitory (negative) components:

ChanC+ = max(ChanC, 0); ChanC− = min(ChanC, 0). (34)

This E/I decomposition enhances interpretability by separating units that promote versus suppress
specific outputs, revealing antagonistic computational mechanisms within the network. For the ma-
jority of analyses presented here, we focus exclusively on the positive contributions, which can be
interpreted as the hidden unit contributions that positively drive the attribution target. However, fu-
ture work could extend this approach to also incorporate negative contributions, depending on the
nature of the output target.

9.3 CORRELATION ANALYSIS WITH SEMANTIC CONCEPTS

To interpret the discovered modes, we analyzed their correlation with known semantic concepts
from the ImageNet hierarchy. We constructed binary masks M ∈ {0, 1}n×c representing c different
semantic concepts , where Mi,j = 1 if sample i belongs to a higher order concept/ ImageNet Class
j and 0 otherwise.

We then computed the Pearson correlation coefficient between each mode loading and each concept
mask:

Corr(Li,Mj) =
Cov(Li,Mj)

σLi
σMj

(35)

where Li is the i-th column of the loading matrix L (corresponding to mode i), Mj is the j-th
column of the mask matrix M (corresponding to concept j), Cov is the covariance, and σ is the
standard deviation.

This analysis enabled us to assign interpretable meanings to the learned modes and understand how
semantic information is distributed across the network.

19


	A framework for understanding biological and artificial neural networks
	Measuring contributions of hidden-layer neurons
	Layerwise evolution of neural contributions in CNNs
	Decomposing contributions into computational modes
	Controlling network behavior using contribution modes
	Visualizing inputs that cause hidden contributions
	Interpreting biological neural network models with CODEC
	Conclusion
	Limitations and ethical concerns
	Reproducibility statement

	Appendix
	Additional details on contribution algorithms and their complete decompositions in input space
	Spatial aggregation and E/I separation
	Correlation analysis with semantic concepts


