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ABSTRACT

Generative models often treat continuous data and discrete events as separate
processes, creating a gap in modeling complex systems where they interact syn-
chronously. To bridge this gap, we introduce JointDiff, a novel diffusion frame-
work designed to unify these two processes by simultaneously generating con-
tinuous spatio-temporal data and synchronous discrete events. We demonstrate
its efficacy in the sports domain by simultaneously modeling multi-agent tra-
jectories and key possession events. This joint modeling is validated with non-
controllable generation and two novel controllable generation scenarios: weak-
possessor-guidance, which offers flexible semantic control over game dynamics
through a simple list of intended ball possessors, and text-guidance, which enables
fine-grained, language-driven generation. To enable the conditioning with these
guidance signals, we introduce CrossGuid, an effective conditioning operation
for multi-agent domains. We also share a new unified sports benchmark enhanced
with textual descriptions for soccer and football datasets. JointDiff achieves state-
of-the-art performance, demonstrating that joint modeling is crucial for building
realistic and controllable generative models for interactive systems.

1 INTRODUCTION

Modeling the dynamics of multi-agent systems is fundamentally challenging when continuous mo-
tion is tightly coupled with discrete, state-altering events. This interplay is critical in domains like
autonomous driving and robotics, but finds a particularly rich and demanding testbed in team sports.
Here, the continuous trajectories of players are synchronously intertwined with discrete events like
passes and possessions. Generating realistic sports gameplay therefore requires a model that can
jointly represent these two modalities.

However, existing generative models often fall short by treating these components in isolation. This
can lead to physically implausible generations, such as unrealistic passes or flawed ball-possessor
interactions (Lee et al., 2024; Capellera et al., 2025). While deterministic models have started to
incorporate events (Kim et al., 2023; Capellera et al., 2024), a comprehensive generative framework
is missing. This deficiency is compounded by evaluation protocols that rely on individual-level met-
rics like minimum ADE/FDE (Alahi et al., 2016), which were inherited from pedestrian forecasting
and fail to capture scene-level coherence (Casas et al., 2020; Girgis et al., 2021; Weng et al., 2023;
Capellera et al., 2025), crucial to team sports.

To address this gap, we turn to the expressive power of diffusion models. While continuous diffu-
sion (Ho et al., 2020) has excelled at generating high-fidelity data like trajectories (Mao et al., 2023;
Jiang et al., 2023; Gu et al., 2022; Rempe et al., 2023; Bae et al., 2024; Li et al., 2023; Yang et al.,
2024; Capellera et al., 2025), discrete diffusion (Hoogeboom et al., 2021; Austin et al., 2021) has
concurrently emerged as a potent, non-autoregressive alternative to large language models (LLMs)
for structured sequence generation (Lou et al., 2023). Nascent work has begun to unify these modal-
ities for static tasks such as layout design (Levi et al., 2023) and visual-language modeling (Li et al.,
2025). Our key insight is to unify these two paradigms for the temporally evolving complex systems.
We introduce JointDiff, a novel framework that, to the best of our knowledge, is the first to apply
joint continuous-discrete diffusion to simultaneously generate spatio-temporal continuous data (tra-
jectories) alongside its corresponding synchronous temporal discrete events (possession events).
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Players "[1, 3]" are involved
 in possession

"Player 1 starts with the ball
and passes to Player 3"

Figure 1: JointDiff. Our model jointly generates continuous trajectories and discrete events, with
guidance provided through either weak-possessor information or natural language text. Stars (⋆)
refer to the initial timestep.

Beyond realism, a truly useful generative model also needs to be controllable. While diffusion-
guidance methods (Dhariwal & Nichol, 2021; Ho & Salimans, 2022) have been used in motion
synthesis to satisfy pedestrian goals or constraints (Jiang et al., 2023; Rempe et al., 2023), semantic
control through discrete events in multi-agent systems remains unexplored. Our joint framework
directly enables such control using the classifier-free guidance (CFG) (Ho & Salimans, 2022). We
introduce weak-possessor-guidance (WPG), a novel conditioning method that allows users to steer
gameplay by simply providing an ordered list of intended ball possessors, without rigid timing con-
straints. We further extend controllability to natural language via text-guided generation, facilitated
by a new, curated benchmark of text descriptions for soccer and football datasets. Our approach is il-
lustrated in Fig. 1. In summary, our principal contributions are: 1) A novel joint continuous-discrete
diffusion framework that simultaneously generates multi-agent trajectories and synchronous discrete
events, leading to more realistic and coherent scenes; 2) Enabling high-level semantic controllabil-
ity in dynamic domains. We introduce two novel controllable tasks (weak-possessor-guidance and
text-guidance) and a dedicated CrossGuid module that effectively injects conditioning signals into
the structured multi-agent embedding; 3) A unified benchmark for multi-agent modeling in sports,
enhanced with new text descriptions for soccer and football datasets. Our method achieves state-of-
the-art results on scene-level metrics.

2 RELATED WORK

Trajectory Modeling. The evolution of multi-agent trajectory modeling has progressed from Re-
current Neural Networks (RNNs) and Variational RNNs (VRNNs) (Alahi et al., 2016; Felsen et al.,
2018; Zhan et al., 2019; Li et al., 2021), to generative models like Generative Adversarial Networks
(GANs) (Gupta et al., 2018; Sadeghian et al., 2019; Fang et al., 2020) and Conditional Variational
Autoencoders (CVAEs) (Salzmann et al., 2020; Graber & Schwing, 2020; Yuan et al., 2021; Lee
et al., 2022; Xu et al., 2022) (Zheng et al., 2024). In recent years, non-sampling approaches built on
transformer architectures (Vaswani et al., 2017), and in some cases enriched with visual data (Saa-
datnejad et al., 2023; Gao et al., 2024)(Wu et al., 2024), have achieved notable progress in multi-
modal future prediction by effectively modeling long-range spatio-temporal dependencies (Girgis
et al., 2021; Ngiam et al., 2021; Lee et al., 2024). Building on this progress, Denoising Diffusion
Probabilistic Models (DDPMs) (Ho et al., 2020) have emerged as the state-of-the-art for generating
high-fidelity and diverse trajectories (Mao et al., 2023; Jiang et al., 2023; Gu et al., 2022; Rempe
et al., 2023; Bae et al., 2024; Li et al., 2023; Fu et al., 2025). This generative power also extends
to tasks like trajectory completion, where the recent diffusion model U2Diff (Capellera et al., 2025)
has surpassed prior methods based on Graph VRNNs (GVRNNs) (Omidshafiei et al., 2022; Xu
et al., 2023), GANs (Liu et al., 2019), and CVAEs (Xu & Fu, 2025). Notably, U2Diff also competes
against forecasting-specific architectures despite using an Independent and Identically Distributed
(IID) sampling method and without using time window constraints.

Multi-agent Controllability. Diffusion models have recently been augmented with guided sam-
pling to satisfy user-specified constraints or objectives. Existing pedestrian and autonomous driving
methods (Rempe et al., 2023; Jiang et al., 2023; Yang et al., 2024), typically focus on controlling
individual-level attributes like waypoints, speeds, or physics constraints. Similarly, human motion
generation approaches (Karunratanakul et al., 2023) and robotics planning methods (Mishra et al.,
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2023; Fang et al., 2024) often guide a single agent. In contrast, our work focuses on controlling
a broader multi-agent system through high-level semantic directives. We adopt the CFG paradigm
(Ho & Salimans, 2022), widely used in image and video (Rombach et al., 2022; Ho et al., 2022),
to bias generation toward a user-specified sequence of possessors or a natural language description.
This allows for a comprehensive control of the entire scene rather than individual agent behavior.

Joint Continuous-Discrete Diffusion. Joint diffusion models for mixed continuous–discrete data
are an emerging research direction, with applications in static domains such as layout design (Levi
et al., 2023), CAD sketches (Chereddy & Femiani, 2025), and vision–language modeling (Li et al.,
2025), where absorbing state diffusion (Austin et al., 2021) is commonly used for discrete variables.
In contrast, dynamic domains have been underexplored. Prior work (Zeng et al., 2024) applies the
multinomial formulation (Hoogeboom et al., 2021) to temporal point processes, but it’s restricted to
single-instance future prediction and relies on sequential, non-simultaneous generation. We extend
the multinomial formulation to general controllable dynamic domains, exemplified by the multi-
agent completion task, and introduce a unified diffusion framework that simultaneously models
continuous trajectories and discrete events. This formulation proves more consistent than absorbing
state diffusion in our temporally evolving domain, as it enables continuous refinement of discrete
variables throughout the denoising process. Furthermore, we are first to incorporate high-level se-
mantic controllability, such as WPG and text-guidance, for joint continuous–discrete generation in
dynamic domains, consistently outperforming the non-joint baseline.

3 DIFFUSION BACKGROUND

Diffusion models are a class of generative models that learn to reverse a progressive noising process,
operating in two stages: a forward diffusion process and a learnable reverse denoising process. The
forward process is a fixed Markov chain that gradually adds noise to a data sample X0 ∼ q(X0).
Over S steps, the data is corrupted following a variance schedule, {βs ∈ (0, 1)}Ss=1, until p(XS)
resembles a simple and known noise distribution. This process is defined as: q(X1:S | X0) =∏S

s=1 q(Xs | Xs−1). A key property is that we can sample Xs at any arbitrary timestep conditioned
on the initial data X0 in a closed form q(Xs | X0). The reverse process is a generative model that
learns to denoise the data by iteratively reversing the forward steps. Starting with a sample from the
known noise distribution, XS , a neural network, pθ, learns to approximate the reverse transitions:
pθ(X0:S) = p(XS)

∏S
s=1 pθ(Xs−1 | Xs).

The objective is to train the model to generate new samples that match the original data distribution
q(X0). This is achieved by minimizing a variational upper bound on the negative log-likelihood:

Lvb = Eq[− log pθ(X0 | X1)] +

S∑
s=2

Eq[DKL(q(Xs−1 | Xs,X0) ∥ pθ(Xs−1 | Xs))] + C, (1)

where C is a constant term defined by DKL(q(XS | X0) ∥ p(XS)). The true posterior q(Xs−1 |
Xs,X0) is tractable, which allows for a direct optimization approach of the neural network approx-
imating the reverse transition pθ(Xs−1 | Xs).

While the original DDPM framework (Ho et al., 2020) handled continuous data with Gaussian noise,
subsequent work adapted it for discrete, categorical data (Hoogeboom et al., 2021; Austin et al.,
2021). Our work builds on multinomial diffusion, which corrupts discrete events toward a uniform
distribution (see Appendix A for details on these frameworks and their loss terms).

4 METHOD

4.1 PROBLEM STATEMENT

We model a dynamic scene composed of N agents (e.g., ball and players) over a time horizon of
T timesteps. The state of the scene at any time t is described by a combination of continuous and
discrete variables as:

• Continuous state: The agent’s 2D spatial coordinates are represented by a tensor Y ∈
RT×N×2, where yt,n ∈ R2 is the position of agent n at time t. The agents are indexed such
that n = 0 refers to the ball, and n = {1, . . . , N − 1} refers to the players.

3
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• Discrete state: A categorical event at each timestep, such as ball possession, is represented
by a one-hot matrix E ∈ {0, 1}T×N . Each row et is a one-hot vector where a value of 1
at index n indicates that agent n is in possession of the ball. States et where the ball is not
possessed (e.g., during a pass or shot) are assigned to the ball’s own category, index n = 0.

The complete scene is described by a tuple X = (Y,E), which jointly represents the spatio-
temporal trajectories and discrete events. We define two generative objectives for our model: Com-
pletion and Controllable Generation. The first objective is to generate plausible and coherent
completions of a dynamic scene. Given a set of partial observations Xco = (Yco,Eco) defined by a
binary mask M that specifies which time steps and agents are observed, the goal is to learn a model
capable of sampling from the conditional distribution p(X | Xco). The second objective extends
this to controllable generation by introducing an external conditioning variable G (e.g., natural lan-
guage text) to guide the generation process. The model must learn to sample from the augmented
conditional distribution p(X | Xco,G). This framework enables scene generation that is influenced
not only by partial observations but also by additional data from different domains.

4.2 JOINT CONTINUOUS-DISCRETE DIFFUSION

To model the joint data distribution q(X0) = q(Y0,E0), we design a diffusion model that simulta-
neously handles both continuous trajectories and discrete events.

The forward process corrupts the initial data X0 = (Y0,E0) over S timesteps. We assume the
noising processes for the two modalities are independent, which allows us to factorize the joint
forward transition as:

q(Ys,Es | Y0,E0) = q(Ys | Y0) q(Es | E0). (2)

This factorization enables the application of a continuous diffusion process to the trajectories Y0

and a discrete diffusion process to the events E0. For simplicity, we assume both processes are
governed by a shared variance schedule {βs}Ss=1. The individual closed-form transitions are:

q(Ys | Y0) = N (Ys;
√
ᾱsY0, (1− ᾱs)I), (3)

q(Es | E0) = Cat(Es; ᾱsE0 + (1− ᾱs)/N). (4)

where αs = 1− βs and ᾱs =
∏s

i=1 αi, and Cat(; p) denotes a categorical distribution with proba-
bilities p. Equation 3 describes a standard Gaussian diffusion process from DDPM (Ho et al., 2020),
where the initial state Y0 is progressively corrupted with Gaussian noise. Following Hoogeboom
et al. (2021), Eq. 4 defines a multinomial diffusion process, where the one-hot matrices E0 are grad-
ually mixed with a uniform distribution over N categories. As s → S, Ys converges to a sample
from an isotropic Gaussian, and Es to a sample from a uniform categorical distribution.

For the reverse process, we make the conditional independence assumption at s − 1, allowing the
joint posterior to be factorized as:

pθ(Ys−1,Es−1 | Ys,Es,X
co,G) = pθ(Ys−1 | Ys,Es,X

co,G) pθ(Es−1 | Ys,Es,X
co,G). (5)

Note that the model learns the dependencies between the continuous and the discrete modalities
because the reverse network pθ is conditioned on the full state Xs = (Ys,Es). The reverse process
is parametrized with a single neural network with two prediction heads. The network takes the noisy
state (Ys,Es), the denoising step s, the partial observations Xco, and optional guidance G as input.

• A regression head predicts the noise added to the trajectories, denoted as
ϵθ(Ys,Es, s,X

co,G).
• A classification head predicts the original event probabilities, Ê0 = πθ(Ys,Es, s,X

co,G).

The continuous reverse transition is defined as a Gaussian distribution:

pθ(Ys−1 | Ys,Es,X
co,G) = N (Ys−1;µθ(Ys,Es, s,X

co,G), σ2
sI), (6)

where the variance σ2
s is a non learnable hyperparameter, typically set to 1−ᾱs−1

1−ᾱs
βs, and the mean µθ

is computed from the predicted noise ϵθ using the standard DDPM parametrization as µθ(Ys, s) =
1√
αs

(
Ys − βs√

1−ᾱs
ϵθ(Ys, s)

)
.
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The discrete reverse transition is derived by plugging the network’s prediction Ê0 into the true
posterior q(Es−1 | Es,E0) for steps s ≥ 2, while for the final step (s = 1) we directly use the
categorical distribution with parameter Ê0. Specifically, we have for s = 1 and s ≥ 2, respectively:

pθ(E0 | Y1,E1,X
co,G) = Cat(E0; Ê0) and pθ(Es−1 | Ys,Es,X

co,G) = q(Es−1 | Es, Ê0).

The posterior is a categorical distribution q(Es−1 | Es,E0) = Cat(Es−1; ,θpost(Es,E0)) whose
probabilities are defined as:

θpost(Es,E0) = θ̃/

N−1∑
n=0

θ̃n and θ̃ = [αsEs + (1− αs)/N ]⊙ [ᾱs−1E0 + (1− ᾱs−1)/N ].

Training Objective. Our model is trained end-to-end by minimizing a joint objective derived from
Eq. 1. Since the forward process q acts independently on each modality, the true posterior also
factorizes:

q(Xs−1 | Xs,X0) = q(Ys−1 | Ys,Y0) q(Es−1 | Es,E0). (7)

The key property of the KL divergence is that it decomposes over factorized distributions. This
allows the variational bound from Eq. 1 to be separated into continuous and discrete terms:

Lvb = Eq

[
− log pθ(Y0 | Y1,E1,X

co
,G) +

S∑
s=2

DKL

(
q(Ys−1 | Ys,Y0) ∥ pθ(Ys−1 | Ys,Es,X

co
,G)

)]

+ Eq

[
− log pθ(E0 | Y1,E1,X

co
,G) +

S∑
s=2

DKL

(
q(Es−1 | Es,E0) ∥ pθ(Es−1 | Ys,Es,X

co
,G)

)]
= LY

vb + LE
vb

For the continuous part, we use the simplified objective common in DDPMs, reducing the objective
LY
vb to LY

simple = Es,X0,ϵ

[
∥ϵ− ϵθ(Ys,Es, s,X

co,G)∥22
]
, where ϵ is the Gaussian noise injected at

step s. For the discrete modality, we retain the exact variational form LE
vb (see Appendix A for more

details on how to compute each loss term). Our proposed resulting training objective is the weighted
combination:

Ljoint = LY
simple + λLE

vb, (8)

where λ is a balancing hyperparameter chosen so that both modalities contribute comparably during
optimization. Instead of uniform sampling, we use the importance sampling method proposed by
Nichol & Dhariwal (2021) to estimate the expectation over the timestep s during training.

Joint Sampling. During inference, we generate samples by starting with pure noise and iteratively
denoising it. To accelerate this process, we propose a hybrid sampling procedure that uses different
strategies for each data type. For the continuous trajectories Y, we employ the deterministic De-
noising Diffusion Implicit Model (DDIM) sampler (Song et al., 2020) as in Capellera et al. (2025).
It allows for larger jumps in the denoising process. The update rule to go from step s to s − ζ is:

Ys−ζ =
√

ᾱs−ζ

ᾱs
Ys +

(√
1− ᾱs−ζ −

√
ᾱs−ζ

ᾱs

√
1− ᾱs

)
ϵθ(Ys,Es, s,X

co,G).

For the discrete events, we use the standard stochastic sampler (Hoogeboom et al., 2021).
At each step s, the network’s classification head predict the original event distribution Ê0 =

πθ(Ys,Es, s,X
co,G). We then sample Es−1 from the posterior q(Es−1 | Es, Ê0).

Beta Schedule. To align the continuous and discrete sampling processes and improve model ac-
curacy, we employ a hybrid schedule where the total number of discrete steps, denoted as Sd, is
reduced (Sd < S). Following Levi et al. (2023), we align the discrete steps (sd) with the continuous
ones s using sd = ⌈s · (Sd/S)⌉. We empirically found that a good choice is to match the DDIM
skipping step ζ with the ratio S/Sd. See an empirical evaluation at Appendix D.3.1.

Controllability. For controllable generation, we utilize the CFG (Ho & Salimans, 2022) training
approach. During training, we randomly drop the condition G with a probability of 25%, which
allows the model to learn to denoise both with and without the conditioning information. For non-
controllable generation, the model is trained without any conditioning. During inference, we found
that we can achieve effective guidance by using a single forward pass with the conditional output.
See an empirical evaluation at Appendix D.3.3.
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"Player 1 starts with
the ball and passes to

Player 3"

Players "[1, 3]" are
involved in possession

Figure 2: Model Architecture. Left: The overall pipeline of our JointDiff model, which takes
as input the noisy states Xs, observed states Xco, mask M, and optionally (referred with dashed
connections) the encoded guidance signal G. Stars (⋆) refer to the initial timestep, t = 0. The
model processes these inputs through two Social-Temporal Blocks and outputs the predicted Gaus-
sian noise ϵθ for trajectories and the event probability distribution πθ. Right: Detailed view of a
Social-Temporal Block featuring our proposed CrossGuid module. The module has two distinct
implementations corresponding to different guidance modalities (WPG and Text). The red line (−)
in Social-Temporal Block indicates the data flow for non-controllable generation, where CrossGuid
is bypassed. An extended diagram is available in Fig. 5.

4.3 MODEL ARCHITECTURE

Our model, JointDiff, builds upon the U2Diff architecture (Capellera et al., 2025), which processes
multi-agent trajectories using Social-Temporal Blocks. Each block comprises a Temporal Mamba
module (Gu & Dao, 2023) for modeling individual agent dynamics and Social Transformers en-
coders (Vaswani et al., 2017) for capturing inter-agent interactions. We modify this foundation to
create a joint diffusion process capable of controllable generation.

As shown in Fig. 2-left, the model takes as input the noisy state Xs ∈ RT×N×3, formed by concate-
nating the continuous trajectory coordinates Ys and discrete event indicators Es along the feature
dimension, and the observed state Xco ∈ RT×N×3 (constructed similarly), along with the binary
mask M ∈ RT×N . It processes these through two Social-Temporal Blocks and produces two outputs
using:

• A regression head that predicts the Gaussian noise ϵθ for the continuous trajectories.

• A classification head that predicts the probability distribution πθ for the original discrete
events, yielding Ê0.

To enable controllable generation, we introduce the CrossGuid module, which injects an external
guidance signal G into the denoising network. This signal is first encoded into a conditioning tensor
G ∈ RL×d, where L is the sequence length and d is the feature dimension, both specific to the
guidance modality. During training, conditioning dropout (G = ∅) is performed by setting G to a
zero tensor. Refer to Appendix B for architecture details.

4.3.1 CROSSGUID FOR CONTROLLABLE GENERATION

The CrossGuid module is integrated within each Social-Temporal Block, situated between the
Temporal Mamba and the first Social Transformer. It refines the intermediate representation
H ∈ RT×N×256 (obtained after processing by the Temporal Mamba and Layer Normalization)
using the conditioning tensor G. The operation is defined as H ′ = CrossGuid(H,G) = H +∆H ,
where the residual update ∆H is computed via a Multi-Head Attention (MHA) mechanism (Vaswani
et al., 2017). The implementation varies with the guidance modality, as detailed below and shown
in Fig. 2-right, where H⊤, H ′⊤ ∈ RN×T×256 are the transposed tensor of H and H ′, respectively.

6
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Weak-Possessor-Guidance (WPG). This modality conditions generation on a sequence of ball pos-
sessors. The guidance signal GWPG is a sequence [n1, n2, . . . , nL] where each ni ∈ {1, . . . , N − 1}
denotes a player index. This sequence is encoded as a one-hot matrix G ∈ RL×N .

• Key/Value (K, V ). Each possessor index in G is mapped through a learnable agent em-
bedding layer Nemb ∈ RN×256, yielding K = V = Nemb(G) ∈ RL×256.

• Query (Q). The query is derived solely from the ball’s intermediate representation: Q =
H[:, 0] ∈ RT×256, where index 0 corresponds to the ball.

• Positional Encoding. 1D sinusoidal positional encodings (Vaswani et al., 2017) are added
to Q (along the temporal dimension T ) and to K, V (along the possession sequence dimen-
sion L).

• MHA and Update. The update is applied only to the ball’s trajectory: H ′[:, 0] = H[:
, 0] +MHA(Q,K, V ).

• Agent Embedding Addition. To facilitate social reasoning, the learnable agent embedding
for each player n ∈ {1, . . . , N − 1} is added to their respective representation: H ′[:, n] =
H[:, n] +Nemb(n).

Text-Guidance. This modality conditions generation on a natural language prompt Gtext. The text is
tokenized and encoded using a frozen, pre-trained T5-Base Encoder (Raffel et al., 2020), producing
G ∈ RL×768, where L is the number of tokens and d = 768.

• Key/Value (K, V ). The text embeddings are projected to the model’s dimension: K =
V = Linear(G) ∈ RL×256.

• Query (Q). The query is formed from the representation of all agents. To distinguish
between agents, the learnable agent embedding is added before projection: Q[:, n] = H[:
, n] +Nemb(n) ∈ RT×256 for each agent n.

• Positional Encoding. 1D positional encodings are added to each agent’s query Q[:, n]
(along time) and to K, V (along the text token sequence).

• MHA and Update. The MHA operation is performed independently for each agent
against the shared textual context. The update is applied to all agents: H ′[:, n] = H[:
, n] + MHA(Q[:, n],K, V ) for n ∈ {0, . . . , N − 1}.

5 EXPERIMENTS

Continuous trajectories (Y). We validate JointDiff on three public sports datasets: NBA, NFL,
and Bundesliga. The NBA dataset uses the widely adopted SportVU data1, with the splits from Mao
et al. (2023) (32.5k training / 12k testing scenes). Each scene spans 6 seconds (T = 30 timesteps, 5
fps) with N = 11 agents (the ball and 10 players). The NFL dataset comes from the Big Data Bowl2,
following the splits of Xu & Fu (2025) (10,762 training / 2,624 testing scenes). Each scene covers
5 seconds (T = 50, 10 fps) with N = 23 agents (the ball and 22 players). Finally, the Bundesliga
dataset is curated from the German soccer league3 (Bassek et al., 2025), containing 2,093 training
and 524 testing scenes from 7 matches. Scenes with fewer than N = 23 agents or out-of-play were
removed. Each scene spans 6.4 seconds (T = 40 timesteps, 6.25 fps) with N = 23 agents, and the
training set is augmented with 180◦ rotations, doubling its size.

Possessor event (E). To compare with methods that do not model events, we extract possessor
events from trajectories Y using a simple heuristic: a player possesses the ball if it is within 1.5
meters (see Appendix C.1). When multiple players are in range, the closest is chosen; if none, we
assign the ball as the possessor, acting as no possessor class (e.g., during pass or shot).

Guidance data (G). From the possessor events, we generate the weak-possessor-guidance signal
(GWPG), a sequence of unique consecutive players filtered from the ground-truth events (e.g., E =
[1, 1, 1, 1, 0, 0, 0, 0, 3, 3, 3] yields GWPG = [1, 3]). We also create natural language descriptions (Gtext)
for NFL and Bundesliga using public metadata. NFL events are aligned with tracking data via

1https://github.com/linouk23/NBA-Player-Movements
2https://github.com/nfl-football-ops/Big-Data-Bowl
3https://github.com/spoho-datascience/idsse-data
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Table 1: Completion Generation. The table reports results for our JointDiff and state-of-the-art
baselines, solving the completion generation task. We report performance metrics for two distinct
tasks: Future Generation (top) and Imputation Generation (bottom). Performance metrics computed
over 20 generated modes, using min / avg, with the exception of the uni-modal method, which are
noted as having 1 mode in the IID column. The Gen column specifies whether a model is generative.

Method Gen IID NFL (yards) Bundesliga (meters) NBA (meters)
SADE↓ SFDE↓ SADE↓ SFDE↓ SADE↓ SFDE↓

GroupNet CVPR22 ✓ ✓ 4.42 / 5.33 10.01 / 12.18 4.78 / 5.76 9.58 / 11.63 2.12 / 2.84 3.72 / 5.15
AutoBots ICLR22 ✗ ✗ 3.02 / 4.82 6.33 / 10.68 3.33 / 5.93 5.57 / 11.46 1.75 / 2.73 2.73 / 4.71
LEDIID

CVPR23 ✓ ✓ 3.48 / 4.12 7.95 / 9.63 3.89 / 4.58 8.06 / 9.74 1.77 / 2.30 3.25 / 4.45
LED CVPR23 ✓ ✗ - - - - 1.63 / 3.83 2.99 / 6.03
MART ECCV24 ✗ ✗ 2.55 / 4.26 5.99 / 10.31 2.50 / 4.16 5.06 / 9.00 1.52 / 2.46 2.77 / 4.78
MoFlow CVPR25 ✓ ✗ 2.33 / 4.02 5.51 / 9.98 2.51 / 4.21 5.08 / 9.24 1.52 / 2.42 2.73 / 4.64
U2Diff CVPR25 ✓ ✓ 2.59 / 3.74 5.97 / 9.02 2.69 / 4.21 5.46 / 9.44 1.48 / 2.12 2.68 / 4.14

JointDiff (Ours) ✓ ✓ 2.36 / 3.40 5.53 / 8.40 2.47 / 3.66 5.02 / 8.29 1.39 / 2.01 2.53 / 3.95

TranSPORTmer ACCV24 ✗ 1 1.27 - 1.45 - 0.71 -
Sports-Traj ICLR25 ✓ ✓ 2.28 / 2.29 - 2.75 / 2.75 - 1.19 / 1.20 -
U2Diff CVPR25 ✓ ✓ 0.96 / 1.19 - 1.04 / 1.36 - 0.62 / 0.83 -

JointDiff (Ours) ✓ ✓ 0.84 / 1.03 - 0.91 / 1.18 - 0.57 / 0.78 -

Table 2: Controllable Generation. The table reports results for our JointDiff and a variant without
our joint framework (Ours w/o joint), solving the controllable future generation task. It is also
included performance on the non-controllable task (w/o G) as well as two controllable tasks: WPG
(w GWPG) and text-guidance (w Gtext). Performance metrics computed over 20 generated modes,
using min / avg for SADE and SFDE and max / avg for Acc.

Method NFL (yards) Bundesliga (meters) NBA (meters)
SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑

Ours w/o joint
w/o G 2.42 / 3.57 5.67 / 8.72 .76 / .52 2.60 / 3.99 5.30 / 8.95 .67 / .44 1.46 / 2.13 2.64 / 4.19 .74 / .44
w GWPG 2.37 / 3.49 5.51 / 8.49 .80 / .59 2.20 / 3.07 4.35 / 6.71 .73 / .50 1.29 / 1.91 2.27 / 3.74 .86 / .66
w Gtext 2.33 / 3.39 5.40 / 8.25 .80 / .63 2.16 / 2.96 4.18 / 6.15 .78 / .55 - - -

Ours
w/o G 2.36 / 3.40 5.53 / 8.40 .78 / .54 2.47 / 3.66 5.02 / 8.29 .68 / .39 1.39 / 2.01 2.53 / 3.95 .75 / .45
w GWPG 2.29 / 3.26 5.29 / 7.94 .84 / .65 2.13 / 2.85 4.22 / 6.16 .77 / .52 1.24 / 1.81 2.20 / 3.53 .87 / .67
w Gtext 2.19 / 3.09 5.04 / 7.52 .86 / .74 2.08 / 2.72 4.09 / 5.68 .80 / .59 - - -

possessor information, while Bundesliga follows Kim et al. (2025). This fine-grained conditioning
provides more control than GWPG. Refer to Appendix C.2 for more details. The code to generate
the datasets and the guidance data will be released jointly with unified dataloader to constitute an
easy-usable benchmark for future works.

Implementation. We use S = 50 diffusion steps for continuous and Sd = 10 for discrete data,
with a shared quadratic noise scheduler from β0 = 10−4 to βS = 0.5 (Capellera et al., 2025;
Tashiro et al., 2021). The discrete loss coefficient is set to λ = 0.1, which provided the best trade-
off between trajectory and event accuracy (see Appendix D.3.2). Sampling employs DDIM with a
skip interval ζ = 5 and an extra denoising step at s = 1, yielding 11 steps: {50, 45, . . . , 5, 1, 0}.
Training runs for 100 epochs (NBA/NFL) and 200 epochs (Bundesliga) with batch size 16; learning
rate 10−3 is halved every 20 (NBA/NFL) or 40 (Bundesliga) epochs. The model uses a hidden size
of 256 and 8 attention heads in all multi-head attention layers, while the Social Transformer employs
a 1024-dimensional feedforward layer. All models are trained on a single RTX A6000.

5.1 COMPLETION GENERATION

We evaluate completion on two sub-tasks: future generation and imputation generation. For each
scene, we sample 20 modes and report both minimum (min) and average (avg) errors, where min
reflects the best-case generation quality and avg measures distributional fidelity.

In future generation, models observe 10 frames and predict the future. We report scene-level errors
as SADE and SFDE (Casas et al., 2020; Girgis et al., 2021; Weng et al., 2023; Capellera et al.,
2025). Prior work can be grouped by how multiple futures are produced. IID models (GroupNet
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(Xu et al., 2022), LEDIID (Mao et al., 2023), U2Diff (Capellera et al., 2025), ours) draw modes
independently from random noise. As image generation, this encourages sampling-fidelity with the
real data distribution and usually yields stronger avg performance. In contrast, non-IID models
(AutoBots (Girgis et al., 2021), LED (Mao et al., 2023), MART (Lee et al., 2024), MoFlow (Fu
et al., 2025)) generate multiple correlated modes in a single forward pass, which often improves
min metrics empirically. As shown in Table 1-top, JointDiff achieves SOTA across datasets in avg,
while, notably competing with min metrics against non-IID approaches. We also note whether a
model is generative or not. Refer to Appendix D.1 for the implementation details of these baselines.

In the imputation generation setting, models are provided with the first 10 frames and the final
frame, and must predict the missing in-between trajectories. We evaluate against the IID models
Sports-Traj (Xu & Fu, 2025), U2Diff, and the deterministic uni-modal TranSPORTmer (Capellera
et al., 2024), reporting the SADE metric. As shown in Table 1-bottom, our method achieves the
SOTA in this benchmark. The results show that diffusion-based models, such as U2Diff (Capellera
et al., 2025) and Ours, consistently outperform the CVAE-based model Sports-Traj (Xu & Fu, 2025),
which suffers from mode collapse. Additional quantitative and qualitative results are provided in
Appendix D.2 and D.5.1, respectively.
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Figure 3: Human evaluation on NBA future
generation. The histogram reports the pro-
portions of wins, ties, and losses for JointD-
iff against each baseline, with n denoting the
number of pairwise comparisons.

To assess perceptual quality, we conduct a human
evaluation using pairwise comparisons on the NBA
future generation task. Fifteen participants judged
fifteen random pairs drawn from JointDiff, our ab-
lated variant without joint modeling (“w/o joint”),
U2Diff, MoFlow, and Ground Truth (GT) (interface
shown in Appendix D.2.1). For fairness, each model
generated 20 modes from the same past, and the
sample with the lowest SADE was used. Results
in Fig. 3 show that JointDiff is most preferred, out-
performing MoFlow (80%), U2Diff (65%), and w/o
joint (53%). Removing ties increases the win rate
over the ablated variant to 67%, indicating clear per-
ceptual gains from joint modeling. JointDiff loses to
GT in 44% of comparisons, with 24% ties, suggest-
ing that many generated trajectories are difficult for
users to distinguish from real ones.

5.2 CONTROLLABLE GENERATION

We evaluate controllability by generating 20 future trajectories conditioned on ground-truth guid-
ance signals (G). For the trajectories (Y0), we report the (min / avg) for SADE and SFDE. To
assess the possessor prediction, we report accuracy (Acc) as the match between argmax(Ê0) and
the ground truth E0, giving both maximum and average (max / avg) over the generated modes.

Table 2 compares non-controlled and controlled tasks and evaluates our joint modeling approach
against a variant modeling only continuous trajectories (“Ours w/o joint”). Controlled tasks con-
sistently outperform their non-controlled counterparts (“w/o G”), confirming the effectiveness of
CrossGuid. Conditioning on textual signals Gtext further improves performance over GWPG, showing
the benefit of fine-grained guidance. JointDiff surpasses Ours w/o joint overall across all datasets and
metrics, validating the advantage of jointly modeling continuous trajectories and discrete possession
events and improving denoising in both controlled and non-controlled settings. Figure 4 provides
qualitative comparisons using a Bundesliga sample for the same past observations Xco conditioned
on user-defined text prompts Gtext, showing improved controllable accuracy. See Appendix for addi-
tional ablations (D.3), interpretability analysis (D.4) and qualitative examples (D.5.2). Please refer
to the video supplementary to see animated results.

5.3 CONSISTENCY ANALYSIS

We further evaluate the consistency of the joint generation X̂0 = (Ŷ0, Ê0). Using the same setup as
in Table 2, we generate 20 samples per scene and compute the Acc metric between the predicted dis-
crete possessor Ê0 and the threshold-based heuristic possessor extracted from the predicted trajec-
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(a) “Away Team has the possession. The ball starts at left-center
without a carrier. Player 16 possesses the ball, moving it from
left-center to down-side, then passes to Player 21 who possesses the
ball. Then Player 21 makes a pass to Player 19 into the box.”
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(b) “Away Team has the possession. The ball starts at left-center
without a carrier. Player 16 makes a pass to Player 15 who receives.
Player 15 possesses the ball in left-center and pass up-side to Player
20.”

Figure 4: Controllable Generation. Comparison of JointDiff vs. Ours w/o joint on the text-
guidance task giving the same past observations with different text prompts Gtext. Legend: ○ Ball,
␣ Home team, ␣ Away team, ⃝ Past observations. See animated scenes in supplementary.

Table 3: Consistency Analysis. Consistency between predicted events and trajectories, reported as
max / avg Acc ↑ over 20 samples. We compare our multinomial with the absorbing state framework.

Method Multinomial (Ours) Absorbing
NFL Bundesliga NBA NFL Bundesliga NBA

Ours w/o G .98 / .86 .97 / .80 .99 / .92 .97 / .80 .94 / .70 .99 / .89
Ours w GWPG .96 / .84 .95 / .80 .99 / .92 .93 / .78 .91 / .68 .99 / .90
Ours w Gtext .97 / .86 .96 / .81 - .95 / .81 .95 / .76 -

tories Ŷ0. For reference, we compare our multinomial diffusion with the commonly used absorbing
state formulation (Levi et al., 2023; Li et al., 2025). For the absorbing, we use the publicly available
implementation from Li et al. (2025) and set the absorption rate to λ = 0.01 to match the mag-
nitude of the discrete loss with the continuous one. Unlike the multinomial model, which enables
refinement through all states at each denoising step, the absorbing mechanism freezes tokens once
unmasked, preventing later correction (von Rütte et al., 2025). As shown in Table 3, our method
achieves high consistency, particularly for the best sample (max), and strong consistency on average
(avg). The larger variance in NFL and Bundesliga aligns with their smaller training sets. Overall,
this ablation shows that multinomial diffusion yields substantially more consistent predictions than
the absorbing state approach in our dynamic domain. To assess the quality of the generations using
absorbing state with respect to the ground truth, results for future generation are shown in Appendix
D.3.5.

6 CONCLUSIONS

We have introduced JointDiff, a novel diffusion framework that unifies the generation of continuous
trajectories and synchronous discrete events in multi-agent systems. Our model obtains state-of-the-
art results on completion tasks and enables new forms of semantic control through WPG and text-
guidance. We demonstrate that the joint formulation is a key factor, as it significantly enhances the
fidelity of the controllable generation. While this work assumes a dense event pattern, a promising
future direction is to extend the framework to sparse events, such as time point processes. Finally,
JointDiff provides a strong foundation for generating controllable, low-dimensional data to steer
high-dimensional generative models, such as for video synthesis in complex interactive domains.
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A DIFFUSION BACKGROUND

This section is intended to be an extension of the diffusion background provided in the main paper
(Section 3). We rescue the notation from the main paper for clarity and detail the specific processes
for continuous and discrete data.

A.1 CONTINUOUS CASE

The data is corrupted with Gaussian noise until it converges to a standard isotropic Gaussian distri-
bution. The forward process at any step s can be stated in both recursive and closed form as:

q(Xs | Xs−1) = N (Xs;
√

1− βsXs−1, βsI), (9)

q(Xs | X0) = N (Xs;
√
ᾱsX0, (1− ᾱs)I). (10)

This closed-form expression allows us to sample Xs directly from X0 using the reparameterization
trick:

Xs =
√
ᾱsX0 +

√
1− ᾱsϵ, where ϵ ∼ N (0, I). (11)

The reverse process generates data by starting with a sample from the prior, XS ∼ N (0, I), and
iteratively sampling from the reverse conditional distributions pθ(Xs−1 | Xs). The true posterior
q(Xs−1 | Xs) is intractable as it depends on the entire data distribution. Therefore, we approximate
it with a neural network pθ(·) that outputs the parameters of a Gaussian:

pθ(Xs−1 | Xs) = N (Xs−1;µθ(Xs, s), σ
2
sI). (12)

The mean µθ is commonly parameterized in terms of a predicted noise term ϵθ(Xs, s):

µθ(Xs, s) =
1

√
αs

(
Xs −

βs√
1− ᾱs

ϵθ(Xs, s)

)
. (13)

For simplicity, the variance σ2
s is typically set to a non-learned constant, such as σ2

s = βs. With this
parameterization, minimizing the variational bound Lvb (Eq. 1) is equivalent to training the noise
prediction network ϵθ with a simplified objective:

Lsimple = Es,X0,ϵ

[
∥ϵ− ϵθ(

√
ᾱsX0 +

√
1− ᾱsϵ, s)∥22

]
. (14)

A.2 DISCRETE CASE

Here, the data is categorical and typically represented by one-hot vectors of dimension N . The
forward process corrupts the data until it converges to a uniform distribution across all N categories.
This is defined as a multinomial diffusion process:

q(Xs | Xs−1) = Cat(Xs; (1− βs)Xs−1 + βs/N), (15)
q(Xs | X0) = Cat(Xs; ᾱsX0 + (1− ᾱs)/N). (16)

The posterior is a categorical distribution q(Xs−1 | Xs,X0) = Cat(Xs−1; ,θpost(Xs,X0)) whose
probabilities are defined as:

θpost(Xs,X0) = θ̃/
∑
n

θ̃n and θ̃ = [αsXs + (1− αs)/N ]⊙ [ᾱs−1X0 + (1− ᾱs−1)/N ].

Here, ⊙ denotes the element-wise product. Note that the result is normalized to sum to one.

The reverse process learns to approximate the true posterior as in Eq. 1. It does so by learning to
approximate the original clean data X0 from a noisy version Xs. Indeed, a probability vector is
predicted using a neural network πθ(Xs, s) = X̂0. Subsequently, we can parametrize when s = 1
and s ≥ 2 respectively:

pθ(X0 | X1) = Cat(X0; X̂0) and pθ(Xs−1 | Xs) = q(Xs−1 | Xs, X̂0). (17)

The DKL expressions for s ≥ 2 in Eq. 1 can be computed as:

DKL(q(Xs−1 | Xs,X0) ∥ pθ(Xs−1 | Xs)) = DKL

(
θpost(Xs,X0) ∥θpost(Xs, X̂0))

)
, (18)
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C

"Player 1 starts with
 the ball and passes to 

Player 3"

Players "[1, 3]" are
involved in possession

Figure 5: Model Architecture (extended version of Fig. 2). The light gray box represents the
JointDiff architecture, and STB refers to the Social-Temporal Block.

by enumerating the probabilities and using
∑

n θpost(Xs,X0)n · log θpost(Xs,X0)n

θpost(Xs,X̂0)n
. The log-

likelihood term can be computed as:

pθ(X0 | X1) =
∑
n

X0,n · log X̂0,n. (19)

B ARCHITECTURE

We provide a detailed explanation of the general architecture, which can be shown in Fig.5.

The model takes as input the noisy states Xs, observed states Xco with their corresponding binary
mask M, the denoising step s, and the optional guidance signal G. The noisy state Xs is formed by
concatenating the continuous trajectories Ys with the discrete possession events Es. The observed
states Xco are similarly constructed using Yco and Eco. These two [T,N, 3] tensors, along with the
binary mask M, are then concatenated to create a single input tensor of dimension [T,N, 7]. This
input tensor is first processed through a layer (Projectionin) which embeds the data and combines
it with a learnable agent embedding (N ′

emb). This results in a embedding tensor J of dimension
[T,N, 256]. The denoising step s is embedded through a layer (Projections) to become an embed-
ding semb ∈ R128. Both J and semb are then processed by a sequence of two residual denoising
blocks (RDBs). Within each RDB, the semb is added to J after a Linear embedding projection to
dimension 256. Then the resulting tensor is processed by a Social-Temporal Block (STB). As ex-
plained in the main paper, for controllable generation, we introduce an operation called CrossGuid
inside this block to guide the denoising process with the signal G. After the RDBs processing,
the resulting embedding with the same dimension as J is processed through a layer (Projectionout),
defining an output tensor embedding which is then projected in into two heads: a regression head
(Regression), based on a linear layer, to predict the Gaussian noise ϵθ added to the continuous tra-
jectories; and a classification head (Classification), based on a linear layer followed by a softmax
activation, to predict the probability distribution of the original discrete events, yielding Ê0 = πθ.

Now we define each mentioned operation:

• Projectionin: The input tensor of shape [T,N, 7] is combined with a learnable agent em-
bedding N ′

emb ∈ R[N,256]. First, the input tensor is linearly projected to [T,N, 256] and
concatenated with the agent embeddings (replicated T times along the temporal axis),
yielding a [T,N, 512] tensor. A Linear layer with ReLU activation re-projects this ten-
sor to [T,N, 256], producing the embedding tensor J .
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• Projections: Embeds the denoising timestep s using a Linear layer followed by a SiLU
activation, producing semb ∈ R128.

• RDB: Processes J conditioned on semb, and optionally the guidance embedding G, as:

RDB(J, semb, G) = J + STB(J + Linear(semb), G) ,

• Social-Temporal Block (STB): Maps [T,N, 256] 7→ [T,N, 256] via

STB(J,G) = ST
(
ST

(
CrossGuid(LN(TM(J)), G))

)
,

where TM denotes the Temporal Mamba, LN is Layer Normalization, CrossGuid is the
proposed guidance module, and ST is the Social Transformer. For non-controllable tasks,
CrossGuid reduces to the identity.

• Temporal Mamba (TM): As described in Capellera et al. (2025), TM applies bidirectional
Mamba modules (Gu & Dao, 2023) independently to each agent and sums the results.

• Social Transformer (ST): A Transformer encoder (Vaswani et al., 2017) applied per
timestep to model inter-agent correlations.

• Projectionout: A Linear layer with ReLU maps [T,N, 256] 7→ [T,N, 256].
• Regression: A Linear layer maps [T,N, 256] 7→ [T,N, 2], producing the predicted noise
ϵθ.

• Classification: A Linear layer followed by a Softmax along the agent axis maps
[T,N, 256] 7→ [T,N ], producing possessor probabilities πθ.

C DATASETS

C.1 POSSESSOR THRESHOLD

To robustly define the discrete possessor event data (E) from the continuous trajectories (Y), we
conducted a data-driven analysis to determine an optimal geometric threshold. Our goal was to
identify the distance at which a player is most likely to be in possession of the ball.

Our methodology is based on the key observation that a ball’s trajectory is primarily linear when it is
not in any player’s possession (e.g., during a pass or a shot). Conversely, a player taking possession
or influencing the ball’s path will induce a significant change in its direction. To quantify this,
we analyzed the change in the ball’s direction by computing the angle between consecutive ball
velocity vectors across our training datasets. For a range of distance thresholds from 0 to 3 meters,
we calculated the average angle of change for the ball only during periods when it was outside of
that specific threshold distance from all players. The results are shown in Fig. 6.

The optimal threshold was defined as the minimum distance that minimizes this average angle of
change. This approach allowed us to identify the point at which the ball’s trajectory becomes most
linear, indicating the absence of player control. Our analysis across all sports consistently iden-
tified approximately 1.5 meters as the optimal threshold, supporting the use of a single, unified
geometric heuristic for defining possession events across different sports. This finding aligns with
the observation that player influence on the ball’s trajectory is negligible beyond this distance.

C.2 TEXTUAL GUIDANCE DATASET GENERATION

The core methodology for caption generation is consistent across both Bundesliga and NFL datasets,
ensuring a standardized approach to data creation. The pipeline consists of the following stages:

Stage 1: Preprocessing and Standardization The process begins with raw spatio-temporal track-
ing data, which is first segmented into fixed-length sequences. To ensure data consistency
and privacy, all entities are anonymized. Players are systematically numbered from 1 to 22
(with home players assigned 1–11 and away players 12–22), aligning their identifiers with
their corresponding order in the final trajectory tensors.

Stage 2: Automated Feature Extraction For each standardized sequence, a script programmati-
cally analyzes the trajectory and events data to extract key semantic features. This au-
tomated analysis includes identifying the ball possessor at each frame, detecting discrete
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Figure 6: Possession threshold determination. Average ball direction change versus distance
threshold. The minimum at 1.5 meters indicates optimal threshold where ball motion is most linear
without player influence, supporting our unified possession detection heuristic.

game events (e.g., passes, tackles), and mapping the ball’s location to meaningful zones on
the field. These features are then compiled into a structured, rule-based textual summary,
which we term a dense caption.

Stage 3: LLM-based Narrative Refinement In the final stage, the dense captions are transformed
into fluent, human-readable narratives. We leverage a Large Language Model (LLM),
prompting it to act as an expert sports analyst. The LLM uses the structured informa-
tion from the dense caption to generate a chronologically accurate and natural-sounding
description that adheres to the common parlance of the respective sport.

While the pipeline is shared, its parameters and feature extraction rules are tailored to the unique
characteristics of each sport. Refer to Fig.13 to see examples of these two datasets.

C.2.1 NFL DATASET

• Data Source: We process raw tracking data from the NFL Big Data Bowl, adopting the
data splits and experimental settings from Xu & Fu (2025).

• Sequence Processing: Trajectories are segmented into 50-frame sequences sampled at
10 fps (5.0 seconds in duration).

• Feature Extraction:
– Possession: The player closest to the ball within a 1.5-meter threshold is designated

the ball carrier.
– Events: Key extracted events include ball snap, pass forward, and tackle.
– Formation: Offensive team spatial configuration.
– Short textual description: A natural language description of the final outcome of the

play, covering a time horizon of more than one split
– Location: The ball’s position is mapped to the corresponding yard line.

C.2.2 BUNDESLIGA DATASET

• Data Source: We use the integrated trajectory and event dataset provided by Bassek et al.
(2025).

• Sequence Processing: Raw 25 fps tracking data is synchronized with asynchronous event
data, downsampled to 6.25 fps, and segmented into 40-frame sequences (6.4 seconds in
duration). Sequences with less than 23 agents and out-of-play are discarded.

• Feature Extraction:
– Possession: The player closest to the ball within a 1.5-meter threshold is identified as

the possessor.
– Events: Key extracted events include pass, tackle, and shot.
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– Location: The ball’s coordinates are mapped to a predefined semantic grid that parti-
tions the field into named zones (e.g., down-corner, box).

D EXPERIMENTS

D.1 BASELINES

To construct the Table 1 we implemented and evaluated several state-of-the-art architectures. Below
we detail how results were obtained for each method:

• GroupNet (Xu et al., 2022): We used the official code and checkpoints for NBA. For
NFL and Bundesliga, we adapted the parameter hyper scales to [11, 23] to match the
number of agents, and doubled both hidden dim and zdim.

• AutoBots (Girgis et al., 2021): We used the official repository with the same hyperparam-
eters as in TrajNet++. The AutoBotJoint variant was trained on all three datasets.

• LEDIID (Mao et al., 2023): We used the official code and checkpoints for NBA. For NFL
and Bundesliga, we adapted the code to handle longer horizons and adjusted hyperparam-
eters. Following the users’ recommended procedure, we first pre-trained the denoiser on a
single timestep prediction task, then fine-tuned it for full temporal horizon prediction. Both
trainings were performed using 100 epochs, batch size equal to 250, and a learning rate of
10−3.

• LED (Mao et al., 2023): Official code and checkpoints were used for NBA. We were unable
to train this stage for NFL and Bundesliga due to GPU memory limitations.

• MART (Lee et al., 2024), MoFlow (Fu et al., 2025): Official code and checkpoints were
used for NBA. For NFL and Bundesliga, we trained using the same settings, changing only
the prediction horizon.

• Sports-Traj (Xu & Fu, 2025): We used the official repository with the same hyperpa-
rameters as in their benchmark. We observed, consistent with the authors’ checkpoints in
another benchmark, that the 20 sampled modes were nearly identical.

• TranSPORTmer (Capellera et al., 2024), U2Diff (Capellera et al., 2024): Official code
and checkpoints were used for NBA. For NFL and Bundesliga, we trained with the same
configuration. The authors provided the original codebase.

D.2 COMPARISONS

D.2.1 HUMAN-BASED METRICS

For each of the first 128 past observations in our test set, we formed a random pair from these
selected samples. An example of the interface is shown in Fig. 7.

D.2.2 INDIVIDUAL-BASED METRICS

This section provides a quantitative analysis using individual-based metrics ADE and FDE, reported
as both minimum (min) and average (avg) values over 20 generated modes. Note that the average
metrics are equivalent to SADE and SFDE as presented in Table 1 of the main paper.

Individual metrics comparison is depicted in Table 4. Our approach remains competitive in terms
of min metrics against non-IID baselines while, as stated in the main paper, excels in the avg
metrics. Crucially, our findings highlight a key divergence: the widely used min ADE/FDE metrics
do not correlate with the human evaluation from the previous section. For example, on the NBA
dataset, MoFlow achieves the state-of-the-art in min ADE / FDE, yet our human study showed that
participants consistently preferred our approach. This suggests that SADE / SFDE metrics provide
a more reliable indication of perceptual quality than ADE / FDE metrics Casas et al. (2020).

D.2.3 COMPLETION GENERATION

We benchmark our approach on general trajectory completion using the datasets and experimental
setup from Xu & Fu (2025), which includes the Basketball-U, Football-U, and Soccer-U datasets.
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Figure 7: Human Evaluation Interface.

Table 4: Future Generation. We report ADE and FDE metrics (min / avg) computed over 20
generated modes.

Method IID NFL (yards) Bundesliga (meters) NBA (meters)
ADE ↓ FDE ↓ ADE ↓ FDE ↓ ADE ↓ FDE ↓

GroupNet CVPR22 ✓ 1.70 / 5.33 3.19 / 12.18 1.89 / 5.76 3.23 / 11.63 0.94 / 2.84 1.22 / 5.15
AutoBots ICLR22 ✗ 1.82 / 4.82 3.23 / 10.68 2.07 / 5.93 2.94 / 11.46 1.19 / 2.73 1.55 / 4.71
LEDIID

CVPR23 ✓ 1.65 / 4.12 2.08 / 9.63 2.06 / 4.57 3.17 / 9.74 0.92 / 2.30 1.18 / 4.45
LED CVPR23 ✗ - - - - 0.81 / 3.83 1.10 / 6.03
MART ECCV24 ✗ 1.07 / 4.26 1.96 / 10.31 1.41 / 4.16 2.48 / 9.00 0.72 / 2.46 0.90 / 4.78
MoFlow CVPR25 ✗ 1.03 / 4.02 1.87 / 9.98 1.47 / 4.21 2.74 / 9.24 0.71 / 2.42 0.86 / 4.64
U2Diff CVPR25 ✓ 1.40 / 3.74 2.67 / 9.02 1.69 / 4.21 3.11 / 9.44 0.85 / 2.12 1.11 / 4.14

JointDiff (Ours) ✓ 1.31 / 3.40 2.49 / 8.40 1.46 / 3.66 2.56 / 8.29 0.80 / 2.01 1.09 / 3.95

In this task, a pre-defined mask using different strategies is applied to a scene, and the model must
complete the missing observations. We note that while our NFL dataset uses the same data splits
as Football-U, it employs a different masking strategy. For comparison, we reuse the evaluation
table from Xu & Fu (2025), also reported in Capellera et al. (2025), which includes a wide range
of baselines. These baselines span statistical methods: Mean, Median, Linear Fit; vanilla models:
LSTM (Hochreiter & Schmidhuber, 1997), Transformer (Vaswani et al., 2017)); and advanced
methods: MAT (Zhan et al., 2019), Naomi (Liu et al., 2019), INAM (Qi et al., 2020), SSSD (Alcaraz
& Strodthoff, 2022), GC-VRNN (Xu et al., 2023), Sports-Traj (Xu & Fu, 2024), and U2Diff
(Capellera et al., 2025).

Results are reported in Table 5. We use the ADE metric as defined in Xu & Fu (2025), which
we rename as BADE to reflect its dependence on batch size and distinguish it from the standard
individual-level ADE or the scene-level SADE. The BADE metric is defined as:

BADE =

∑B
b=1

∑N
n=1

∑T
t=1

∥∥ŷbt,n − ybt,n
∥∥
2
(1−mb

t,n)∑B
b=1

∑N
n=1

∑T
t=1(1−mb

t,n)
, (20)

where ybt,n is the ground truth 2D spatial location of agent n at timestep t in scene b, ŷbt,n is its
estimation, and mb

t,n is a value from the binary mask M where a value of 0 indicates a location to be
predicted. In their setting, Xu & Fu (2025) use B = 128. We also report the standard SADE metric.
The table presents the minimum (min) values across 20 generated modes. While the minimum mode
for BADE is selected across the entire batch of scenes, the minimum mode for SADE is selected for
each scene independently, making it independent of batch size and mode ordering.
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Our approach notably outperforms previous baselines, showing a significant performance improve-
ment in SADE of 13% in Basketball-U, 19% in Football-U, and 12% in Soccer-U. We observe that
the provided checkpoints for the Sports-Traj model in this benchmark produced modes that were
nearly-identical, with minimal differences between them.

To advance the field, in the main paper we advocate for the use of the widely-adopted NBA dataset
as an alternative to Basketball-U. We have also curated a new Bundesliga dataset for soccer. This
dataset offers significant advantages, as its sequences are substantially longer than those in Soccer-
U, providing richer temporal context for modeling. In our curation, Bundesliga sequences last 6.4
seconds (40 frames at 6.25 fps), whereas the Soccer-U sequences, with 50 frames, last for two
seconds or less.

Table 5: Completion Generation. We report the min for BADE (ADE in (Xu & Fu, 2025)) and
SADE over 20 generated modes.

Method Basketball-U (Feet) Football-U (Yards) Soccer-U (Pixels)
BADE ↓ SADE ↓ BADE ↓ SADE ↓ BADE ↓ SADE ↓

Mean 14.58 - 14.18 - 417.68 -
Median 14.56 - 14.23 - 418.06 -
Linear Fit 13.54 - 12.66 - 398.34 -
LSTM 7.10 - 7.20 - 186.93 -
Transformer 6.71 - 6.84 - 170.94 -
MAT 6.68 - 6.36 - 170.46 -
Naomi 6.52 - 6.77 - 145.20 -
INAM 6.53 - 5.80 - 134.86 -
SSSD 6.18 - 5.08 - 118.71 -
GC-VRNN 5.81 - 4.95 - 105.87 -
Sports-Traj 4.77 4.29 3.55 4.03 94.59 100.48
U2Diff 4.65 3.13 2.42 2.35 53.93 51.14

JointDiff (Ours) 4.42 2.72 2.14 1.90 49.23 44.89

D.2.4 FUTURE GENERATION

We further evaluate our method on future trajectory prediction using the basketball dataset, referred
to as NBA12/13, and protocol from Li et al. (2021). This setting enables comparison against tem-
poral autoregressive baselines such as NRI (Kipf et al., 2018), dNRI (Graber & Schwing, 2020),
and GRIN (Li et al., 2021); GAN-based models such as Social-GAN (Gupta et al., 2018); and a
transformer-based approach, FQA (Kamra et al., 2020). Results are presented in Table 6, which
reports metrics equivalent to our min SADE and SFDE over 100 samples. JointDiff achieves strong
performance relative to these forecasting models while operating as a more general trajectory com-
pletion framework, benefiting in particular from the non-autoregressive nature of diffusion along the
temporal dimension.

Table 6: Future Generation on NBA12/13. We report the min for SADE and SFDE (ADE and
FDE in (Li et al., 2021), respectively) over 100 generated modes.

Method NBA12/13 (Feet)
SADE ↓ SFDE ↓

NRI 2.10 4.56
dNRI 2.02 4.52
FQA 2.42 4.81
Social-Gan 1.88 3.64
GRIN 1.72 3.59

JointDiff (Ours) 1.36 2.52

D.3 ABLATIONS

This section evaluates our method through three ablation studies: first, we examine the effect of
varying the number of denoising steps Sd in the discrete scheduler; second, we analyze the sen-
sitivity of the λ hyperparameter in our proposed joint loss (Eq. 8); and third, we investigate the
contribution of additional components such as extra Social Transformers and importance sampling.
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Table 7: Denoising Step in Future Generation. We report SADE and SFDE metrics (min / avg)
and Acc (max / avg) over 20 generated modes.

Sd ζ
NFL (yards) Bundesliga (meters) NBA (meters)

SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑

5 5 2.45 / 3.59 5.70 / 8.80 .79 / .51 2.63 / 4.01 5.25 / 8.92 .68 / .38 1.41 / 2.05 2.56 / 4.02 .76 / .42
10 2.43 / 3.46 5.61 / 8.37 .75 / .47 2.74 / 4.23 5.41 / 9.19 .64 / .35 1.40 / 2.00 2.55 / 3.90 .74 / .38

10 5 2.36 / 3.40 5.53 / 8.40 .78 / .54 2.47 / 3.66 5.02 / 8.29 .68 / .39 1.39 / 2.01 2.53 / 3.95 .75 / .45
10 2.37 / 3.28 5.54 / 8.00 .73 / .47 2.48 / 3.67 5.02 / 8.17 .63 / .36 1.38 / 1.95 2.52 / 3.82 .71 / .40

25 5 2.47 / 3.48 5.76 / 8.43 .70 / .44 2.46 / 3.51 5.06 / 7.88 .61 / .34 1.42 / 2.06 2.58 / 4.06 .71 / .39
10 2.66 / 3.70 6.05 / 8.61 .53 / .30 2.45 / 3.43 5.00 / 7.63 .53 / .28 1.40 / 1.96 2.55 / 3.86 .63 / .32

50 5 2.57 / 3.60 5.95 / 8.57 .55 / .31 2.53 / 3.73 5.13 / 8.29 .54 / .28 1.43 / 2.09 2.60 / 4.14 .66 / .35
10 2.65 / 3.62 6.07 / 8.50 .37 / .19 2.54 / 3.73 5.09 / 8.26 .45 / .23 1.40 / 1.99 2.57 / 3.95 .54 / .27

D.3.1 DISCRETE DENOISING STEPS

We present an ablation study on the impact of the total discrete denoising steps (Sd) and the DDIM
skipping parameter (ζ). The total number of continuous denoising steps is fixed to S = 50 and we
train our approach with different discrete denoising steps Sd ∈ {5, 10, 25, 50}. At inference we
generate the samples with two different skipping intervals ζ ∈ {5, 10}. This results in either 11
total steps (ζ = 5) or six total steps (ζ = 10). The results in Table 7 indicate that a configuration of
Sd = 10 and ζ = 5 is optimal for the reported SADE, SFDE, and Accuracy metrics.

D.3.2 LAMBDA IN JOINT LOSS

We conducted an ablation study on the weighting hyperparameter, λ, in our joint loss function
(Eq. 8). Our goal was to identify the largest value for λ that does not negatively impact the quality
of the continuous trajectory generation. Table 8 shows the results for various λ configurations:
λ ∈ {0, 0.001, 0.01, 0.1, 1}. Note that the case where λ = 0 is equivalent to our ablated model, Ours
w/o joint. We found that λ = 0.1 represents the optimal trade-off, providing the most significant
benefits from the joint modeling without overwhelming the primary trajectory generation task.

Table 8: Lambda Sensitivity in Future Generation. We report SADE and SFDE metrics (min /
avg) and Acc (max / avg) over 20 generated modes.

λ
NFL (yards) Bundesliga (meters) NBA (meters)

SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑

0 2.42 / 3.57 5.67 / 8.72 .76 / .52 2.60 / 3.99 5.30 / 8.95 .67 / .44 1.46 / 2.13 2.64 / 4.19 .74 / .44
0.001 2.73 / 3.87 6.27 / 9.16 .50 / .23 2.67 / 4.20 5.31 / 9.15 .53 / .29 1.48 / 2.16 2.66 / 4.19 .69 / .38
0.01 2.56 / 3.69 5.95 / 8.87 .68 / .37 2.46 / 3.61 5.03 / 8.10 .62 / .35 1.42 / 2.07 2.59 / 4.08 .73 / .42
0.1 2.36 / 3.40 5.53 / 8.40 .78 / .54 2.47 / 3.66 5.02 / 8.29 .68 / .39 1.39 / 2.01 2.53 / 3.95 .75 / .45
1 2.61 / 3.74 5.95 / 8.97 .79 / .56 2.71 / 3.91 5.45 / 8.64 .69 / .39 1.44 / 2.05 2.62 / 4.00 .76 / .47

D.3.3 GUIDANCE STRENGTH

As stated in the main paper, during inference we utilize a single forward pass corresponding to
the conditioned output, which corresponds to using w = 0 in CFG (Ho & Salimans, 2022). With
our DDIM sampling, this choice yields optimal performance, while extreme values degrade results.
This setting also avoids the extra cost of dual forward passes. In Table 9 we report the same SADE
/ SFDE metrics as in Table 2 with Gtext for NFL and Bundesliga datasets. CFG training enables
a unified model supporting both controllable (w = 0) and non-controllable (w = −1) generation
without notable degradation compared to our dedicated non-controllable model (Table 2, Ours w/o
G).

D.3.4 T5 ENCODER

We compared the performance using T5-Small, T5-Base, and T5-Large encoders and observed only
minor performance differences across the board. As shown in Table 10, T5-Base offers the best
overall balance, achieving the lowest min / avg SADE and SFDE metrics on the NFL dataset, and
competitive results on Bundesliga.
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Table 9: Guidance Weight w. We report SADE and SFDE metrics (min / avg) over 20 generated
modes.

w
NFL (yards) Bundesliga (meters)

SADE ↓ SFDE ↓ SADE ↓ SFDE ↓

-1.0 2.44 / 3.47 5.75 / 8.59 2.51 / 3.70 5.10 / 8.33
-0.5 2.21 / 3.11 5.09 / 7.58 2.12 / 2.84 4.19 / 6.06
0.0 2.19 / 3.09 5.04 / 7.52 2.08 / 2.72 4.09 / 5.68
0.5 2.19 / 3.10 5.04 / 7.56 2.12 / 2.73 4.18 / 5.66
1.0 2.21 / 3.15 5.10 / 7.68 2.21 / 2.81 4.40 / 5.84
2.0 2.31 / 3.31 5.34 / 8.07 2.49 / 3.07 5.05 / 6.41
3.0 2.46 / 3.53 5.69 / 8.58 2.80 / 3.38 5.71 / 7.04

T5-Large performs slightly worse than T5-Base, which is likely due to the stronger dimension-
ality compression required to map its d = 1024 dimensional embeddings down to our model’s
256-dimensional hidden space. Overall, the encoder size has minimal impact on the model’s perfor-
mance, but the results suggest that excessive compression of a very large embedding space can lead
to a slight degradation in trajectory prediction accuracy.

Table 10: T5 Encoder Size. We report SADE and SFDE metrics (min / avg) for different T5
encoder sizes (d), measured over 20 generated modes.

T5 Encoder (d) NFL (yards) Bundesliga (meters)
SADE ↓ SFDE ↓ SADE ↓ SFDE ↓

Small (512) 2.22 / 3.12 5.12 / 7.59 2.08 / 2.77 4.06 / 5.82
Base (768) 2.19 / 3.09 5.04 / 7.52 2.08 / 2.72 4.09 / 5.68
Large (1024) 2.24 / 3.25 5.14 / 7.88 2.10 / 2.75 4.11 / 5.74

D.3.5 MULTINOMIAL VS ABSORBING

In the main paper, we compare the consistency of our multinomial discrete diffusion model with
the absorbing state formulation in Table 3. To provide a more comprehensive assessment of gen-
eration quality, we extend this analysis using the same metrics as in Table 2 for controllable future
generation. The results, presented in Table 11, compare our method when replacing the multinomial
parameterization with an absorbingstate one (Ours w absorbing) against our original model. Across
all tasks, the absorbing formulation exhibits consistently lower performance, which we attribute to
reduced consistency between the generated trajectories and discrete events.

Table 11: Controllable Generation with Absorbing. This table compares our JointDiff model
(using multinomial diffusion) against an ablation using absorbing state diffusion for discrete events
(Ours w absorbing). As in Table2, we report the same metrics for both non-controllable (w/o G) and
controllable (w GWPG, w Gtext) future generation tasks.

Method NFL (yards) Bundesliga (meters) NBA (meters)
SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑

Ours w absorbing
w/o G 2.50 / 3.67 5.78 / 8.84 .76 / .54 2.72 / 4.13 5.39 / 8.93 .64 / .37 1.45 / 2.10 2.62 / 4.07 .73 / .44
w GWPG 2.57 / 3.84 5.72 / 8.92 .83 / .65 2.36 / 3.44 4.43 / 7.04 .75 / .49 1.28 / 1.89 2.25 / 3.66 .87 / .67
w Gtext 2.41 / 3.48 5.46 / 8.29 .85 / .72 2.29 / 3.21 4.34 / 6.44 .79 / .57 - - -

Ours
w/o G 2.36 / 3.40 5.53 / 8.40 .78 / .54 2.47 / 3.66 5.02 / 8.29 .68 / .39 1.39 / 2.01 2.53 / 3.95 .75 / .45
w GWPG 2.29 / 3.26 5.29 / 7.94 .84 / .65 2.13 / 2.85 4.22 / 6.16 .77 / .52 1.24 / 1.81 2.20 / 3.53 .87 / .67
w Gtext 2.19 / 3.09 5.04 / 7.52 .86 / .74 2.08 / 2.72 4.09 / 5.68 .80 / .59 - - -

D.3.6 ADDITIONAL ANALYSIS

We present the last ablation analysis which includes the relevance of two important components in
our approach. The first one is the importance sampling from Nichol & Dhariwal (2021), and the
second is the number of Social Transformers layers within residual denoising block. Table 12 shows
the results of our approach without the importance sampling (“w/o IS”) and with only one Social
Transformer layer (“w 1 × ST”). Notice that the importance sampling is crucial when the size of
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the dataset is small, like the NFL and the Bundesliga. Using two Social Transformers also improve
the results across the three datasets.

Table 12: Additional Ablation in Future Generation. We report SADE and SFDE metrics (min /
avg) and Acc (max / avg) over 20 generated modes.

Method NFL (yards) Bundesliga (meters) NBA (meters)
SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑ SADE ↓ SFDE ↓ Acc ↑

w/o IS 2.74 / 3.78 6.28 / 9.09 .75 / .50 2.78 / 4.03 5.51 / 8.87 .65 / .36 1.44 / 2.05 2.61 / 4.00 .74 / .44
w 1 × ST 2.46 / 3.54 5.71 / 8.59 .78 / .52 2.54 / 3.69 5.18 / 8.32 .66 / .38 1.44 / 2.07 2.63 / 4.05 .74 / .43
Ours 2.36 / 3.40 5.53 / 8.40 .78 / .54 2.47 / 3.66 5.02 / 8.29 .68 / .39 1.39 / 2.01 2.53 / 3.95 .75 / .45

D.4 INTERPRETABILITY: ATTENTION ENTROPY

To understand how our joint modeling influences the learned correlations between agents, we ana-
lyzed the attention entropy of our Social Transformer layers. Solving the future generation task in
the NBA dataset, we generated 20 modes from a batch of 128 using both our JointDiff (Ours) model
and the ablated Ours w/o joint variant. We computed the entropy of the attention distribution for
each agent at every layer and timestep. This entropy is defined as:

H(P ) = −
∑
n

P (xn) log2 P (xn), (21)

where P is the attention distribution, and xn is the n-th element in the set of agents (including
the agent itself) over which the attention is computed. We then averaged this entropy across all
attention heads, all four Social Transformer layers, all timesteps (T ), all agents (N ), and all 20
modes to obtain a single entropy value for each denoising step s. This per-step entropy provides
a measure of the uniformity of the attention patterns, with higher entropy indicating more uniform
(less focused) attention and lower entropy indicating more specialized (highly focused) attention on
specific agents.

The difference in this averaged entropy between the two models is depicted in Fig. 8. Our analysis
reveals that JointDiff maintains a consistently lower attention entropy. The gap is most pronounced
during the initial denoising steps, suggesting that agents in our model attend in a more focused man-
ner from the beginning. This supports our hypothesis that providing the model with the possessor
event allows it to immediately identify and prioritize the most salient interactions in the scene.
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Figure 8: Entropy vs Denoising Step. We report the entropy of the inter-agent attention across the
three datasets.
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Figure 9: Future Generation on NFL. Comparison of Ours vs. MoFlow and U2Diff baselines on
generating future 40 timesteps conditioned on 10 past observed timesteps. Legend: ○ Ball, ␣ Home
team, ␣ Away team, ⃝ Past observations.

D.5 QUALITATIVE RESULTS

We provide further qualitative results in completion generation and controllable generation, while
also showing failure cases. Please refer to the video supplementary to see animated results.

D.5.1 COMPLETION GENERATION

This section provides qualitative comparisons of JointDiff (Ours) against the state-of-the-art genera-
tive models MoFlow and U2Diff. We depict the mode with the best SADE metric over 20 generated
modes in Fig.9 for the NFL, in Fig.10 for the Bundesliga, and in Fig.11 for the NBA.

D.5.2 CONTROLLABLE GENERATION

This section presents qualitative results for the controllable future generation task. For weak-
possessor-guidance (Fig. 12), we compare a single generated mode from our full model (Ours)
against the variant without joint training (Ours w/o joint). For text-guidance (Fig. 13), we generate
20 modes for our method and qualitatively select the sample most aligned with the text description.

D.5.3 FAILURE CASES

A key limitation observed in our results is the occasional inconsistency between the generated tra-
jectories and the text-guidance. This can be traced to the constrained size of our training datasets,
≈ 10k pairs for NFL and ≈ 2k (augmented to 4k) for Bundesliga. The limited data variety hinders
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Figure 10: Future Generation on BundesLiga. Comparison of Ours vs. MoFlow and U2Diff
baselines on generating future 30 timesteps conditioned on 10 past observed timesteps. Legend: ○
Ball, ␣ Home team, ␣ Away team, ⃝ Past observations.

the model’s ability to robustly encode the wide range of possibilities described in natural language.
Refer to Fig.14 to see some failure examples from the same scenarios depicted in Fig. 13.

E LIMITATIONS AND FUTURE WORK

Our model’s architecture requires events to share the same spatio-temporal structure as the trajectory
data, i.e., to allow for simple concatenation at the input. This limits its application to event streams
that are naturally structured this way and cannot directly handle unstructured data, such as sparse
temporal point processes. A key direction for future work is to develop methods to integrate these
more complex event types.

A second limitation stems from the NFL dataset. The public event data does not identify the player
responsible for each action. Consequently, we must rely on a combination of heuristics and tracking
data to assign an actor, a process that may lead to sub-optimal outcomes.
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Figure 11: Future Generation on NBA. Comparison of Ours vs. MoFlow and U2Diff baselines
on generating future 20 timesteps conditioned on 10 past observed timesteps. Legend: ○ Ball, ␣
Home team, ␣ Away team, ⃝ Past observations.
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F.1 LLM USAGE

LLMs were used in two ways: (1) to improve the grammar and readability of the manuscript, and
(2) to post-process the generated text dataset by correcting grammar and ensuring consistency (as
described in the paper). All aspects of the research design, modeling, experimentation, and analysis
were carried out independently of any LLM assistance.

F.2 ETHICS

This research uses trajectory data representing human agents. All datasets employed are either
publicly available or synthetically generated, and contain no personally identifiable information.
The trajectories and textual descriptions are anonymized and represent abstract positions rather than
identifiable individuals (as described in the paper). The intended applications of this work include
sports analytics and multi-agent simulation, which we believe pose minimal ethical risk.
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We commit to releasing the dataset and the code necessary to reproduce it upon acceptance of this
paper for publication.
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(a) Players “[4, 8, 1]” involved in the possession.
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(b) Players “[4, 8, 2]” involved in the possession.
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(c) Players “[16, 21]” involved in the possession.
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(d) Players “[16, 22]” involved in the possession.
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(e) Players “[4, 1, 3, 4]” involved in the possession.
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(f) Players “[4, 1, 2, 5]” involved in the possession.

Figure 12: Controllable Generation with WPG. Comparison of Ours vs. Ours w/o joint on the
weak-possesor-guidance task giving the same past observations with different possessor sequences
GWPG. Legend: ○ Ball, ␣ Home team, ␣ Away team, ⃝ Past observations.
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(a) “Home Team has possession in SHOTGUN for-
mation. Player 4 snaps the ball to Player 8 at yard L
25. Player 8 possesses the ball and throws a forward
pass to Player 5. The ball travels from yard L 15 to L
30.”
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(b) “Home Team has possession in SHOTGUN for-
mation. Player 4 snaps the ball to Player 8 at yard L
25. Player 8 makes a hand-off pass to Player 2 and he
runs with the ball.”
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(c) “Away Team has the possession. The ball starts at
left-center. Player 19 possesses the ball at left-center
and passes to Player 22. The ball moves from left-
center to box, then to up-corner. Player 22 possesses
the ball at up-corner and attempts a pass, which is in-
tercepted by Home Player 7. Home Team gains pos-
session and Player 7 attempts a clearance, as the ball
moves to box.”
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(d) “Away Team has the possession. The ball starts at
left-center. Player 19 possesses the ball at left-center
and passes to Player 22. The ball moves from left-
center to box, then to up-corner. Player 22 possesses
the ball at up-corner and attempts a pass to Player 19
inside the box.”

Figure 13: Controllable Generation with Text. Examples on text-guidance task giving the same
past observations with different prompts Gtext. Legend: ○ Ball, ␣ Home team, ␣ Away team, ⃝
Past observations.
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(a) “Home Team has possession in SHOTGUN for-
mation. Player 4 snaps the ball to Player 8 at yard L
25. Player 8 possesses the ball and throws a forward
pass to Player 5. The ball travels from yard L 15 to L
30.”
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(b) “Away Team has the possession. The ball starts at
left-center. Player 19 possesses the ball at left-center
and passes to Player 22. The ball moves from left-
center to box, then to up-corner. Player 22 possesses
the ball at up-corner and attempts a pass to Player 19
inside the box.”

Figure 14: Failure Cases on Controllable Generation with Text. Legend: ○ Ball, ␣ Home team,
␣ Away team, ⃝ Past observations.
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