
Published in Transactions on Machine Learning Research (02/2025)

Fair principal component analysis (PCA): minorization-
maximization algorithms for Fair PCA, Fair Robust PCA and
Fair Sparse PCA

Prabhu Babu Prabhu.Babu@care.iitd.ac.in
Centre for Applied Research in Electronics
Indian Institute of Technology, Delhi 110016, India

Petre Stoica ps@it.uu.se
Division of Systems and Control, Department of Information Technology
Uppsala University, Uppsala, Sweden 75237

Astha Saini astha.saini@care.iitd.ac.in
Centre for Applied Research in Electronics
Indian Institute of Technology, Delhi 110016, India

Reviewed on OpenReview: https: // openreview. net/ forum? id= 6jTQrr3APY

Abstract

In this paper we propose a new iterative algorithm to solve the fair PCA (FPCA) problem.
We start with the max-min fair PCA formulation originally proposed in Samadi et al. (2018)
and derive a simple and efficient iterative algorithm which is based on the minorization-
maximization (MM) approach. The proposed algorithm relies on the relaxation of a semi-
orthogonality constraint which is proved to be tight at every iteration of the algorithm. The
vanilla version of the proposed algorithm requires solving a semi-definite program (SDP) at
every iteration, which can be further simplified to a quadratic program by formulating the
dual of the surrogate maximization problem. We also propose two important reformulations
of the fair PCA problem: a) fair robust PCA - which can handle outliers in the data, and
b) fair sparse PCA - which can enforce sparsity on the estimated fair principal components.
The proposed algorithms are computationally efficient and monotonically increase their
respective design objectives at every iteration. An added feature of the proposed algorithms
is that they do not require the selection of any hyperparameter (except for the fair sparse
PCA case where a penalty parameter that controls the sparsity has to be chosen by the
user). We numerically compare the performance of the proposed methods with two of the
state-of-the-art approaches on synthetic data sets and real-life data sets.

1 Introduction and problem formulations

Principal component analysis (PCA) is one of the most widely used unsupervised dimensionality reduction
technique Jolliffe (2002), which has found applications, among others, in image processing Clausen & Wech-
sler (2000); Du & Fowler (2008), signal processing Castells et al. (2007); Subasi & Gursoy (2010), finance
Tsay (2005), and biology Giuliani (2017); Lever et al. (2017). Given the data, PCA learns the underlying
low dimensional subspace by minimizing the reconstruction error. Let Y = [y1, y2, · · · , yN ] ∈ Rn×N denote
the data samples, where n and N (n ≤ N) represent the dimension and the number of data samples, re-

spectively. Without loss of generality, we assume that the data samples are mean centered, i.e.
N∑

i=1
yi = 0.
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Mathematically, PCA solves the following problem to find the low rank matrix Ŷ:

Ŷ = arg min
Z

∥Y − Z∥ s.t. rank(Z) = r ≤ n (1)

where ∥·∥ denotes the Frobenius norm and r denotes the rank of the low-dimensional subspace, which
is usually pre-specified. Although the problem in (1) is non-convex (due to the presence of the rank
constraint), its solution can be computed analytically using the singular value decomposition of Y :

Y =
[

U︸︷︷︸
r

Ū︸︷︷︸
n−r

] [
Σ 0
0 Σ̄

] [
VT

}
r

V̄T
}

n − r

]

where the diagonal matrix
[
Σ 0
0 Σ̄

]
contains the singular values in decreasing order and the unitary ma-

trices
[
U Ū

]
and

[
VT

V̄T

]
comprise the corresponding left and right singular vectors. Then, the low rank

approximation Ŷ is given by
Ŷ = UΣVT = UUT Y

The reconstruction error is given by

∥Y − Ŷ∥2 = ∥(In − UUT )Y∥2 = Tr[YT (In − UUT )Y]
= const. − Tr(UT RU) (2)

where R ≜ YYT is the sample covariance matrix.
Using (2), the problem in (1) can be reformulated as:

max
U

Tr(UT RU) s.t. UT U = Ir (3)

The maximizer of (3) is given by the r principal eigenvectors of R, and the cost function in (3) is the Rayleigh
quotient which can also be interpreted as the projection variance. However, in real-life applications the data
samples come from diverse classes, so maximizing the average variance as in (3) cannot ensure fairness among
the classes. In other words, the matrix U determined by solving (3) may be a good fit for some data samples
and a poor fit for others. To mitigate this problem, a worst case approach named Fair PCA (FPCA) was
recently proposed, which solves the following problem. Let us assume that the data samples are from K
different classes with the matrix Yk containing the samples belonging to class k. The corresponding sample
covariance matrix is Rk ≜ YkYT

k . Then the FPCA problem can be stated as Samadi et al. (2018):

max
U

min
k∈[1,K]

Tr(UT RkU) s.t. UT U = Ir (4)

The solution to (4) will give the best fit for the least favourable class, and in general will balance the fitting
with potentially many classes having identical variances {Tr(UT RkU)}. The FPCA problem in (4) is hard
to solve due to the presence of the inner minimization operator and the constraint. In Samadi et al. (2018)
and Tantipongpipat et al. (2019), the authors have proposed algorithms for solving (4) using a semidefinite
relaxation (SDR) technique. However the relaxation employed by SDR may not be tight for all problem
dimensions and therefore may yield suboptimal solutions (except in the case K = 2 where the relaxation
is always tight as proved in Samadi et al. (2018)). In Kamani et al. (2022), the authors have proposed
an alternative formulation of FPCA as a multi-objective optimization problem and suggested an iterative
method to arrive at solutions spanning the Pareto frontier. Finally Zalcberg & Wiesel (2021) has proposed
a sub-gradient based algorithm to solve the FPCA problem. However, as for any gradient approach, the
algorithm of Zalcberg & Wiesel (2021) requires a careful choice of the step-size: failing to choose a good
step-size may result in either convergence to a suboptimal solution or a very slow convergence.

In this paper, we propose an iterative algorithm to solve the FPCA problem, which is based on the
minorization-maximization (MM) approach. Unlike some of the aforementioned algorithms, the proposed
algorithm monotonically increase the cost function (i.e. min

k
{Tr(UT RkU)}) and it is guaranteed to converge.

An added feature of our algorithm is that it does not require the selection of any tuning parameter.
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In the presence of outliers, the solution to the problem formulated as in (4) can be significantly affected.
To tackle the outliers, we propose the following robust version of the fair PCA problem (hereafter called
FRPCA):

max
U

min
k∈[1,K]

∥UT Yk∥1 s.t. UT U = Ir (5)

where ∥UT Yk∥1 denotes the sum of the absolute values of the elements of UT Yk. The ℓ1 norm based
fitting criterion in (5) is inspired by the L1 PCA formulation proposed in Kwak (2008) which is the robust
counterpart of the vanilla PCA and has been found to be quite effective in handling outliers. The proposed
MM algorithm for (4) can be relatively easily adapted to solve the FRPCA problem in (6).

Finally, we also consider an extension of the proposed MM based algorithm for (4) to cases in which the
sparsity of the fair PCA solution is important. To do this, we consider the following penalized problem:

max
U

min
k∈[1,K]

Tr(UT RkU) − λ∥U∥1 s.t. UT U = Ir (6)

where λ is a prespecified penalty that controls the sparsity of U. The formulation in (6) is motivated by the
literature on sparse PCA Zou et al. (2006); Zou & Xue (2018); d’Aspremont et al. (2004) where the ℓ1 norm
of U is usually added as a penalty to the objective in (3) to promote sparsity and hence help identify the
significant contributing elements of the estimated principal components. As we will show later the proposed
method for (4) can be extended to deal with the problem (6) in a straightforward manner.
The main contributions of this paper can be summarized as follows:
1) We propose a hyperparameter free algorithm based on the MM approach for solving the FPCA problem.
The proposed algorithm has a monotonic convergence behavior and can be efficiently implemented.
2) We present a modification of the proposed algorithm that can deal with outliers in the data. More
precisely, we formulate the fair robust PCA (FRPCA) problem and show how the MM algorithm for the
FPCA approach can be modified to solve the FRPCA problem.
3) We also present an extension of the proposed algorithm (abbreviated as FSPCA) that can handle a
sparsity promoting penalty in the FPCA problem.
4) Finally, we present several numerical results on both synthetic data sets and real-life data sets and compare
the performance of the proposed algorithm with that of two state-of-the-art approaches.

Notations: We use bold uppercase (e.g., Y), bold lower case (e.g., x) for matrices and vectors, respectively
and italic letters (e.g., x) for scalars. The superscript t of xt denotes the iteration index. For any symmetric
matrices A and B, A ≽ B means that A − B is positive semidefinite. The variables Ir and In denote the
identity matrices of dimension r ×r and n×n. A 1

2 denotes the Hermitian square-root of the positive definite
matrix A and sgn(x) denotes the sign of the scalar x. Finally, ∥U∥1 denotes the sum of the absolute values
of the elements of the matrix U.

A brief outline of the paper is as follows. In Section 2 we first discuss the general MM approach for a
maximization problem, and then the MM approach for max-min problems. In Section 3 we present the
proposed algorithm for the FPCA problem and discuss an efficient way to implement it. In Section 4 we
consider an extension of the proposed method to deal with fair robust PCA and fair sparse PCA problems.
In Section 5, we present several numerical simulation results on both synthetic and real-life data and compare
the proposed method with two state-of-the-art methods. Finally, we conclude the paper in Section 6.

2 MM Primer

In this section, we first present the main steps of the MM approach for maximization problems. Later we
discuss how the MM approach can be extended to deal with max-min problems, which are of interest in this
paper.

2.1 MM for max problems

Consider the following constrained maximization problem:

max
x∈χ

f(x) (7)
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where x is the optimization variable, f(x) denotes the objective function and χ is a constraint set. An MM-
based algorithm solves the above problem by first constructing a surrogate function g(x|xt) which strictly
lower bounds the objective function f(x) at the current iterate xt. The function g (x|xt) qualifies to be a
surrogate function if it satisfies the following conditions:

g
(
x|xt

)
≤ f (x) ∀ x ∈ χ (8)

g
(
xt|xt

)
= f

(
xt

)
(9)

Then in the second step, the surrogate function is maximized to get the next iterate i.e.,

xt+1 ∈ arg max
x∈χ

g
(
x|xt

)
(10)

The above two steps are repeated until the algorithm converges to a stationary point of the problem in (7).
The surrogate function ideally should follow the shape of the objective function and be easy to maximize.

To summarize, the major steps of the MM approach are:

1. Start with a feasible x0 and set t = 0.

2. Construct a minorizing function g (x|xt) of f(x) at xt

3. Obtain xt+1 ∈ arg max
x∈χ

g (x|xt).

4. If |f(xt)−f(xt+1)|
|f(xt)| < ϵ, where ϵ is some prespecified convergence threshold, exit; otherwise set t = t+1

and go to Step 2.

It is straightforward to show that the MM steps monotonically increase the objective at every iteration i.e.

f(xt+1) ≥ g
(
xt+1|xt

)
≥ g

(
xt|xt

)
= f(xt)

The first inequality and the third equality follow from (8) and (9) and second inequality from (10).

2.2 MM for max-min problems

Consider the following max-min optimization problem:

max
x∈X

{
f(x) ≜ min

i=1,2,··· ,K
fi(x)

}
(11)

A possible surrogate function g(x|xt) for the max-min problem is as follows:

g(x|xt) = min
i=1,2,··· ,K

gi(x|xt) (12)

where each gi(x|xt) is a tight lower bound on fi(x) at xt. The individual surrogates gi(x) satisfy the following
conditions:

gi(xt|xt) = fi(xt) (13)
gi(x|xt) ≤ fi(x) (14)

One can easily show that the surrogate function g(x|xt) defined in (12) satisfies the conditions (8) and (9):

gi(x|xt) ≤ fi(x) =⇒ min
i=1,2,··· ,K

gi(x|xt)
≤ min

i=1,2,··· ,K
fi(x)

=⇒ g(x|xt) ≤ f(x).
(15)

and
g(xt|xt) = min

i=1,2,··· ,K
gi(xt|xt) = min

i=1,2,··· ,K
fi(xt) = f(xt) (16)
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Similar to the general MM case, here also one can show that the iterates {xt} increase the objective function
f(x) monotonically and converge to a stationary point. We refer the reader to Naghsh et al. (2019) Zhao
& Palomar (2016) for application of MM to max-min problems in communications and radar, and to Sun
et al. (2016) for a detailed discussion of the MM approach including different ways of finding the surrogate
function in the context of different applications.

3 FPCA

In this section, we will derive the MM algorithm for the problem in (3). For the sake of convenience, we
restate the FPCA problem:

max
U

{f(U) ≜ min
k∈[1,K]

fk(U)} s.t. UT U = Ir (17)

where fk(U) ≜ Tr(UT RkU). Before we venture into solving (17), we state and prove a lemma which will
help us in the development of the proposed algorithm.
Lemma 1. The non-convex semi-orthogonality constraint UT U = Ir in (17) can be relaxed to UT U ≼ Ir

and the global maximizer of the relaxed problem will satisfy the constraint in (17).

Proof. Let the eigenvalue decomposition of UUT be as follows:

UUT = VΛVT (18)

where V contains the principal eigenvectors of UUT and VT V = Ir. Using (18) we have :

Tr(UT RkU) = Tr((VT RkV)Λ) =
r∑

i=1
(VT RkV)iiΛii

≤
r∑

i=1
(VT RkV)ii

Therefore all functions in (17) are larger for Λ = Ir than for Λ < Ir, and this implies that the global
maximizer of (17) under the constraint UTU ≼ Ir will satisfy the constraint in (17). Therefore the relaxation
UTU ≼ Ir does not effect the solution of (17). ■

Using Lemma 1 we replace the problem in (17) with the following relaxed problem:

max
U

min
k∈[1,K]

Tr(UT RkU) s.t. UT U ≼ Ir (19)

The constraint in (19) is convex as it can be reformulated as a linear matrix inequality (Boyd & Vandenberghe
(2004)): [

Ir UT

U In

]
≽ 0

However, the maximization problem in (19) is non-convex as the objective (for any k) is a convex quadratic
function in U and the presence of min operator further adds to complications. We resort to the MM approach
to solve (19). Following the MM steps listed in Section 2.2, each convex quadratic function in (19) can be
lower bounded via its tangent hyperplane at Ut. Doing so gives us an MM surrogate for the objective in
(19). For given Ut and for any k, we have

fk(U) = Tr(UT RkU) ≥ Tr
(
(Ut)T RkUt

)
+ 2 Tr

(
(Ut)T Rk(U − Ut)

)
= 2 Tr

(
(Ut)T RkU

)
− Tr

(
(Ut)T RkUt

)
≜ gk(U)

Then the surrogate problem is given by:

max
U

min
k

gk(U) s.t.
[
Ir UT

U In

]
≽ 0 (20)
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Using the expression for gk(U) in (20) we get

max
U

min
k

2 Tr(AT
k U) + ck s.t.

[
Ir UT

U In

]
≽ 0 (21)

where
AT

k ≜ (Ut)T Rk, ck = −Tr((Ut)T RkUt) (22)
Problem (21) is convex and can be reformulated as an SDP :

max
α,U

α

s.t. 2 Tr(AT
k U) + ck ≥ α[

Ir UT

U In

]
≽ 0

(23)

which can be solved using off-the-shelf solvers like CVX Grant & Boyd (2014).

Consider the inner minimization problem in (20), which can be written as follows:

min
k

gk(U) = min
µ

K∑
k=1

µkgk(U) (24)

s.t. µk ≥ 0, µT 1 = 1.

Solving the problem on R.H.S. of (24), the solution elements of the vector µ are such that µk corresponding
to the minimum value of gk(U) is 1 and rest are 0, giving the minimum value of gk(U). So, the inner
minimization problem in (21) can be reformulated using the auxiliary variables µ = [µ1, · · · , µK ]T , as shown
below:

max
U

min
µ

K∑
k=1

µkgk(U)

s.t. µk ≥ 0,
K∑

k=1
µk = 1[

Ir UT

U In

]
≽ 0.

(25)

Lemma 2. The maximizer U of (21) (or equivalently (23)) satisfies the constraint UT U = Ir at each iteration
of the algorithm (not only at convergence).

Proof. This interesting property will be proved in what follows. Note that (25) is a notationally simpler
reformulation of (23). The objective in (25) is a linear function of U for given µ, and it is linear in µ for
fixed U. Furthermore the constraint sets for both U and µ are compact and convex. Consequently, using
the minimax theorem Sion (1958), the max and min operators in (25) can be interchanged and we get the
following equivalent problem:

min
µ

max
U

2 Tr(AT U) +
K∑

k=1
µkck

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1 ,

[
Ir UT

U In

]
≽ 0

(26)

where

A(µ) ≜
K∑

k=1
µkAT

k (27)

where A(µ) indicates the dependency of A on µ. The inner maximization problem in (26) can be solved in
closed form. Consider the first term in the objective of (26). By Von-Neumann inequality Marshall et al.
(1979), we have

Tr((A(µ))T U) ≤
r∑

i=1
σi(A(µ))σi(U)
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where σi(A(µ)) and σi(U) denote the non-zero singular values of A(µ) and U, respectively. Because
σi(U) ≤ 1, it follows that

Tr((A(µ))T U) ≤
r∑

i=1
σi(A(µ))

with the equality attained for
U∗ = A(µ)((A(µ))T A(µ))− 1

2 (28)

Indeed,

Tr((A(µ))T U∗) = Tr[((A(µ))T A(µ))((A(µ))T A(µ))− 1
2 ] = Tr[((A(µ))T A(µ)) 1

2 ] =
r∑

i=1
σi(A(µ))

Note that U∗ satisfies the constraint in (17) i.e. (U∗)T U∗ = Ir. Therefore, as claimed, the maximizer of
(23) satisfies the constraint UT U = Ir at each iteration. ■

Now inserting (28) in (26) yields the following problem that remains to be solved:

min
µ

2
K∑

i=1
σi(A(µ)) +

K∑
k=1

µkck

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1

(29)

where we have stressed by notation that A is a function of µ. The first term in (29) is equal to 2 times
the matrix nuclear norm of A(µ), denoted ∥A(µ)∥∗, and it is a convex function of A and hence {µk}.
Thus, (29) is a convex problem like (23) and can be reformulated as an SDP (see Appendix A) Recht et al.
(2010). However compared to (23) the number of variables and constraints in (29) is smaller, which can be
an advantage. In fact for K = 2, (29) can be solved as a 1-dimensional problem via a bisection method.

Once the minimizer µ∗ is obtained by solving (29), the corresponding U (which is also the maximizer of
(23)) can be obtained as:

U(t+1) = A(µ∗)(AT (µ∗)A(µ∗))− 1
2 (30)

and it will serve as the next iterate. The MM-procedure will continue in the same manner till the iterates
converge. The steps of the proposed algorithm are summarized in a pseudocode form in Algorithm 1.

Algorithm 1 FPCA algorithm
Input Initial estimate U0, {Rk}K

k=1, and convergence threshold ϵ = 10−5.
Set t = 0.
repeat

Compute {Ak, ck} in (22).
Compute µ∗ by solving (29).
Obtain Ut+1 from (30).
Set t = t + 1.

until
f(Ut+1) − f(Ut)

f(Ut) ≤ ϵ.

UFPCA = Ut at convergence.
Output UFPCA.

The main burden of the proposed algorithm lies in the computation of {Ak}K
k=1, solving the SDP in (29)

and computing Ut+1 in (30). Computation of {Ak}K
k=1 involves evaluation of matrix-matrix products which

can be done in O(Krn2) flops. Solving the SDP in (29) requires roughly O
(
(n + r)4.5)

flops Shen et al.
(2008); Zheng et al. (2012), and evaluating (30) requires O(nr2) + O(r3) flops, thus the total number of
computations per iteration is on the order of O

(
(n + r)4.5)

flops. The complexity of O
(
(n + r)4.5)

seems
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to be on the higher side especially when compared to that of a recent state-of-the-art algorithm proposed
in Zalcberg & Wiesel (2021), which has a complexity of O

(
n3)

. Algorithm 1 can be run on a workstation
for fairly large dimensions such as n = 1000, r = 100, K = 100. Regarding the space complexity, at every
iteration, the matrices {Ak}K

k=1 need to be stored which requires O
(
Krn

)
memory words, and the space

complexity of the SDP is around O
(
(n+ r)2)

, thus the total space complexity is on the order of O
(
(n+ r)2)

.

In the following, we propose an alternative approach to solve (29) that helps reduce the computational
burden. To do so, we start with the problem in (29):

min
µ

{f̃(µ) ≜ 2 ∥A(µ)∥∗ +
K∑

k=1
µkck}

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1

(31)

Let us introduce an auxillary variable Φ (Φ ≻ 0) and rewrite (31) in the form:

min
µ,Φ≻0

Tr(Φ−1) + Tr((A(µ))T A(µ)Φ) +
K∑

k=1
µkck

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1

(32)

The problems (31) and (32) are equivalent, which can be seen as follows. If we minimize (32) over Φ for
fixed µ, we get the minimizer Φ∗ = ((A(µ))T A(µ))− 1

2 and substituting it back in (32) we get the problem
in (31). Thus, instead of solving (31) one can solve (32) to obtain the minimizer of (31). The problem in
(32) can be solved using an alternating minimization approach : for given µ, say µt, we get the minimizer
Φt as explained above. For fixed Φ = Φt, the minimizer µ can be obtained by solving the following convex
problem:

min
µ

Tr((A(µ))T A(µ)(Φt)) +
K∑

k=1
µkck

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1

(33)

which can be reformulated as a quadratic program (QP):

min
µ

µT Qµ +
K∑

k=1
µkck

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1

(34)

where [Q]i,j ≜ Tr(AT
i ΦtAj). The QP in (34) can be solved using standard solvers whose computational

complexity including the update of Φt is on the order of O(K3) + O(n3) flops. This is much less than
O((n + r)4.5) but note that, unlike the problem in (29), the problem in (33) has to be solved multiple times;
fortunately usually only a few iterations are needed (typically < 10). There is hardly any theoretical result
on this aspect, nonetheless from our numerical simulation experience we have observed that solving (33)
usually indeed requires around 10 iterations (even for problem dimension n = 100) to achieve convergence
(as can also be seen from the figures in Section 5). The iterative steps of the above alternating minimization
algorithm for computing the solution µ∗ to (29) are summarized in Algorithm 2.

4 FSPCA and FRPCA

4.1 Fair Sparse PCA

In this section we present an extension of the proposed method which can handle a penalty that promotes
the sparsity of the fair principal components. For convenience we repeat here the statement of the sparse
FPCA problem (see (6)):

max
U

{h(U) ≜ min
k∈[1,K]

{fk(U) − λ∥U∥1}}

s.t. UT U = Ir

(35)
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Algorithm 2 Alternating minimization approach for solving (29)
Input Initial estimate µ0, {ck, AT

k } and convergence threshold ϵ = 10−5.
Set t = 0.
repeat

Compute Φt =
(
AT (µt)A(µt)

)− 1
2 .

Obtain µt+1 by solving (34).
Set t = t + 1.

until
f̃(µt+1) − f̃(µt)

f̃(µt)
≤ ϵ.

µ∗ = µt at convergence.
Output µ∗.

where λ is a penalty factor that controls the sparsity of U. Selecting λ is a basic problem in sparse opti-
mization literature and there is a host of methods that have been suggested for making this selection, with
cross validation being often the method of choice (see, e.g. Zou et al. (2006) for selecting λ in sparse PCA
applications). Similarly to the FPCA case, we relax the semi-orthogonality constraint:

max
U

min
k∈[1,K]

fk(U) − λ∥U∥1

s.t. UT U ≼ Ir =⇒
[
Ir UT

U In

]
≽ 0

(36)

For fixed U = Ut, we can minorize the quadratic functions {fk(U)} using their tangent hyperplanes, and
obtain the following surrogate problem

max
U

min
k

{gk(U) − λ∥U∥1}

s.t.
[
Ir UT

U In

]
≽ 0

(37)

where as before gk(U) = 2 Tr(AT
k U) + ck. The above problem is convex (more exactly an SDP) and can be

solved via CVX. Similar to the FPCA case, the maximizer of (37) can be shown to satisfy the constraint
UT U = Ir. To do so, we reformulate the problem in (37) using auxiliary variables B and µ as follows:

max
U

min
µ,B

K∑
k=1

µkgk(U) + λ Tr(BT U)

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1 ,

[
Ir UT

U In

]
≽ 0, |[B]i,j | ≤ 1 ∀i, j

(38)

Minimizing (38) over B and µ we get the objective in the problem (37). Thus (37) and (38) are equiva-
lent problems. Using the minimax theorem (the objective and the constraints of (38) satisfy the required
conditions), the max and min operators can be swapped:

min
µ,B

max
U

K∑
k=1

µkgk(U) + λ Tr(BT U)

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1 ,

[
Ir UT

U In

]
≽ 0, |[B]i,j | ≤ 1 ∀i, j

(39)

Using the expression for gk(U) = 2 Tr(AT
k U) + ck, (39) can be rewritten as:

min
µ,B

max
U

2 Tr((A + λ

2 B)T U) +
K∑

k=1
µkck

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1 ,

[
Ir UT

U In

]
≽ 0, |[B]i,j | ≤ 1 ∀i, j

(40)
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Similar to (28), the maximizer U of (40) can be obtained in closed form:

U∗ = (A + λ

2 B)
(
(A + λ

2 B)T (A + λ

2 B)
)− 1

2

which satisfies the constraint UT U = Ir. Thus, also in the FSPCA case, the MM iterates satisfy the
semi-orthogonality constraint. The pseudocode of FSPCA is summarized in Algorithm 3.

Algorithm 3 FSPCA algorithm
Input Initial estimate U0, {Rk}, λ, and convergence threshold ϵ = 10−5.
Set t = 0.
repeat

Compute {Ak, ck} in (22).
Obtain Ut+1 by solving (37).
Set t = t + 1.

until
h(Ut+1) − h(Ut)

h(Ut) ≤ ϵ.

USFPCA = Ut at convergence.
Output USFPCA.

4.2 Fair Robust PCA

We next discuss how the proposed approach can be modified to solve the fair robust PCA formulation stated
in (5):

max
U

{hr(U) ≜ min
k∈[1,K]

∥UT Yk∥1} s.t. UT U = Ir

Similar to what we have done before, we relax the semi-orthogonality constraint:

max
U

min
k∈[1,K]

∥UT Yk∥1

s.t.
[
Ir UT

U In

]
≽ 0

(41)

Compared to the previous cases, we have a different data fitting function here. Nonetheless, ∥UT Yk∥1 can
be minorized as follows. For a given Ut,

∥UT Yk∥1 =
∑
i,j

|(UT Yk)ij | ≥
∑
i,j

(UT Yk)ij
((Ut)T Yk)ij

|((Ut)T Yk)ij |

=
∑
i,j

(UT Yk)ijsgn(((Ut)T Yk)ij)

= Tr(UT YkWk)

(42)

where
Wk ≜ sgn((Ut)T Yk) (43)

Thus the surrogate problem corresponding to (41) is given by:

max
U

min
k

Tr(UT YkWk)

s.t.
[
Ir UT

U In

]
≽ 0

(44)

which is once again an SDP (after rewriting in epigraph form) that can be solved via CVX. Using a similar
argument to that employed in the cases of FPCA and FSPCA, here too one can show that the solution of
(44) satisfies the semi-orthogonality constraint. The pseudocode of the FRPCA is summarized in Algorithm
4.

We conclude this section with a number of remarks on the
proposed algorithms.
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Algorithm 4 FRPCA algorithm
Input Initial estimate U0, {Rk}, λ, and convergence threshold ϵ = 10−5.
Set t = 0.
repeat

Compute {Wk} in (43).
Compute Ut+1 by solving (44).
Set t = t + 1.

until
hr(Ut+1) − hr(Ut)

hr(Ut) ≤ ϵ.

UFRPCA = Ut at convergence.
Output UFRPCA.

• The value of λ in the case of FSPCA and the rank r for all the algorithms are assumed to be
prespecified. When λ and r are not specified they can be chosen using model selection approaches
or cross validation.

• In the case of FSPCA and FRPCA, although we did not prove that we can relax the semi-
orthogonality constraint in the original problem formulations (like we did for FPCA), we showed
that the corresponding surrogate problems tightly satisfy the semi-orthogonality constraint, which
means that their solutions are feasible for the original problems.

• If desired a sparsity inducing penalty can also be added to FRPCA problem and an MM algorithm
can be developed.

• In the case of FSPCA and FRPCA, QPs similar to (34) can be derived and solved instead of solving
the SDPs in (37) and (44).

• Regarding the convergence of the proposed methods, by the properties of MM the objective function
is monotonically increasing at each iteration. Then, because the cost functions of FPCA, FSPCA
and FRPCA are bounded above, the convergence of the proposed algorithms follows from the general
results proved in Sun et al. (2016).

• Regarding the initialization (U0) for the proposed methods, in the case of FPCA and FSPCA we
observed in the numerical experiments that the objective functions were often unimodal. So, we
have used random semi-orthogonal matrices to initialize the algorithms. On the other hand, the
objective function of FRPCA appeared to be multi-modal (see the discussion in Section 5.4), thus
we have initialized the FRPCA algorithm with the FPCA solution.

• Finally we note that RPCA and SPCA are important problems in their own right and a multitude
of algorithms have been suggested for solving them (see, e.g. Kwak (2008); Zou et al. (2006); Zou &
Xue (2018); d’Aspremont et al. (2004)). Our algorithms FRPCA and FPSCA with K = 1 can also
be used to solve the RPCA and SPCA problems.

5 Numerical simulation results

In this section, we will compare the performance of the proposed FPCA method with the SDR method
of Samadi et al. (2018) and the sub-gradient method from Zalcberg & Wiesel (2021). The SDR approach
uses the parametrization P = UUT and relaxes the rank(P) = r constraint to Tr(P) = r and the semi-
orthogonality constraint to 0 ≼ P ≼ In. For K = 2, the aforementioned relaxation is tight but for K ≥ 3
this is not necessarily true and the method often yields solutions with rank(P) > r. Being a relaxation
the objective value attained by SDR is an upper bound which is not always achievable. We first perform
simulations based on synthetic data sets and later include simulation results for real-life data sets. We will
also present numerical simulation results showing the performance of the proposed FSPCA and FRPCA
methods.
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Figure 1: Synthetic data set: Objective vs iteration plots for n = 10, N = 100, and r = 4. In the case of
SDR, for the simulation settings in figure 1b, the rank of optimal P was found to be 6.
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Figure 2: Synthetic data : Objective vs r plots for n = 10, N = 100.

5.1 Synthetic data

The data samples for any class k is generated as {yi = R
1
2
k ei}, where R

1
2
k was randomly generated, and the

elements of ei are i.i.d. random variables sampled from a Gaussian distribution with zero mean and variance
one. Let n = 10, N = 100, and r = 4, and each class has the same number of data samples equal to N

K .
We first show the objective vs. iteration plots for the three methods in Figure 1 for two different values of
K. It can be seen from this figure that the proposed FPCA method converges quickly to the SDR upper
bound (see the zoom insert in Figure 1a), while the method of Zalcberg & Wiesel (2021) converges slowly
to a suboptimal value. For K > 2, the SDR upper bound may not be achievable, see for example Figure
1b (zoom insert). For fairness, we ran the method of Zalcberg & Wiesel (2021) for different choices of the
step length (small, medium and large) and from Figure 1 one can see that even for different step-lengths the
method still converges to suboptimal values. In Figures 2a and 2b, we show the objective values obtained
by the three methods for different values of r and K. From these figures it can be seen that the proposed
FPCA approach always finds a better objective value than the method from Zalcberg & Wiesel (2021) and
reaches the SDR bound whenever the latter is achievable.
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In Table 1 we show the average computational time (in seconds) of the algorithms.

(n, r, K), N = 1000 subgrad Proposed Method
(30,2,2) 1.2 2.2
(30,4,2) 1.8 5.8
(30,8,2) 2.6 16.7
(30,16,2) 4.2 48.2
(25,5,5) 3.1 20.2
(50,5,5) 75.6 118.3
(100,5,5) 450.2 740.6
(40,2,2) 15.1 48.6
(40,2,4) 16.7 54.9
(40,2,8) 20.3 60.5

Table 1: Average computational time (in seconds) for the algorithms

5.2 Credit data

In this simulation we evaluate the performance of the methods on a credit data set from Samadi et al.
(2018). First the data is mean centered. The parameters of the credit data are n = 21, K = 2, N = 30000
(with class 1 having 5385 data samples and class 2 having 24615 data samples). In Figure 3a, we plot the
objective vs iteration for the proposed FPCA method and the sub-gradient method of Zalcberg & Wiesel
(2021). The proposed method quickly converges to the SDR bound. On the other hand, even for a careful
choice of the step size, the method of Zalcberg & Wiesel (2021) takes nearly a million iterations to converge
to a suboptimal value. In Figure 3b we show the optimal objective values obtained by the three methods for
r in the interval [1, 20]. It can be seen from this figure that the FPCA method reaches the same objective
as SDR.
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Figure 3: Credit data set with n = 21, N = 30000, K = 2.

5.3 LFW data

In this example we compare the performances of the three methods, namely SDR, proposed method and the
sub-gradient based method for a high dimensional real data set - labeled faces in the wild (LFW) Huang
et al. (2008), which contains the facial images of both men and women (K = 2). Each image is of size 42×42
(n = 1764) and there are 2962 images of women and 10270 images of men. In Fig. 4 we show the fair PCA
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Figure 4: LFW data set with n = 1764, N = 13232, K = 2.

objective obtained by the methods for different values of rank (r). It can be seen that the proposed method
tightly follows the SDR whereas the sub-gradient method is sub-optimal.

5.4 Fair robust PCA

In this simulation, we generate the data as in Section 5.1 but now some data samples for randomly chosen
classes are corrupted by outliers. The outliers, which are roughly 10% of the total number of samples, are
generated from a Gaussian distribution with mean α and variance one. In Figure 5a we plot the objective vs
iteration for the proposed FPCA algorithm for ten different initializations. The objective in (5) has several
local maxima, which is evident from the plot as the method converges to different local maxima depending
on the intialization. In Figure 5b, we vary α in the interval [0, 20] and compute the average normalized error
between the estimated subspaces (calculated using 100 Monte-Carlo runs):

Normalized subspace error = ∥ÛÛT −ŨFPCAŨT
FPCA∥

∥ŨFPCAŨT
FPCA∥ (45)

where ŨFPCA denotes the FPCA estimate of the principal components obtained from outlier-free data, and
Û denotes either UFPCA or UFRPCA obtained in the presence of outliers. It can be seen from the figure
that the FRPCA performs well in the presence of the outliers and has comparatively low errors even in the
presence of large outliers.

5.5 Fair sparse PCA

In this simulation we generate the data as in Section 5.1 with the choice of parameters: n = 40, r = 10, N =
200, K = 2. In Figure 6a, we show the evolution of the objective in (35) vs iterations for λ = 5. The
proposed algorithm monotonically increases the penalized objective as expected. The choice of λ determines
the sparsness of U. In Figure 6b we show the number of non-zero elements in U vs λ (as expected) when λ
increases the sparsity of the estimated U increases.

6 Conclusion and Future Work

In this paper we have proposed a new MM algorithm for solving the fair PCA (FPCA) problem. The
proposed algorithm is computationally efficient and monotonically increases the FPCA objective at each
iteration. Furthermore, the proposed FPCA algorithm does not require the selection of any hyperparameter.
We have also proposed two MM algorithms to solve the fair robust PCA and fair sparse PCA problems.
Finally, we performed numerical simulations on both synthetic data sets and a real-life data set and compared
the performance of the proposed approach with that of two state-of-the-art approaches. In a future work,
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Figure 5: Performance of FRPCA algorithm for n = 10, N = 100, K = 2, r = 4 and 10% outliers.
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Figure 6: FSPCA: n = 40, r = 10, N = 200, K = 2.

we plan to study the convergence properties of the proposed algorithm and derive its convergence rate, with
a particular focus on problem (33) and the number of iterations needed to attain practical convergence.
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A Appendix

The minimization problem of FPCA in terms of singular values of A (given in (29)) is as follows:

min
µ

2
K∑

i=1
σi(A(µ)) +

K∑
k=1

µkck

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1.

(46)

Since the sum of singular values of a matrix is the nuclear norm of the matrix, we have:

min
µ

2 ∥A(µ)∥∗ +
K∑

k=1
µkck

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1,

(47)

where ∥·∥∗ denotes the nuclear norm of the matrix. The problem in (47) can be re-written as a semi-definite
program (SDP) formRecht et al. (2010) as follows:

min
W1,W2,µ

Tr(W1) + Tr(W2) +
K∑

k=1
µkck

s.t. µk ≥ 0 ,
K∑

k=1
µk = 1,

[
W1 A(µ)

A(µ) W2

]
≽ 0,

(48)
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