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ABSTRACT

Contrastive learning, which learns visual representations by enforcing feature
consistency under different augmented views, has emerged as one of the most
effective unsupervised learning methods. In this work, we explore contrastive
learning from a new perspective, inspired by the recent works showing that properly
designed weight perturbations or quantization help the models learn a smoother
loss landscape. Interestingly, we find that quantization, when properly engineered,
can enhance the effectiveness of contrastive learning. To this end, we propose a
novel contrastive learning framework, dubbed Contrastive Quant, to encourage
the feature consistency under both (1) differently augmented inputs via various
data transformations and (2) differently augmented weights/activations via various
quantization levels. In Contrastive Quant, the feature consistency under injected
noises via quantization can be viewed as augmentations on both the model weights
and intermediate activations, serving as a complement to the input augmentations.
Extensive experiments, built on top of two state-of-the-art contrastive learning
methods SimCLR and BYOL, show that Contrastive Quant consistently improves
the learned visual representation, especially under semi-supervised scenarios with
limited labeled data. For example, our Contrastive Quant achieves a 8.69% and
10.27% higher accuracy on ResNet-18 and ResNet-34 with ImageNet, respectively,
when fine-tuning with only 10% labeled data. We believe this work has opened
up a new perspective for future contrastive learning innovations. All codes will be
released upon acceptance.

1 INTRODUCTION

Contrastive learning has emerged as the state-of-the-art (SOTA) unsupervised representation learning
from images. For example, Momentum Contrast (MoCo) (He et al., 2020) shows that unsupervised
pre-training can surpass its ImageNet-supervised counterpart in multiple detection and segmentation
tasks, while SimCLR further reduces the gap in linear classifier accuracy between unsupervised and
supervised pre-training representations. As such, there has been a growing interest in further boosting
its achievable performance and developing improved contrastive learning pipelines.

In this work, we explore contrastive learning from a new perspective, inspired by recent works showing
that properly designed weight perturbations or quantization help the models learn a smoother loss
landscape (Wu et al., 2020; Fu et al., 2021). For example, (Wu et al., 2020) adversarial perturbations
on both inputs and weights help smooth the loss landscape of model weights and thus narrow the
robust generalization gap and (Fu et al., 2021) shows that a properly designed precision schedule helps
DNN converge to a better local optima, as a low precision helps the optimization space exploration
in a similar way a high learning rate does. We are thus motivated to ask an intriguing question:
“Can quantization, which itself can boost the model efficiency, be leveraged to develop improved
contrastive learning pipelines"? If the answer is positive, it can not only lead to more accurate
contrastive learning techniques on top of existing methods, but also open up a new understanding in
the role of quantization on contrastive learning, potentially inspiring and motivating more contrastive
learning innovations.

Interestingly, we find that quantization, when properly engineered, can enhance the effectiveness of
contrastive learning. Specifically, we make the following contributions:
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• We are the first to study the role of quantization in the context of contrastive learning
pipelines, and show that quantization can be leveraged to enhance the performance of
contrastive learning. We believe that this view can open up a new perspective for future
contrastive learning innovations.

• We propose a novel contrastive learning framework, dubbed Contrastive Quant, to encourage
the feature consistency under both (1) different augmented inputs via various data trans-
formations and (2) different augmented weights/activations via various quantization levels.
In particular, the feature consistency under injected noises via quantization in Contrastive
Quant can be viewed as augmentations on both model weights and intermediate activations,
serving as a complement to the input augmentations.

• Extensive experiments, built on top of two SOTA contrastive learning methods SimCLR
and BYOL, show that our Contrastive Quant consistently improves the learned visual
representation, especially with limited labeled data under semi-supervised scenarios. For
example, our Contrastive Quant achieves a 8.69% and 10.27% higher accuracy on ResNet-18
and ResNet-34, respectively, on ImageNet when fine-tuning with 10% labeled data.

2 RELATED WORKS

DNN quantization. Quantization, which trims down the model complexity from the most fine-
grained bit level, is one of the most promising DNN compression techniques. In particular, existing
quantization methods represent model weights/activations/gradients using a lower floating-point
precision (Wang et al., 2018; Sun et al., 2019) or fixed-point precision (Zhu et al., 2016; Li et al., 2016;
Jacob et al., 2018; Mishra & Marr, 2017; Mishra et al., 2017; Park et al., 2017; Zhou et al., 2016).
The resulting accuracy degradation after quantization can be minimized through (1) quantization-
aware training (Jacob et al., 2018), which explicitly considers quantization noise in the training
process, (2) learnable quantizers (Jung et al., 2019; Bhalgat et al., 2020; Esser et al., 2019; Park &
Yoo, 2020), which jointly learn the quantization-related parameters and model parameters, and (3)
mixed-precision quantization (Wang et al., 2019; Xu et al., 2018; Elthakeb et al., 2020; Zhou et al.,
2017), which allocates different precisions to different layers. In addition to boosting efficiency,
recent works (Fu et al., 2020; 2021) find that quantization can be properly utilized to boost training
optimality. In particular, (Fu et al., 2021) shows that a low precision has a similar effect as a high
learning rate, favoring the training space exploration and their proposed cyclic precision schedule
helps DNNs converge to a better optima. This inspires and motivates us to explore the potential
positive effects of quantization for representation learning.

Self-supervised learning and contrastive learning. Self-supervised learning, which leverages the
input data themselves for supervision to benefit the downstream tasks, has achieved great progress.
Early works (Van Oord et al., 2016; Oord et al., 2017; You et al., 2018; Radford et al., 2018; 2019;
Kipf & Welling, 2016; Razavi et al., 2019; Devlin et al., 2018; Dinh et al., 2014; Mikolov et al.,
2013a;b) adopt generative models to recover the original data distributions without making any
assumptions for the downstream tasks to learn good representations. Later works shed light on the
potential of discriminative models for representation learning. Many pioneering works along this
direction aim at tailoring pretext tasks for different downstream tasks, and attempt to predict the
missing information from intentionally manipulated training data, such as context prediction (Doersch
et al., 2015), jigsaw puzzle (Noroozi & Favaro, 2016), colorization (Larsson et al., 2016; Zhang
et al., 2016), rotation (Gidaris et al., 2018), and deep cluster (Caron et al., 2018; 2019). Such
carefully designed pretext tasks are able to capture some common priors, which are also applicable to
the downstream tasks. Recently, contrastive learning has gained increased popularity thanks to its
excellent performance. The kernel spirit behind contrastive learning is to learn invariant features by
maximizing the mutual information of the latent representations of differently augmented views of the
images. In particular, instance discrimination (Wu et al., 2018) makes the first attempt to discriminate
different instances via an Noise-Contrastive Estimation (NCE) loss and following works consider
different strategies to construct the different views. For example, CMC (Tian et al., 2019) converts
RGB images to the Lab color space and maximizes the mutual information between different color
channel views, and SimCLR (Chen et al., 2020c) adopts different augmentations as different views
and maximizes the consistency between different views. More variants of contrastive learning (He
et al., 2020; Chen et al., 2020d; Grill et al., 2020; Chen & He, 2020) have been proposed to effectively
generate negative pairs and improve the quality of representation learning. Readers are referred to (Liu
et al., 2020; Jaiswal et al., 2021) for more details about unsupervised learning and contrastive learning.
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In this work, we explore contrastive learning from a new perspective, i.e., the potential positive
role of quantization in contrastive learning, and find that quantization, when properly engineered,
can enhance the effectiveness of contrastive learning, potentially inspiring and motivating more
contrastive learning innovations.

3 THE PROPOSED CONTRASTIVE QUANT FRAMEWORK

In this section, we introduce our Contrastive Quant framework, which for the first time explores
quantization’s positive effects on contrastive learning in addition to merely boosting the model
efficiency. We start from the motivation of and inspiration leading to our framework in Sec. 3.1 and
then introduce the key concept in Sec. 3.2. Next, we discuss potential designs to enhance the positive
effect of quantization on contrastive learning and the implementation details for applying Contrastive
Quant on top of existing contrastive learning frameworks in Sec. 3.3 and Sec. 3.4, respectively.

3.1 MOTIVATION

Spirits of contrastive learning. Self-supervised learning methods aim at learning representations
with semantic priors that can generally benefit their downstream tasks. The core spirit behind
contrastive learning (Tian et al., 2019; Wu et al., 2018; Chen et al., 2020c; He et al., 2020; Chen
et al., 2020d; Grill et al., 2020; Chen & He, 2020), one of the most effective self-supervised learning
methods, is to learn invariant features by maximizing the mutual information between the latent
representations of differently augmented image views. Such a feature consistency is known to be
beneficial for both the standard generalization (Zhang, 2019; Kayhan & Gemert, 2020) and robust
generalization (Kim et al., 2020; Chen et al., 2020b; Jiang et al., 2020), while new perspectives for
enforcing such feature consistency in addition to data augmentations are still under-explored.

Inspirations from recent works. A recent work (Wu et al., 2020) implies another view of encourag-
ing feature consistency in the context of adversarial training. In particular, they show that training
with properly generated perturbations onto the weights can serve as a complement for adversarial
perturbations onto the inputs, which helps smooth the loss landscape and narrow the robust generation
gap, i.e., improve the feature consistency under adversarial attacks. In parallel, (Fu et al., 2021)
shows that a low precision has a similar effect as a high learning rate, favoring the training space
exploration, and proposes a properly designed precision schedule to help DNN converge to a better
local optima with more smoothed loss landscape. Considering quantization can naturally serve as
perturbations onto both model weights and intermediate feature maps, these prior works inspire and
motivate us to leverage quantization to learn better representations by encouraging feature consistency
under differently augmented weights/activations via various quantization levels, as a complement of
enforcing consistency via data augmentations.

3.2 THE KEY CONCEPT

Contrastive learning, as a kind of instance discrimination method, encourages feature consistency
via maximizing the mutual information, approximated by minimizing an NCE loss (Wu et al.,
2018), between the extracted features from different perspectives of the same instance which can be
formulated as:

max � ( 5 , 5 +) ≈ min #�� ( 5 , 5 +) = min E [−;>6 4G?( 5 · 5 +/g)∑ 
8=0 4G?( 5 · 5 −/g) + 4G?( 5 · 5 +/g)

] (1)

where 5 and 5 − are the extracted features of the same instance under different perspectives, named
positive pairs, of the encoder �, � ( 5 , 5 +) denotes their mutual information,  is the number of
negative samples, and g is a temperature parameter that controls the concentration level of the
distribution.

In previous data augmentation based contrastive learning methods, the positive pairs 5 and 5 + are
generated by different augmentation combinations:

5 = � (�D61 (G), \) , 5 + = � (�D62 (G), \) (2)

where G is the given instance, \ is the model weight, and �D61 and �D61 denote two different
augmentations. To further enhance the feature consistency from a new perspective, we propose the
Contrastive Quant framework to augment both the model weights and intermediate activations in
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Figure 1: An overview of the proposed Contrastive Quant design pipelines.

addition to the input augmentations via injecting quantization noise of different levels into the weights
and activations, as formulated below:

5 = �@1 (G, \@1 ) , 5 + = �@2 (G, \@2 ) (3)

where 5 and 5 + are generated by the encoder quantized to different precisions @1 and @2, which can
be randomly selected from a precision set during training. The detailed quantization scheme we adopt
is discussed in Sec. 3.4.

Nevertheless, we empirically find that merely enhancing the feature consistency via quantization
augmented weights/activations without the vanilla input augmentations will lead to inferior contrast-
ing learning, indicating that the structured priors learned from the consistency between different
augmented views are essential to the downstream tasks and it’s necessary to apply our Contrastive
Quant framework on top of existing input augmentation based contrasting learning methods. A natural
question is thus “how to effectively combine augmented inputs and augmented weights/activations
via quantization to boost the performance of contrastive learning"? To answer this question, we
explore the potential designs in Sec. 3.3 towards an effective Contrastive Quant framework.

3.3 THE DESIGN PIPELINE

As shown in Fig. 1, we propose three candidate designs, denoted as CQ-A, CQ-B, and CQ-C,
respectively, to exploit the potential of applying augmented weights/activations via quantization
towards on top of the commonly used augmented inputs towards better contrastive learning pipelines.

Analysis of CQ-A. CQ-A (see the second column of Fig. 1) is one of the most intuitive designs for
applying augmented weights/activations on top of existing input augmentation based contrastive
learning methods, which can be formulated as:

5 = �@1 (�D61 (G), \@1 ) , 5 + = �@2 (�D62 (G), \@2 ) , !>BB = #�� ( 5 , 5 +) (4)

where !>BB is the final objective to be minimized. Eq. 4 shows that CQ-A views the quantization
precision as an additional augmentation parameter similar to the rotation degree or noise level in
data augmentation operators (Chen et al., 2020c), which are randomly selected during inference
with different views for the same instance. In this way, the executions of input augmentations and
weight/activation augmentation are combined in a sequential manner, which can potentially strengthen
the overall augmentation magnitude. As validated in Sec. 4, such strengthened augmentations will
aggressively benefit large-scale datasets like ImageNet while may not be very helpful on small-scale
datasets as strong augmentations may distort the images’ structures (Wang & Qi, 2021), which is
more likely to happen on small-scale datasets.

Analysis of CQ-B. CQ-B (see the third column of Fig. 1) is a variant with more mild augmen-
tations. Instead of explicitly constraining the feature consistency under differently augmented
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weights/activations via various quantization levels, CQ-B only enforces the feature consistency under
differently augmented inputs with the same randomly selected precision, which can be formulated as:

51 = �@1 (�D61 (G), \@1 ) , 52 = �@2 (�D61 (G), \@2 ) (5)

5 +1 = �@1 (�D62 (G), \@1 ) , 5 +2 = �@2 (�D62 (G), \@2 ) (6)

!>BB = #�� ( 51, 5 +1 ) + #�� ( 52, 5
+
2 ) (7)

The final objective is averaged over two randomly selected precisions, which implicitly encourages the
feature consistency under different quantization levels. As such, this design can potentially mitigate
the potential risk of distorting the images’ structures with too strong augmentations, especially on
small-scale datasets, while the newly introduced priors by CQ-B over input augmentation based
methods are not rich enough, which can limit its achievable performance improvement.

Analysis of CQ-C. To combine the advantages of both CQ-A and CQ-B, CQ-C (see the rightmost
column of Fig. 1) explicitly encourages (1) the feature consistency under differently augmented
views with the same quantization level, and (2) the feature consistency under differently augmented
weights/activations via various quantization levels within the same view, which can be formulated as:

!>BB = #�� ( 51, 5 +1 ) + #�� ( 52, 5
+
2 ) + #�� ( 51, 52) + #�� ( 5

+
1 , 5

+
2 ) (8)

where 51, 52, 5 +1 , and 5 +2 follow the definition in Eq. 5 and 6. Different from CQ-A which sequentially
augments the inputs and weights/activations, CQ-C decouples them and enforce the feature consis-
tency from the two perspectives separately, which can potentially mitigate the risk of introducing too
strong augmentations while introducing sufficient new priors on top of existing contrastive learning
methods. As validated in Sec. 4, CQ-C can consistently improve the performance on both small-scale
and large-scale datasets, especially outperforming CQ-A on small-scale ones.

3.4 MORE IMPLEMENTATION DETAILS

The adopted quantization scheme. We adopt the commonly adopted linear quantizer (Jacob et al.,
2018) to quantize both weights and activations in our Contrastive Quant, i.e.,

�@ = (0 b
�

(0
c , Fℎ4A4 (0 =

�A0=64

2@ − 1
(9)

where � here can denote the model weights or activations, @ is the quantization bit-width, and �A0=64
is the dynamic range of �, i.e., the difference between the maximum and minimum of � values. Since
the encoder will be quantized to different values during training, learnable quantizers with trainable
quantization parameters are found to be unstable here, so we directly adopt the linear quantizer.

Applying on top of SimCLR. Adapting our Contrastive Quant to the SOTA SimCLR frame-
work (Chen et al., 2020c) is simple and direct via (1) modifying the NCE loss in Eq. 1 to the
NT-Xent one (Chen et al., 2020c), and (2) adding a projection head after the encoder to learn a better
representation.

Applying on top of BYOL. BYOL (Grill et al., 2020) relies on two networks, i.e., the online and
target networks, to learn from each other based on the feature consistency under different views,
where the target network is updated via moving average of the online network instead of the gradients,
and this training process does not involve any negative pair. We adapt our Contrastive Quant in a
natural manner in that (1) we modify the NCE loss in Eq. 1 to the Mean Square Error (MSE) loss
adopted by (Grill et al., 2020); (2) we add a projection head and prediction head after the encoder
following (Grill et al., 2020); and (3) we stop the gradient propagation along the target network and
apply both views of the same instance into the online network/target network alternatively to improve
the data reusability following (Grill et al., 2020).

4 EXPERIMENT RESULTS

In this section, we first introduce our experiment setup, benchmarking experiment results over SOTA
contrastive learning methods, and then ablation studies of Contrastive Quant for better understanding
its effectiveness and design pipelines.
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Table 1: Benchmark Constrastive Quant against SimCLR on top of ResNet-18/34 on ImageNet. Here
we adopt the fine-tuning settings on 10%/1% labeled data with the two precision sets.

Network Method Precision Set Fine-tune Acc. (FP) Fine-tune Acc. (4-bit)
10% labels 1% labels 10% labels 1% labels

ResNet-18

SimCLR - 42.44 19.18 39.12 17.24

CQ-A 6-16 51.39 28.87 48.80 27.13
8-16 51.13 28.97 48.63 26.66

CQ-C 6-16 44.97 20.83 42.01 18.63
8-16 45.10 20.98 41.90 18.72

ResNet-34

SimCLR - 47.53 23.43 44.65 21.69

CQ-A 6-16 55.76 33.37 53.32 31.30
8-16 55.72 33.70 53.33 31.64

CQ-C 6-16 50.45 26.32 47.65 24.53
8-16 50.22 26.21 47.70 24.74

4.1 EXPERIMENT SETUP

Networks, datasets, and evaluation settings. We consider six networks on two datasets, i.e.,
ResNet-18/34/74/110/156/MobileNetV2 on CIFAR-100 (Krizhevsky et al., 2009) and ResNet-18/34
on ImageNet (Deng et al., 2009), featuring diverse DNN models and data statistics for a solid
evaluation. We also transfer the pretrained models on ImageNet to the downstream detection task
Pascal VOC (Everingham et al., 2010; 2015). In this work, we consider both the fine-tuning, linear
evaluation, and transfer learning settings. As we quantize the model to different precisions during the
contrastive learning processes, we mainly consider the fine-tuning setting under a fixed precision, i.e.„
full precision (denoted as FP) or 4-bit, with a limited amount of labeled data (10% or 1%) to stabilize
the weight/activation distribution under the precision choice. Detailed training and evaluation settings
are provided in Appendix. A.

Precision sets. As our Contrastive Quant framework randomly selects two precision @1 and @2 from
a pre-defined precision set in each training iteration, the precision set may influence its training
optimality. We adopt 4-16 (every precision between 4-bit and 16-bit), 6-16, and 8-16 as the potential
precision sets for an ablation study in Appendix. B.
4.2 BENCHMARK CONTRASTIVE QUANT ON IMAGENET

We first apply our Contrastive Quant framework on top of SimCLR to train ResNet-18/34 on ImageNet
and benchmark with the vanilla SimCLR in both fine-tuning and linear evaluation settings under
both FP and 4-bit precisions. In particular, we validate the effectiveness of all the three designs in
Fig. 1 and adopt two precision sets 6-16 and 8-16 considering 4-bit may significantly degrade the
final accuracy on large-scale datasets like ImageNet.

Fine-tuning results. As shown in Tab. 1, we can see that (1) both CQ-A and CQ-C achieve a
consistently improvement over the vanilla SimCLR on both ResNet-18/34 and the two precision sets,
indicating enforcing feature consistency under differently augmented weights/activations via various
quantization levels indeed benefits the downstream tasks, which could provide a new prior; (2) CQ-C
achieves a 1.39%∼2.89% and 2.69%∼3.05% higher accuracy over SimCLR on ResNet-18 and ResNet-
34, respectively, while CQ-A achieves an even surprising at of 8.69%∼9.89% and 8.19%∼10.27% on
ResNet-18 and ResNet-34, respectively, indicating the sequentially applied augmentations onto the
inputs and weights/activations, which together lead to a stronger augmentation, greatly benefit the
training process on large-scale datasets; and (3) we find that the training process of CQ-B can easily
fail, which suffers from severe gradient explosion before learning a good representation, indicating
the importance of adopting the feature consistency loss of differently augmented weights/actions
under the same view as CQ-C in Sec. 3.3, which is the only difference between the two designs.

Table 2: Comparing CQ-A and CQ-C
with SimCLR under the linear evaluation
setting on ImageNet.

Network SimCLR CQ-C CQ-A
ResNet-18 29.31 31.90 44.91
ResNet-34 34.96 36.14 47.88

Linear evaluation results. As observed from Tab. 2, we
can see that CQ-C and CQ-A achieve a 2.59%/1.18%
and 15.60%/12.92% higher accuracy on ResNet-18/34,
respectively. Furthermore, CQ-A still achieves the most
aggressive improvements over SimCLR, aligning with our
assumption about CQ-A’s stronger augmentation effects
which benefits ImageNet training.

6



Under review as a conference paper at ICLR 2022

Table 4: Benchmark against SimCLR on six network with CIFAR-100 with the fine-tuning setting.

Network Method Fine-tune Acc. (FP) Fine-tune Acc. (4-bit)
10% labels 1% labels 10% labels 1% labels

ResNet-18 SimCLR 61.51 42.51 59.78 40.73

CQ-C 61.75 43.80 60.12 42.59

ResNet-34 SimCLR 63.05 45.11 61.44 43.63

CQ-C 63.58 48.05 61.47 45.75

ResNet-74 SimCLR 51.93 30.40 50.37 28.56

CQ-C 52.52 31.39 51.12 29.70

ResNet-110 SimCLR 52.78 31.16 51.69 30.11

CQ-C 54.47 33.17 52.28 32.66

ResNet-152 SimCLR 53.57 32.93 52.14 31.06

CQ-C 55.44 34.98 53.04 33.54

MobileNetV2 SimCLR 49.73 24.18 46.47 18.98

CQ-C 51.59 26.12 49.82 20.82

Table 5: Benchmark against SimCLR on six DNNs & CIFAR-100 under the linear evaluation setting.

Method ResNet-18 ResNet-34 ResNet-74 ResNet-110 ResNet-152 MobileNetV2
SimCLR 64.91 65.92 52.96 53.53 53.97 52.53

CQ-C 64.78 66.54 54.06 54.76 55.12 53.97

Table 3: Comparing CQ-A and CQ-C with vanilla
SimCLR via transferring the ImageNet pretrained
models to the downstream detection task.

Network Method AP AP50 AP75

ResNet-18
Vanilla SimCLR 25.09 49.2 22.74

CQ-C 32.94 63.96 29.28
CQ-A 36.39 69.08 32.64

ResNet-34
Vanilla SimCLR 35.58 67.51 31.88

CQ-C 36.54 68.77 34.17
CQ-A 38.77 72.13 35.85

Transfer to downstream detection tasks. We
further transfer the pretrained ResNet-18/34
trained with different methods on ImageNet
to a downstream detection task on top of
YOLOv4 (Bochkovskiy et al., 2020) follow-
ing (Chen et al., 2020a). In particular, we
follow (He et al., 2020; Chen et al., 2020d;a)
to train the models on the combined train-
ing/validation set of Pascal VOC 2007 (Ever-
ingham et al., 2010) and Pascal VOC 2012 (Ev-
eringham et al., 2015), and evaluate on the test set of Pascal VOC 2007. As observed from Tab. 3, we
can see that CQ-A and CQ-C consistently outperform the vanilla SimCLR after being transferred
to the downstream detection task in terms of all the three metrics. Specifically, CQ-A achieves a
11.30%/3.19% higher AP compared with the vanilla SimCLR on top of ResNet-18/34, respectively.

Insights. (Wang & Qi, 2021) finds that stronger augmentations can distort the images’ struc-
tures (Wang & Qi, 2021), thus can be harmful to learn a good representation, while they mainly
discuss within the domain of input augmentations. Based on the success of CQ-A in Tab. 1, our
Contrastive Quant can potentially serve as a new direction to explore stronger augmentations which
consistently benefit the downstream tasks. A future direction is to explore other kinds of perturbations
on weights/activations in addition to our Contrastive Quant to build more effective augmentations.

4.3 BENCHMARK CONTRASTIVE QUANT ON CIFAR-100
We then benchmark Contrastive Quant on top of SimCLR (Chen et al., 2020c)/BYOL (Grill et al.,
2020) with the vanilla SimCLR/BYOL. As shown in Sec. 4.4, CQ-C outperforms CQ-A and CQ-B
on small-scale datasets like CIFAR-100, which is consistent with the analysis in Sec. 3.3. Therefore,
in this subsection we adopt CQ-C with a precison set of 6-16 and the results on more precision sets
are discussed in Appendix. B.

Benchmark against SimCLR with fine-tuning settings. As shown in Tab. 4, we can see that (1)
our CQ-C consistently outperforms the vanilla SimCLR on all the six networks, e.g., an accuracy
improvement of 0.24%∼3.35% and 0.99%∼2.94% when fine-tuning with 10% and 1% data with FP,
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Table 6: Benchmark against BYOL on three network with CIFAR-100 under the fine-tuning setting.

Network Method Precision Set Fine-tune Acc. (FP) Fine-tune Acc. (4-bit)
10% labels 1% labels 10% labels 1% labels

ResNet-18 BYOL - 55.26 34.22 53.44 32.93

CQ-C 6-16 58.84 39.21 56.74 37.54

ResNet-34 BYOL - 65.83 50.95 64.00 49.37

CQ-C 6-16 66.77 51.91 65.21 50.55

MobileNetV2 BYOL - 49.85 23.32 44.65 19.58

CQ-C 6-16 54.59 31.96 50.97 26.60

Contrastive QuantSimCLR

(c) ResNet-110 @ CIFAR-100 (d) MobileNetV2 @ CIFAR-100

(b) ResNet-74 @ CIFAR-100

Contrastive QuantSimCLR

Contrastive QuantSimCLR Contrastive QuantSimCLR

(a) ResNet-34 @ CIFAR-100

Figure 2: Visualizing the learned representations of Contrastive Quant and SimCLR using t-
SNE (Van der Maaten & Hinton, 2008).

respectively; and (2) our CQ-C achieves more notable improvements over SimCLR on top of larger
models and less labeled data, indicating its scalability and practicality in the real-world applications.

Benchmark against SimCLR with linear evaluation settings. Tab. 5 shows that our CQ-C still
achieves a better accuracy (except ResNet-18) than the vanilla SimCLR, especially on larger networks.

Benchmark against BYOL with fine-tuning settings. A consistent improvement can be observed
when benchmarking against BYOL in Tab. 6, i.e., CQ-C achieves a 0.94%∼6.32% and 0.96%∼8.64%
higher accuracy when fine-tuning with 10% and 1% data with FP, respectively.

Visualizing the learned representations. We adopt t-SNE (Van der Maaten & Hinton, 2008) to
visualize the learned representations (before the projection head) of the models trained by Contrastive
Quant and SimCLR in Tab. 4 and Fig. 2. We can see that the representations learned by Contrastive
Quant show a better linear separability, especially under larger models.

4.4 ABLATION STUDIES: BENCHMARK DIFFERENT DESIGNS

As shown in Tab. 7, we can observe that (1) CQ-C achieves an overall better performances than the
other two variants, especially when be fine-tuned with less labeled data, and (2) CQ-A generally
achieves marginally better or comparable results over the vanilla SimCLR, which is different from its
superior performance on ImageNet in Tab. 1, which aligns with our analysis in Sec. 3.3 that the too
strong augmentations may distort the images’ structures (Wang & Qi, 2021) small-scale datasets.

4.5 ABLATION STUDIES: AUGMENT WITH DIFFERENT QUANTIZATION LEVELS ONLY

Setup. To justify whether different quantization levels in our Contrastive Quant play a similar
role as data augmentations, we design a new variant of Contrastive Quant named CQ-quant, where
each input is only augmented by different quantization levels without being augmented by different
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Table 7: Ablation studies of Constrastive Quant’s variants with a precision set of 6-16 on CIFAR-100.

Network Method Fine-tune Acc. (FP) Fine-tune Acc. (4-bit)
10% labels 1% labels 10% labels 1% labels

ResNet-34

SimCLR 63.05 45.11 61.44 43.63

CQ-A 63.63 45.60 61.77 43.56

CQ-B 63.57 45.26 61.76 43.60

CQ-C 63.58 48.05 61.47 45.75

ResNet-74

SimCLR 51.93 30.40 50.37 28.56

CQ-A 51.89 29.95 51.45 28.99

CQ-B 52.36 30.48 51.20 29.28

CQ-C 52.52 31.39 51.12 29.70

MobileNetV2

SimCLR 49.73 24.18 46.47 18.98

CQ-A 49.93 24.57 46.01 19.38

CQ-B 51.78 25.21 47.81 20.81

CQ-C 51.59 26.12 49.82 20.82

Table 8: Evaluating CQ-Quant augmented by different quantization levels only on CIFAR-100.

Network Precision Set Fine-tune Acc. (FP) Linear
1% labels 10% labels evaluation

ResNet-74
6-16 7.64 29.14 15.79
8-16 4.64 21.37 10.98

No SSL Training 2.90 20.76 3.69

ResNet-110
6-16 7.43 27.69 14.10
8-16 6.41 21.58 11.83

No SSL Training 2.21 20.56 3.15

data augmentation methods. To be more specific, the loss function is modified from Eq. 8 to be:
!>BB = #�� ( 51, 52). We benchmark CQ-Quant with the baseline without SSL training, i.e., training
from scratch during evaluation, on top of ResNet-74 and ResNet-110.

Observations. As shown in Tab. 8, we can observe that (1) CQ-Quant with different precision sets can
consistently outperform the baseline without SSL training, indicating that the different quantization
levels can indeed create a contrastive task with a similar effect as different data augmentions on the
inputs; (2) CQ-Quant with more diverse precision settings can achieve a better fine-tuning/linear-
evaluation accuracy, which aligns with our intuition that the diversity of augmentations contributes
to the success of contrastive learning; and (3) data augmentations are still necessary towards decent
contrastive learning performances.

5 CONCLUSION

In this work, we for the first time explore quantization’s positive effects on boosting contrastive
learning’s accuracy in addition to merely boosting the model efficiency, and propose a novel con-
trastive learning framework, dubbed Contrastive Quant, to enhance the feature consistency under
both (1) differently augmented inputs via various data transformations and (2) differently augmented
weights/activations via various quantization levels. Extensive experiments on top of two state-of-
the-art contrastive learning methods, SimCLR and BYOL, show that Contrastive Quant consistently
improves the learned visual representation, especially with limited labeled data under semi-supervised
scenarios. Our Contrastive Quant can not only lead to more accurate contrastive learning techniques
on top of existing methods, but also open up a new understanding in the role of quantization on
contrastive learning, potentially inspiring and motivating more contrastive learning innovations.
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A TRAINING AND EVALUATION SETTINGS

Training & fine-tuning & linear evaluation on ImageNet. We follow the training settings in (Chen
et al., 2020c) to adopt a LARS optimizer and a cosine learning rate decay for training on ImageNet.
In particular, we adopt a batch size of 512 with an initial learning rate of 0.6 to train the models for
100 epochs. For fine-tuning the pretrained models, we follow (Chen et al., 2020c) to adopt an SGD
optimizer with Nesterov momentum and a momentum parameter of 0.9 without any weight decay.
Specifically, we fine-tune the pretrained models using a batch size of 512 and a cosine learning rate
decay with an initial learning rate of 0.1 for totally 30 epochs on 10% labeled data or 60 epochs on
1% labeled data. For the linear evaluation, we follow (Chen et al., 2020c) to train a linear classifier on
top of the encoded features for 90 epochs using a Nesterov momentum optimizer with a momentum
of 0.9, a learning rate of 0.2, and a batch size of 512 without weight decay.

Training & fine-tuning & linear evaluation on CIFAR-100. We follow all the settings in (Chen
et al., 2020c) and (Jiang et al., 2020), including the optimizer settings, augmentation choices, and
the projection head design. We train the models with a batch size of 512 for 1000 epochs. For both
fine-tuning and linear evaluation settings, we adopt an SGD optimizer with a momentum of 0.9 and a
cosine learning rate decay with an initial learning rate of 0.1 to fine-tune the models for 50 epochs.

Training on Pascal VOC. We follow (Chen et al., 2020a) to train each model for 50 epochs using an
SGD optimizer with a momentum of 0.9 and a weight decay of 0.0005, and a cosine learning rate
decay with an initial learning rate of 0.0001 and a batch size of 8. The evaluation metrics AP, AP50,
and AP75 (Chen et al., 2020d) are all reported.

B ABLATION STUDIES: THE INFLUENCE OF PRECISION SETS

We also conduct an ablation study for evaluating Contrastive Quant’s performance dependence on the
adopted precision sets in Tab. 9 and find that (1) our Contrastive Quant generally achieves a decent
performance under all considered precision sets and there’s no gold precision set choice, and (2)
generally training with low precision sets (4-16) will benefit Contrastive Quant’s performance under
the fine-tuning setting with the model quantized to 4-bit. We mainly adopt 6-16 as it achieves the
overall best results, balancing the strength of augmentations and the stability in training.
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Table 9: Ablation studies of CQ-C with different precision sets on CIFAR-100.

Network Precision Set Fine-tune Acc. (FP) Fine-tune Acc. (4-bit)
10% labels 1% labels 10% labels 1% labels

ResNet-18

4-16 61.82 42.95 60.4 41.91

6-16 61.75 43.8 60.12 42.59

8-16 61.34 43.15 59.91 41.66

ResNet-34

4-16 63.42 46.95 62.3 45.45

6-16 63.58 48.05 61.47 45.75

8-16 63.8 48.12 61.85 45.81

ResNet-74

4-16 53.04 31.63 52.08 30.30

6-16 52.52 31.39 51.12 29.70

8-16 53.24 31.26 51.57 30.20

ResNet-110

4-16 53.37 31.96 52.03 31.25

6-16 54.47 33.17 52.28 32.66

8-16 53.17 33.04 52.18 31.14

MobileNetV2

4-16 51.63 25.54 50.16 22.61

6-16 51.59 26.12 49.82 20.82

8-16 51.33 25.1 48.99 19.7
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