
Bi-Level Knowledge Transfer for Multi-Task
Multi-Agent Reinforcement Learning

Junkai Zhang1,2, Jinmin He1,2, Yifan Zhang1,2,3∗, Yifan Zang4, Ning Xu1, Jian Cheng1,2,5

1 C2DL, Institute of Automation, Chinese Academy of Sciences
2 School of Artificial Intelligence, University of Chinese Academy of Sciences

3University of Chinese Academy of Sciences, Nanjing
4Beijing Institute of Astronautical Systems, 5AiRiA

{zhangjunkai2021, hejinmin2021, zangyifan2019}@ia.ac.cn,
{yfzhang, jcheng}@nlpr.ia.ac.cn, nxu@njust.edu.cn

Abstract

Multi-Agent Reinforcement Learning (MARL) has achieved remarkable success in
various real-world scenarios, but its high cost of online training makes it impractical
to learn each task from scratch. To enable effective policy reuse, we consider the
problem of zero-shot generalization from offline data across multiple tasks. While
prior work focuses on transferring individual skills of agents, we argue that the
effective policy transfer across tasks should also capture the team-level coordination
knowledge. In this paper, we propose Bi-Level Knowledge Transfer (BiKT) for
Multi-Task MARL, which performs knowledge transfer at both the individual
and team levels. At the individual level, we extract transferable individual skill
embeddings from offline MARL trajectories. At the team level, we define tactics
as coordinated patterns of skill combinations and capture them by leveraging
the learned skill embeddings. We map skill combinations into compact tactic
embeddings and then construct a tactic codebook. To incorporate both skills and
tactics into decision-making, we design a bi-level decision transformer that infers
them in sequence. Our BiKT leverages both the generalizability of individual
skills and the diversity of tactics, enabling the learned policy to perform effectively
across multiple tasks. Extensive experiments on SMAC and MPE benchmarks
demonstrate that BiKT achieves strong generalization to previously unseen tasks.

1 Introduction

Multi-Agent Reinforcement Learning (MARL) has shown great potential in a wide range of real-world
applications, such as autonomous driving [4, 44], robotic collaboration [2, 11, 29], and distributed
control [24, 39]. However, training MARL agents from scratch for each new task is often prohibitively
expensive due to the high cost of online interactions and the complexity of coordination among
agents[42, 45]. In real-world scenarios, we usually have access to offline MARL trajectories of
some known tasks. Thus, distilling the multi-agent policy from such data and transferring it to
unseen yet related tasks offers a cost-effective solution, which reduces reliance on online interaction.
Consequently, we consider to solve the problem where agents are trained on known multi-tasks
using offline data and then directly evaluated on previously unseen tasks, aiming to achieve zero-shot
generalization.

∗Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Figure 1: Skill and tactic examples in SMAC tasks. In (a) and (b), two tasks utilize a similar tactic:
All agents keep fire on the same enemy, which forms the team tactic to quickly eliminate an enemy
to gain a numerical advantage. In (c) and (d), two tasks utilize two different tactics: In (c), due to
unbalanced HP. Agent 2,3 adopt Skill A, agents 4,5 use Skill B, and agent 1 adopts Skill C to draw
enemy fire to protect the low-HP teammates. In (d), with balanced HP, agent 1,2,3 adopt Skill A and
agent 4,5 adopt skill B, which corresponds to the tactic that each agent protects itself at low HPs.

An alternative approach is to leverage offline data to train a task-agnostic policy with a unified
structure capable of taking actions in multiple tasks [9, 10]. However, they are primarily designed
for online training, and their generalization heavily relies on the neural network’s inherent capacity,
which often fails when facing variations in agent number and corresponding observation spaces.
Besides, the efficient policy transfer can also be achieved by the use of skill, which abstracts the
action pattern of agents into compact representations [32]. This has been an effective strategy in
single-agent generalization across tasks, allowing agents to reuse knowledge without learning from
scratch. Inspired by it, recent studies have explored skill-based policy transfer to MARL [20, 41],
where each agent learns to extract transferable skills and generates actions conditioned on them. We
refer to these skills as Individual skills, which capture the policy of individual agents in MARL.

However, transferring individual skills alone is insufficient for effective policy transfer in MARL.
While individual skills facilitate the knowledge transfer of individual action patterns, they fail to
convey how these skills interact cooperatively within a team across tasks. Therefore, a comprehensive
knowledge transfer in MARL should also capture the cooperative patterns of skills, which we define
as tactics. As illustrated in Figure 1, different tasks may share similar tactics, which suggests that
tactics can serve as valuable transferable knowledge. Besides, even in similar states, distinct tasks may
require different tactical choices, which indicates the need for policy’s adaptive selection in unseen
tasks. Therefore, effective policy transfer in Multi-Task MARL requires two levels of knowledge:
Skill transfer at the individual level and the tactic transfer at the team level.

In this paper, we propose our novel Bi-Level Knowledge Transfer (BiKT) for Multi-Task Multi-Agent
Reinforcement Learning. Specifically, at the individual level, we perform skill transfer by extracting
latent skill representations from offline trajectories. At the team level, we leverage these learned skill
embeddings to learn a compact tactic embedding, which captures the combinations of individual
skills. We then discretize the tactic embeddings and organize them into a finite set, which we define
as tactic codebook. To employ both the skills and tactics for decision-making, we design a bi-level
decision transformer as the policy model, which selects appropriate tactics from the learned codebook
and utilizes them to infer individual skills. The actions are then decoded from the skills. Through
the above design, our BiKT benefits from the diversity of tactic codebook and the generalizability of
individual skills, which can guide the policy to generalize in unseen tasks with high performance.

Our method exhibits the following contributions: 1) Our framework facilitates the bi-level knowledge
transfer in multi-task MARL, enabling both individual and team-level generalization. 2) Our proposed
tactic codebook captures the diversity of team behaviors across source tasks, providing the flexibility
to generalize to a wider range of unseen tasks. 3) Our learned tactics serve as team-level guidance,
enabling agents to select different skills under similar scenarios across tasks, which prevents the
monotony of skill combinations. Extensive experiments in Marine Hard, Marine Easy, Stalker Zealot,
and Cooperative Navigation in SMAC [31] and MPE [22] showcase our outcome performance.

2

2 Related Works

Offline MARL Offline reinforcement learning has emerged as a compelling paradigm for developing
decision-making policies solely from static datasets [18]. Recent efforts have extended this paradigm
to multi-agent settings, leading to the increasing prominence of offline MARL[6, 43]. A major
challenge is the distributional shift between the training dataset and unseen state-action spaces, which
results in inaccurate value predictions [7, 38]. To mitigate this, behavior-constrained learning frame-
works have been proposed to encourage conservatism in policy updates [16, 17]. These conservative
principles are often embedded within existing online MARL methods, either by extending multi-
agent policy gradient methods [5, 22] or by applying value decomposition techniques for joint value
estimation [30, 33, 35]. Furthermore, recent developments have concentrated on formulating safe
and robust offline MARL algorithms, ensuring strong performance guarantees under distributional
shifts [8, 26, 40]. However, excessive conservatism may hinder generalization, as policies trained on
static data may overfit to the offline distribution. In parallel, diffusion-based generative models have
been introduced to enhance offline policy learning [13, 27]. Despite their potential, integrating such
models with the policy improvement remains a challenging problem [14, 36, 46].

Multi-Task MARL Multi-Task MARL aims to train a unified policy that can handle multiple tasks
simultaneously and generalize directly to unseen tasks, which presents two primary challenges: the
design of a universal policy and ensuring effective generalization across tasks. To enable a universal
policy, flexible architectures empower universal policies to process variable inputs [1, 9, 10, 12, 47]. A
curriculum learning strategy was grounded in evolutionary principles to enable scalability concerning
the number of agents [21]. Methods such as randomized entity-wise factorization (REFIL) enhance
policy adaptation by improving generalization [12], while transformer-based approaches like UPDeT
leverage population-invariant networks to manage variable agent configurations [10, 19, 37]. Despite
these advances, they usually rely on simultaneous learning or fine-tuning across tasks, which limits
their generalization. To address this, the MATTER focuses on learning task representations to capture
inter-agent relationships [28]. Additionally, ODIS [41] and HiSSD [20] promote generalization to
novel tasks by incorporating skills within unified training paradigms. However, the pursuit of training
policies robust enough for deployment in new tasks remains a key challenge, highlighting the need
for continued research to push multi-task MARL towards more versatile solutions.

3 Preliminary

3.1 Cooperative Multi-Agent Reinforcement Learning.

A cooperative multi-agent task can be modeled as a Decentralized Partially Observable Markov Deci-
sion Process (Dec-POMDP) [25], which is defined by the tuple (N , S, {oi ∈ O}Ni=1{ai}Ni=1,P, R, γ).
Each agent only has access to a partial observation of the global state and selects actions individually.
Specifically, N = {1, . . . , N} denotes the set of agents. s ∈ S is the global state, oi is the obser-
vation of agent i derived from s, and ai is the action of agent i. Notably, each observation oi can
be decomposed into entity-wise features {e1, e2, . . . , eM}, where M is the total number of entities
(including both allies and enemies). The γ ∈ [0, 1) is the discount factor. The transition function is
P : s × a × s → [0, 1], where the joint action is defined as a = {ai}Ni=1. The action-observation
history is τ it = (oi0, a

i
0, ..., o

i
t), which serves as input to the policy πi(ait|τ it) → [0, 1]. At each

timestep, the environment provides a reward rt via the reward function R : s× a → R.

3.2 Multi-Task MARL: Policy Transfer via Offline Data

Although MARL algorithms have achieved substantial progress, they still require training from
scratch for each task, which is time-consuming and interaction-heavy. Nevertheless, policies trained
on one task often exhibit transferable behavioral patterns applicable to similar tasks. For example,
coordination policies learned in the SMAC 3m task can be reused in the 5m setting. To measure how
well such knowledge transfers, we adopt multi-task MARL as a principled benchmark. We denote
Tsrc = {Tn

src}
Nsrc
n=1 and Ttgt = {Tn

tgt}
Ntgt

n=1 as the sets of source and unseen target tasks, respectively,
where Nsrc and Ntgt represent the task numbers. Source tasks {Tn

src}
Nsrc
n=1 are associated with an

offline dataset Dsrc = {Dn
src}

Nsrc
n=1 collected by a pre–trained policy. A trajectory from Dn

src is defined
as (sn0 ,a

n
0 , r

n
0 , . . . , s

n
H), where H is the length of trajectory, snt and an

t are the joint state and action

3

at time t, and rnt = Rn(snt ,a
n
t) is the reward. Under the multi-task generalization setting, our

objective is to learn a general multi-agent policy π that maximizes the expected discounted return
across all tasks, shown in Eq. 1. After training, π is evaluated on Ttgt without further fine–tuning.

max
π

ETn∼{Tsrc,Trgt}

[
H∑
t=0

Ean
t ∼π

[
γt Rn(snt ,a

n
t)

]]
(1)

3.3 Decision Transformer

The Decision Transformer (DT) [3] leverages the Transformer architecture to formulate the Markov
decision process as a conditional sequence modeling problem, which attains high performance under
offline training. Given the offline trajectories D consisting of states st, actions at, and rewards rt,
DT models the joint distribution over actions as: at = f(R̂t−L:t, st−L:t, at−L:t−1). R̂t =

∑H
t′=t rt′

denotes the target return-to-go, L is the content length, and f is the DT model which is trained to
maximize the likelihood of the observed action sequences conditioned on past states, actions, and
returns, shown in Figure 2. This formulation allows DT to learn directly from offline trajectories.

max
π

E(R̂≤t,s≤t,a<t)∼D

[
H∑
t=1

log f(at | R̂t−L:t, st−L:t, at−L:t−1)

]
(2)

4 Method

In this section, we introduce our novel Bi-Level Knowledge Transfer (BiKT) for Multi-Task Multi-
Agent Reinforcement Learning method. We argue that effective multi-task generalization in MARL
necessitates knowledge transfer at two distinct levels: (1) The individual level, which involves
learning and reusing agent-specific behaviors, referred to as individual skills z; and (2) The team
level, which aims to transfer coordinated behavioral patterns that emerge from combinations of
individual skills, referred to as cooperative tactics c. BiKT enables each agent to first generate a
team-level tactic, and then infer an individual skill conditioned on it. Our objective is to learn both
individual skill and team tactic embeddings from source tasks, utilize them to guide the decision
making, and then effectively reuse them in unseen tasks.

Specifically, the BiKT framework for multi-task MARL is structured into three stages: (1) Extracting
the individual skill embeddings for each agent that encapsulate transferable behaviors applicable
across source tasks. (2) Building a cooperative tactic set, which captures coordination patterns of
individual skills and supports knowledge transfer at the team level. (3) Developing a decision-making
model that integrates both individual skills and team tactics to guide the policy execution. The
following sections describe each stage in detail.

4.1 Knowledge Transfer through Individual Skills

In multi-agent scenarios, the abstraction of agent i’s policy at timestep t is usually used to denote
individual skill zit. We aim to fulfill the skill learning process with two components: First, each
agent can extract its individual skill embeddings from the state s and joint actions a, which captures
common and reusable action patterns in source tasks. Second, when acquiring zit, agent i can
reconstruct actions by its history τ it to take decentralized execution. To achieve them, we model
the individual skill learning process as the Individual Skill Encoder: pskill(·|s,a, i) → zi ∈ RNs ,
where Ns is the dimension of skill embedding, and Action Decoder: qact(·|τ it , zit) → âi, illustrated
in Figure 2. For skill training, we adopt the Variational Auto-Encoder (VAE) [15] framework. Our
objective is to maximize the log-likelihood of reconstructing actions while regularizing the latent
skill distribution, given by Equation 3, where δit = (st, τ

i
t ,at), i ∈ N, t ∈ H , p̃(zit) is the uniform

prior over skills, DKL is the KL divergence function, and ϕ1 is the parameters of pskill and qact.

Lskill(ϕ1) = Eδit∼Dsrc

[
Ezi

t∼pskill(·|st,at,i)

[
log qact(·|τ it , zit)

]
−DKL

[
pskill(·|st,at, i)||p̃(zit)

]]
, (3)

Individual skills learning offers a task-agnostic abstraction over actions, effectively mitigating the
challenge of action semantic misalignment across tasks. Besides, they serve as a commonly used
knowledge and can be transferred across tasks. Our focus then shifts to leveraging cooperative
patterns among skills to facilitate effective policy transfer at the team level.

4

Figure 2: (A) The Individual Skill learning process, where eit stands for the feature of entity i. (B)
illustrates the Cooperative Tactic codebook learning process. NNS stands for the Nearest Neighbor
Search: Search the nearest neighbor from the codebook C, i.e., argmink∈K ∥ĉt − ck∥22. The network
details and feature processing details about encoders and decoders are shown in the Appendix C.

4.2 Knowledge Transfer through Cooperative Tactics

While a single-agent can often generalize across tasks through reusable individual skills, multi-task
MARL poses an additional challenge: Agents need not only to transfer individual skills but also to
learn to coordinate them to achieve effective team-level behaviors across diverse tasks. Intuitively, the
coordination of skills can be represented as a skill combination, structured as (z1 × z2 × · · · × zN).
However, due to variations of the number of agents across tasks, the resulting skill combinations may
differ even when the underlying skill combinations are the same. As shown in Figure 1, the "All focus
fire to an enemy" tactic in 5m_vs_6m and 7m_vs_8m corresponds to different skill combinations, yet
they semantically represent the same team tactic. To handle such variation, we propose a mapping
process from a single tactic to multiple task-specific skill combinations, enabling the reuse of the
same tactic across diverse task settings with varying agent numbers and environmental dynamics.

Specifically, we propose to map the skill combinations into a compact tactic set, denoted by tactic
codebook C = {ck}Kk=1, where the ck ∈ RNc represents a reused cooperative tactic embedding, Nc is
the embedding length, and K is the tactic number of C. Each tactic ck is intended to represent a class
of similar skill combinations across tasks and each agent can infer its individual skill based on the
given ck. To this end, we construct a Cooperative Tactic Encoder ptac(·|s, {zi}Ni=1) → ĉt ∈ RNs , a
Skill Decoder qskill(·|τi, ck) → ẑt, a the tactic codebook C = {ck}Kk=1, shown in Figure 2. The Tactic
Encoder maps the global state st and joint individual skills [z1t , . . . , z

N
t] into a tactic representation

ẑt, which is then discretized via the nearest neighbor search in the tactic codebook C. The Skill
Decoder then reconstructs each agent’s skill from its local history τ i and the tactic ck.

To train the encoder, decoder, and tactic codebook, we adopt the Vector Quantized Variational Auto-
Encoder (VQ-VAE) [34] framework to optimize two objectives: the reconstruction error of individual
skills and the codebook commitment loss. The reconstruction loss minimizes the distance between
the individual skills embedding zi and ẑi; The commitment loss encourages ptac to output close to
the selected ck, minimizing the distance between ĉt and ck. To promote diversity among tactics, we
also impose a regularization term that penalizes similarity between tactics in C. Our complete training
objective is given by Equation 4, where ζit = (st, τ

i
t , z

1
t , ..., z

N
t), i ∈ N, t ∈ H , ϕ2 is the parameter

set of ptac, qskill, and ϕc is the parameters of C. sg[·] is the stop-gradient operator, β1, β2 balances the
codebook commitment loss and distance penalty, ϵ is a small constant for numerical stability.

Ltactic(ϕ2, ϕc)=Eζi
t∼Dsrc

[∥∥zit−qskill(ĉt + sg(ck − ĉt), τ
i)
∥∥2
2
+
∥∥sg(ĉt)−ck

∥∥2
2

+ β1

∥∥ĉt−sg(ck)
∥∥2
2
+ β2

∑
k1 ̸=k2

1

||ck1 − ck2 ||22 + ϵ

]
(4)

Through this design, each learned tactic represents a meaningful and reusable coordination pattern,
and the resulting tactic codebook captures a diverse range of team behaviors across source tasks. As

5

Figure 3: Bi-Level Decision Transformer (BDT) of agent i. At each timestep t, it receives a structured
input sequence, including the index of the tactic codebook: Ic<t, the previous skill zt<t, the predicted
return-to-go R̂t =

∑T
t=1 rt, and the agent’s decoupled entity-wise observation [e1, e2, . . . , eM]. The

BDT first predicts the index of the tactic codebook Ict , which is then used to retrieve the corresponding
tactic ct. Conditioned on the tactic ct, the BDT generates its individual skill zit, which is decoded
into the action ait via the Action Decoder qact.

a result, it enables flexible generalization to a broader set of unseen tasks. Moreover, these tactics
act as stable team-level guidance, assisting agents in selecting appropriate individual skills across
varying scenarios.

4.3 Decision Making with Tactics and Skills

After acquiring the individual skills and the tactic codebook, the remaining challenge lies in how to
leverage them to guide policy transfer in unseen tasks. To this end, we propose our Bi-Level Decision
Transformer (BDT) as the policy πi

θ for agent i, which models an autoregressive distribution over the
tactic ct ∈ C and individual skills zit: π

i
θ(c

i
t | R̂i

≤t, o
i
≤t, c

i
<t, z

i
<t) and πi

θ(z
i
t | R̂i

≤t, o
i
≤t, c

i
≤t, z

i
<t),

detailed in Figure 3. To accommodate varying observation dimensions across tasks, raw observations
are decomposed into structured entity representations to ensure a unified input format. Each agent
learns to first generate a cooperative tactic, and then let them utilize it to take their individual skills.

The policy of each agent πi
θ is trained in a supervised manner. We employ the pre-trained individual

skill encoder pskill and the cooperative tactic encoder ptac to generate zi and ci as supervision signals.
In practice, to promote tactic-level consistency, we train agent i at timestep t to predict the index of the
shared tactic codebook Ict rather than directly learning the tactic embeddings. The output dimension
of Iit corresponds to the number of tactics in C. The training objective is defined in Equation 5, where
Ωi

t = (R̂i
≤t, τ

i
≤t, c

i
<t, z

i
<t) and α is the hyperparameter to balance the learning speed for tactic and

individual skill.

Lpolicy(θ) = EΩi
t∼Dsrc

[
−α log πi

θ(I
i
t | R̂i

≤t, o
i
≤t, c

i
<t, z

i
<t)− log πi

θ(z
i
t | R̂i

≤t, o
i
≤t, c

i
≤t, z

i
<t)

]
(5)

It is worth noting that the design of DT-based policies for MARL has been previously explored, like
MADT [23]. However, it is limited to single-task settings, as DT tends to learn a fixed policy pattern
that often corresponds to a specific team combination. In contrast, our BDT design can utilize the
team tactic as the team guidance to promote diverse team tactics, which extends the DT-based policy
in MARL from a single task to multiple tasks.

Overall Training Summary. We first train the individual skill using Lskill(ϕ1) to acquire skill
embeddings and the action decoder qact. Next, we learn to construct the tactic codebook by minimizing
Ltactic(ϕ2, ϕc). At last, we leverage the pre-trained skill and tactic codebook to train the BDT by
minimizing Lpolicy(θ). The pseudocode is detailed in the Appendix 1.

Decentralized Execution. For each agent i, we initialize its policy BDT πi
θ with a high return-to-go

and input its history τ i to predict the cooperative tactic codebook index Ict . Then, the corresponding
tactic is retrieved from the codebook C and used to input into BDT to generate the individual skill.
Finally, the individual skill is decoded into action ait.

6

5 Experiment

We exploit different environments to conduct a large number of experiments, including StarCraft II
Micromanagement (SMAC) [31] and Multi-Agent Particle Environment (MPE) [22]. We conduct
five random seeds for each algorithm and evaluate them with 32 environments.

5.1 Experiment Setup

StarCraft II Micromanagement The StarCraft Multi-Agent Challenge (SMAC) [31] is a popular
MARL benchmark which provides a standard platform for evaluating multi-task learning and policy
transfer capabilities in MARL. Following the experimental protocol proposed by [41], we leverage
the task set and corresponding offline datasets they released: Marine-Hard, Marine-Easy, and Stalker-
Zealot. Each task set consists of distinct source tasks and unseen tasks. Specific details for each task
set are presented in the Tables 3, 4, and 5. To evaluate generalization, we construct four groups in
each task set: Expert, Medium, Medium-Expert, and Medium-Replay, representing different policy
levels used for offline data collection, as detailed in Appendix B.1. Each group consists of multiple
tasks that share the same unit type but differ in the number of units.

Cooperative Navigation The Cooperative Navigation (CN) task [22] is a widely adopted bench-
mark for evaluating MARL algorithms. In CN, agents should collaboratively occupy some target
landmarks. The environment consists of N agents and some landmarks in a two-dimensional continu-
ous space. Agents must coordinate their physical actions to reach the landmarks. The objective is
for each agent to cover a distinct landmark while avoiding collisions. To assess the generalization

Table 1: The performance of different methods in Task set Marine-Hard. To simplify notation,
asymmetric tasks are abbreviated (e.g., “5m6m” represents “5m_vs_6m”).

Tasks Expert Medium
UPDeT ODIS HiSSD BiKT UPDeT ODIS HiSSD BiKT

Source Tasks

3m 82.8±16.0 98.4±2.7 99.5±0.3 99.8±0.2 51.2±3.4 85.9±10.5 62.7±5.7 86.1±9.6
5m6m 17.2±28.0 53.9±5.1 78.5±4.5 80.3±4.5 6.3±4.9 22.7±7.1 26.4±3.8 36.9±4.5
9m10m 3.1±5.4 80.4±8.7 95.5±2.7 99.4±0.4 28.5±10.2 78.1±3.8 73.9±2.3 72.5±5.5

Unseen Tasks

4m 33.0±27.1 95.3±3.5 99.2±1.2 99.3±0.1 14.1±5.2 61.7±17.7 77.3±10.2 91.3±6.2
5m 33.6±40.2 89.1±10.0 99.2±1.2 99.9±0.1 67.2±21.3 85.9±11.8 88.4±8.4 94.4±5.4
10m 54.7±44.4 93.8±2.2 98.4±0.8 99.4±0.1 32.9±11.3 61.3±11.3 98.0±0.3 96.3±2.5
12m 17.2±28.0 58.6±11.8 75.5±19.7 99.0±0.2 3.2±3.8 35.9±8.1 86.4±6.0 92.5±4.0
7m8m 0.0±0.0 25.0±15.1 35.3±9.8 68.0±9.9 0.0±0.0 28.1±22.0 14.2±10.1 4.3±2.5
8m9m 0.0±0.0 19.6±6.0 47.0±6.2 50.0±6.2 2.3±2.6 47.0±2.7 15.3±2.8 17.0±1.9
10m11m 0.0±0.0 42.4±7.2 86.3±14.6 90.6±1.1 4.0±3.4 29.7±15.4 43.6±4.6 25.6±4.6
10m12m 0.0±0.0 1.6±1.6 14.5±9.1 14.6±3.5 0.0±0.0 1.6±1.6 0.6±0.5 2.2±1.3
13m15m 0.0±0.0 2.3±2.6 1.3±2.5 4.2±2.1 0.0±0.0 1.6±1.6 1.4±2.4 2.5±1.3

Medium-Expert Medium-Replay

Source Tasks

3m 85.2±17.9 73.6±22.0 86.6±3.7 99.4±1.3 41.4±20.1 83.6±14.0 78.8±5.3 78.7±6.3
5m6m 1.6±1.6 9.4±2.2 41.9±9.7 49.4±6.0 0.8±1.4 16.6±4.7 25.3±10.3 28.1±3.1
9m10m 24.3±18.7 31.3±14.5 83.6±6.9 58.3±2.4 0.8±1.4 34.4±8.0 45.8±3.9 47.6±7.0

Unseen Tasks

4m 43.9±39.0 82.8±13.5 91.1±6.1 98.1±0.2 35.9±12.6 55.6±14.5 77.3±1.9 94.4±2.8
5m 33.6±40.2 82.8±17.7 98.3±1.8 98.8±0.1 61.7±20.3 96.1±4.1 88.1±13.4 97.9±0.2
10m 32.8±38.1 82.8±16.8 96.4±2.1 96.5±1.2 11.0±7.8 84.4±15.1 94.7±2.6 96.7±1.5
12m 9.4±8.6 81.3±20.6 88.4±11.8 95.6±0.3 2.3±2.6 84.4±6.6 90.3±3.6 92.7±2.6
7m8m 2.3±4.1 15.6±4.4 30.5±10.4 40.6±4.2 1.6±2.7 9.4±2.2 21.7±4.7 19.3±6.4
8m9m 10.2±4.6 9.5±8.6 10.9±4.7 22.4±3.6 11.5±3.9 0.8±1.4 11.7±8.7 10.5±4.0
10m11m 11.8±8.1 33.6±8.9 54.7±6.8 42.3±3.2 0.8±1.4 35.9±5.2 42.5±4.4 43.8±6.6
10m12m 0.0±0.0 1.6±1.6 2.5±1.0 2.3±1.3 0.0±0.0 2.4±1.4 0.5±0.3 0.6±0.2

7

Table 2: The performance of different methods in Task set CN.

Expert Medium
Source Tasks Unseen Tasks Source Tasks Unseen Tasks

CN-2 CN-4 CN-3 CN-5 CN-2 CN-4 CN-3 CN-5

UPDeT 90.6±6.8 15.6±9.2 47.9±10.3 2.1±2.9 35.4±12.1 4.2±2.9 14.6±3.9 0.0±0.0
ODIS 100.0±0.0 46.2±13.6 85.6±7.6 20.0±7.8 65.0±5.4 28.7±6.7 43.8±5.2 8.1±2.5
HiSSD 96.4±2.8 49.2±7.2 89.8±5.2 25,3±2.9 59.3±5.2 24.2±3.9 44.9±2.9 5.1±2.9
BiKT 100.0±0.0 62.5±5.0 93.8±3.2 28.2±6.3 68.1±6.8 28.3±4.3 46.8±5.2 7.1±4.7

Figure 4: (a) and (b) represent discovered individual skill embeddings from source tasks. Each color
represents a different individual skill type, which can be reused in different tasks. (c) and (d) represent
the frequency of tactic usage per task from source tasks. Each tactic ID corresponds to a distinct team
tactic. Representative skill and tactic examples are shown in Figure 5.

performance, the task set is denoted by CN and each task is denoted by CN-N, where N denotes the
number of agents. Our training uses offline datasets provided by [41].

5.2 Performance Comparisons

Baselines We compare BiKT against representative baselines. 1. UPDeT, which extends the
transformer-based UPDeT architecture by introducing a transformer-based Q-mixing network to
enable effective multi-task policy learning. 2.ODIS [41], which leverages coordination skills extracted
from offline multi-task data and learns to differentiate agent behaviors. 3. HiSSD [20], which employs
a hierarchical framework that jointly learns shared and task-specific skills across multiple tasks. All
methods are trained from source tasks and evaluated directly on unseen tasks.

Overall, our method outperforms baselines. The results for task set Marine-Hard and CN are
shown in Table 1, 2. For paper limits, the results of Stalker-Zealot and Marine-Easy are detailed in
the Appendix 9, 10. In task set Marine Hard, our method achieves superior performance compared
to baselines, especially on the Expert and Medium-Expert datasets. In contrast, UPDeT simply relies
on network design to enable multi-task learning, without explicitly considering policy transfer. This
limits its ability to generalize beyond simple tasks like 3m. While ODIS performs well on source
tasks, its success is limited to similar tasks(e.g., 3m, 4m, 5m,...). It fails to transfer performance
from 5m_vs_6m to more distinct unseen tasks such as 7m_vs_8m and 8m_vs_9m, especially under
low-quality offline datasets. HiSSD learns to distinguish common and specific skills across, which
implicitly serve as task-specific guidance information. In contrast, our method explicitly learns
cooperative tactics from skill combinations, resulting in superior performance.

Ablation Study We detail them in the Appendix D.3 due to the paper limits.

5.3 Strengths of BiKT
Our method can discover common individual skills. Figure 4 shows the t-SNE visualization of
the learned individual skill embeddings for the source tasks of Marine-Hard and Stalker-Zealot. It
does not differentiate the skills from different tasks, which we include in Appendix D.2. Trajectories
are collected using the trained BiKT policy. Figure 5 explains several semantics of these skills, and
more explanations for each skills are provided in the Appendix D.4. From the visualizations, we can
conclude that the skills exhibit a clear clustering trend, which reflects a shared and reusable skill set
Besides, the embeddings of the same skill type may vary across tasks for different action adaptation.

8

Figure 5: Examples of tactic transfer in different task sets. In case (a), there exists unbalanced health
point (HP) among the agents, the high HP agent takes the skill A1 to advance, the low HP agents take
skill A3 to escape and other agents take skill A2 to keep firing. It corresponds to the tactic that a high
HP agent advances to draw firepower and protect the team, which is effectively transferred to tasks
7m_vs_8m and 9m_vs_10m. In case (d), one stalker takes the skill B2 to draw attack from stalker
enemies, the other stalker takes the skill B1 to attack the weaker zealot enemy, and the rest zealots
take the skill B3 to attack enemies. Considering that the stalkers are more powerful than zealots, this
forms the key tactic 2 for winning, which is been learned to transfer to task 3s3z and 3s4z.

Our method can discover diverse cooperative tactics. We collect 32 trajectories of trained policies
in different tasks and track the frequency of discovered team tactics. Figure 4 presents the usage
distribution of each tactic ID under the Marine-Hard and Stalker-Zealot task sets. We conclude that
certain team tactics are consistently utilized across all tasks. However, some tactics vary significantly
in frequency depending on the task, often serving as key factors for success. team focus fire of tactic 2
is preferred in scenarios with numerical disadvantage (e.g., 5m_vs_6m), helping to quickly eliminate
threats, while local team fire of tactic 4 suits simpler tasks like 3m. These results indicate that our
method selects tactics adaptively, depending on task-specific requirements.

Explicable example: Our method performs policy transfer by bi-level knowledge. Figure 5
shows two examples illustrating how our method enables policy transfer by reusing learned tactics.
In both cases, the policy leverages specific tactics learned from source tasks and successfully gener-
alizes them to unseen tasks, facilitating coordinated team behavior. Notably, the team cooperative
information in these two examples cannot be transferred by skills from the individual level. This
demonstrates that agents leverage the same tactic to infer similar skill combination across tasks.

6 Conclusion

In this paper, we aim to tackle the problem of multi-task MARL generalization via offline data.
Though existing works utilize skill-based methods to achieve knowledge transfer, we argue that
transferring skills alone is not efficient. We think the efficient knowledge transfer in multi-task
MARL includes two levels: the individual level that transfers skills and the team level that transfers
cooperative tactics. To fulfill it, we introduce our BiKT method, which first discovers latent skill
representations from offline trajectories using a VAE, then constructs a discrete tactic codebook via
VQ-VAE, and finally learns a policy with a Bi-Level Decision Transformer that select tactic id and
executes skills sequentially. Experimental results demonstrate that BiKT significantly improves the
zero-shot generalization performance of mutli-task MARL.

9

7 Acknowledgements

This work was supported in part by the National Key R&D Program of China (No. 2025ZD0122000),
NSFC 62273347, the Key Research and Development Program of Jiangsu Province (BE2023016).

References
[1] Akshat Agarwal, Sumit Kumar, and Katia Sycara. Learning transferable cooperative behavior

in multi-agent teams. arXiv preprint arXiv:1906.01202, 2019.

[2] Yongcan Cao, Wenwu Yu, Wei Ren, and Guanrong Chen. An overview of recent progress in
the study of distributed multi-agent coordination. IEEE Transactions on Industrial informatics,
9(1):427–438, 2012.

[3] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[4] Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforcement learning
for large-scale traffic signal control. IEEE transactions on intelligent transportation systems,
21(3):1086–1095, 2019.

[5] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

[6] Claude Formanek, Asad Jeewa, Jonathan Shock, and Arnu Pretorius. Off-the-grid marl: Datasets
with baselines for offline multi-agent reinforcement learning. arXiv preprint arXiv:2302.00521,
2023.

[7] Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning
without exploration. In International conference on machine learning, pages 2052–2062.
PMLR, 2019.

[8] Cong Guan, Feng Chen, Lei Yuan, Zongzhang Zhang, and Yang Yu. Efficient communication
via self-supervised information aggregation for online and offline multiagent reinforcement
learning. IEEE Transactions on Neural Networks and Learning Systems, 2024.

[9] Xiaotian Hao, Hangyu Mao, Weixun Wang, Yaodong Yang, Dong Li, Yan Zheng, Zhen Wang,
and Jianye Hao. Breaking the curse of dimensionality in multiagent state space: A unified agent
permutation framework. arXiv preprint arXiv:2203.05285, 2022.

[10] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal multi-agent rein-
forcement learning via policy decoupling with transformers. arXiv preprint arXiv:2101.08001,
2021.

[11] Maximilian Hüttenrauch, Adrian Šošić, and Gerhard Neumann. Deep reinforcement learning
for swarm systems. Journal of Machine Learning Research, 20(54):1–31, 2019.

[12] Shariq Iqbal, Christian A Schroeder De Witt, Bei Peng, Wendelin Böhmer, Shimon Whiteson,
and Fei Sha. Randomized entity-wise factorization for multi-agent reinforcement learning. In
International Conference on Machine Learning, pages 4596–4606. PMLR, 2021.

[13] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[14] Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion
policies for offline reinforcement learning. Advances in Neural Information Processing Systems,
36:67195–67212, 2023.

[15] Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

10

[16] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. arXiv preprint arXiv:2110.06169, 2021.

[17] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for
offline reinforcement learning. Advances in neural information processing systems, 33:1179–
1191, 2020.

[18] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning:
Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

[19] Jie Liu, Yinmin Zhang, Chuming Li, Chao Yang, Yaodong Yang, Yu Liu, and Wanli Ouyang.
Masked pretraining for multi-agent decision making. 2023.

[20] Sicong Liu, Yang Shu, Chenjuan Guo, and Bin Yang. Learning generalizable skills from offline
multi-task data for multi-agent cooperation. arXiv preprint arXiv:2503.21200, 2025.

[21] Qian Long, Zihan Zhou, Abhibav Gupta, Fei Fang, Yi Wu, and Xiaolong Wang. Evolution-
ary population curriculum for scaling multi-agent reinforcement learning. arXiv preprint
arXiv:2003.10423, 2020.

[22] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. Advances in neural
information processing systems, 30, 2017.

[23] Linghui Meng, Muning Wen, Chenyang Le, Xiyun Li, Dengpeng Xing, Weinan Zhang, Ying
Wen, Haifeng Zhang, Jun Wang, Yaodong Yang, et al. Offline pre-trained multi-agent decision
transformer. Machine Intelligence Research, 20(2):233–248, 2023.

[24] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. Deep reinforcement learning for
multiagent systems: A review of challenges, solutions, and applications. IEEE transactions on
cybernetics, 50(9):3826–3839, 2020.

[25] Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized pomdps,
2015.

[26] Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline
multi-agent reinforcement learning with actor rectification. In International conference on
machine learning, pages 17221–17237. PMLR, 2022.

[27] Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

[28] Rongjun Qin, Feng Chen, Tonghan Wang, Lei Yuan, Xiaoran Wu, Yipeng Kang, Zongzhang
Zhang, Chongjie Zhang, and Yang Yu. Multi-agent policy transfer via task relationship modeling.
Science China Information Sciences, 67(8):182101, 2024.

[29] Jorge Pena Queralta, Jussi Taipalmaa, Bilge Can Pullinen, Victor Kathan Sarker, Tuan Nguyen
Gia, Hannu Tenhunen, Moncef Gabbouj, Jenni Raitoharju, and Tomi Westerlund. Collaborative
multi-robot search and rescue: Planning, coordination, perception, and active vision. Ieee
Access, 8:191617–191643, 2020.

[30] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent
reinforcement learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

[31] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nan-
tas Nardelli, Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

[32] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-
aware unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

11

[33] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296,
2017.

[34] Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

[35] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. Qplex: Duplex dueling
multi-agent q-learning. arXiv preprint arXiv:2008.01062, 2020.

[36] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

[37] Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong
Yang. Multi-agent reinforcement learning is a sequence modeling problem. Advances in Neural
Information Processing Systems, 35:16509–16521, 2022.

[38] Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement
learning. arXiv preprint arXiv:1911.11361, 2019.

[39] Xu Xu, Youwei Jia, Yan Xu, Zhao Xu, Songjian Chai, and Chun Sing Lai. A multi-agent rein-
forcement learning-based data-driven method for home energy management. IEEE Transactions
on Smart Grid, 11(4):3201–3211, 2020.

[40] Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang,
and Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:10299–10312,
2021.

[41] Fuxiang Zhang, Chengxing Jia, Yi-Chen Li, Lei Yuan, Yang Yu, and Zongzhang Zhang.
Discovering generalizable multi-agent coordination skills from multi-task offline data. In The
Eleventh International Conference on Learning Representations, 2022.

[42] Junkai Zhang, Yifan Zhang, Xi Sheryl Zhang, Yifan Zang, and Jian Cheng. Intrinsic action
tendency consistency for cooperative multi-agent reinforcement learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 17600–17608, 2024.

[43] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Başar. Finite-sample anal-
ysis for decentralized batch multiagent reinforcement learning with networked agents. IEEE
Transactions on Automatic Control, 66(12):5925–5940, 2021.

[44] Zhi Zhang, Jiachen Yang, and Hongyuan Zha. Integrating independent and centralized
multi-agent reinforcement learning for traffic signal network optimization. arXiv preprint
arXiv:1909.10651, 2019.

[45] Zijie Zhao, Honglei Guo, Shengqian Chen, Kaixuan Xu, Bo Jiang, Yuanheng Zhu, and Dongbin
Zhao. Empowering multi-robot cooperation via sequential world models. arXiv preprint
arXiv:2509.13095, 2025.

[46] Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pages 27042–27059. PMLR, 2022.

[47] Tianze Zhou, Fubiao Zhang, Kun Shao, Kai Li, Wenhan Huang, Jun Luo, Weixun Wang,
Yaodong Yang, Hangyu Mao, Bin Wang, et al. Cooperative multi-agent transfer learning with
level-adaptive credit assignment. arXiv preprint arXiv:2106.00517, 2021.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes] Our abstract and introduction accurately reflect the contribution

Justification: Please refer to and 1

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes] We discussed our limitations

Justification: We provide them in the Appendix F

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA] Our paper does not include experiments.

13

Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] Our paper disclose the information for the experiments.
Justification: We provide them in Appendix C and our code is in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes] We provide code in the supplementary material.
Justification: We provide code in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] we specify the training details.
Justification: We provide the experimental details in the Appendix C and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes] We provide error bars in our experiments.
Justification: Please refer to Experiments 5 and Appendix D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] We provide the computing resources for the experiments.

Justification: Please refer to the Appendix C

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] We obey the NeurIPS Code of Ethics.

Justification: We obey the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] . Our method is applied to policy learning and transfer in MARL, whose
main experimental scenario is a game engine and does not contain social information and
personal privacy, with no social impacts

Justification: [NA] . Our method is applied to policy learning and transfer in MARL, whose
main experimental scenario is a game engine and does not contain social information and
personal privacy, with no social impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] . Our paper does not pose such risks.

Justification: Our paper does not pose such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes] The used assets are properly credited in our paper.

Justification: We use the SMAC experiment under the Apache 2.0 license and the MPE
environment, which is released under the MIT license. For the offline dataset, we use it from
ODIS with the Apache License v2.0.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] The code is well documented in the supplemental materials.
Justification: The code is well documented in the supplemental materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] Our paper does not involve crowdsourcing nor research with human subjects.
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] Our paper does not involve crowdsourcing nor research with human subjects.
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] Our method does not involve LLMs as components.
Justification: Our method does not involve LLMs as components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A PSEUDOCODE of our method

The pseudocode of our method is detailed in 1.

Algorithm 1 BiKT for Multi-Task MARL
1: Inputs:
2: The offline dataset Dsrc = {Dn

src}Nsrc
n=1, Individual Skill Encoder pskill, Action Decoder qact, cooperative tactic

encoder ptac, skill decoder qskill, the tactic codebook embeddings C = {ck}Kk=1, the skill-based decision
transformer {πi}Ni=1, the number of source tasks Nsrc, the number of agents N , the tactic codebook number
K, the content length of bi-level decision transformer L, learning rates l1, l2, l3

3: Training:
4: for each timestep t in 1..H do
5: Sample δit = (st, τ

i
t ,at) ∼ Dsrc # Individual Skill Learning

6: Use δit to compute Lskill(ϕ1) in Eq. 3.
7: Calculate gradients to update pskill and qact, with learning rate l1
8: end for
9: for each timestep t in 1..H do

10: Sample ζit = (st, τ
i
t , z

1
t , ..., z

N
t) ∼ Dsrc # Cooperative Tactic Codebook Learning

11: Use ζit to compute Ltactic(ϕ2) in Eq. 4.
12: Calculate gradients to update ptac and qskill, with learning rate l2
13: end for
14: for each timestep t in 1..H do
15: Sample Ωi

t = (τ i
≤t, c

i
<t, z

i
<t, R̂

i
t) ∼ Dsrc # Bi-level Decision Transformer Learning

16: Use Ωi
t to compute Lpolicy(θ) in Eq. 5.

17: Calculate gradients to update pskill and qact, with learning rate l3
18: end for
19: Execution:
20: for each timestep t in source task T n

src do
21: Given return-to-go {R̂i

t}Ni=1

22: {cit}Ni=1 ← πi
θ(c

i
t | R̂i

≤t, o
i
≤t, c

i
<t, z

i
<t) # Select team tactic

23: {zit}Ni=1 ← πi
θ(z

i
t | R̂i

≤t, o
i
≤t, c

i
≤t, z

i
<t) # Take Individual skills

24: {ai
t}Ni=1 ← qact(·|, τ i

t , ..., τ
N
t , z1t , ..., z

N
t) # Take Individual actions

25: end for

B Experiment Setting Details

B.1 SMAC

Environment Overview SMAC is derived from the real-time strategy game StarCraft II, focusing
on micromanagement. Unlike typical StarCraft II games that involve both macromanagement
(strategic planning) and micromanagement (fine control of units), SMAC is structured to emphasize
decentralized control by requiring each unit to be managed by an independent agent based solely on
local, limited observations. This setup necessitates multi-agents learning sophisticated cooperative
behaviors under the challenge of partial observability. SMAC consists of diverse micro scenarios
designed to assess how well agents coordinate to solve complex tasks. Each scenario involves two
opposing armies with variations in initial positioning, unit types, and terrain features.

Observations, Actions and Team Goal. At each timestep, agents gain local observations within
their field of view, providing information such as distance, health, shields, and unit type of visible units,
as well as terrain features. During centralized training, the global state includes comprehensive data
on all units, including energy levels and attack cooldowns. Agents have a discrete action set including
movement, attacks, healing by Medivacs with certain constraints ensuring decentralization. The
shooting range of units is limited compared to their sight range, necessitating strategic maneuvering.
The allied units are controlled by agents trained to maximize the win rate against enemy units
governed by the game’s AI using scripted strategies.

Multi-Task Settings. To assess multi-task generalization, we follow the ODIS setting with three
task sets: Marine-Hard, Marine-Easy, and Stalker-Hard. Each task set consists of distinct training

20

(a) SMAC Agent Local Observation (b) The Map 5m of SMAC (c) Cooperatiave Navigation

Table 3: Descriptions of tasks in the Marine-Hard task set.

Task type Task Ally units Enemy units Properties

Source tasks
3m 3 Marines 3 Marines homogeneous & symmetric

5m_vs_6m 5 Marines 6 Marines homogeneous & asymmetric
9m_vs_10m 9 Marines 10 Marines homogeneous & asymmetric

Unseen tasks

4m 4 Marines 4 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric

10m 10 Marines 10 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

7m_vs_8m 7 Marines 8 Marines homogeneous & asymmetric
8m_vs_9m 8 Marines 9 Marines homogeneous & asymmetric

10m_vs_11m 10 Marines 11 Marines homogeneous & asymmetric
10m_vs_12m 10 Marines 12 Marines homogeneous & asymmetric
13m_vs_15m 13 Marines 15 Marines homogeneous & asymmetric

source tasks and testing scenarios. Specific details for each task set are presented in the Tables 3, 4
and 5. The Marine-Hard and Marine-Easy sets comprise different marine battle scenarios where
the learned multi-agent strategy must guide allied marines against enemy marines controlled by the
game’s AI, matching or exceeding in number. The Stalker-Zealot set consists of several challenges
involving equal numbers of stalkers and zealots on either side.

Offline Dataset. In our experiments, we use the same dataset collected by ODIS for the fair
comparison. Within each task set, the offline data is collected by pre-trained QMIX policies with
different levels of performance: Expert, Medium, Medium-Expert and Medium-Replay. The Expert
policy is trained with 2,000,000 environment steps. The Medium policy is trained until it achieves
approximately a 50The Medium-Expert dataset is a mixture of trajectories from both the Expert and
Medium policies. The Medium-Replay dataset is obtained from the replay buffer of the Medium
policy, which contains a larger proportion of lower-quality trajectories. Table 6 summarizes the full
settings of the offline datasets.

B.2 Cooperaitve Navigation

Environment Overview To further evaluate our method, we consider a task set based on the
Cooperative Navigation (CN) scenario, a representative cooperative task from the Multi-Agent
Particle Environment (MPE). The environment consists of N agents and L landmarks situated in a
two-dimensional continuous space with discrete time steps. Agents must coordinate their physical
actions to reach the L landmarks. Each agent observes the relative positions of other agents and
landmarks, and the team receives a shared reward based on the proximity of any agent to each
landmark—that is, the goal is for all landmarks to be ‘covered’ by the team. Agents occupy physical
space and are penalized for collisions with one another, encouraging coordinated but non-overlapping
behaviors. In this setting, agents must infer which landmark to cover and navigate there while
avoiding others. The agents can execute discrete actions of moving towards four directions and a
“none” operation.

21

Table 4: Descriptions of tasks in the Marine-Easy task set.

Task type Task Ally units Enemy units Properties

Source tasks
3m 3 Marines 3 Marines homogeneous & symmetric
5m 5 Marines 5 Marines homogeneous & symmetric
10m 10 Marines 10 Marines homogeneous & symmetric

Unseen tasks

4m 4 Marines 4 Marines homogeneous & symmetric
6m 6 Marines 6 Marines homogeneous & symmetric
7m 7 Marines 7 Marines homogeneous & symmetric
8m 8 Marines 8 Marines homogeneous & symmetric
9m 9 Marines 9 Marines homogeneous & symmetric
11m 11 Marines 11 Marines homogeneous & symmetric
12m 12 Marines 12 Marines homogeneous & symmetric

Table 5: Descriptions of tasks in the Stalker-Zealot task set.

Task type Task Ally units Enemy units Properties

Source tasks

2s3z 2 Stalkers, 2 Stalkers, heterogeneous & symmetric3 Zealots 3 Zealots

2s4z 2 Stalkers, 2 Stalkers, heterogeneous & symmetric4 Zealots 4 Zealots

3s5z 3 Stalkers, 3 Stalkers, heterogeneous & symmetric5 Zealots 5 Zealots

Unseen tasks

1s3z 1 Stalkers, 1 Stalkers, heterogeneous & symmetric3 Zealots 3 Zealots

1s4z 1 Stalkers, 1 Stalkers, heterogeneous & symmetric4 Zealots 4 Zealots

1s5z 1 Stalkers, 1 Stalkers, heterogeneous & symmetric5 Zealots 5 Zealots

2s5z 2 Stalkers, 2 Stalkers, heterogeneous & symmetric5 Zealots 5 Zealots

3s3z 3 Stalkers, 3 Stalkers, heterogeneous & symmetric3 Zealots 3 Zealots

3s4z 3 Stalkers, 3 Stalkers, heterogeneous & symmetric4 Zealots 4 Zealots

4s3z 4 Stalkers, 4 Stalkers, heterogeneous & symmetric3 Zealots 3 Zealots

4s4z 4 Stalkers, 4 Stalkers, heterogeneous & symmetric4 Zealots 4 Zealots

4s5z 4 Stalkers, 4 Stalkers, heterogeneous & symmetric5 Zealots 5 Zealots

Multi-Task settings. The task set of CN consists of different numbers of agents. Specifically, CN-n
denotes a CN map containing n agents. Offline datasets are collected using the QMIX algorithm.
Detailed dataset settings are summarized in Table 7.

B.3 Computing Resources

For computing resources, we utilize the Intel(R) Xeon(R) Gold 5220 CPU and NVIDIA TITAN RTX
GPU in the experiments. Each experiment in per task set lasts on average for 8 hours.

C Implementation Details

In this section, we will provide the model structure, the hyperparameters, and other training details of
ODIS. We present each part of BiKT in the following sections.

22

Table 6: Properties of offline datasets in SMAC with different qualities.

Tasks Quality Trajectories Average Return Average Win Rate

3m

expert 2000 19.8929 0.9910
medium 2000 13.9869 0.5402
medium-expert 4000 16.9399 0.7656
medium-replay 3603 N/A N/A

5m

expert 2000 19.9380 0.9937
medium 2000 17.3288 0.7411
medium-expert 4000 18.6334 0.8674
medium-replay 711 N/A N/A

10m

expert 2000 19.9438 0.9922
medium 2000 16.6297 0.5413
medium-expert 4000 18.2595 0.7626
medium-replay 571 N/A N/A

5m_vs_6m

expert 2000 17.3424 0.7185
medium 2000 12.6408 0.2751
medium-expert 4000 14.9916 0.4968
medium-replay 32607 N/A N/A

9m_vs_10m

expert 2000 19.6140 0.9431
medium 2000 15.5049 0.4146
medium-expert 4000 17.5594 0.6789
medium-replay 13731 N/A N/A

2s3z

expert 2000 19.7655 0.9602
medium 2000 16.6279 0.4465
medium-expert 4000 18.1967 0.7034
medium-replay 4505 N/A N/A

2s4z

expert 2000 19.7402 0.9509
medium 2000 16.8735 0.4965
medium-expert 4000 18.3069 0.7237
medium-replay 6172 N/A N/A

3s5z

expert 2000 19.7850 0.9518
medium 2000 16.3126 0.3114
medium-expert 4000 18.0488 0.6316
medium-replay 11528 N/A N/A

Table 7: Properties of offline datasets in Cooperative Navigation with different qualities.

Tasks Quality Trajectories Average Return Average Win Rate

CN-2 expert 2000 1.0000 1.0000
medium 2000 0.6152 0.6152

CN-4 expert 2000 0.7173 0.7173
medium 2000 0.4273 0.4273

C.1 Multi-Head Attention

We utilize Multi-Head Attention (MHA) to represent the embeddings of skills and tactics. This
mechanism enables the model to jointly attend to different representation subspaces, making it
effective for modeling contextual dependencies. Given query, key, and value matrices Q ∈ RT×d,
K ∈ RS×d, and V ∈ RS×d, the scaled dot-product attention is computed as in Equation 6. Multi-
head attention applies this operation across h heads, where each head has its own projection matrices
WQ

i , WK
i , and WV

i . The result of each head is shown in Equation 7, and the final output is formed

23

...
...

...

 M
LP...

...

...

state
decouple

...

M
ul

ti-
H

ea
d

At
te

nt
io

n
M

ul
ti-

H
ea

d
At

te
nt

io
n

M
ul

ti-
H

ea
d

At
te

nt
io

n

 M
LP

observation
decoupling

Concate

 M
LP

 MLP

M
ul

ti-
H

ea
d

At
te

nt
io

n
M

ul
ti-

H
ea

d
At

te
nt

io
n

M
ul

ti-
H

ea
d

At
te

nt
io

n M
LP

...

...

...
...

 M
LP ...

...

 M
LP

...
...

 M
LP

 MLP

...

Sa
m

pl
e

...

Figure 6: The detailed model structure of our individual skill learning.

by concatenating all heads and applying a linear projection, as shown in Equation 8.

Attention(Q,K, V) = softmax

(
QK⊤
√
dk

)
V (6)

headi = Attention(QWQ
i ,KWK

i , V WV
i) (7)

MHA(Q,K, V) = Concat(head1, . . . ,headh)W
O (8)

C.2 Details of Individual Skill Learning

The detailed architecture for individual skill learning is illustrated in Figure 6. During the skill
encoding phase, each agent employs the shared encoder pskill(· | s,a, i) to compute its latent skill
embedding zi ∈ RNs . Specifically, the encoder takes as input the global state s, the joint action a,
and the agent index i.

To construct the encoder input, we first concatenate the actions and entity features of the N allied
agents. These N concatenated representations, along with the remaining M − N entity features
(e.g., enemies or neutral units), are mapped into a unified set of M embeddings. These embeddings
are then passed through the Multi-Head Attention module of the Transformer. Finally, we take the
N attention outputs corresponding to the allied agents and feed them into an MLP to generate the
individual skill embeddings.

To reconstruct actions, each agent is expected to infer its action based on its trajectory history and
individual skill embedding. To achieve this, we first extract entity features from the observation oi,
and process the history τ it and entity features through separate multilayer perceptrons (MLPs). The
resulting representations are then fed into a MHA module to capture relevant contextual dependencies.
The MHA output is subsequently concatenated with the individual skill embedding zit and passed
through another set of MLPs to produce the action logits. These logits define the action distribution
Pact over Nact discrete action dimensions. Finally, the action is sampled from this distribution for
execution.

C.3 Details of Cooperative Tactic Learning

The detailed architecture for the cooperative tactic codebook is illustrated in Figure 7. We construct the
Cooperative Tactic Encoder ptac(· | s, {zi}Ni=1) → ĉt ∈ RNs , the Skill Decoder qskill(· | τ i, ck) → ẑit ,
and the tactic codebook C = {ck}Kk=1. The tactic embeddings in codebook C is randomly initialized.

The Tactic Encoder maps the global state st and the individual skill embeddings [z1t , . . . , z
N
t] into

a continuous tactic representation ĉt. Specifically, each individual skill zit is concatenated with the
corresponding ally’s entity features, forming N enriched ally representations. These, along with
the remaining entity features, are separately embedded into vectors and then fed into the MHA
module. The outputs are averaged to produce the final tactic embedding. This tactic embedding is
then discretized by searching the nearest neighbor in the tactic codebook C, resulting in the selected
tactic ck ∈ C.

To decode the individual skills, the entity features extracted from observations and agent i’s trajectory
history τ i are fed into the skill decoder qskill. These inputs are first embedded separately using MLPs
and then passed through the MHA module. The output embedding corresponding to agent i and the
individual skill representation zt are passed through an MLP to generate the final decoded skill.

24

...
...

...

 M
LP...

...

...

...

Concate

M
ul

ti-
H

ea
d

At
te

nt
io

n
M

ul
ti-

H
ea

d
At

te
nt

io
n

M
ul

ti-
H

ea
d

At
te

nt
io

n M
LP

...

...
...

M
ea
n

 MLP

Tactic Codebook

N
N
S

M
ul

ti-
H

ea
d

At
te

nt
io

n
M

ul
ti-

H
ea

d
At

te
nt

io
n

M
ul

ti-
H

ea
d

At
te

nt
io

n

 M
LP

observation
decouple ...

...

 M
LP

 MLP

 M
LP

state
decouple

...
...

...

Figure 7: The detailed model structure of our cooperative tactic codebook.

Subsequently, the Skill Decoder reconstructs each agent’s latent skill ẑit from its local trajectory
history τ i and the selected tactic ck. This process enables the integration of global cooperative
strategies with decentralized agent behavior during execution.

During the tactic encoding phase, each agent employs the encoder ptac(· | s,a, i) to compute its latent
skill embedding zi ∈ RNs . Specifically, the encoder takes as input the global state s, the joint action
a, and the agent index i.

Stop-Gradient Operator. The stop-gradient operator, denoted as sg[·], is used to block gradients
during backpropagation while preserving values during the forward pass. Formally, for a variable x,
the stop-gradient operation behaves as:

Forward: sg[x] = x, Backward:
∂ sg[x]
∂x

= 0. (9)

That is, in the forward pass, sg[x] evaluates to the same value as x, but during the backward pass, no
gradients are propagated through sg[x].

C.4 Hyper-parameters of BiKT

The hyperparameters of our method are detailed in Table 8

Table 8: Hyperparameters of our method.

Hyperparameter Value
Individual skill dimension Ns 4
Tactic embedding Nc 64
The number of tactics in C: K 16
Hidden layer dimension of BDT 64
The multi-head number of BDT 2
The content length of BDT 10
Optimizer Adam
Training steps for Lskill 15000
Training steps for Ltactic 8000
Training steps for Lpolicy 30000
Batch size 32
learning rate l1 0.0004
learning rate l2 0.0001
learning rate l3 0.0002
β1 1
β2 0.01
α 0.05

25

Table 9: The performance of different methods in Task set Stalker Zealot.

Tasks Expert Medium
UPDeT-m ODIS Hi-SSD BiKT UPDeT-m ODIS Hi-SSD BiKT

Source Tasks

2s3z 50.0±33.4 97.7±2.6 95.2±1.0 97.9±2.3 35.0±23.0 49.2±8.4 32.3±11.7 51.6±3.3
2s4z 23.4±26.6 60.9±6.8 79.8±6.0 93.2±5.1 18.8±10.3 32.8±12.2 17.0±2.2 25.0±7.4
3s5z 17.2±19.8 87.5±9.6 92.8±5.0 93.0±4.5 25.6±24.2 28.9±6.8 24.4±7.9 29.8±2.3

Unseen Tasks

1s3z 1.6±1.6 76.6±3.5 81.6±15.2 77.0±4.2 3.8±5.0 41.4±18.8 44.2±9.9 32.4±0.4
1s4z 26.6±19.3 17.2±10.5 42.0±26.1 52.6±15.1 2.5±3.6 50.7±7.5 18.1±11.0 22.6±0.5
1s5z 29.7±26.4 2.5±2.3 16.7±12.3 8.7±4.3 5.0±4.2 14.1±8.4 2.5±2.2 18.8±3.9
2s5z 23.4±22.2 27.3±6.0 79.7±2.2 75.3±3.2 16.9±14.1 32.0±4.6 11.3±3.7 24.2±6.5
3s3z 20.3±10.9 89.1±5.2 88.0±4.5 98.4±1.6 24.4±28.6 23.4±9.2 21.9±10.7 34.4±2.2
3s4z 12.5±19.9 96.9±2.2 88.1±9.0 97.7±2.3 28.8±31.6 50.8±15.5 17.2±4.5 54.8±0.5
4s3z 6.2±4.4 64.1±13.0 88.6±4.1 96.9±2.3 11.2±18.0 13.3±7.5 31.9±23.2 18.7±0.1
4s4z 7.8±13.5 79.7±10.9 73.4±5.2 75.5±5.3 1.2±1.5 12.5±7.0 13.2±6.5 16.7±1.4
4s5z 5.5±7.8 86.7±12.6 65.6±3.7 44.5±6.8 5.6±8.5 7.0±4.1 4.5±1.3 8.3±1.4
4s6z 4.7±6.4 88.3±8.4 68.4±4.9 68.2±6.9 1.9±2.5 1.6±1.6 0.9±0.9 2.5±2.5

Medium-Expert Medium-Replay

Source Tasks

2s3z 57.5±27.1 58.6±15.5 68.1±8.1 81.3±7.4 14.4±13.2 15.6±18.2 9.0±1.5 30.2±8.4
2s4z 53.1±24.6 41.4±7.8 41.9±10.2 73.8±7.8 12.5±9.7 7.8±5.2 6.0±1.2 30.8±7.1
3s5z 35.0±23.5 41.4±18.5 57.8±10.7 59.1±8.7 20.0±16.6 18.8±3.1 17.5±2.0 19.3±7.1

Unseen Tasks

1s3z 4.4±8.8 72.7±12.2 73.0±10.2 75.9±9.1 0.0±0.0 21.1±20.4 36.3±7.1 30.9±9.1
1s4z 11.9±9.8 44.5±20.3 32.3±30.5 37.9±5.9 7.5±10.0 6.2±7.7 24.8±9.1 26.3±7.2
1s5z 3.8±4.6 42.2±31.4 9.4±9.5 14.4±19.4 11.9±9.6 7.8±6.4 4.4±2.2 12.5±4.7
2s5z 37.5±22.5 43.0±10.7 25.6±7.8 19.0±5.2 20.0±16.8 14.1±8.1 16.5±2.8 17.2±8.4
3s3z 33.8±15.0 50.0±13.3 56.6±25.6 57.9±8.2 17.5±12.3 25.0±20.1 9.6±3.3 27.6±4.5
3s4z 43.1±20.7 52.3±9.5 71.7±9.7 75.6±13.3 15.6±11.2 19.5±16.6 22.5±10.6 19.4±11.1
4s3z 23.8±21.0 17.2±7.2 60.5±15.1 28.8±9.4 11.2±15.0 8.6±14.9 11.0±10.4 10.4±5.1
4s4z 10.6±13.8 20.3±6.8 37.3±9.4 39.9±4.9 5.6±9.8 4.7±8.1 9.4±1.8 8.3±2.9
4s5z 11.9±16.1 21.9±2.2 17.0±4.1 24.3±5.3 10.6±19.7 0.8±1.4 0.8±0.8 4.4±3.5
4s6z 5.0±8.5 18.0±5.1 19.7±5.9 14.8±3.2 6.9±13.8 2.3±4.1 2.3±4.1 3.5±2.9

Table 10: The performance of different methods in Task set Marine Easy

Tasks Expert Medium
UPDeT-m ODIS Hi-SSD BiKT UPDeT-m ODIS Hi-SSD BiKT

Source Tasks

3m 83.6±12.6 97.7±2.6 99.5±8.1 99.4±1.3 60.2±29.9 57.8±9.2 74.7±14.6 87.2±4.7
5m 74.8±22.9 95.3±5.2 99.9±0.0 99.9±0.0 67.8±5.9 82.8±5.2 81.6±10.8 74.2±5.9
10m 83.6±19.2 88.3±20.3 95.2±8.4 99.9±0.0 48.8±7.9 71.9±6.6 84.8±8.6 82.1±7.2

Unseen Tasks

4m 53.0±32.3 90.6±7.0 94.4±2.9 96.9±1.5 41.7±17.4 63.3±16.1 74.5±15.5 75.5±8.6
6m 37.9±8.6 79.7±17.5 99.7±0.3 99.7±0.1 75.8±22.7 89.8±17.6 88.0±10.0 83.0±4.7
7m 44.2±13.2 72.7±16.9 99.1±0.7 99.7±0.1 65.2±25.2 96.1±1.4 97.3±2.3 89.9±0.0
8m 51.7±26.2 80.9±14.4 99.8±0.3 99.1±0.1 88.4±13.7 97.7±2.6 93.8±5.2 98.9±1.2
9m 76.3±13.4 99.2±1.4 99.9±0.0 99.9±0.0 64.8±35.6 87.5±2.2 75.2±15.5 88.9±11.8
11m 53.6±22.4 83.6±12.4 99.2±0.8 99.3±1.0 23.4±11.8 64.7±3.1 62.0±21.8 68.2±4.7
12m 44.3±22.8 70.3±30.2 99.7±1.1 99.6±1.0 13.5±11.7 41.4±6.0 55.5±25.7 49.7±13.4

Medium-Expert Medium-Replay

Source Tasks

3m 48.4±36.8 89.8±9.7 90.9±5.9 91.3±4.8 29.7±10.0 79.7±4.7 87.7±2.9 78.8±3.2
5m 64.1±17.9 83.7±16.0 79.4±6.9 85.3±5.9 6.2±10.8 3.1±5.4 87.5±2.9 88.5±1.6
10m 68.8±23.8 93.8±4.4 60.2±21.1 83.6±3.1 0.0±0.0 0.0±0.0 84.2±4.9 85.2±2.5

Unseen Tasks

4m 43.7±25.0 57.8±18.8 70.9±9.1 72.2±8.3 25.0±22.6 25.0±5.4 71.6±4.1 77.2±4.7
6m 47.7±30.0 76.0±6.0 70.6±6.1 78.2±1.6 0.0±0.0 3.1±5.4 99.8±0.3 86.8±3.2
7m 57.8±32.9 66.4±14.6 85.0±11.7 85.6±16.4 0.0±0.0 0.0±0.0 99.8±0.3 84.2±1.4
8m 40.6±19.3 43.8±11.5 72.8±9.5 68.3±4.6 0.0±0.0 1.6±1.6 96.7±0.3 87.6±1.7
9m 47.7±24.8 73.4±16.2 80.0±14.6 70.8±6.6 0.0±0.0 0.0±0.0 88.8±1.3 86.6±2.4
11m 85.9±14.2 68.8±20.3 70.9±5.9 75.5±12.4 0.0±0.0 0.0±0.0 45.6±4.5 52.3±3.6
12m 46.1±15.5 62.5±8.0 62.7±7.8 59.7±9.8 0.0±0.0 0.0±0.0 38.0±3.7 41.5±4.3

26

Figure 8: The individual skill embeddings.

D Additional Results

D.1 The performance comparison of other task sets.

The results for task set Stalker Zealot and Marine Easy are shown in Table 9 10. The Stalker Zealot
requires different tactics in different tasks, which brings big challenge in policy transfer. The results
show that our BiKT overall outperforms other baselines in both task sets. However, in Marine Easy,
the tactics required for each task are similar, resulting that all methods can achieve high performance.
It makes that Hi-SSD and BiKT can both obtain high performance in Expert setting.

D.2 Visualization of individual skills from source tasks

We additionally show the individual skill embeddings from the task labels, in Figure 8.

D.3 Ablation study

We conduct ablation experiments on task set Marine Hard to evaluate different variants of our method,
and the results are shown in Table 11.

• MADT_w_OD: To evaluate the impact of tactic and skill learning, we remove them and
let the decision transformer learns to take action directly, which naturally degrades into the
MADT method with observation decoupling, denoted by MADT_w_OD. For fairness, we
utilize the same hyperparameter in MADT_w_OD. For convenience we also provide the
results of MADT.

• L = 5: We set the context length of skill-based Decision Transformer πi as 5.

• CK=32: During the team tactic learning process, we set the tactic number of codebook K as
32.

• w/o C: We overpass the learning process of team tactic and directly let the skill-based
decision transformer to learn the individual skills. It is achieved by removing the cit
embedding token in Figure 3. At this time, the SDT policy learns to directly output the
individual skills and then takes its action.

• Con-Tac: Compared with continuous individual skill embeddings, we utilize a fixed number
of tactics. For that we employ a VAE to learn team-level tactics and use Continuous Tactic
(Con-Tac) embeddings instead of a discrete tactic set.

Ablation study: The action based policy struggles to generalize to different tasks. The results
of MADT_w_OD in Table 11 indicate that our proposed tactic and skill learning components play a
crucial role in the overall performance. Using an action-based policy introduces the challenge that
the agent must take different actions under similar observations across diverse tasks, which cannot be
addressed effectively without additional guiding information. As a result, MADT performs well only
in tasks with similar numbers of agents and comparable problem settings, such as 3m, 4m, and 5m.
Although the observation decoupling in MADT_w_OD leads to performance improvements, it is not
the primary contributing factor to generalization.

27

Ablation Study: Individual Skills Alone Cannot Transfer Diverse Team-Level Knowledge The
results of w/o C in Table 11 show that without the guidance of team tactics, our method’s performance
drops. This is because the policy must execute different skills without any external team-level
information. In this setting, agents tend to learn a fixed combination of skills that only adapts well
to a limited set of tasks, such as 3m, 4m, and 5m. However, this approach fails to capture diverse
team tactics required for more complex tasks like 7m_vs_8m and 8m_vs_9m, leading to a noticeable
decline in policy transfer performance .

Ablation Study: Discrete Tactic Codebook Outperforms Continuous Tactic Embeddings The
results for Con-Tac in Table 11 indicate that using continuous tactic embeddings can improve
performance on some tasks. However, it still falls short of the results achieved with a discrete
tactic codebook (BikT). We argue that each tactic should correspond to a clear, meaningful, and
reusable coordination pattern. Different tasks often share common tactics, which provide stable
team-level guidance and assist agents in selecting appropriate individual skills across varied scenarios.
Continuous tactic embeddings tend to blur this clarity, thereby weakening the effectiveness of team
strategies.

Ablation Study: Impact of Content Length and Tactic Codebook Size The results with a content
length L = 5 for the BDT model demonstrate that our method’s success does not heavily depend
on a complex Transformer architecture. Instead, the key factor is the way we incorporate bi-level
knowledge transfer in multi-task MARL, which proves to be highly effective. Regarding the tactic
codebook size, the results with C = 32 show that our tactic learning process converges to meaningful
and useful tactic embeddings. This indicates that a moderately sized codebook is sufficient to achieve
both efficiency and performance.

Table 11: The results of ablation study in task set Marine Hard

Source Tasks Unseen Tasks

3m 5m_vs_6m 9m_vs_10m 4m 5m 10m

MADT 88.5±3.9 3.1±0.0 1.0±1.5 83.3±5.3 75.0±6.8 1.0±1.5
MADT_w_OD 90.2±2.8 10.2±3.5 16.2±6.8 88.4±2.3 83.2±2.7 12.7±4.2
L = 5 100.0±0.0 78.9±3.5 98.4±1.5 99.3±0.9 99.9±0.8 97.2±1.5
CK=32 100.0±0.0 80.9±3.2 99.2±0.3 99.2±0.1 99.3±0.2 99.3±0.2
w/o C 98.2±0.2 68.2±5.3 83.2±2.5 90.2±1.9 88.6±2.7 86.2±3.2
Con-Tac 99.2±0.4 64.3±6.7 80.3±4.4 92.2±2.4 90.6±4.6 88.3±4.2

BiKT 100.0±0.0 81.3±4.5 99.4±0.4 99.3±0.1 100.0±0.0 99.4±0.1

Unseen Tasks

12m 7m_vs_8m 8m_vs_9m 10m_vs_11m 10m_vs_12m 13m_vs_15m

MADT 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
MADT_w_OD 8.2±3.2 8.4±3.9 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
L = 5 98.7±0.9 64.8±8.2 48.2±8.3 90.2±2.3 12.0±1.8 3.2±1.5
CK=32 99.0±0.2 70.2±8.0 46.2±7.4 90.2±2.1 12.3±2.2 3.3±1.6
w/o C 57.2±4.2 23.3±5.5 20.3±9.2 40.7±9.2 1.6±1.6 1.6±1.3
Con-Tac 60.5±3.8 18.2±7.4 17.8±5.2 38.7±8.3 0.9±0.5 0.5±0.4

BiKT 99.0±0.2 68.0±9.9 50.0±6.2 90.6±1.1 14.6±1.5 4.2±2.1

D.4 Semantic of Individual skills and tactics

We provide more examples for our learned skills and tactics, as shown in Figure 9, 10 and 12.

E Discissions

We adopt different strategies for learning tactic embeddings and skill embeddings, each with
a distinct focus. For tactic embeddings, which serve as a shared team-level guiding signal for all
agents, we represent them as fixed or discrete values. This design enables all agents to access the
same team guidance, facilitating coordinated cooperation. Additionally, we employ VQ-VAE to learn

28

Figure 9: The semantics of individual skills in Marine-Hard

Figure 10: The semantics of individual skills in Stalker-Zealot.

a compact set of tactic embeddings across multiple MARL tasks, allowing the discovery of a limited
set of reusable team strategies. In contrast, using a standard VAE for tactic learning would result
in a unique team guidance vector for each trajectory in every task, introducing higher randomness
and instability when generalizing to unseen tasks. For skill embeddings, we use a VAE to preserve
the diversity and distributional structure of the skill embedding space. The agents’ action semantics
vary across environments and agent numbers. Even when two agents in different scenarios exhibit
similar behaviors or skills, we still expect their skill embeddings to differ. Using VAE allows for
these embeddings to be mapped to actions with different physical meanings in different environment
maps.

F Limitations

While our proposed method demonstrates strong generalization across the evaluated tasks, it remains
an open question whether it can consistently maintain performance when scaled to highly diverse and
large-scale task distributions. Exploring more expressive or adaptive embedding mechanisms could
be a promising direction for future work.

29

Figure 11: The semantics of some tactics. The tactic ids correspond to Figure 4, which are learned
from the offline trajectories. In (a), agents are learned to take all fire to a single enemy target, which
can quickly eliminate an enemy and make up for the disadvantage in agent numbers. This tactic is
more aggressive, and the win rate is not stable. In (b), the agents are learned to attack their enemy
targets locally, without considering the disadvantage in agent numbers. It provides a more stable win
rate, but it falls in 5m_vs_6m.

Figure 12: The semantics of some tactics. The tactic ids correspond to Figure 4. In (a), agents are
learned to take skill A4 to keep away from neighbors, which forms the team tactic that the team
spreads out to disperse enemy fire. In (b), the agents learn to take skills B1 and B3, allowing the
stronger agent to attack a weaker enemy, while the weaker agent also targets a weak enemy. This
tactic leverages numerical superiority to quickly eliminate weaker opponents.

30

	Introduction
	Related Works
	Preliminary
	Cooperative Multi-Agent Reinforcement Learning.
	Multi-Task MARL: Policy Transfer via Offline Data
	Decision Transformer

	Method
	Knowledge Transfer through Individual Skills
	Knowledge Transfer through Cooperative Tactics
	Decision Making with Tactics and Skills

	Experiment
	Experiment Setup
	Performance Comparisons
	Strengths of BiKT

	Conclusion
	Acknowledgements
	PSEUDOCODE of our method
	Experiment Setting Details
	SMAC
	Cooperaitve Navigation
	Computing Resources

	Implementation Details
	Multi-Head Attention
	Details of Individual Skill Learning
	Details of Cooperative Tactic Learning
	Hyper-parameters of BiKT

	Additional Results
	The performance comparison of other task sets.
	Visualization of individual skills from source tasks
	Ablation study
	Semantic of Individual skills and tactics

	Discissions
	Limitations

