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Abstract— Ensuring constraint satisfaction of aerial systems
under uncertainties and disturbances remains a fundamental
challenge in safety-critical control. This work develops an adap-
tive tracking controller for a 2-DoF helicopter that guarantees
the plant states and control inputs remain within user-defined
safe sets, even in the presence of parametric uncertainties and
bounded external disturbances. State constraints are enforced
using a Barrier Lyapunov Function (BLF), while a saturated
control law ensures that the input adheres to prescribed
limits. Furthermore, an offline verifiable feasibility condition is
established to certify the existence of a feasible control policy.
The efficacy of the proposed controller is demonstrated through
real-time experiments on a Quanser 2-DoF helicopter platform.

I. INTRODUCTION

Safety-critical control has gained significant importance in
recent times, with safety often regarded as a primary design
objective, sometimes even more important than stability. In
many applications, safety requirements typically translate
into constraints on the system states and inputs, which
is challenging to handle especially in presence of under
parametric uncertainties and external disturbances. Classical
adaptive methods [1] guarantee bounded trajectories but do
not impose user-defined limits on state or input, and enforc-
ing such constraints while ensuring stability, robustness, and
feasibility remains nontrivial.
Existing approaches such as model predictive control (MPC)
[2] or control barrier function (CBF)-based methods [3],
typically rely on full model knowledge or online optimiza-
tion, making them computationally demanding for real-time
use. BLFs [4] offer an optimization-free solution to enforce
state constraints, but they can drive the control input toward
saturation near the boundary of the safe set. Saturated control
techniques [5] and anti-windup strategies [6] handle input
limits, yet they do not address state constraints and uncer-
tainties together. In [7], prescribed performance of output
error is achieved by modifying the reference online, which
precludes direct imposition of state constraints.
Motivated by these research gaps and building on our earlier
research [8], this work develops an adaptive controller for 2-
DoF helicopter model that ensures tracking while respecting
user-defined state and input limits in presence of parametric
uncertainties and bounded disturbances. A key contribution
is to establish an offline verifiable feasibility condition that
certifies when a constraint-compliant control policy exists.
The design blends a BLF-based adaptive law with a saturated
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feedback controller, while σ-modification ensures robustness.
The resulting controller is approximation-free, optimization-
free and offers a practical and efficient solution to enforce
user-defined safety constraints in uncertain Euler–Lagrange
(E-L) systems.

II. PROBLEM FORMULATION

Consider simplified E-L dynamics of a 2-DoF helicopter

M(q)q̈ + Vm(q, q̇)q̇ +Gr(q) = τ + d (1)

where M(q) ∈ Rn×n is the inertia matrix, Vm(q, q̇) ∈ Rn×n
is the centripetal-Coriolis matrix, and Gr(q) ∈ Rn denotes
the gravity vector. The plant states are q(t) =

[
θ(t) ψ(t)

]⊤
,

representing the pitch and yaw angles, respectively, with
q̇(t) ∈ R⋉ their corresponding angular velocities. The
disturbance d(t) ∈ Rn is bounded as ∥d(t)∥ < d̄, where
d̄ > 0 is known. The motor voltages map to the generalized

Fig. 1: Quanser 2-DoF helicpter model

torques via τ = T (q)V , where T (q) is non-singular. The
matrices in (1) are given by

M(q) =

[
Jp 0

0 Jy+ml
2 cos2θ

]
Vm(q,q̇)=

 0 ρψ̇

−ρψ̇ −ρθ̇


Gr(q) =

[
−mpglp cosθ+mhglh sinθ

0

]
T (q)=

Kpp Kpy

Kyp Kyy

 (2)

where, ρ = 1
2ml

2 sin(2θ). The E–L dynamics satisfy the
standard structural properties [9]. Let qd(t) ∈ Rn denote
the desired trajectory. The control objective is to design a
feasible input τ(t) ensuring that the tracking errors e(t) =
q(t)− qd(t), ė(t) = q̇(t) − q̇d(t) remain bounded while the
states and inputs remain within the user-defined safe sets,
i.e., q(t), q̇(t) ∈ Ωq and τ(t) ∈ Ωτ for all t ≥ 0, where
Ωq := {q, q̇ ∈ Rn : ∥q(t)∥ < Q̄, ∥q̇(t)∥ < V̄}, Ωτ :=
{τ ∈ Rn : ∥τ(t)∥ ≤ τ̄}, and Q̄, V̄, τ̄ > 0 are user-specified
constants.



III. PROPOSED METHODOLOGY

A. Constraint Conversion
Define the filtered tracking error r ≜ ė+αe, with α > 0.
Assumption 1: Reference trajectory and its derivatives are

bounded ∥qd(t)∥ ≤ Q̄d < Q̄, ∥q̇d(t)∥ ≤ V̄d < V̄ , ∥q̈d(t)∥ ≤
Ād, ∀t ≥ 0 where Q̄d, V̄d, Ād are known positive constants.
Provided, Assumption 1, state constraints can be transformed
to error constraints, ∥e(t)∥ < EQ, ∥ė(t)∥ < EV ∀t ≥ 0,
where EQ = Q̄− Q̄d, EV = V̄ − V̄d are known constants.

Assumption 2: The initial errors satisfy ∥e(0)∥ < ξ ≤ EQ,
∥r(0)∥ < κ, where κ, ξ are known positive constants which
satisfies κ < min(αξ, EV −αξ) and α is chosen s.t. α < EV

ξ .
Lemma 1: Provided Assumption 1-2 hold, if the filtered

tracking error satisfies ∥r(t)∥ < κ, t ≥ 0, the error con-
straints and consequently, the state constraints are satisfied.

Assumption 3: The E-L dynamics satisfy standard
bounds, i.e., ∥M(q)∥ ≤ km, ∥Vm(q, q̇)∥ ≤ kv∥q̇∥,
∥Gr(q)∥ ≤ kg , where km, kv, kg are known constants.

B. Input and State Constraint Satisfaction
Consider the saturated feedback controller

τi(t) =

ui(t), ∥u∥ ≤ τ̄ ,

τ̄

∥u∥ui(t), ∥u∥ > τ̄,
i = 1, . . . , n (3)

where, u = −Y θ̂ − Kr is the auxiliary input and K > 0
is user-defined constant. The filtered error dynamics is given
by Mṙ = Y θ̃ − Kr − Vmr + ∆τ , where, Y ∈ Rn×m is
known regressor matrix, θ ∈ Rm is unknown parameter
vector, Y θ = M(αė − q̈d) + Vm(r − q̇) − Gr, ∥θ∥ < θ̄,
where θ̄ is assumed to be known. θ̃(t) ≜ θ(t) − θ̂(t) ∈ Rn
is the parameter estimation error and ∆τ(t) ≜ τ(t) − u(t)
represents the saturation error, which can be considered as
bounded disturbance. State constraints are enforced using the
BLF

V1(r) =
1

2
log

(
κ2r

κ2m − m̄∥r∥2

)
(4)

defined on Ω′
r = {r : m̄∥r∥2 < κ2r}, with κr = κ

√
m̄. The

adaptive update law is

˙̂
θ = projΩθ

(
ΓY T r

κ2m − m̄∥r∥2
− σΓθ̂

)
(5)

where Γ ∈ Rn×n is a positive definite matrix, σ > 0 is a
constant and Ωθ = {θ̂ ∈ Rm : ∥θ̂∥ ≤ θ̄}, with projection
ensuring bounded parameter estimates.

C. Main Result
Theorem 1: For the E-L system (1), given Assumptions 1-

3 hold, the controller (3) and adaptive law (5) ensure that the
trajectory tracking errors remain bounded while satisfying
state and input constraints, i.e., q(t), q̇(t) ∈ Ωq , τ(t) ∈ Ωτ ,
provided the following feasibility condition is satisfied.

τ̄ > (Ψ1κ+Ψ2 − λmin{K})κ+Ψ3 (6)

where Ψ1 = 6θ̄kv , Ψ2 = θ̄(2αm̄ + 5kv(αξ + V̄d)) +
λmax{K}, and Ψ3 = θ̄(m̄(α2ξ + Ād) + kv(αξ + V̄d)2 +
kg + V̄d + d̄ are known positive constants.

Fig. 2: Tracking performance, tracking error and control
input of the 2-DoF helicopter using the proposed controller.

IV. EXPERIMENTAL RESULT

The proposed controller is implemented on a Quanser 2-
DoF helicopter (Fig. 1). The true parameters are considered
as Jp = 0.0384 kg·m2, Jy = 0.0432 kg·m2, m = 1.38
kg, mp = 0.459 kg, mh = 0.295 kg, l = 0.1857 m,
lp = 0.19685 m, lh = 0.0349 m, Kpp = 0.2041 N·m/V,
Kpy = 0.0068 N·m/V, Kyp = 0.0219 N·m/V, Kyy =
0.0720 N·m/V, and g = 9.81 m/s2. The parameters used
for simulation are:K = 5I2, Γ = 0.05I5, d̄ = 2, qd(t) =
−31+ 5 sin(0.5t)(deg), θ̄ = 0.12, Ψ1 = 0.0242, Ψ2 = 5.30,
Ψ3 = 3.34, α = 0.8, κ = 3. Fig. 2 demonstrates that
the proposed controller ensures state and input constraint
satisfaction, i.e., ∥e(t)∥ < EQ = 15 (deg), ∥ė(t)∥ < EV = 15
(deg), ∥τ(t)∥ ≤ τ̄ = 5(N.m) ∀t ≥ 0.
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