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Abstract

Generative modeling over discrete data has recently seen numerous success stories,
with applications spanning language modeling, biological sequence design, and
graph-structured molecular data. The predominant generative modeling paradigm
for discrete data is still autoregressive, with more recent alternatives based on
diffusion or flow-matching falling short of their impressive performance in contin-
uous data settings, such as image or video generation. In this work, we introduce
FISHER-FLOW, a novel flow-matching model for discrete data. FISHER-FLOW
takes a manifestly geometric perspective by considering categorical distributions
over discrete data as points residing on a statistical manifold equipped with its natu-
ral Riemannian metric: the Fisher-Rao metric. As a result, we demonstrate discrete
data itself can be continuously reparameterised to points on the positive orthant
of the d-hypersphere Sd+, which allows us to define flows that map any source dis-
tribution to target in a principled manner by transporting mass along (closed-form)
geodesics of Sd+. Furthermore, the learned flows in FISHER-FLOW can be further
bootstrapped by leveraging Riemannian optimal transport leading to improved
training dynamics. We prove that the gradient flow induced by FISHER-FLOW
is optimal in reducing the forward KL divergence. We evaluate FISHER-FLOW on
an array of synthetic and diverse real-world benchmarks, including designing DNA
Promoter, and DNA Enhancer sequences. Empirically, we find that FISHER-FLOW
improves over prior diffusion and flow-matching models on these benchmarks.
Our code is available at https://github.com/olsdavis/fisher-flow.

1 Introduction

The recent success of generative models operating on continuous data such as images has been
a watershed moment for AI exceeding even the wildest expectations just a few years ago [69, 22].
A key driver of this progress has come from substantial innovations in simulation-free generative
models, the most popular of which include diffusion [38, 66] and flow matching methods [48, 73],
leading to a plethora of advances in image generation [16, 30, 55], video generation [21, 14], audio
generation [59], and 3D protein structure generation [77, 19], to name a few.

In contrast, analogous advancements in generative models over discrete data domains, such as
language models [1, 72], have been dominated by autoregressive models [79], which attribute a
simple factorisation of probabilities over sequences. Modern autoregressive models, while impressive,
have several key limitations which include the slow sequential sampling of tokens in a sequence,
the assumption of a specified ordering over discrete objects, and the degradation of performance
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without important inference techniques such as nucleus sampling [39]. It is expected that further
progress will come from the principled equivalents of diffusion and flow-matching approaches for
categorical distributions in the discrete data setting.

While appealing, one central barrier in constructing diffusion and flow matching over discrete spaces
lies in designing an appropriate forward process that progressively corrupts discrete data. This often
involves the sophisticated design of transition kernels [8, 23, 2, 50], which hits an ideal stationary
distribution—itself remaining an unclear quantity in the discrete setting. An alternative path to design-
ing discrete transitions is to instead opt for a continuous relaxation of discrete data over a continuous
space, which then enables the simple application of flow-matching and diffusion. Consequently, past
work has relied on relaxing discrete data to points on the interior of the probability simplex [9, 68].
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Figure 1: A geodesic connecting x0 and x1 using the
FR metric on ∆̊2 and the corresponding path on S2
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However, since the probability simplex is not
Euclidean, it is not possible to utilise Gaussian
probability paths—the stationary distribution
of an uninformative prior is uniform rather
than Gaussian [26]. One possible remedy is
to construct conditional probability paths on
the simplex using Dirichlet distributions [68],
but this can lead to undesirable properties that
include a complex parameterisation of the vector
field. An even greater limitation is that flows
using Dirichlet paths are not general enough to
accommodate starting from a non-uniform (source) prior distribution—hampering downstream
generative modeling applications. These limitations motivate the following research question: Can
we find a continuous reparameterisation of discrete data allowing us to learn a push-forward map
between any source and target distribution?

Present work. In this paper, we propose FISHER-FLOW, a new flow matching-based generative
model for discrete data. Our key geometric insight is to endow the probability simplex with its natural
Riemannian metric—the Fisher-Rao metric—which transforms the space into a Riemannian manifold
and induces a different geometry compared to past approaches of Avdeyev et al. [9], Stark et al.
[68]. Moreover, using this Riemannian manifold, we exploit a well-known geometric construction:
the probability simplex under the Fisher-Rao metric is isometric to the positive orthant of the
d-dimensional hypersphere Sd+ [6] (see Figure 1). By operating on Sd+, we obtain a more flexible
and numerically stable parameterisation of learned vector fields as well as the ability to use a
familiar metric—namely, the Euclidean metric ℓ2 restricted to the sphere, which leads to better
training dynamics and improved performance. As a result, FISHER-FLOW becomes an instance of
Riemannian Flow Matching (RFM) [26], and our designed flows enjoy explicit and numerically
favorable formulas for the trajectory connecting a pair of sampled points between any source and
target distribution—effectively generalising previous flow models [68].

On a theoretical front, we prove in Proposition 1 that optimising the flow-matching objective with
FISHER-FLOW is an optimal choice for matching categorical distributions on the probability simplex.
More precisely, we show the direction of the optimal induced gradient flow in the space of probabilities
converges to the Fisher-Rao flow in the space of probabilities. In addition, we show in Proposition 2
how to design straighter flows, leading to improved training dynamics, by solving the Riemannian
optimal transport problem on Sd+. Empirically, we investigate FISHER-FLOW on sequence modeling
over synthetic categorical densities as well as biological sequence design tasks in DNA promoter and
DNA enhancer design. We observe that our approach obtains improved performance to comparable
discrete diffusion and flow matching methods of Austin et al. [8], Stark et al. [68].

2 Background

The main task of generative modeling is to approximate the target distribution, pdata ∈ P(M), over
a probability space (M,Σ,P), using a parametric model pθ. The choice ofM = Rd appears in the
classical setup of generative modeling over continuous domains, e.g., images; while for categorical
distributions over discrete data, we identify M = P(A), where A = {0, . . . , d} represents the
categories corresponding to an alphabet with d + 1 elements. In this paper, we consider problem
settings where the modeler has access to pdata as an empirical distribution from which the samples are
drawn identically and independently. Such an empirical distribution corresponds to the training set
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used to train a generative model and is denoted by D = {xi}ni=1. A standard approach to generative
modeling in these settings is to learn parameters θ of a generative model pθ that minimises the forward
KL divergence, DKL(pdata||pθ), or, in other words, maximises the log-likelihood of data under pθ.

2.1 Information geometry

The space of probability distributions P = P(X) over a set X can be endowed with a geometric
structure. Let ω be the parameters of a distribution such that the map ω 7→ pω ∈ P is injective. We
note that this map is distinguished from the generative model, θ 7→ pθ, as θ corresponds to parameters
of the neural network rather than the parameters of the output distribution being approximated.
For instance, if we seek to model a multi-variate Gaussian N (µ,Σ) in Rd, the parameters of the
distribution are ω = (µ,Σ), while θ can be the parameters of an arbitrary deep neural network.

Our distributions pω are taken to be a family of distributions parameterised by a subset of vectors
ω = (ω1, . . . , ωd) ∈ Ω ⊆ Rd, with its usual topology. If the distributions pω are absolutely
continuous w.r.t. a reference measure µ over X , with densities pω(x), x ∈ X,ω ∈ Ω, then the
injective map ω ∈ Ω 7→ pω ∈ L1(µ) defines a statistical manifold (cf. Amari [4], Ay et al. [11]):

Md :=
{
pω(·)

∣∣ω = (ω1, . . . , ωd) ∈ Ω ⊆ Rd
}
. (1)

Note thatMd is identified as a d-dimensional submanifold in the space of absolutely continuous prob-
ability distributions P(X).2 If pω(x) is differentiable in ω, thenMd inherits a differentiable structure.
We can then define a metric that convertsMd into a Riemannian manifold. Moreover, the parameters
ω are the local coordinates and the map ω 7→ pω is a global parameterisation for the manifold.

As for the choice of metric, the minimisation of the forward KL divergence, DKL(pdata||pω), under
mild conditions, suggests a natural prescription of a Riemannian metric onMd [13]. We can arrive
at this result by inspecting the log-likelihood of the generative model, log pω, and constructing the
Fisher-information matrix whose (i, j)-th entry G(ω) = [gij(ω)]ij is defined as

gij(ω) :=

∫
Ω

(
∂ log pω
∂ωi

)(
∂ log pω
∂ωj

)
pω dµ, (2)

for 1 ≤ i, j ≤ d, where µ is the reference measure on Ω, which must satisfy the property that
all pω are absolutely continuous with respect to µ. In this setting, the manifestation of the
Fisher-information matrix is not a mere coincidence: it is the second-order Taylor approximation
of DKL(ppdata

||pω) in a local neighborhood of pω, in its local coordinates, ω. Furthermore, the
Fisher-Information matrix is symmetric and positive-definite, consequently defining a Riemannian
metric. It is called the Fisher-Rao metric and it equips a family of inner products at the tangent space
Tpω
Md × Tpω

Md → R that are continuous on the statistical manifold,Md (they vary smoothly,
in case the map ω ∈ Ω 7→ pω ∈ L1(µ) is assumed to be smooth). Beyond arising as a natural
consequence of KL minimisation in the generative modeling setup, the Fisher-Rao metric is the
unique metric invariant to reparameterisation ofMd (see Ay et al. [11, Thm. 1.2])—a fact we later
exploit in §3.2 to build more scalable and more numerically stable generative models.

2.2 Flow matching over Riemannian manifolds

A probability path on a Riemannian manifold, Md, is a continuous interpolation between two
distributions, p0, p1 ∈ P(Md), indexed by time t. Let pt be a distribution on a probability path that
connects p0 to p1 and consider its associated flow, ψt, and vector field, ut. We can learn a continuous
normalising flow (CNF) by directly regressing the vector field, ut, with a parametric one, vθ ∈ TMd,
where TMd is the tangent bundle. In effect, the goal of learning is to match the flow—termed flow-
matching—of the target vector field and can be formulated into a simulation-free training objective [48,
FM], provided pt satisfies the boundary conditions, p0 = pdata and p1 = pprior. As stated, the vanilla
flow matching objective is intractable as we generally do not have access to the closed-form of ut that
generates pt. Instead, we can opt to regress vθ against a conditional vector field, ut(xt|z), generating
a conditional probability path pt(xt|z), and use it to recover the target unconditional path: pt(xt) =∫
M pt(xt|z)q(z)dz. Similarly, the vector field ut can also be recovered by marginalising conditional

vector fields, ut(x|z). This allows us to state the CFM objective for Riemannian manifolds [26]:

Lrcfm(θ) = Et,q(z),pt(xt|z)∥vθ(t, xt)− ut(xt|z)∥2g, t ∼ U(0, 1). (3)

2If, as in our case, we take X = A = {0, . . . , d}, then we can fix µ = 1
d+1

∑d
i=0 δi, and then Md = P(X).
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As FM and CFM objectives have the same gradients [73, 48], at inference, we can generate by
sampling from p1, and using vθ to propagate the ODE backwards in time. The central question in
the Riemannian setting corresponds to then finding xt and ut(xt|z). For simple geometries, one
can always exploit the geodesic interpolant to construct xt = expx0

(t logx0
(x1)) and ut(xt|z) = ẋt.

Instead of computing the time derivative explicitly, we may also use a general closed-form expression
for ut, based on the geometry of the problem: ut = logxt

(x1)/(1 − t), cf. [18].

Notation and convention. We use t ∈ [0, 1] to indicate the time index of a process such that t = 0
corresponds to pdata and t = 1 corresponds to the terminal distribution of a (stochastic) process
to be defined later. Typically, this will correspond to an easy-to-sample from source distribution.
Henceforth, we use subscripts to denote the time index—i.e., pt—and reserve superscripts to
designate indices over coordinates in a (parameter) vector, e.g., ωi ∈ (ω1, . . . , ωd).

3 Fisher Flow Matching

We now establish a new methodology to perform discrete generative models under a flow-matching
paradigm which we term as FISHER-FLOW. Intuitively, our approach begins with the realisation
that discrete data modeled as categorical distributions over d categories can be parameterised to live
on the d-dimensional probability simplex, ∆d, whose relative interior, ∆̊d, can be identified as a
Riemannian manifold endowed with the Fisher-Rao metric [4, 11, 56]. Additionally, we leverage the
sphere map, which defines a diffeomorphism between the interior of the probability simplex and the
positive orthant of a hypersphere, Sd+. As a result, generative modeling over discrete data is amenable
to continuous parameterisation over spherical manifolds and offers the following key advantages:

(A1) Continuous reparameterisation. We can now seamlessly define conditional probability paths
directly on the Riemannian manifold Sd+, enabling us to treat discrete generative modeling as
continuous, through Riemannian flow matching on the hypersphere.

(A2) Flexibility of source distribution. In stark contrast with prior work [23, 68], our conditional
probability paths can map any source distribution to a desired target distribution by leveraging
the explicit analytic expression of the geodesics on Sd+.

(A3) Riemannian optimal transport. As the sphere map is an isometry of the interior of the
probability simplex, we can perform Riemannian OT using the geodesic cost on Sd+ to construct
a coupling between p0 and p1, leading to straighter flows and lower variance training.

In the following subsections, we detail first how to construct the continuous reparameterisation
used in FISHER-FLOW §3.1. An algorithmic description of the training procedure of FISHER-FLOW
is presented in Algorithm 1. We justify the use of the Fisher-Rao metric in §3.3 by showing that
induces a gradient flow that minimises the KL divergence. Finally, we discuss the sphere map in §3.2,
and conclude by elevating the constructed flows to minimise the Riemannian OT problem in §3.4.

3.1 Reparameterising discrete data on the simplex

We now take our manifoldMd = ∆d = {x ∈ Rd+1|1⊤x = 1, x ≥ 0} as the d-dimensional simplex.
We seek to model distributions over this space which we denote as P(∆d). We can represent categori-
cal distributions, p(x), over K = d+1 categories in ∆d by placing a Dirac δi with weight pi on each
vertex i ∈ {0, . . . , d}.3 Thus a discrete probability distribution given by a categorical can be converted
into a continuous representation over ∆d by representing the categories pi as a mixture of point masses
at each vertex of ∆d. This allows us to write our data distribution pdata over discrete objects as:

pdata(x) =

d∑
i=0

piδ(x− ei), (4)

where ei are K = d+ 1 one-hot vectors representing the vertices of the probability simplex4. While
the vertices of ∆d are still discrete, the relative interior of the probability simplex, denoted as
∆̊d := {x ∈ ∆d : x > 0}, is a continuous space, whose geometry can be leveraged to build our

3We denote, with a slight abuse of notation, the probability of category i by pi, i.e.,
∑

i p
i = 1.

4Note that ei ∈ ∆d represents Dirac mass δi ∈ P(A), thus Eq. 4 means that pdata =
∑

i p
iδδi ∈

P(P(A)) ≃ P(∆d). The traditional form
∑

i p
iδi ∈ P(A) is recovered via the identification δi 7→ i.
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method, FISHER-FLOW. Consequently, we may move Dirac masses on the vertices of the probability
simplex to its interior—and thereby performing continuous reparameterisation —by simply applying
any smoothing function σ : ∆d → ∆̊d, e.g., label smoothing as in supervised learning [70].

Defining a Riemannian metric. Relaxing categorical distributions to the relative interior, ∆̊d, enables
us to consider a more geometric approach to building generative models. Specifically, this construction
necessitates that we treat ∆̊d as a statistical Riemannian manifold wherein the geometry of the
problem corresponds to classical information geometry [4, 11, 56]. This leads to a natural choice of
Riemannian metric: the Fisher-Rao metric, defined as, on the tangent space at an interior point p ∈ ∆̊d,

∀u, v ∈ Tp∆̊d, gFR(p)[u, v] := ⟨u, v⟩p :=

〈
u√
p
,
v√
p

〉
2

=

d∑
i=0

uivi

pi
. (5)

In the above equation, the inner product normalisation by
√
p is applied component-wise. After

normalising by
√
p the inner product on the simplex becomes synonymous with the familiar

Euclidean inner product ⟨·, ·⟩2. However, near the boundary of the simplex, this “tautological”
parameterisation of the metric by the components of p is numerically unstable due to division by zero.
This motivates a search for a more numerically stable solution which we find through the sphere-map
in §3.2. As a Riemannian metric is a choice of inner product that varies smoothly, it can be readily
used to define geometric quantities of interest such as distances between points or angles, as well as
a metric-induced norm. We refer the interested reader to §B for more details on the geometry of ∆̊d.

3.2 Flow Matching from ∆̊d → Sd+ via the sphere map

The continuous parameterisation of categorical distributions to the interior of the probability simplex,
while theoretically appealing, can be prone to numerical challenges. This is primarily because in
practice we do not have the explicit probabilities of the input distribution, but instead, one-hot encoded
samples which means that we must flow to a vertex. More concretely, this implies that when t→ 1,
xt → ei for some i ∈ [d], therefore implying ∥v∥xt

→∞, where ∥·∥xt
denotes the norm at point xt.

This occurs due to the metric normalisation
√
p, applied component-wise. In addition, the restriction

of vθ to be at the tangent space imposes architectural constraints on the network. What we instead seek
is a flow parameterisation without any architectural restrictions or numerical instability due to the met-
ric norm. We achieve this through the sphere map, φ : ∆̊d → Sd+, which is a diffeomorphism between
the interior of the simplex and an open subset of the positive orthant of a d-dimensional hypersphere.

φ : ∆̊d −→ Sd+, p 7−→ s := φ(p) =
√
p,

φ−1 : Sd+ −→ ∆̊d, s 7−→ p := φ−1(s) = s2.
(6)

In Eq. 6, both the sphere map and its inverse are operations that are applied element-wise. The sphere
map reparameterisation identifies the Fisher-Rao geometry of ∆̊d to the geometry of a hypersphere,
whose Riemannian metric is induced by the Euclidean inner product of Rd+1. It is easy to show
that 2φ (the sphere map scaled by 2) preserves the Riemannian metric of ∆̊d, i.e., it is an isometry,
and that therefore all geometric notions such as distances are also preserved. However, a key benefit
we obtain is that we can extend the metric to the boundary of the manifold without introducing
numerical instability as the metric at the boundary does not require us to divide by zero.

Building conditional paths and vector fields on Sd+. On any Riemannian manifoldMd that admits
a probability density, it is possible to define a geodesic interpolant that connects two points between
samples x0 ∼ p0 to x1 ∼ p1. A point traversing this interpolant, indexed by time t ∈ [0, 1], can be
expressed as xt = expx0

(t logx0
(x1)). On general Riemannian manifolds, it is often not possible to

obtain analytic expressions for the manifold exponential and logarithmic maps and as a result, travers-
ing this interpolant requires the costly simulation of the Euler-Lagrange equations. Conveniently,
under the Fisher-Rao metric ∆̊d admits simple analytic expressions for the exponential and logarith-
mic maps—and consequently the geodesic interpolant. Moreover, due to the sphere-map φ in eq. (6)
the geodesic interpolant is also well-defined on Sd+. Such a result means that the conditional flow xt
on Sd+ can be derived analytically from the well-known geodesics on a hypersphere, i.e., they are the
great circles but restricted to the positive orthant. Consequently, we may build all of the conditional
flow machinery using well-studied geometric expressions for Sd+ in a numerically stable manner.

5



The target conditional vector field associated at xt can also be written in closed-form
ut(xt|x0, x1) = logxt

(x1)/(1 − t) and computed exactly on Sd+. Intuitively, ut moves at
constant velocity from xt in the direction of x1 and presents a simple regression target to learn the
vector field vθ. One practical benefit of learning conditional vector fields on Sd+ is that it allows for
more flexible parameterisation of the vector field network vθ. Specifically, the network vθ can be
unconstrained and output directly in the ambient space Rd+1 after which we can orthogonally project
them to the tangent space of xt. This is possible since we can take an extrinsic view on the geometry
and isometrically embed Sd+ to the higher dimensional ambient space due to the Nash embedding
theorem [35]. More formally, we have that vθ(t, xt) = ϕxt

(ṽθ(t, xt)), where ṽθ is the output in Rd

and ϕxt
: Rd → Txt

Sd+ and is defined as ϕxt
(ṽ) = ṽ − ⟨xt, ṽ⟩2xt.

In the absence of any knowledge we can choose an uninformative prior on Sd+ which is the uniform
density over the manifold p1(x1) =

√
detG(x1)/

∫
Sd+

√
detG(x1), where G is the matrix repre-

sentation of the Riemannian metric. However, a key asset of our construction, in contrast, to [23, 68],
is that p1 can be any source distribution since we operate on the interpolant-level by building
geodesics between two points, x0, x1 ∈ Sd+. We now state the Riemannian CFM objective for Sd+:

LSd+(θ) = Et,q(x0,x1),pt(xt|x0,x1)∥vθ(t, xt)− logxt
(x1)/(1− t)∥2Sd+ , t ∼ U(0, 1). (7)

In a nutshell, our recipe for learning conditional flow matching for discrete data first maps the input
data to Sd+. Then we learn to regress target conditional vector fields on Sd+ by performing Riemannian
CFM which can be done easily as the hypersphere is a simple geometric object where geodesics
can be stated explicitly. At inference, our flow pushes forward a prior on p1 ∈ Sd+ to a desired target,
p0, which is then finally mapped back to ∆̊d using φ−1. A discrete category can then be chosen
using any decoding strategy such as sampling using the mapped categorical or greedily by simply
selecting the closest vertex of the probability simplex ∆d to the final point at the end of inference.

3.3 The Fisher-Rao metric from Natural gradient descent

We now motivate the choice of the Fisher-Rao metric as not only a natural choice but also the
optimal one on the probability simplex. We show that gradient descent of the general form
δθ 7→ argmin|δθ|≤ϵ L(θ + δθ) (for L(θ) = L(pθ) as in Eq. 7) converges to the gradient flow
(of parameterised probabilities pθ, or of probability paths pθ,t) with respect to the Wasserstein dis-
tance on P(M) induced by Fisher-Rao metric gFR overM. Equivalently, we get the canonical metric
over Sd+ due to the isometry. This presents a further justification for the use of the Fisher-Rao metric.

In order to present the gradient flow of L : P(Md) → R in which (Md, g) is a Riemannian
manifold, we recall the basics of geometry over probability spaces [5, 76]. If dg is the geodesic
distance associated to g then W2,g will be the optimal transport distance over P = P(Md) with
cost d2g(x, y). Then (P(Md),W2,g) is an infinite-dimensional Riemannian manifold, in which for

p ∈ P(Md) we have the tangent space TpP ≃ {∇gϕ : ϕ ∈ C1
c (Md)}L

2
g(T Md;p)

, i.e., the closure
of gradient vector fields with respect to L2

g(TMd; p)-norm. This norm is defined by the Riemannian
tensor gP induced by g, which at v, w ∈ TpP is given by gP(v, w) :=

∫
Md⟨v(x), w(x)⟩g dp(x) . In

particular, note that a choice of Riemannian metric g overMd specifies a unique metric gP over P .

In the following, at the onset, we assume a bounded metric, g, over ∆d, which we use only to state our
Lipschitz dependence assumptions. If we compare categorical densities (elements ofMd = P(A)
via KL-divergence, then it is natural to compare distributions µ, ν ∈ P(Md) via the Wasserstein-like
WKL(µ, ν) := minπ∈Π(µ,ν) E(pω,pω′ )∼π[DKL(pω||pω′)]. In the next proposition, we show that the
Fisher-Rao metric appears naturally in the continuum limit of our gradient descent over P(Md).

Proposition 1. Assume that there exists a bounded Riemannian metric g over ∆d such that the
parameterisation map θ 7→ p = p(θ) is Lipschitz and differentiable from Θ to (P(M),W2,g).
Then the "natural gradient" descent of the form:

p(θn+1) ∈ argmin {L(p(θn+1)) : WKL(p(θn+1), p(θn)) ≤ ϵ} (8)
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approximates, as ϵ→ 0+, the gradient flow of L on manifold (P(Md),WgFR,2) with metric
gPFR induced by Fisher-Rao metric gFR:

d
dsp(θ(s)) = ∇gP

FR
L(p(θ(s))). (9)

For the proof, see §C. We distinguish the results of Proposition 1 from those of Natural Gradients
used in classical NN optimisation such as KFAC [52]. Note that in regular NN training, Natural
Gradients [58] implement a second-order optimisation to tame the gradient descent, at a nontrivial
computational cost. Thus, the above proposition implies that, just by selecting gFR metric over ∆d,
we directly get the benefits that are equivalent to the regularisation procedure of Natural Gradient.

3.4 FISHER-FLOW Matching with Riemannian optimal transport

We now demonstrate how to build conditional flows that minimise a Riemannian optimal transport
(OT) cost. Flows constructed by following an optimal transport plan enjoy several theoretical and
practical benefits: 1. They lead to shorter global paths. 2. No two paths cross which leads to lower
variance gradients during training. 3. Paths that follow the transport plan have lower kinetic energy
which often leads to improved empirical performance due to improved training dynamics [64].

The Riemannian optimal transport for FISHER-FLOW can be stated for either ∆̊d under the
Fisher-Rao metric or Sd+. Both instantiations lead to the same optimal plan due to the isometry
between the two manifolds. Specifically, we couple q(x0), q(x1) via the Optimal Transport (OT)
plan π(x0, x1) under square-distance cost c(x, y) := d2(x, y)—i.e., π(x0, x1) will be the minimiser
of E(x0,x1)∼π′ [d2(x0, x1)] amongst all couplings π′ of fixed marginals q(x0), q(x1). Now, recall
that Wasserstein distance W2 over P(Sd+) is defined as W2(µ, ν) := minπ′ E(x,y)∼π′ [d2Sd+

(x, y)],
in which the minimisation is amongst transport plans from µ to ν, defined as probability measures
over Sd+ × Sd+ whose two marginals are respectively µ and ν [75]. Since Sd+ is a smooth bounded
uniquely geodesic Riemannian manifold with boundary, the metric space (P(Sd+),W2) is uniquely
geodesic and we have the following “informal” proposition (see §D for the full statement):

Proposition 2. For any two Borel probability measures p0, p1 ∈ P(Sd+), there exists a
unique OT-plan π between p0, p1. If et(x0, x1) is the constant-speed parameterisation
of the unique geodesic of extremes x0 and x1, and et : Sd+ × Sd+ → Sd+ is given by
et(x0, x1) := expx0

(t logx0
(x1)), then there exists a unique Wasserstein geodesic (pt)t∈[0,1]

connecting p0 to p1, given by

pt := (et)#π ∈ P(Sd+), t ∈ [0, 1]. (10)

The complete statement of Proposition 4 along with its proof is provided in §D. As a consequence
of Proposition 2 we use the Wasserstein geodesic as our target conditional probability path.
Operationally, this requires us to sample from marginals x0 ∼ p0 and x1 ∼ p1 and solve for the OT
plan π using the squared distance on Sd+ as the cost which is done using the Sinkhorn algorithm [32].

3.5 Training FISHER-FLOW

Generalising to sequences. Many problems in generative modeling over discrete data are concerned
with handling a set or a sequence of discrete objects. For complete generality, we now extend FISHER-
FLOW to a sequence of discrete data by modeling it as a Cartesian product of categorical distributions.
Formally, for a sequence of length k we have a distribution over a product manifold P(∆) :=
P(∆d

1)×· · ·×P(∆d
k). Equipping each manifold in the product with the Fisher-Rao metric allows us to

extend the metric in a natural way to ∆. Moreover, by invoking the diffeomorphism using the sphere-
map φ independently we achieve the product of d-hyperspheres restricted to the positive orthant.
Stated explicitly, a sequence of categorical distributions is P(S+) := P((Sd+)1)× · · · × P((Sd+)k).
Due to the factorisation of the metric across the product space, we can build independent flows on
each manifold Sd+ and couple them in a natural way using the product metric to induce a flow on S+.

Training. We detail our method for training FISHER-FLOW in Algorithm 1 in §F.2. Training
FISHER-FLOW requires two input distributions: a source and a target one. In the case of unconditional
generation, one can take p0 = U(Sd+), by default. In some settings, it is possible to incorporate
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(a) Real distribution (b) FF on ∆̊2 (c) FF-OT on ∆̊2 (d) FF on S2
+ (e) FF-OT on S2

+

Figure 2: Synthetic experiments on learning a distribution resembling a smiley face on ∆̊2.
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Figure 3: Toy experiment from Stark et al. [68]. Minimal KL divergence over 5 seeds is reported.

additional conditional information, c. This can easily be accommodated in FISHER-FLOW by directly
inputting this into the parameterised vector field network with vθ(·) becoming vθ(·|c).

4 Experiments

We now investigate the empirical caliber of FISHER-FLOW on a range of synthetic and real-world
benchmarks outlined below. Unless stated otherwise, all instantiations of FISHER-FLOW use the
optimal transport coupling on minibatches. Exact implementation details are included in §F.

4.1 Synthetic experiments

Density estimation. In this first experiment, we model an empirical categorical distribution visualized
on ∆̊2. In Figure 2, we observe that FISHER-FLOW instantiated on S2+ with OT is the best in modeling
the ground truth distribution. Both learning on the simplex and the positive orthant benefit from OT.

Density learning in arbitrary dimensions. We also consider the toy experiment of Stark et al.
[68], where we seek to model a random distribution over (∆K)4 for K ∈ N⋆. The KL divergence
between the estimated distribution over 512,000 samples and the true generated distribution is used
as the evaluation metric. Details are provided in §F.4.1. Results in Figure 3b demonstrate that
FISHER-FLOW outperforms DIRICHLET FM, while remaining competitive against D3PM [8] and
Multinomial Flow [41], especially in high dimensions, in which both exhibit unstable behaviour.
We also conduct an ablation in Figure 3a and find that using optimal transport helps for both
FISHER-FLOW on ∆̊d and Sd+, with the latter leading to the best performance.

4.2 Promoter DNA sequence design

We assess the ability of FISHER-FLOW to generate DNA sequences. Promoters are DNA sequences
that determine where on a gene DNA is transcribed into RNA; they contribute to determining how
much transcription happens [36]. The goal of this task is to generate promoter DNA sequences
conditioned on a desired transcription signal profile. Solving this problem would enable one to
control the expression level of any synthetic gene, e.g., in the production of antibodies. For a detailed
dataset background, see §F.1 in Avdeyev et al. [9].
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Table 1: MSE of the transcription profile condi-
tioned on generated promoter DNA sequences over
the test set. The last 3 MSE and PPL values are
from 5 independent experiments. The remaining
numbers are taken directly from Stark et al. [68].
Model MSE (↓) PPL (↓)
BIT DIFFUSION (BIT-ENCODING) 0.041 —
BIT DIFFUSION (ONE-HOT ENCODING) 0.040 —
D3PM-UNIFORM 0.038 —
DDSM 0.033 —
LANGUAGE MODEL 0.034± 0.001 2.247± 0.102
DIRICHLET FM 0.034± 0.004 1.978± 0.006

FISHER-FLOW (ours) 0.029± 0.001 1.4± 2.7

Table 2: Perplexities (PPL) values for different
methods for enhancer DNA generation. Lower
PPL is better. Values are an average and standard
error over 5 seeds.
Method Melanoma PPL (↓) Fly Brain PPL (↓)
Random Sequence 895.88 895.88
Language Model 2.22± 0.09 2.19± 0.10
DIRICHLET FM 2.25± 0.01 2.25± 0.02
FISHER-FLOW (ours) 1.4± 0.1 1.4± 0.66

Table 3: Results on QM9. Higher is better. The
baseline numbers are taken from the cited papers.
The numbers reported for FlowMol are those for
the uniform distribution and end-point parameteri-
sation. Our numbers are for 1,000 molecules.

Method Atoms S (%) Mols Val (%) Mols. S (%)

FISHER-FLOW (ours) 98.6 95.3 88.2
JODO [44] 99.4 98.9 98.7
EquiFM [67] 99.4 94.4 93.2
FlowMol [29] 98.9 96.9 84.2

Figure 4: Generated molecules using FISHER-
FLOW on QM9.

Results. Our experimental evaluation closely follows prior work [9, 68]. We report the MSE between
the signal of our conditionally generated sequence and the target one, a human genome promoter
sequence (MSE in Table 1), both given by the same pre-trained Sei model [25]. We train our model
on 88,470 promoter sequences, each of length 1,024, from a database of human promoters [40], each
sequence having an associated expression level indicating the likelihood of transcription at each
DNA position. As shown in Table 1, FISHER-FLOW outperforms baseline methods DDSM [9] and
DIRICHLET FM [68] on the MSE evaluation. Perplexities (PPL) from FISHER-FLOW on the test
set are also better than the baselines and, on average, improve over DIRICHLET FM.

4.3 Enhancer DNA design

Enhancers are DNA sequences that regulate the transcription of DNA in specific cell types
(e.g., melanoma cells). Prior work has made use of generative models for designing enhancer DNA
sequences in specific cells [71]. Following Stark et al. [68], we report the perplexity over sequences
as the main measure of performance. We also include results on Fréchet Biological Distance
(FBD) with pre-trained classifiers provided in DIRICHLET FM [68], cf. §F.4.3. Nevertheless, those
classifiers perform poorly on cell-type classification of Enhancer sequences, with test set accuracies
of 11.5% and 11.2% on the Melanoma and FlyBrain datasets, respectively; thus, metrics derived
from these are not representative of model quality, which we still included in §F.4.3 for transparency.

Results. We report our results in Table 2, with FBD reported in Table 5. We observe that
FISHER-FLOW obtains significantly better performance than DIRICHLET FM, which highlights its
ability to fit the distribution of Melanoma and FlyBrain DNA enhancer sequences. Moreover, we also
note that our method improves over the language model baseline on both datasets, which bolsters
the belief that FISHER-FLOW can be used in similar settings to those of autoregressive models.

4.4 De novo molecule generation

In this experiment, we evaluate FISHER-FLOW’s ability to generate molecules unconditionally,
a.k.a. “de novo”. The difficulty in this task is that we are interested in generating the positions
of the molecules, their atom types, their charges, and the bonds between these, resulting in a high
dimensional space with both discrete and continuous data (Rd)n× (∆a)n× (∆c)n× (∆e)n

2

, where
n ∈ N⋆ is the number of atoms, a possible atom types, c charges, and e bonds. We train our model
over the QM9 dataset [61, 60]. We report the percentage of stable atoms within molecules, valid
molecules, and stable molecules. Our implementation is mostly based on that of [29].
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Results. We report our results in Table 3. We also provide some qualitative examples in Figure 4. As
we can see, FISHER-FLOW compares well on all metrics to SIMPLEX-FLOW on all metrics. Nonethe-
less, it must be reported that the latter, trained with a Gaussian prior, endpoint parameterisation and
cosine time schedule performed substantially better than both flow-based methods, closing the gap
with the other baselines. It is likely that a more extensive exploration of priors, time parameterisations
and other hyperparameters would increase FISHER-FLOW’s performance.

4.5 Language modelling

Table 4: Test perplexities on the LM1B dataset. All
baselines are taken from concurrent work MDLM
by Sahoo et al. [62]. Best diffusion or flow-
matching method is in bold font.

Method Parameters PPL (↓)

D
iff

us
io

n BERT-MOUTH 110M ≤ 142.89
D3PM (ABSORB) 70M ≤ 77.50
DIFFUSION-LM 80M ≤ 118.62
DIFFUSIONBERT 110M ≤ 63.78
SEDD (33B TOKENS) 110M ≤ 32.79

A
R TRANSFORMER (33B TOKENS) 110M 22.32

TRANSFORMER (327B TOKENS) 110M 20.86

D
M

/F
M

MDLM (33B TOKENS) 110M ≤ 27.04
FISHER-FLOW (33B TOKENS) (ours) 110M ≤ 26.51
MDLM (327B TOKENS) 110M ≤ 23.00
FISHER-FLOW (327B TOKENS) (ours) 110M ≤ 22.42

Finally, we test the language modelling capa-
bilities of FISHER-FLOW. To do so, we train
the model on the LM1B dataset [24], a large
language modelling dataset containing about
800,000 words. For this experiment, we extend
FISHER-FLOW to a masked path as is done by
[62, 65]: we define the probability path as pt =
κtpM + (1− κt)punif , where κ : [0, 1]→ [0, 1]
is a noise scheduler. Here, pM is the Fisher-
Rao geodesic between the target, x0, and the
designated mask token M , while punif is also
a Fisher-Rao geodesic between a sample from
a uniform distribution and x0. It is thus a con-
vex combination of probability paths. Using a
denoising architecture enables us to rewrite the
original loss as a weighted negative log likelihood −E[log p(x0 | xt)]. This allows us to calculate
an upper bound on the test perplexity, a natural evaluation metric for language modelling [62, 65].

Results. The results are given in Table 4. As one can observe, using the Fisher-Rao metric enables
better performance than MDLM. Yet, the gap with auto-regressive methods is still significant.

5 Related work
Geometric generative models. There are several methods for defining generative models over
Riemannian manifolds, the most pertinent to this work include diffusion models [43, 28], normalising
flows [20, 53, 15, 26]. For molecular tasks that require generating nodes and edges, equivariant
variants of diffusion and flow-based models are a natural choice [42, 78].

Discrete diffusion and flow models. Discrete generative models diffusion and flow models
can be categorised into either relaxations to continuous spaces [47, 27], or methods that use
continuous-time Markov chains with sophisticated transition kernels [8, 80, 23, 50], with some
matching autoregressive models [34]. Defining discrete data on the simplex has also been explored
in the context of generative models [37, 51, 68]. FISHER-FLOW is fundamentally different from
existing works [8, 23, 2, 50] in that we consider a continuous relaxation of the discrete space and
construct vector fields on Sd+. Finally, concurrent to our work Dunn and Koes [29] propose simplex
flow matching, and Boll et al. [17] introduced e-geodesic flows that leverage the Fisher-Rao metric
on the assignment manifold [17]. Simplex flow-matching differs from FISHER-FLOW in that it does
not make use of the Fisher-Rao metric. We include a detailed comparison between FISHER-FLOW
in relation to DFM and e-Geodesic Flow Matching [17] in §E.1.

6 Conclusion
In this paper, we introduce FISHER-FLOW a novel generative model for discrete data. Our approach
offers a novel perspective and reparameterises discrete data to live on the positive orthant of a
d-hypersphere, which allows us to learn categorical densities by performing Riemannian flow
matching. Empirically, FISHER-FLOW improves performance on synthetic and biological sequence
design tasks over comparative discrete diffusion and flow matching models while being more general
as a framework. While FISHER-FLOW enjoys favorable theoretical properties with strong empirical
performance, our method is not fully developed for language modeling domains. Consequently, a
natural direction for future work is to design variations of FISHER-FLOW capable of handling larger
sequence lengths and discrete categories as found in language domains.
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A Broader Impacts

We would like to emphasise that our paper is mainly theoretical and establishes generative modeling of
discrete data using flow matching by continuously reparameterising points onto a statistical manifold
equipped with the Fisher-Rao metric. However, more broadly discrete generative modeling based
on diffusion models and flow matching has important implications in various fields. In biology,
these models enable the generation of novel biological sequences, facilitating the development
of new therapeutics. However, the same technology poses risks if exploited maliciously, as it
could be used to design harmful substances or biological weapons. In language modeling, the
capability to generate coherent and contextually relevant text can significantly enhance productivity,
creativity, and communication. Nevertheless, the advent of superhuman intelligence through advanced
language models raises concerns about potential misuse, loss of human control, and ethical dilemmas,
highlighting the need for robust oversight and ethical guidelines.

B Geometry of the Simplex

We introduce here very briefly properties of geometry on the simplex that we use in this paper. Our
main reference for these results is Åström et al. [81]. Note that our implementation for most of these
properties relies on that of Axen et al. [10], which we port to Python. Recall that a d-simplex, for
d ∈ N⋆, is defined as ∆d := {x ∈ Rd+1|1⊤x = 1, x ≥ 0}. When equipped with the Fisher-Rao
metric, it becomes a Riemannian manifold that is isometric to the positive orthant of the d-sphere
of in Rd+1. That is to say, ψ : ∆d → Sd+, (x0, . . . , xd) 7→ (2

√
x0, . . . , 2

√
xd) is a diffeomorphism,

where Sd+ := {x ∈ Rd+1 : ∥x∥2 = 2, x ≥ 0}; we call ψ the “sphere-map”.

In the following, ∆̊d denotes the interior of the simplex, and Tp∆d := {x ∈ Rd+1 : 1⊤x = 0} the
tangent space at point p. The exp map on the simplex is given by, for all p ∈ ∆̊d, v ∈ Tp∆d,

expp(v) =
1

2

(
p+

v2p
∥v2p∥2

)
+

1

2

(
p− v2p
∥v2p∥2

)
cos(∥vp∥) +

√
p

∥vp∥
sin(∥vp∥), (11)

where vp := v√
p , and squares, square roots and quotients of vectors are meant element-wise. Similarly,

the log map is given by, for p, q ∈ ∆̊d,

logx0
(x1) =

d∆d(p, q)√
1− ⟨√p,√q⟩

(
√
pq − ⟨√p,√q⟩p) , (12)

where the product is meant element-wise, and the distance is

d∆d = 2arccos(⟨√p,√q⟩). (13)

The Riemannian metric at point p ∈ ∆̊d for vectors u, v ∈ T ∆d is given by

⟨u, v⟩p =

〈
u√
p
,
v√
p

〉
. (14)

Finally, for parallel transport, we use the sphere-map, perform parallel-transport on the sphere, and
invert the sphere-map.

The relevance of the Fisher-Rao metric stems from the following two characterisations:

• The Fisher-Rao metric is the leading-order approximation of the Kullback-Leibler divergence
[4, 11]. Recall the general setting: if a d-dimensional manifold of probability densities Md

is parameterised by a differentiable map θ 7→ pθ from a submanifold Θ ⊆ RD (note that the
requirement D = d is not necessary for the following computations to make sense), then for fixed
θ0 ∈ Θ we may Taylor-expand

p(θ) = p(θ0) +

D∑
j=1

(θj − θj0)
∂p(θ0)

∂θj
+ o(|θ − θ0|),
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and a straightforward computation gives

DKL(p(θ0)||p(θ)) =
1

2

D∑
j,k=1

(θj − θj0)(θk − θk0 ) Ep(θ)

[
∂ log p

∂θj
∂ log p

∂θk

]∣∣∣∣
θ=θ0

+ o(|θ − θ0|2)

:=
1

2

D∑
j,k=1

gjk(θ0)[θ
j − θj0, θk − θk0 ] + o(|θ − θ0|2).

Thus the matrix g(θ0) = (gij(θ0))
D
i,j=1 defines the quadratic form on the tangent space Tθ0Θ which

best approximates DKL(p(θ0)||p(θ)) in the limit θ → θ0. In the coordinates Θ = ∆d ⊂ Rd+1,
when we parameterise probabilities overK = d+1 classes numbered 0, . . . , d via the "tautological"
parameterisation θ = p for p ∈ ∆d, (explicitly, in this parameterisation class i has probability
pθ(i) = θi = pi), then we obtain ∂ log pθ

∂θj = 1
pj δ(i = j) and

gjk(p) = Ep(θ)

[
∂ log p

∂θj
∂ log p

∂θk

]
=

d+1∑
i=1

pi
1

pj
δ(i = j)

1

pk
δ(i = k) =

1

pj
δ(j = k).

Thus g(p)[u, v] = gFR(p)[u, v] =
∑d+1

i=1
uivi

pi as before.
• The Fisher-Rao metric is up to rescaling, the only metric that is preserved under sufficient statistics.

First, for 2 ≤ K ′ ≤ K, a define a map M : P([K ′]) → P([K]) to be a Markov map if
there exist probability measures q1, . . . , qK′ ∈ P([K]) such that for p ∈ P([K ′]) we have
M(p) =

∑K′

k=1 p(k)qk. In other words, representing probability spaces as simplices and denoting
d = K − 1, d′ = K ′ − 1, we have that M is a Markov map if the simplex ∆d′

is affinely mapped
under M to a d′-dimensional simplex in ∆d (the vertices of the image simplex have been denoted
above by q1, . . . , qK′ ).
Then a restatement of Chentsov’s theorem [74, Thm. 11.1], [11, Thm. 1.2] is that if a sequence of
Riemannian metrics gd over ∆d defined for d ≥ 2 satisfies the property that for any 1 ≤ d′ ≤ d

any Markov morphism M : ∆d′ → ∆d is an isometry with respect to metrics gd′ , gd, then there
exists C > 0 such that each of the gd is C times the Fisher-Rao metric on ∆d.
A common reformulation, interpreting the Markov map reparameterisations M : P([K ′]) →
P([K]) of P([K ′]) as sufficient statistics, is to say that Fisher-Rao metrics are (up to a common
rescaling for all d) the only metrics that are invariant under mapping probability measures to
sufficient statistics.

C Details and proofs for Section 3.3

We here recall the setup: we are considering a loss function L : P(Md) → R, in which Md

is a Riemannian manifold, specifically it will be the simplex ∆d endowed with a Riemannian
metric g. Points pω ∈ Md represent categorical distributions, asMd was obtained from P(A) by
parametrising it with the simplex ∆d, thus inducing a differentiable structure.

The space P(Md) is then endowed with the Wasserstein distance W2,g induced by the Riemannian
geodesic distance of (Md, g). ThenP = (P(Md),W2,g) can be given a Riemannian metric structure
too, defined as follows [5, 76]. For p ∈ P the tangent space TpP is identified with the L2(p; g)-
closure of the space of vector fields v : Md → TMd which are the gradient of a C1

c -function
ψ :Md → R. Here we have for v = ∇ψ ∈ TpP

∥v∥2L2(p;g) :=

∫
Md

∥v(pω)∥2gdp(pω),

and the corresponding Riemannian tensor induced by g over v, w ∈ TpP is given by

gP(v, w) :=

∫
Md

⟨v(pω), w(pω)⟩gdp(pω).

For further details see Villani [76, Ch. 13].

In order to find a well-behaved metric overMd, we start by consideringMd (which in our case
is the statistical manifold parameterising the space of categorical probabilities P(A)) with the KL-
divergence as a comparison tool for its elements. We will use this divergence in order to regularise
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the gradient descent of a loss function L : P(Md)→ R, and to do so we introduce the KL-optimum
coupling which for µ, ν ∈ P(Md) takes the value
WKLy(µ, ν) := min

{
E(pω,pω′ )∼π [DKL(pω||pω′)] : π ∈ P(Md ×Md) has marginals µ, ν

}
.

In words, WKL determines the smallest average displacement required for moving µ to ν, in which
displacements between elements ofMd ≃ P(A) are quantified by DKL-divergence.

We then use this distance to regularise the gradient descent of L, and show that then the gradient
descent converges to the Wasserstein gradient flow on L, for precisely the Wasserstein distance
W2,gFR

induced by the gFR-metric overMd.

Here we consider a Riemannian metric structure g onMd, which we assume to be bounded on the
interior ∆̊d, i.e., to have bounded coefficients when expressed in the parametrisation, which is only
used in order to give a rough Lipschitz hypothesis on the underlying parametrisations.

Proposition 3 (extended version of Proposition 1). Assume that g is a bounded Riemannian
metric over ∆d such that the parametrisation map θ 7→ p = p(θ) : Θ → (P(Md),W2,g) is
Lipschitz and differentiable . Then the "natural gradient" descent of the form:

p(θn+1) ∈ argmin {L(p(θn+1)) : WKL(p(θn+1), p(θn)) ≤ ϵ} (15)

approximates, as ϵ→ 0+, the gradient flow of L on manifold (P(Md),WgFR,2) with metric
gPFR induced by Fisher-Rao metric gFR:

d

ds
p(θ(s)) = ∇gP

FR
L(p(θ(s))). (16)

Proof. We restrict the discussion to the case that p(θ) is supported in the region ∆d
c := {x ∈ Rd :

⊮ · x = 1, xi ≥ c, 1 ≤ i ≤ d}, and the general result can be recovered by taking c→ 0+. Restricted
to this set, it is easy to verify that DKL is bounded.

Step 1. Note that by a small modification of the proof, we can apply Villani [76, Thm. 10.42] to ∆d

with cost equal to DKL, and obtain that theWKL-distance between an admissible competitor p(θ+δθ)
in Eq. 15 and p(θn) is realised by a transport plan T δθ, such that we have p(θ + δθ) = T δθ

# p(θ). By
definition of WKL and due to Chebyshev’s inequality, for all C > 0, the set of points SC that T δθ

moves by more than Cϵ in DKL-distance has p(θ)-measure not larger than 1/C. Furthermore, T δθ

is uniformly bounded over ∆d
c \ SC by our initial hypothesis. By approximating this transport plan

by a flow (one can adapt the ideas from e.g., Santambrogio [63, Thm. 4.4] for this contstruction)
over SC , we can find a vector field vδθ such that vδθ(pω) = 1

ϵ logpω
(T δθ(pω)) + oϵ(|δθ|) for

pω ∈ SC , with error uniformly bounded in pω ∈ M. We then extend vδθ arbitrarily outside SC .
This procedure associates to each small enough change δθ a vector field vδθ ∈ Tp(θ)P which whose
time-ϵ flow, denoted ϕvδθ (t = ϵ, ·) pushes measure p(θ) to a measure approaching p(θ + δθ) in the
limit ϵ→ 0, C →∞.

Step 2. We approximate the optimisation problem Eq. 15. For the constraint, we recall that as noted
in Appendix B, we have Taylor expansion DKL(pω||pω′) = 1

2∥ω − ω′∥2gFR
+ O(∥ω − ω′∥3). For

approximating L we use its differentiability and get L(p(θ′)) = L(p(θ))+dL(p(θ))[v], for v ∈ TpP .
Thus minimisation problem Eq. 15 is well approximated, (in the limits mentioned in the previous
step) by

p(θn+1) = (ϕvδθ (1, ·))# p(θn), vδθ ∈ argminv

(
ϵ dL(p(θ))[v] : ⟨v, v⟩gP

FR
= 1
)
, (17)

in which we used a rescaling compared to previous step, given by v 7→ ϵv. This means that we used
the associated flow up to time 1 rather than time ϵ, and thus the minimisation has to be taken amongst
elements v ∈ Tp(θ)P and we approximate the constraint by ⟨v, v⟩gP

FR
= 1, which replaces the correct

constraint WKL(p(θ + δθ), p(θ)) = ϵ.

Step 3. In the optimisation Eq. 17, we have a quadratic constraint over the vector space Tp(θn)P , and
thus we can use Lagrange multipliers, and for the optimiser we need to look for critical points of
v 7→ ϵdL(p(θ))[v] + λ

2 ⟨v, v⟩gP
FR

, in which λ is the Lagrange multiplier, to be fixed at the end using
the constraint. This gives the following characterisation of the optimiser v∗δθ:

∀w ∈ Tp(θ)P, ⟨v∗δθ, w⟩gP
FR

= −λ
ϵ
dL(p(θ))[w] ⇐⇒ v∗δθ = −λ

ϵ
∇gP

FR
L(p(θ)), (18)
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in which we just use the classical definition of the gradient on a manifold.

This means that in the approximation of ϵ → 0 the step p(θ) → p(θ + δθ) must move in the
negative-gPFR-gradient direction of L at p(θ), as desired.

D Optimal Transport proofs
Proposition 4 (extended version of Proposition 2). For any two Borel probability measures
p0, p1 ∈ P(S+), the following hold:

1. There exists a unique OT-plan π between p0, p1.

2. For t ∈ [0, 1] let et(x0, x1) be the constant-speed parameterisation of the unique
geodesic of extremes x0 and x1, defining the map

et : S+ × S+ → S+, et(x0, x1) := expx0
(t logx0

(x1)). (19)

Then there exists a unique Wasserstein geodesic (pt)t∈[0,1] connecting p0 to p1, and it
is given by

pt := (et)#π ∈ P(S+), t ∈ [0, 1]. (20)

3. For every point xt in the support of pt, there exists a unique pair (x0, x1) in the
support of the optimal transport plan π such that xt = et(x0, x1). Furthermore, the
assignment xt 7→ (x0, x1) is continuous in xt.

4. The probability path (pt)t∈[0,1] has velocity field ut := logxt
(x1)− logxt

(x0), which
is uniquely determined over the support of pt.

5. The above probability measure path and associated velocity fields (pt, ut)t∈[0,1] are
minimisers of the following kinetic energy minimisation problem

min
(ρt,vt)t∈[0,1]

{∫ 1

0

Eρt [∥vt∥2]dt : ∂tρt + div(ρtvt) = 0, ρ0 = p0, ρ1 = p1

}
.

(21)

Proof. For point 1, we can use Villani [76, Thm. 10.28] (the simpler Villani [76, Thm. 10.41]
also applies, with the minor modification that we work on a manifold with boundary). To verify its
conditions, note thatMd ⊂ S+ is a subset of a Riemannian manifold and has (d− 1)-dimensional
measure, and that cost c(x, y) = d2(x, y) is convex, thus it has unique superdifferential and∇xc(x, ·)
is injective, as required.

For points 2 and 3, we note that by Villani [76, Cor. 7.22] (see also McCann [54]), in general Polish
spaces displacement interpolants as given by Eq. 19 and Eq. 20, coincide with Wasserstein geodesics.

A simplified version of the proof of 4. is present in Santambrogio [63, Prop. 5.30]. For the
general case, we can use Villani [76, Thm. 10.28], in particular eq. (10.20) therein. Note that
for c(x, y) = d2(x, y), as indicated in Example 10.36 this equation corresponds to the equation of
geodesics in the underlying manifold. Then we just note that ut is the velocity field of a constant
speed geodesic.

Point 5 is a special case of Villani [76, Thm. 7.21], see also Granieri [33].

E Relation to prior work on the simplex

E.1 Dirichlet Flow matching

In this appendix, we discuss how flow matching can be done on the simplex using Dirichlet conditional
probability paths. This recovers the simplex flows designed in Stark et al. [68], Campbell et al. [23].

The equivalent of a uniform density over ∆d is given by a Dirichlet distribution with parameter vector
α = 1, i.e., p1(x1) = Dir(x1;α = 1). This is the starting point for defining a flow between our data
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distribution, p0, and the Dirichlet prior p1. As proven in Stark et al. [68] we can reformulate Eq. 3
using a cross-entropy objective,

Lce(θ) = Et,q(z),pt(xt|z)∥vθ(t, xt)− ut(xt|z)∥2g (22)

= Et,q(z),pt(xt|z)∥ log p̂θ(x0|xt)∥2g. (23)

Here, we parameterise a denoising classifier which predicts a denoised sample x0 from xt, which
is built using the conditioner z. Such a parameterisation naturally restricts the vector field to move
tangentially to the simplex and also training is simplified as we do not need to explicitly construct
the conditional vector field ut(xt|z) during training. At inference, we can recover vθ(t, xt) =∑d

i ut(xt|x0 = ei)p̂θ(x0 = e1|xt) and follow the vθ by integrating time to t = 1.

Designing conditional paths. There are two primary points of attack when designing a flow-matching
model. We can either define an interpolant ψt(xt|z) with initial conditions ψ0 = x0, which we can
differentiate to obtain ut, i.e., ψ̇(xt|z) = ut(xt|z); or we can operate on the distributional level and
specify conditionals pt(xt|z) from which a suitable vector field can be recovered.

If we take the interpolant perspective, one can easily implement the linear interpolant [48, 73], which
gives the following conditional vector field:

ψt(xt|x0, x1) = tx0 + (1− t)x1 (24)

ut(xt|x0, x1) =
xt − x0

t
= x0 − x1 (25)

Unfortunately, in the case of flow matching on the simplex, the linear interpolant has undesirable
properties in that the intermediate distribution induced by the flow must quickly reduce support over
∆d by dropping vertices progressively for t > 0 [68].

Operating directly on the distribution level, we can define pt as themselves being Dirichlet distribu-
tions indexed by t such that, at t = 0, we have a uniform mass over ∆d, and that, at t = 1, we reach
a vertex. One choice of parameterisation that fulfills these desiderata is

pt(xt|x0 = ei) = Dir(xt;α = 1 + t′ · ei), (26)

where t′ = f(t) is a monotonic function of the original time variable t such that f(0) = 0 and
limt→1− f(t) = ∞. Clearly, t′ = 0 recovers the uniform prior as α = 1⊤, while t′ → ∞
increases the mass of ei while other vertices remain constant. Given the conditional in Eq. 26, one
corresponding vector field that satisfies the continuity equation is

ut(xt|x0 = ei) = C(xi, t)(xt − ei), C([xt]i, t) = −Ĩxi
(t+ 1, d− 1)

B(t+ 1, d− 1)

(1− xi)d−1xti
, (27)

where Ĩx(a, b) = ∂
∂aIx(a, b) is the derivative of the regularised incomplete beta function [68,

Appendix A.1] and C ∝ 1/t as in regular linear flow matching.

E.2 e-geodesics on the Assignment manifold

In this appendix, we survey other common geometries implied by the theory of α-divergences on
statistical manifolds, described in more detail in Amari [4, Ch. 4] or Ay et al. [11, Ch. 2], of which
the case of e-connections was proposed in relation to flow-matching in Boll et al. [17].

In what has become a fundamental paper for the field of Information Geometry, Amari [3] unified
several commonly used parameterisations of statistical manifolds, in the theory of so-called α-
connections. Without entering full details (which can be found in the mentioned references), on a
statistical manifold, endowed with Fisher-Rao metric, one can introduce a 1-parameter family of
affine connections, so-called α-connections with α ∈ [−1, 1], where α = 0 corresponds to Fisher-
Rao Levi-Civita connection, and other notable values are the m-connection for α = −1 and the
e-connection for α = 1. Furthermore, specific classes of α-divergences – which for α = 0 recover
KL divergence – have been introduced as adapted to the corresponding α-connections.
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Algorithm 1 FISHER-FLOW, training on Sd+.

1: Input: Source and target distributions, p1, p0, flow network vθ.
2: while Training do
3: t, x0, x1 ∼ U(0, 1), p0, p1 = pdata
4: π̄ ← OTSd+(x0, x1) ▷ Since x1 is one-hot encoded, it is on Sd+.
5: x0, x1 ∼ π̄
6: xt ← expx0

(t logx0
(x1)) ▷ Geodesic interpolant between r0, r1 ∈ Sd+.

7: ut(xt|x0, x1)← ẋt ▷ Calculated either explicitly or with a numerical approximation.
8: LFISHER-FLOW ← ∥vθ(t, xt)− ut(xt|x0, x1)∥2Sd+
9: θ ← Update(θ,∇θLFISHER-FLOW)

10: return vθ

In general, a choice of differential geometric connection allows to define ad-hoc covariant derivatives,
and corresponds to an explicit formula for associated geodesics (curves whose tangent vector has
zero covariant derivative).

For the case of α-connections on categorical probabilities P(A), explicit formulas can be given (see
Ay et al. [11, Ch. 2]), recovering, for m-connections, interpretations as mixtures, with geodesics
equal to straight lines in ∆d-parameterisation, and for e-connections geodesics can be interpreted as
exponential mixtures, as elucidated in Ay et al. [11, Ch. 2] and illustrated in Boll et al. [17].

For the case of e-connections, concurrent work [17] has proposed to use the corresponding explicit
parameterisation of geodesics in flow-matching, leaving as an open question the adaptation of Optimal
Transport ideas to the framework.

F Implementation Details

F.1 General Remarks

All of our code is implemented in Python, using PyTorch. For the implementation of the manifold
functions (such as log, exp, geodesic distance, etc.), we have tried two different versions. The first
one was a direct port of Manifolds.JL [10], originally written in Julia; the second one used the
geoopt library [46] as a back-end. The latter performed noticeably better—the underlying reason
being probably a better numerical stability of the provided functions.

As for the optimal transport part, it is essentially an adaptation of that of FoldFlow [18], which itself
relies on the POT library [31].

F.2 FISHER-FLOW Algorithm

We provide pseudo-code for training FISHER-FLOW Algorithm 1.

F.3 Compute Resources

All experiments are run on a single Nvidia A10 or RTX A6000 GPUs.

F.4 Experiments

F.4.1 Toy Experiment

We reproduce most hyper-parameters, except for the number of epochs trained for 500 instead of
540,000. Nonetheless, a major modification from the original setting is the size of the dataset. Indeed,
in the original dataset code of Stark et al. [68]5, one can observe that the points are generated at each
retrieval, and the defined length of the dataset is of 109, thus amounting to 540,000 · 109 training

5https://github.com/HannesStark/dirichlet-flow-matching/blob/main/utils/dataset.
py#L53, retrieved on October 30, 2024.
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points by the end of the training process. This results in an unrealistic learning setup. To slightly
toughen the experiment, we limit the training set size to 100,000 points.

Note that the model with which we train our method is a much simpler architecture than that of
DIRICHLET FM (which was the one used in Stark et al. [68]), ours consisting exclusively of (residual)
MLPs. For lower dimensions, it has less parameters, and slightly more in higher dimensions. The
other baselines were run with our MLP too.

Table 5: Fréchet Biological Distance (FBD) and perplexities (PPL) values for different methods for enhancer
DNA generation. Lower FBD and PPL are better. Values are an average and standard error over 5 different runs.
Method Melanoma FBD (↓) Melanoma PPL (↓) Fly Brain FBD (↓) Fly Brain PPL (↓)
Random Sequence 619.0± 0.8 895.88 832.4± 0.3 895.88
Language Model 35.4± 0.5 2.22± 0.09 25.7± 1.0 2.19± 0.10
DIRICHLET FM 7.3± 1.2 2.25± 0.01 6.8± 1.8 2.25± 0.02
FISHER-FLOW (ours) 27.5± 2.6 1.4± 0.1 3.8± 0.3 1.4± 0.66

F.4.2 Promoter DNA

We train our generative models for 200,000 steps with a batch size of 256. We cache the best
checkpoint over the course of training according to the validation MSE between the true promoter
signal and the signal from the Sei model conditioned on the generated promoter DNA sequences. We
use the same train/val/test splits as Stark et al. [68] of size 88,470/3,933/7,497.

The generative model used for FISHER-FLOW and DFM Stark et al. [68] is a 20 layer 1-d CNN
with an initial embedding for the DNA. Each block consists of a LayerNorm [12] followed by a
convolutional layer with kernel size 9 and ReLU activation and a residual connection. As we stack
the layers we increase the dilation and padding of the convolutional allowing the receptive field to
grow [57]. In general, we use the AdamW optimiser [49].

Our Language Model implementation is identical to Stark et al. [68] and we use the pre-trained
checkpoint provided by the authors and evaluated on the test set.

F.4.3 Enhancer DNA

We consider two DNA enhancer datasets, the fly brain enhancer dataset with 81 classes [45], the
classes are different cell types, and the melanoma enhancer dataset with 47 classes [7]. Both datasets
are comprised of DNA sequences of length 500. We use the same train/val/test splits as Stark et al.
[68] of size 70,892/8,966/9,012 for the human melanoma and 83,726/10,505/10,434 for the fly
brain enhancer DNA dataset.

The generative model for our experiments for FISHER-FLOW and DFM [68] is the same as used for
our promoter DNA experiments. Specifically, we use a 20 layer 1-d CNN with an initial embedding
for the DNA. Each block consists of a LayerNorm [12] followed by a convolutional layer with kernel
size 9 and ReLU activation followed by a residual connection. As we stack the layers we increase the
dilation and padding of the convolutional allowing the receptive field to grow [57].

We train for a total of 450,000 steps with a batch size of 256 where we cache the best checkpoint
according to the validation FBD. The test set results in Table 2 are using the best checkpoint according
to the validation FBD.

To calculate the FBD we compare embeddings from FISHER-FLOW with a shallow 5 layer classifier
embeddings originally trained to classify the cell type given the enhancer DNA sequences. Our
Language Model implementation is identical to Stark et al. [68] and we use the pre-trained checkpoint
provided by the authors and evaluated on the test set.

F.5 Additional Metrics

For complete transparency, we also report the Fréchet Biological Distance (FBD) for the DNA
enhancer generation experiments as initially reported in Stark et al. [68].

The FBD computes Wasserstein distance between Gaussians of embeddings generated and training
samples under a pre-trained classifier trained to predict cell-type of enhancer sequences. Versus those
embeddings from the generative model under consideration. So crucially there is a dependence on
classifier features.
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On FlyBrain we find that FISHER-FLOW also improves over DFM in FBD being roughly ≈ 2×
better while DFM is better on Melanoma. However, we caveat both FBD results by noting the
trained classifiers provided in DFM [68] obtain a test set accuracy of 11.5% and 11.2% on the
Melanoma dataset and FlyBrain dataset respectively. Moreover, switching out the pre-trained
classifier for another trained from scratch caused large variations in FBD metrics. As a result, the
low-accuracy classifiers do not provide reliable representation spaces needed to compute FBD metrics.
Consequently, FBD in this setting is a noisy metric that is loosely correlated with model performance,
so we opt to report perplexities in Table 2.

F.6 De Novo Molecule Generation

Following the setup of Dunn and Koes [29], we report the following metrics for our model on de novo
molecule generation over the QM9 and GeomDrugs datasets: percentage of stable atoms, percentage
of stable molecules, percentage of valid molecules. Note that the following inference scheme is used,
when training a model x̂1 on endpoint prediction:

xt+1 = expxt

(
α′(t)

∆

1− α(t) logxt
(x̂1)

)
, (28)

where ∆ = 1/N , and N > 0 is the number of integration steps.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction are backed up by our
theoretical contributions and experiments results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the conclusion. In particular that we have not
developed our method for language tasks.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The theory underpinning our method is backed up by theoretical results outlined
in the main paper and elaborated on in the appendix. We have stated all assumptions and
referenced relevant prior work.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all the details of the experimental setup to reproduce our method
in our experiments section and in the appendix. We include our code as a .zip file as
supplementary material with instructions to reproduce our results. Our code will be made
public upon publication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

26



some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We include a .zip file with our code base and the necessary commands to
reproduce our experiments. All the datasets we use are open-access.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We outline our experimental settings in detail in our Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We make a significant effort to produce results with means and standard errors
over 5 different runs with different random seeds. For our method and the main baselines
we consider. This is in stark contrast to prior work.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We outline the compute resources required in Appendix F.3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed the code of ethics and our research is in line with the code.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We consider the broader impact of our work in Appendix A.
Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper does not put forward models and data which pose such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All existing assets which are used are open-source and properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We do not release any new assets. We will release our documented code base
upon publication.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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