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Abstract

Self-supervised learning has become a key method for training deep learning models when
labeled data is scarce or unavailable. While graph machine learning holds great promise
across various domains, the design of effective pretext tasks for self-supervised graph repre-
sentation learning remains challenging. Contrastive learning, a popular approach in graph
self-supervised learning, leverages positive and negative pairs to compute a contrastive loss
function. However, current graph contrastive learning methods often struggle to fully use
structural patterns and node similarities. To address these issues, we present a new method
called Fused Gromov Wasserstein Subgraph Contrastive Learning (FOSSIL). Our method
integrates node-level and subgraph-level contrastive learning, seamlessly combining a stan-
dard node-level contrastive loss with the Fused Gromov-Wasserstein distance. This com-
bination helps our method capture both node features and graph structure together. Im-
portantly, our approach works well with both homophilic and heterophilic graphs and can
dynamically create views for generating positive and negative pairs. Through extensive
experiments on benchmark graph datasets, we show that FOSSIL outperforms or achieves
competitive performance compared to current state-of-the-art methods.

1 Introduction

Self-Supervised Learning (SSL) is a methodology employed in machine learning to extract meaningful and
transferable representations from unlabeled data. SSL has been successfully used in many areas like computer
vision (Tomasev et al., 2022), speech processing (Baevski et al., 2020), and natural language processing
(Devlin et al., 2019; Lewis et al., 2019). SSL is particularly important when labeled data is impractical or
costly to obtain. Graph Representation Learning (GRL) stands out as a domain where SSL excels due to
the complexity involved in annotating graphs, which often demands specialized knowledge and cannot be
easily crowd-sourced. For instance, in biochemistry (Zang et al., 2023), annotating molecular graphs requires
specialized knowledge, significantly increasing the labeling effort compared to other data modalities.

In SSL, Contrastive Learning (CL) is a prominent approach (Chen et al., 2020). CL methods typically involve
sampling an anchor from the dataset, generating an augmentation (positive pair), and contrasting it with
negative pairs using a CL loss function. Unlike certain modalities, such as images, the generation of positive
pairs in GRL presents unique challenges. Various methods have been proposed, including those involving
node-level or subgraph-level contrastive loss functions (Zhu et al., 2020b; Yuan et al., 2023; Han et al., 2022;
Jiao et al., 2020). Recent studies have shown that subgraph-level approaches outperform node-level ones, as
they can capture the structural similarities between the anchor and positive graph pair (Han et al., 2022).

Prior subgraph-level CL methods often use readout functions to extract subgraph representations (Jiao et al.,
2020; Velickovic et al., 2019). Alternatively, some approaches rely on Optimal Transport (OT) distances for
computing the CL loss (Han et al., 2022). OT-based techniques exhibit superior performance compared to
readout-based methods in subgraph-level CL. Notably, the Generative Subgraph Contrast (GSC) method
(Han et al., 2022) leverages a combination of the well-established Wasserstein Distance (WD) (Villani et al.,
2009) and Gromov-Wasserstein Distance (GWD) (Mémoli, 2011) from OT. However, existing OT-based
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methodologies face two challenges: separately computing the WD and GWD does not capture both structural
and feature information simultaneously, and the GNN encoder struggles with heterophilic datasets.

Motivated by the limitations of previous subgraph CL methodologies, we introduce a new GNN approach
employing the Fused Gromov-Wasserstein Distance (FGWD) (Vayer et al., 2018; Brogat-Motte et al., 2022)
from OT. The FGWD captures both feature and structural similarities jointly. Our model, termed Fused
Gromov Wasserstein Subgraph Contrastive Learning (FOSSIL), is designed to be robust against variations
in homophily levels within the graph dataset. The proposed method uses a decoupled scheme to process
heterophilic data more effectively. Furthermore, FOSSIL leverages the FGWD to simultaneously encode
the structural and feature characteristics of our subgraphs for calculating the CL loss. We conduct a com-
prehensive comparative analysis of FOSSIL against state-of-the-art models across various homophilic and
heterophilic datasets for self-supervised node classification tasks. Our findings demonstrate that FOSSIL ei-
ther outperforms existing methodologies or achieves competitive results, thereby showcasing its efficacy in
graph SSL tasks. The main contributions of our paper can be summarized as follows:

• We introduce a novel approach, named FOSSIL, that effectively captures both feature and structural
similarities simultaneously with the FGWD, addressing the limitations of previous OT-based SSL
methods in GRL.

• We design a robust architecture capable of accommodating varying levels of homophily within graph
datasets. By leveraging a decoupled scheme for the GNN encoder, FOSSIL performs consistently
well across homophilic and heterophilic datasets. This robustness enhances the applicability of the
proposed method in real-world scenarios.

• We conduct an extensive empirical evaluation to validate the effectiveness of FOSSIL against state-of-
the-art models in self-supervised node classification tasks across diverse datasets. We also thoroughly
validate each design choice through a series of ablation studies to validate each component of FOSSIL.

2 Related Work

2.1 Graph Neural Networks

GNNs are neural architectures designed for graphs (Wu et al., 2021). They usually extract information via
message-passing mechanisms between nodes. This process can be divided into two steps: message aggrega-
tion from the neighborhood, and updating of the node embedding (Gilmer et al., 2017). The key difference
between state-of-the-art GNN architectures lies in the aggregation functions. For example, Graph Convo-
lutional Networks (GCNs) (Kipf & Welling, 2017) perform a weighted average of the messages inside the
1-hop neighborhood, where weights are fixed and defined with respect to the node degrees. Graph Atten-
tion Networks (GATs) (Veličković et al., 2018) compute learnable attention weights thanks to interactions
inside the 1-hop neighborhood. Nevertheless, most of the GNN architectures are built under the homophily
assumption. This assumption is pretty useful in graph datasets where nodes have similar characteristics.
Therefore, these GNNs have poor node classification performance in heterophilic graph datasets.

Previous research works have tried to address the heterophilic limitation of classical message-passing neural
networks. For example, GPR-GNN (Chien et al., 2021) uses a polynomial graph filter with coefficients
learned altogether with the linear projection layer used in GNNs. H2GCN (Zhu et al., 2020a) proposes
a set of designs to improve the node classification performance of GNN on heterophilic graphs: feature-
structure embedding separation, aggregating in higher-order neighborhoods, and combination of intermediate
representations (which is equivalent to adding skip connections between GNN layers). From a graph signal
processing perspective (Isufi et al., 2024), GCNs are considered low-pass filters (NT & Maehara, 2019).
Therefore, ACM (Luan et al., 2022) adaptively combines information extracted by a graph low-pass filter,
high-pass filter, and an MLP to address heterophilic networks.

2.2 Self-supervised Learning on Graphs

The key idea of SSL on graphs is to design and solve some pretext tasks that do not require label information.
Depending on how the pretext task is defined, SSL methods for graphs can be divided into two categories:
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predictive and contrastive methods. Predictive methods aim to learn meaningful representations where the
output is typically a perturbed version of the input graph. For example, BGRL (Thakoor et al., 2021) learns
node representations by encoding two perturbed versions of the input graph with an online encoder and
a target encoder. The online encoder is trained to predict the representation of the target encoder, and
the target encoder is updated as an exponential moving average of the online encoder. BNLL (Liu et al.,
2024) improves the BGRL model by introducing a few noisy-ground truth positive node pairs. Based on the
homophily assumption that neighboring nodes often share the same label, they include additional candidate
positive pairs to the objective of BGRL. Specifically, for each node, BNLL adds the cosine similarity of its
online representation and the target representations of its neighbors weighted by its attention weights with
its neighbors. VGAE (Kipf & Welling, 2016) uses a variational autoencoder approach in graphs to predict
the same graph and feature as in the input. Finally, GPT-GNN (Hu et al., 2020b) performs an autoregressive
reconstruction of the graph.

Contrastive methods, which are also the focus of this paper, have shown better performance than predictive
methods for SSL on graphs in general. Such methods can be divided into three categories depending on
how the data pairs are defined: node-to-node, graph-to-graph, and node-to-graph. For example, GRACE
(Zhu et al., 2020b) generates two perturbed views of the original graph and performs contrastive learning
between nodes of these views. MUSE (Yuan et al., 2023) extracts node-wise semantic, contextual, and fused
embeddings to perform node-to-node contrastive learning for each of these embeddings. Nevertheless, node-
level contrastive learning approaches are suboptimal since they cannot easily capture global information
about the structure of the graphs.

Regarding subgraph level contrast, DGI (Velickovic et al., 2019) performs node-to-graph contrast by extract-
ing the node embeddings of the original graph and a perturbed version, then it increases or decreases the
agreement between the original or perturbed node embeddings using a readout function. Though spectral
polynomial filters such as GPR-GNN Chien et al. (2021) and ChebNetII He et al. (2022) are more expressive
than GCNs and can adapt to arbitrary homophily levels, they underperform GCNs when used as an encoder
for traditional SSL methods. PolyGCL Chen et al. (2024) tries to solve this problem by restricting the
expressiveness of the polynomial filters from a spectral perspective to construct the low-pass and high-pass
views and introduces a simple linear combination strategy to construct the optimization objective. Specif-
ically, they follow a similar approach to DGI (Velickovic et al., 2019) with the difference that they do it
with both high/low-frequency embeddings extracted with high-pass and low-pass polynomial filters sharing
weights. Subg-Con (Jiao et al., 2020) follows up the work of DGI by doing the same contrast but at a sub-
graph level. It starts by sampling a set of anchor nodes, followed by the extraction of subgraphs utilizing the
personalized PageRank algorithm. Overall, the model aims to adjust the agreement level between an anchor
node and the sampled subgraph for the positive and negative pairs. Methods such as DGI and Subg-Con,
however, use a readout embedding to characterize graphs, which ignores the structure of the graph. GSC
(Han et al., 2022) addresses this issue by performing subgraph-level contrast using WD and GWD from OT
as the measure of subgraph similarity.

FOSSIL is a combined subgraph-level and node-level contrastive learning approach. It uses OT distance
metrics to measure the dissimilarity between subgraphs while further incorporating node-level contrast to
capture differences among nodes. While sharing common features, our method differs from GSC in three
key aspects: (i) we jointly capture structural and feature information in the OT distance using the FGWD,
(ii) we also perform node-level contrast to emphasize the node’s difference, and (iii) we have a specialized
architecture that is robust to heterophilic and homophilic datasets.

3 Preliminaries

3.1 Mathematical Notation

In this paper, matrices are represented with uppercase bold letters like A, while lowercase bold letters like
x denote vectors. The symbol ⟨·, ·⟩ denotes the matrix scalar product associated with the Frobenius norm.
For an element x of a measured space, δx represents the Dirac measure at x. The vector 1n ∈ Rn denotes
the vector of all ones of dimension n. We denote the simplex histogram with n bins as Σn = {h ∈ Rn

+ |
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∑n
i=1 hi = 1}. Let L be a 4-way tensor and B be a matrix. The tensor-matrix multiplication between L

and B is denoted as the matrix L⊗B, where (L⊗B)i,j =
∑

k,l Li,j,k,lBk,l. The element-wise (Hadamard)
product operator between two matrices is denoted as ⊙. The fraction u

v denotes the element-wise division
of vectors u and v.

3.2 Graph Neural Networks

We consider attributed undirected graphs, denoted as G = (A,X), where A ∈ RN×N represents the adjacency
matrix, X ∈ RN×F denotes the feature matrix, and N and F respectively denote the number of nodes and
the dimensionality of each node feature vector. A GNN is a function f : RN×N × RN×F → RN×D, where
H = f(A,X) ∈ RN×D represents the node embeddings matrix of G, with each row Hi corresponding to the
embedding of node vi (Wu et al., 2021). Additionally, for a vector v ∈ RN , diag(v) ∈ RN×N denotes the
diagonal matrix with diagonal elements from v. Let S ⊆ {1, . . . , N} be a set of indices; A[S;S] represents the
adjacency matrix of the subgraph of G restricted to nodes indexed by S, and X[S] denotes its corresponding
feature matrix.

3.3 Fused Gromov-Wasserstein Distance

The main purpose of OT is to find the optimal way to shift objects from one location to another in a metric
space. This is done by finding a minimum cost soft matching between two probability distributions, one on
objects of each location. Let µ ∈ Σn and ν ∈ Σm be two probability distributions, respectively, over the
objects of the first and the second location. The WD (Villani et al., 2009) uses a matrix M ∈ Rn×m of
transportation costs (or pair-wise distances) between location 1 and 2 to find a soft matching that minimizes
the overall transportation cost. However, locations 1 and 2 may not lie in the same space, preventing
us from defining the transportation cost M. GWD (Mémoli, 2011) solves this problem by using internal
transportation cost matrices C1 and C2 in each space separately to find the soft matching. The purpose is
to match objects that have similar structural behaviors inside their metric spaces.

The main downside of WD and GWD is that they fail to capture both structural and feature information
(Vayer et al., 2018) when used to compare graphs. In fact, WD only uses node features to define its cost
matrix M while GWD only uses each graph’s adjacency matrix to define its internal costs matrices C1 and
C2. To alleviate this issue, Vayer et al. (2018) proposed the Fused Gromov-Wasserstein Distance (FGWD).
The idea is to use a coefficient α ∈ [0, 1] that trades off between WD and GWD. The FGWD between the
two locations is defined as follows:

FGWDα,M,C1,C2(µ,ν) = min
P∈Π(µ,ν)

⟨αM + (1− α)L(C1,C2)⊗P,P⟩, (1)

where P ∈ Rn×m is a soft matching (or joint probability distribution) between objects of location 1 and 2,
L(C1,C2)i,j,k,l = |C1[i; k]−C2[j; l]|2, and Π(µ,ν) is the set of joint probability distributions with marginals
µ and ν. FGWD is a generalization of WD and GWD. We recover WD for α = 1 and GWD for α = 0.

4 Fused Gromov-Wasserstein Subgraph Contrastive Learning (FOSSIL)

4.1 Overview

Figure 1 illustrates the pipeline of our proposed method, referred to as FOSSIL. FOSSIL comprises five
primary stages: (i) encoding, (ii) view generation, (iii) fusion layer, (iv) subgraph sampling, and (v) SSL
loss computation based on OT for subgraph-level plus a node-level contrastive loss. FOSSIL takes an input
graph G and employs two neural networks with shared weights as encoders. The first neural network performs
linear projection, while the second implements a GNN (Kipf & Welling, 2017), both equipped with the same
learnable parameters W. Subsequently, view generation follows a decoupled strategy similar to the encoder,
utilizing a GAT (Veličković et al., 2018). The fusion layer combines the outputs from the encoder and
generator using a linear combination. Finally, subgraphs are sampled at the encoder and generator levels
to compute the subgraph-level CL loss using the FGWD as the distance metric and a node-level contrastive
loss is additionally computed.
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Figure 1: Pipeline of FOSSIL for self-supervised node classification tasks. The proposed method integrates
encoding, view generation, fusion, subgraph sampling, and CL in attributed graphs. FOSSIL employs
shared-weight encoder and generator, with GNNs to extract informative representations, subsequently fused
for enhanced learning. Subgraph sampling facilitates subgraph-level CL loss computation based on the
FGWD.

4.2 Encoder

Several GNNs for self-supervised node classification are built under the homophily assumption, meaning that
they assume the nodes in the neighborhood share similar labels (Han et al., 2022). As a consequence, they
typically perform badly when evaluated on heterophilic graph datasets. To address this issue, we propose
a decoupled encoding, where we use a GNN and a linear projection with shared weights W ∈ RF ×D. The
neural network encoder f(S,X) is thus given by:

H = σ(SXW), (2)

where σ is a non-linearity and S is an operator characterized either by a normalized form of the adjacency
matrix or the identity. Next, we elaborate more on the two parts of FOSSIL’s encoder, namely embedding
features and graph structure.

4.2.1 Feature embedding

We use the identity matrix I ∈ RN×N as S in equation 2 to independently encode each node without
considering the information from neighboring nodes. In other words, we extract the feature information
embedded in the node features. This is formally given by:

Hf = f(I,X) = σ(IXW), (3)

where we omit the bias term for simplicity. The intuition in equation 3 is to extract embeddings that
completely ignore the graph structure. Please notice that by replacing S by I in equation 2, this is equivalent
to applying a Multilayer Perceptron (MLP) to node features.

4.2.2 Structure embedding

We use the normalized adjacency matrix Ã to extract the structural information in the encoder as:

Hs = f(Ã,X) = σ(ÃXW), (4)

where Ã = D−1/2AD−1/2 and D = diag(A1N ) ∈ RN×N . Here, we derive additional structural insights
complementing the feature information extracted in equation 3. Please notice that in equation 4, contrary
to GCN (Kipf & Welling, 2016), we use the normalized adjacency matrix without self-loops.

Intuitively, the decoupling strategy proves effective due to the presence of two distinct sources of information
in an attributed graph: node features and graph structure. The relevance of each information source can
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vary depending on the downstream task at hand. For instance, in the context of a social network, individual
user features often play a primary role in defining users, while friendship connections offer supplementary
insights into their interactions. Conversely, in a citation network, it could be more crucial to examine the
documents cited by an article to predict its category effectively. In essence, on homophilic graphs, traditional
GNN encoding typically outperforms MLPs, whereas, on heterophilic graphs, MLPs tend to perform better
Zhu et al. (2020a). The decoupled approach enables us to better adapt the SSL model to the homophily
level of the graph.

4.3 Generator

Generating positive pairs in SSL for graphs is still an open problem of research. A common approach
here involves perturbing the original graph to preserve the underlying semantics (You et al., 2020; Qiu et al.,
2020). However, determining these perturbations for graphs is not straightforward. State-of-the-art methods
usually apply hand-crafted perturbations like random node feature masking and random edge dropping. Such
perturbations lack control and can degrade the intrinsic properties of the original graph—hence increasing the
risk of false positives (Wang et al., 2022). Moreover, the performance of these hand-crafted perturbations
heavily depends on the characteristics of the particular graph dataset. Therefore, an additional step is
required to manually identify the appropriate perturbation method tailored to each dataset.

In FOSSIL, we adopt an end-to-end perturbation strategy, meaning that we learn the correct perturbation
from the data. We use a similar strategy as in the encoder to separately generate node feature perturbations
and graph structure perturbations. Given the feature embeddings Hf and structure embeddings Hs from the
encoder, we generate perturbations as Ĥf = g(I,Hf ), Ĥs = g(Ã,Hs), where g : RN×N × RN×F → RN×D

corresponds to a GAT model (Veličković et al., 2018). Intuitively, we leverage the attention weights of the
GAT to adaptively generate perturbations. At the feature level, this is equivalent to applying adaptive
scaling to the node features, while at the graph structure level, this is equivalent to adaptively dropping
some edges.

4.4 Fusion Layer

We combine the feature and structure information from the encoder and generator to obtain the final node
embeddings. To this end, we apply an adaptive node-wise fusion layer with shared weights θ. This stems
from the fact that nodes do not necessarily require the same amount of structural information. For the
encoder, we combine the semantic and structural information as follows:

λ = ψ(Hf ,Hs,A1N ; θ), (5)
H = h(Hf ,Hs) = Hf + diag(λ)Hs, (6)

where ψ : RN×D×RN×D×RN → RN is an MLP (with sigmoid as the last activation function) computing how
much structural information each node needs, θ corresponds to the parameters of the MLP, and λ ∈ [0, 1]N
is the vector of fusion coefficients of the graph nodes. Similarly, for the generator we have:

λ̂ = ψ(Ĥf , Ĥs,A1N ; θ), (7)
Ĥ = h(Ĥf , Ĥs) = Ĥf + diag(λ̂)Ĥs. (8)

We incorporate node degrees A1N into the fusion module. The rationale behind this choice is to leverage
node degree centralities to account for the relative importance of each node within the entire graph. By
doing so, we assist the function ψ(·) in computing fusion coefficients λ that are more sensitive to the graph’s
structure.

4.5 Subgraph Sampling

Using the original node embeddings H and the perturbed node embeddings Ĥ, we sample the subgraphs
that will be subsequently used as contrastive samples. To this end, we first sample without replacement a
set of anchor-node indices S ⊆ {1, . . . , N}. From each anchor node vi ∈ S, we sample a set of node indices

6



Under review as submission to TMLR

Si of size k (including vi) using breadth-first sampling in the 2-hop neighborhood of vi. If we do not get the
required size k, then the subgraph is not included in the subgraph-level contrast. Therefore, we create two
subgraphs using each Si. The first subgraph is given by Gs

i = (A[Si;Si],H[Si]). The second subgraph is
given by Ĝs

i = (Â[Si;Si], Ĥ[Si]), where Âi,j = s(ĥi, ĥj) = ĥ⊤
si

ĥsj

∥ĥsi
∥2∥ĥsj

∥2
. These subgraphs are used in our CL

loss function using the FGWD. A perturbed subgraph corresponds to the original subgraph contextualized
by the GAT we are using for adaptive graph perturbation. The intuition is that this contextualized subgraph
further captures the similarities between nodes inside the original subgraph, hence it should be similar to
the original subgraph while adding additional context information to the nodes.

4.6 Self-supervised Loss Function

The SSL loss function in FOSSIL is given by two terms: a contrastive loss Lcontrast, and a regularization
term Lθ to guide the learning of the fusion layer. The contrastive loss is at the same time divided into an
OT loss Lot and a node-level contrastive loss Lnode, so that Lcontrast = Lot + Lnode. Our final loss is thus
given by L = Lcontrast + Lθ.

4.6.1 OT distance-based subgraph-level contrastive loss Lot

In FOSSIL, we consider graphs as measured spaces by endowing them with probability distributions over
their nodes. The probability mass on a given node represents the node’s relative importance in the graph.
With no prior knowledge of the graphs, we assume a uniform probability distribution over its nodes.

Let Gs
1 = (As

1,Hs
1) and Gs

2 = (As
2,Hs

2) be two subgraphs. We measure the difference between Gs
1 and Gs

2
using the FGWD as follows:

Dfgw(Gs
1 ,Gs

2) = FGWDα,C1,2,C1,C2(µ,ν), (9)

where µ is the uniform distribution over nodes of Gs
1 , ν is the uniform distribution on the nodes of Gs

2 , C1 =
exp(−As

1/τ), C2 = exp(−As
2/τ) and C1,2 = exp(−Hs

1(Hs
2)⊤/τ) is the matrix of pairwise transportation

costs between their nodes (the exponentials on matrices are applied element-wise). We use FGWD to jointly
exploit both features and structure information inside the two graphs to compute their distances. In this
work, we solve the optimization problem associated with FGWD using the Bregman Alternated Projected
Gradient (BAPG) method (Li et al., 2023) given in Alg. 1, App. A.

Our subgraph-level contrastive loss can be thus written as Lot = Lalign + Lreg, with:

Lalign = − 1
|S|

∑
i∈S

log
(
σ(exp(−Dfgw(Gs

i , Ĝs
i )/τ))

)
, (10)

Lreg = − 1
|S|(M + 1)

∑
i∈S

M∑
j=1

log
(
1− σ(exp(−Dfgw(Gs

i ,G
snj

i )/τ))
)
, (11)

where S is the set of sampled anchor-node indices defined in Sec. 4.5, Gs
i is a sampled subgraph and Gsnj

i is
its j-th negative view used in the contrastive loss. For each node, we define M negative views in equation 11.
In practice, we set M = 2 and define Gsn1

i = Gs
j and Gsn2

i = Ĝs
j with j randomly picked in {j ∈ S : j ̸= i}.

In the contrastive loss Lot, Lalign aims to increase the agreement between positive pairs while Lreg aims to
decrease the agreement between negative pairs.

4.6.2 Node-level contrastive loss Lnode

We also incorporate a node-level contrastive loss as follows:

l(hi, ĥi) = − log exp(s(hi, ĥi)/τ)∑
j ̸=i exp(s(hi,hj)/τ) +

∑N
j=1 exp(s(hi, ĥj)/τ)

(12)

Lnode = 1
2N

N∑
i=1

(
l(hi, ĥi) + l(ĥi,hi)

)
. (13)
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4.6.3 Embedding fusion loss Lθ

The embedding fusion loss guides the fusion layer learning behavior. The main motivation for this loss is to
prevent the structure and feature embeddings from the encoder from being too similar. To this end, when
the structure and feature embedding are very similar, we assume that we should emphasize more the feature
embedding. Therefore, we promote low values in the vector λ for the concerned nodes. We also couple the
Lθ and the OT loss through the parameter α. Notice that 1−α in the definition of the FGWD in equation 1
represents the relative weight of structure similarity when comparing subgraphs with OT. Therefore, we
promote the values of λ to align with 1−α on average, so that λ aligns with the OT distances. Additionally,
we constrain the variance of λ with L2 regularization to put more control on the way we combine embeddings.
Our fusion layer loss function is thus given as:

Lθ =
N∑

i=1
λis(hs

i ,hc
i ) + β1∥λ∥2 + β2

∣∣∣∣∣ 1
N

N∑
i=1

λi − (1− α)

∣∣∣∣∣ , (14)

where β1 and β2 are regularization parameters.

4.7 Computational Complexity of the Framework

4.7.1 Time complexity

0 10,000 20,000 30,000
Number of nodes N

10−2

10−1

100

Ti
m

e
(s

)

Time per iteration
OT loss
Node-level loss
Others

Figure 2: Time per iteration of the different compo-
nents of FOSSIL in a GPU A40 48G.

Here, we analyze the computational complexity of our
subgraph-level contrastive loss in equation 9. To com-
pute FGWD, we use the BAPG method described in
Alg. 1 of App. A, which is a single-loop method for
solving the non-convex quadratic optimization prob-
lem of FGWD. The tensor product L(C1,C2)⊗P can
be computed with complexity O(n2m+ nm2). So the
gradients computed at lines 4 and 8 of Alg. 1 can be
computed with complexity O(n2m+nm2). The other
operations of Alg. 1 have complexity O(nm). Hence,
the time complexity of BAPG is O(T (n2m + nm2))
overall, where n and m are, respectively, the order of
the first and second graph and T is the number of it-
erations that have been performed. Now we need to
compute the cost matrices M, C1, and C2 that are
inputs of the BAPG algorithm. Those are computed
with an overall complexity O(nmD), where D is the dimension of the embedding vectors. Finally solving
the optimization problem in equation 1 with Alg. 1 has complexity O(T (n2m+ nm2) + nmD).

At each iteration of our method, we sample |S| subgraphs, each with k nodes (so we are in the case where
n = m = k). Then for each subgraph, we compute its FWGDs with its positive view and its M negative
views, which costs O((M + 1)(Tk3 + k2D)) in time. Hence, solving all the optimization problems costs
O(|S|(M + 1)(Tk3 + k2D)) in time. Finally, we need to compute the contrastive loss with the FGWDs,
which is done in O(|S|(M + 1)). Overall the time complexity of computing O(|S|(M + 1)(Tk3 + k2D)).

It is worth noting that this time complexity only depends on the hyperparameters of our method. In
particular, the cubic term k3 is not a real concern in practice, as k is chosen such that k ≪ N , with N the
number of nodes in the graph. Therefore, the complexity of computing Lot does not have scalability issues
with the size of the input graph as it remains constant w.r.t. N .

In our framework, we also compute a node-level contrastive loss Lnode. This loss is computed with complexity
O(N2D) theoretically. However, in practice, as computing the pair-wise cosine similarities between nodes
inside the graph is parallelized thanks to matrix multiplication on the GPU, the complexity is roughly
constant depending on the number of cores and memory available on the GPU.
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Table 1: Statistics of the datasets used in this work.
Cora CiteSeer PubMed CoAuthor-CS OGBN-Arxiv Actor Chameleon Squirrel

H(G) 0.81 0.74 0.80 0.81 0.66 0.22 0.24 0.22
Nodes 2, 708 3, 327 19, 717 18, 333 169, 343 7, 600 2, 277 5201
Edges 10, 556 9, 104 88, 648 163, 788 1, 166, 243 30, 019 36, 101 217, 073
Features 1, 433 3, 703 500 6805 128 932 2, 325 2, 089
Classes 7 6 3 15 40 5 5 5

To experimentally validate this theoretical analysis, we evaluate the time required for computing each loss
with synthetic graphs generated with the contextual stochastic block model (cSBM) Chien et al. (2021).
We vary the number of nodes N from 1, 000 to 30, 000, and for each value of N , we measure the times on
5 synthetic graphs with arbitrary homophily levels. We fix k = 12, D = 512, |S| = 300, and M = 2 for
this experiment. Fig. 2 shows that the time required to compute the OT loss and node-level contrastive
losses remains roughly constant for any value of N . Overall, on Fig. 2 we observe that our method scales
reasonably well with the size of the graph. The empirical time complexity depicted by the green bars does
not significantly increase from a graph with 1, 000 nodes to one with 30, 000 nodes.

4.7.2 Memory complexity

Computing the FGWD with Alg. 1 requires storing all the cost matrices and the intermediate matrices used
inside the algorithm. Hence, this entails a memory complexity of O(n2 +m2 + nm) for two graphs of order
n and m. In our case, n = m = k, and we compute the FGWD of all the |S|(M + 1) subgraph pairs together
inside the same batch. Therefore, we have a memory complexity of O(k2|S|(M + 1)) for Lot. The memory
complexity of the optimal transport component of FOSSIL is thus constant w.r.t. the size of the graph N .

5 Experimental Framework and Results

We perform a set of experiments to compare our model with several approaches in the literature. We compare
FOSSIL with nine state-of-the-art methods including: GSC (Han et al., 2022), DGI (Velickovic et al., 2019),
DSSL (Xiao et al., 2022), BGRL (Thakoor et al., 2021), GRACE (Zhu et al., 2020b), MUSE (Yuan et al.,
2023), Subg-Con (Jiao et al., 2020), PolyGCL Chen et al. (2024), and BNLL Liu et al. (2024). In addition,
we compare FOSSIL with GSC using as the encoder the Chebysev graph convolution (Defferrard et al., 2016)
(GSC+Cheb) instead of the regular GCN, to make the GSC framework more robust to heterophilic datasets.
We evaluate all methods in four homophilic datasets Cora (McCallum et al., 2000), CiteSeer (Sen et al.,
2008), PubMed (Namata et al., 2012), and CoAuthor-CS (Shchur et al., 2018); and in three heterophilic
datasets Actor (Tang et al., 2009), Chameleon, and Squirrel (Rozemberczki et al., 2021). Table 1 shows the
statistics of the datasets tested in this work, where H(G) is the homophily of the graph as defined in (Pei
et al., 2020). Finally, we also run a set of ablation studies to analyze different aspects of FOSSIL.

We use a standard downstream logistic regression accuracy with the self-supervised node embeddings to
evaluate all compared methods. We split the data into a development set (80%) and a test set (20%) once,
ensuring that the test set is not used during the hyperparameter optimization process. Therefore, we split
the development set into training and validation sets for hyperparameter tuning. This is done by taking 20
nodes per class for the training set and the rest into the validation set for Cora, CiteSeer, and PubMed. For
the other datasets, the training set gets 60% of the nodes and the validation set gets the other 40% in the
development set. Finally, we test each method using 100 test seeds to randomly split the dataset into the
train and validation, while keeping the original test set. We train and evaluate the encoder on those splits
and report the average performances accompanied by 95% confidence intervals calculated by bootstrapping
with 1, 000 samples. Unlike other works in SSL for graphs, we do not perform model selection during SSL
training by looking at the downstream test/validation performance. Finally, we take the encoder at the end
of the SSL training to extract the node embeddings for the downstream evaluation. All experiments are
conducted on A40 48GB and P100 16GB GPUs.
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Table 2: Test accuracy on the node classification task for different baseline models and FOSSIL. The best
results are highlighted in bold, while the second best-performing methods are underlined.

Method Cora CiteSeer PubMed CoAuthor CS Actor Chameleon Squirrel Overall
FS-GCN 80.04±0.26 69.05±0.26 77.33±0.41 92.50±0.02 29.69±0.14 45.48±0.25 30.26±0.18 60.62±0.22
FS-MLP 57.28±0.39 56.37±0.37 69.20±0.43 92.05±0.06 30.08±0.20 48.68±0.33 37.14±0.16 55.83±0.28

GSC 79.29±0.20 54.56±0.74 76.98±0.50 90.16±0.06 28.43±0.16 42.90±0.40 28.98±0.22 57, 33±0.33
CSC+Cheb 76.84±0.26 68.11±0.26 75.75±0.45 89.20±0.14 32.46±0.13 43.99±0.34 35.03±0.24 47.45±0.26
MUSE 62.52±0.38 58.05±0.42 79.08±0.31 54.32±1.76 36.61±0.15 52.11±0.50 33.57±0.17 53.75±0.53
DGI 79.90±0.23 70.22±0.32 77.80±0.47 87.38±0.06 29.11±0.14 36.24±0.24 29.58±0.16 58.60±0.23
DSSL 72.39±0.56 54.16±0.64 69.98±0.69 87.73±0.08 26.60±0.14 48.38±0.35 34.99±0.21 56.32±0.38
BGRL 62.95±0.87 38.02±1.46 72.93±0.44 91.81±0.22 27.93±0.17 36.90±0.49 28.91±0.25 51.35±0.56
GRACE 80.86±0.29 65.86±0.40 79.84±0.33 93.01±0.03 28.91±0.18 43.87±0.34 30.60±0.22 60.42±0.26
Subg-Con 44.32±0.02 30.07±0.91 67.35±0.85 82.29±0.54 27.60±0.18 45.60±0.44 37.16±0.43 47.77±0.48
PolyGCL 80.95±0.26 71.38±0.21 76.39±0.41 OOM 26.52±0.07 32.75±0.19 34.25±0.13 −
BNLL 66.46±0.83 41.57±1.17 70.45±0.92 93.60±0.03 25.33±0.34 50.18±0.90 36.63±0.50 54.89±0.67

FOSSIL 80.02±0.26 68.24±0.34 79.76±0.48 94.49±0.04 35.61±0.15 53.03±0.33 37.13±0.24 64.04±0.26

5.1 Implementation Details

We implement all methods using PyTorch (Ketkar, 2017) and PyG (Fey & Lenssen, 2019). We optimize the
hyperparameters with the framework Optuna (Akiba et al., 2019). The search spaces for hyperparameters
are defined as follows: 1) learning rate lr ∈ {10−4, 5× 10−4, 10−3, 5× 10−3, 10−2}; 2) learning rate of fusion
module lrf ∈ {10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2}; 3) α ∈ {[0 : 0.1 : 1]}; 4) the FGWD regularizer
β ∈ {10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1, 5 × 10−1, 1, 1.5, 2}; 5) the number of nodes in each sampled
subgraph k ∈ [10, 30]; 6) the temperature parameter τ ∈ {0.2, 0.5, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0}; 7) the GNN
dropout parameter p ∈ {0.1, 0.2, 0.3, 0.4}, and 8) the fusion MLP dropout pf ∈ {0.1, 0.2, 0.3, 0.4}. The
value of β2 is fixed to 1. We tune the hyperparameters by performing 100 trials in the development set.
Finally, for each trial, we sample the values from the search space using the Tree-structured Parzen estimator
(Watanabe, 2023). The source code will be made publicly available upon publication1.

5.2 Results and Discussion

Table 2 shows the results of the comparison of FOSSIL against previous state-of-the-art models for self-
supervised node classification. We evaluate all methods with our setting to have a fair comparison. Our
encoder is a GCN without self-loops; thus, we also evaluate GCN in a fully supervised setting, which we
refer to as FS-GCN. We also evaluate a fully-supervised MLP (FS-MLP) for reference.

In Table 2, we observe that FOSSIL outperforms FS-MLP and FS-GCN, suggesting that pre-trained models
using self-supervision and then fine-tuned on a downstream task can outperform end-to-end supervised
model. In general, FOSSIL ranks either as the best or second best method among the baseline models used
while being the best on average across both homophilic and heterophilic datasets. We also observe that
FOSSIL is better than MUSE and GRACE on average, showing that node-level only contrast is suboptimal
compared to including subgraph-level contrast for node classification.

It is important to highlight further that FOSSIL is better than DGI and Subg-Con, which use a readout
function to characterize a graph. This suggests that a simple readout function does not properly capture
the structure of the graph. Besides, these methods perform node-graph contrast. Maximizing the agreement
of an anchor node and its sampled subgraph is not optimal for node classification since this subgraph can
contain a majority of dissimilar nodes (particularly in heterophilic graphs)—hence its readout representation
will be a false positive.

1https://anonymous.4open.science/r/FOSSIL-610D/

10

https://anonymous.4open.science/r/FOSSIL-610D/


Under review as submission to TMLR

Table 3: Impact of subgraph similarity metric in node classification.

Metric Cora CiteSeer PubMed CoAuthor CS Actor Chameleon Squirrel Overall
WD 61.82±0.44 59.06±0.39 71.94±0.68 91.22±1.83 35.64±0.18 44.20±0.36 33.09±0.26 56, 71±0.59
GWD 19.51±0.82 22.33±0.34 39.44±0.65 64.93±2.42 34.71±0.16 26.50±1.63 24.27±1.44 33.10±1.07
Readout+Cosim 66.04±0.54 61.32±0.44 70.13±0.63 84.33±0.28 34.27±0.17 42.43±0.29 33.35±0.29 55.98±0.38
FGWD 80.02±0.26 68.24±0.34 79.76±0.48 94.49±0.04 35.61±0.15 53.03±0.33 37.13±0.24 64.04±0.26

Table 4: Ablation study on the encoder method.

Encoder Cora CiteSeer PubMed CoAuthor CS Actor Chameleon Squirrel Overall
Standard GCN 74.72±0.49 61.35±0.45 74.11±0.60 90.12±0.06 13.54±0.94 48.68±0.52 25.34±0.28 55.41±0.48
Decoupled GCN 80.02±0.26 68.24±0.34 79.76±0.48 94.49±0.04 35.61±0.15 53.03±0.33 37.13±0.24 64.04±0.26

FOSSIL works better than the previous OT-based method GSC, showing that a joint feature-structure
subgraph similarity metric altogether with a decoupled embedding extraction has more potential to benefit
from the structural patterns inside a graph. Therefore, FOSSIL has the ability to induce more relevant
perturbations hence a more accurate contrastive training, and to adapt to varying levels of homophily.

5.3 Ablation Studies

We validate the effectiveness of each component of FOSSIL through a series of ablation studies. First, we
validate the use of the FGWD that captures both feature and graph structure similarities between subgraphs.
Then, we investigate whether the decoupling strategy is necessary for self-supervised node classification.
Finally, we explore other strategies to generate graph perturbations within our framework.

5.3.1 Impact of the subgraph similarity metric

In this ablation study, we replace the FGWD with other subgraph similarity metrics to evaluate its effective-
ness. We replace FGWD with other OT distances like WD and GWD. Similarly, we also use a simple average
pooling of the subgraphs’ node features followed by a cosine similarity (referred to as Readout+Cosim). Ta-
ble 3 shows the results of this ablation study in all datasets. We first notice that node features are more
important than pure graph connectivity for node classification tasks. Indeed, GWD, which relies solely on
subgraph structure similarity, performs very poorly compared to WD and Readout+Cosim. Secondly, we
observe that WD performs better than Readout+Cosim. This suggests that OT distances are better for self-
supervised node classification than simple readout functions. Nevertheless, both WD and Readout+Cosim,
ignore the underlying graph structure. Finally, we observe the superior performance of using the FGWD
that jointly captures the feature and structure similarities between subgraphs.

5.3.2 Impact of decoupled node embeddings

In this ablation study, we analyze the effectiveness of our encoder by replacing it with a simple GCN. As
depicted in Table 4, the decoupled approach outperforms the standard GCN in the heterophilic datasets.
We also note a significant improvement in the performance of the homophilic datasets with the decoupled
approach, emphasizing its importance in the FOSSIL framework.

5.3.3 Impact of the view generation process

In this ablation study, we analyze the design of the generator of FOSSIL by replacing the GAT compo-
nent with a GCN. We also replace GAT with random feature masking (∼ 10%) and random edge dropping
(∼ 15%) to assess the benefit of a learnable view generation (denoted as Random). Table 5 shows the results
of this study. First, we notice that both the GCN and GAT models outperform the random perturbation.
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Table 5: Graph perturbation ablation study results on node classification.

Generator Cora CiteSeer PubMed CoAuthor CS Actor Chameleon Squirrel Overall
Random 78.28±0.35 65.85±0.39 76.54±0.42 89.40±0.27 28.95±1.58 57.29±1.34 38.22±0.96 62.08±0.76
GCN 76.95±0.32 67.70±0.34 79.44±0.50 93.49±1.93 34.33±0.62 46.83±0.77 39.43±0.23 62.60±0.67
GAT 80.02±0.26 68.24±0.34 79.76±0.48 94.49±0.04 35.61±0.15 53.03±0.33 37.13±0.24 64.04±0.26

Table 6: Comparison between FOSSIL and FOSSILv2.

Method Cora CiteSeer PubMed CoAuthor CS OGBN-Arxiv Actor Chameleon Squirrel
FOSSIL 80.02±0.26 68.24±0.34 79.76±0.48 94.49±0.04 OOM 35.61±0.15 53.03±0.33 37.13±0.24
FOSSILv2 78.94±0.26 68.16±0.23 79.09±0.39 95.04±0.03 56.22±0.12 35.41±0.18 53.14±1.24 34.79±0.21

Even though random perturbation presents competitive results, it requires careful fine-tuning of the hyper-
parameters. Finally, we observe that the attention weights of the GAT provide better views than a GCN. On
the contrary, since the weights of a GCN are rather fixed, they do not adapt to the dynamics of contrastive
learning to provide better views.

6 Limitations

Our method presents a memory bottleneck that comes from the node-level contrastive loss Lnode that requires
storing a N × N matrix for the pairwise cosine similarities of all the nodes of the graph, hence O(N2) of
memory complexity. This limits the scalability of FOSSIL to large-scale graphs. To circumvent this issue,
we propose a straightforward solution called FOSSILv2. This method only considers the union of nodes
inside the sampled subgraphs rather than all nodes of the graph in Lnode. Therefore, the new node-level
contrastive loss becomes:

Lnode-v2 = 1
2

∣∣∣⋃j∈S Sj

∣∣∣
∑

i∈
⋃

j∈S
Sj

(
l(hi, ĥi) + l(ĥi,hi)

)
. (15)

Therefore, we have a memory complexity of O((|S|k)2D) for FOSSILv2. Results in Table 6 show that
FOSSILv2 can be applied on the large-scale OGBN-Arxiv graph (Hu et al., 2020a), with a limited decrease
in performance in the other datasets.

7 Conclusion

In this paper, we introduced a novel subgraph-based contrastive learning framework utilizing the Fused
Gromov-Wasserstein distance to measure subgraph similarities. Drawing inspiration from recent advance-
ments in addressing heterophily with GNNs, we implemented a decoupled embedding extraction strategy,
rendering our method agnostic to the graph’s homophily level. This approach allowed us to independently
generate feature and structure perturbations adaptively. Our extensive experimental evaluation demon-
strated that our method outperforms or has competitive performance against state-of-the-art frameworks
across multiple benchmark datasets with varying levels of homophily. Our findings also highlight the chal-
lenges posed by heterophilic datasets. We suggest future research avenues, such as integrating a high-pass
feature extractor to enhance performance in such scenarios.
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A Algorithm for FGWD

Algorithm 1 Bregman Alternated Projected Gradient (BAPG) for FGWD
P(0) ← µν⊤

∆P←∞
i← 1
while (i < T ) And (∆P > ϵ) do

// Row updating
G← αM + 2(1− α)L(C1,C2)⊗P(i−1) // Gradient of the objective function of Eq. (1) in P(i−1)

P̃← P(i−1) ⊙ exp(−G/β)
P̃← diag( µ

P̃1m
)P̃

// Column updating
G← αM + 2(1− α)L(C1,C2)⊗ P̃ // Gradient of the objective function of Eq. (1) in P̃
P(i) ← P̃⊙ exp(−G/β)
P(i) ← P(i) diag( µ

P(i)⊤
1n

)
∆P← ∥P(i) −P(i−1)∥
i← i+ 1

end while

B Sensibility Analysis

One of the most important hyperparameters of FOSSIL is α, which dictates how much our model should
focus on each source of information of the input graph, namely node features and graph structure. To assess
how sensitive our framework is to the value of α, we vary its value and see how the performance changes.
Specifically for each real-world dataset in our experiments, we fix the other hyperparameters and vary α
within the set {[0 : 0.1 : 1]}. For each value of α, we evaluate our method on 5 seeds and report the mean
and standard deviation. Fig. 3 shows the sensibility analysis results. We notice that the performance of our
method can significantly change depending on the value of α. Overall for homophilic graphs, the best value
of α tends to be close to 0.5. This suggests that node features and graph structure are equally important for
the encoder to characterize the graph. However, for heterophilic graphs, the best value of α tends to be close
to 1. A plausible explanation is that even though the graph structure is important, the GCN encoder not
being able to correctly exploit the structure of heterophilic graphs due to its intrinsic homophily assumption,
our framework will rely more on node features. Hence, our encoder will converge to an MLP with a value of
α close to 1. This further supports our idea to include a feature extractor that is more suited to heterophilic
graphs for future research.
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Figure 3: Variation of the accuracy for several datasets w.r.t. α.
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