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ABSTRACT

Offline reinforcement learning, which aims at optimizing sequential decision-
making strategies with historical data, has been extensively applied in real-life
applications. State-Of-The-Art algorithms usually leverage powerful function ap-
proximators (e.g. neural networks) to alleviate the sample complexity hurdle for
better empirical performances. Despite the successes, a more systematic under-
standing of the statistical complexity for function approximation remains lacking.
Towards bridging the gap, we take a step by considering offline reinforcement
learning with differentiable function class approximation (DFA). This function
class naturally incorporates a wide range of models with nonlinear/nonconvex
structures. We show offline RL with differentiable function approximation is prov-
ably efficient by analyzing the pessimistic fitted Q-learning (PFQL) algorithm, and
our results provide the theoretical basis for understanding a variety of practical
heuristics that rely on Fitted Q-Iteration style design. In addition, we further im-
prove our guarantee with a tighter instance-dependent characterization. We hope
our work could draw interest in studying reinforcement learning with differen-
tiable function approximation beyond the scope of current research.

1 INTRODUCTION

Offline reinforcement learning (Lange et al., 2012; Levine et al., 2020) refers to the paradigm of
learning a policy in the sequential decision making problems, where only the logged data are avail-
able and were collected from an unknown environment (Markov Decision Process / MDP). Inspired
by the success of scalable supervised learning methods, modern reinforcement learning algorithms
(e.g. Silver et al. (2017)) incorporate high-capacity function approximators to acquire generaliza-
tion across large state-action spaces and have achieved excellent performances along a wide range
of domains. For instance, there are a huge body of deep RL-based algorithms that tackle challenging
problems such as the game of Go and chess (Silver et al., 2017; Schrittwieser et al., 2020), Robotics
(Gu et al., 2017; Levine et al., 2018), energy control (Degrave et al., 2022) and Biology (Mahmud
et al., 2018; Popova et al., 2018). Nevertheless, practitioners also noticed that algorithms with gen-
eral function approximators can be quite data inefficient, especially for deep neural networks where
the models may require million of steps for tuning the large number of parameters they contain.1

On the other hand, statistical analysis has been actively conducted to understand the sam-
ple/statistical efficiency for reinforcement learning with function approximation, and fruitful results
have been achieved under the respective model representations (Munos, 2003; Chen and Jiang, 2019;
Yang and Wang, 2019; Du et al., 2019; Sun et al., 2019; Modi et al., 2020; Jin et al., 2020b; Ayoub
et al., 2020; Zanette et al., 2020; Jin et al., 2021a; Du et al., 2021; Jin et al., 2021b; Zhou et al.,
2021a; Xie et al., 2021a; Min et al., 2021; Nguyen-Tang et al., 2022; Li et al., 2021; Zanette et al.,
2021; Yin et al., 2022; Uehara et al., 2022; Cai et al., 2022). However, most works consider lin-
ear model approximators (e.g. linear (mixture) MDPs) or its variants. While the explicit linear

1Check Arulkumaran et al. (2017) and the references therein for an overview.
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structures make the analysis trackable (linear problems are easier to analyze), they are unable to re-
veal the sample/statistical complexity behaviors of practical algorithms that apply powerful function
approximations (which might have complex structures).

In addition, there is an excellent line of works tackling provably efficient offline RL with general
function approximation (e.g. (Chen and Jiang, 2019; Xie et al., 2021a; Zhan et al., 2022)). Due to the
generic function approximation class considered, those complexity bounds are usually expressed in
the standard worst-case fashion O(V 2

max

√
1
n
) which lack the characterizations of individual instance

behaviors. However, as mentioned in Zanette and Brunskill (2019), practical reinforcement learning
algorithms often perform far better than what these problem-independent bounds would suggest.

These observations motivate us to consider function approximation schemes that can help address
the existing limitations. In particular, in this work we consider offline reinforcement learning with
differentiable function class approximations. Its definition is given in below.
Definition 1.1 (Parametric Differentiable Function Class). Let S,A be arbitrary state, action spaces
and a feature map ϕ(·, ·) : S × A → Ψ ⊂ Rm. The parameter space Θ ∈ Rd. Both Θ and Ψ are
compact spaces. Then the parametric function class (for a model f : Rd × Rm → R) is defined as

F := {f(θ, ϕ(·, ·)) : S ×A → R, θ ∈ Θ}
that satisfies differentiability/smoothness condition: 1. for any ϕ ∈ Rm, f(θ, ϕ) is third-time differ-
entiable with respect to θ; 2. f, ∂θf, ∂2

θ,θf, ∂
3
θ,θ,θf are jointly continuous for (θ, ϕ).

Remark 1.2. Differentiable Function Class was recently proposed for studying Off-Policy Evalua-
tion (OPE) Problem (Zhang et al., 2022a) and we adopt it here for the policy learning task. Note
by the compactness of Θ, Ψ and continuity, there exists constants CΘ, BF , κ1, κ2, κ3 > 0 that
bounds: ‖θ‖2 ≤ CΘ, |f(θ, ϕ(s, a))| ≤ BF , ‖∇θf(θ, ϕ(s, a))‖2 ≤ κ1,

∥∥∇2
θθf(θ, ϕ(s, a))

∥∥
2
≤

κ2,
∥∥∇3

θθθf(θ, ϕ(s, a))
∥∥
2
≤ κ3 for all θ ∈ Θ, s, a ∈ S ×A.2

Why consider differentiable function class (Definition 1.1)? There are two main reasons why
differentiable function class is worth studying for reinforcement learning.

• Due to the limitation of statistical tools, existing analysis in reinforcement learning usually
favor basic settings such as tabular MDPs (where the state space and action space are finite
(Azar et al., 2013; 2017; Sidford et al., 2018; Jin et al., 2018; Cui and Yang, 2020; Agarwal
et al., 2020; Yin et al., 2021a;b; Li et al., 2020; Ren et al., 2021; Xie et al., 2021b; Li
et al., 2022; Zhang et al., 2022b; Qiao et al., 2022; Cui and Du, 2022)) or linear MDPs
(Yang and Wang, 2020; Jin et al., 2020b; Wang et al., 2020; Jin et al., 2021b; Ding et al.,
2021; Wang et al., 2021a; Min et al., 2021) / linear Mixture MDPs (Modi et al., 2020;
Cai et al., 2020; Zhang et al., 2021a; Zhou et al., 2021b;a) (where the transition dynamic
admits linear structures) so that well-established techniques (e.g. from linear regression)
can be applied. In addition, subsequent extensions are often based on linear models (e.g.
Linear Bellman Complete models (Zanette et al., 2020) and Eluder dimension (Russo and
Van Roy, 2013; Jin et al., 2021a)). Differentiable function class strictly generalizes over the
previous popular choices, i.e. by choosing f(θ, ϕ) = 〈θ, ϕ〉 or specifying ϕ to be one-hot
representations, and is far more expressive as it encompasses nonlinear approximators.

• Practically speaking, the flexibility of selecting model f provides the possibility for han-
dling a variety of tasks. For instance, when f is specified to be neural networks, θ cor-
responds to the weights of each network layers and ϕ(·, ·) corresponds to the state-action
representations (which is induced by the network architecture). When facing with easier
tasks, we can deploy simpler model f such as polynomials. Yet, our statistical guarantee is
not affected by the specific choices as we can plug the model f into Theorem 3.2 to obtain
the respective bounds (we do not need separate analysis for different tasks).

1.1 RELATED WORKS

Reinforcement learning with function approximation. RL with function approximation has a
long history that can date back to Bradtke and Barto (1996); Tsitsiklis and Van Roy (1996). Later,

2Here
∥∥∇3

θθθf(θ, ϕ(s, a))
∥∥
2

is defined as the 2-norm for 3-d tensor and in the finite horizon setting we
simply instantiate BF = H .
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Algorithm Assumption Suboptimality Gap v⋆ − vπ̂

VFQL, Theorem 3.1 Concentrability 2.2
√
CeffH ·

√
H2d+λC2

Θ

K +
1
4

√
H3dϵF

K +
√
CeffH3ϵF +HϵF

PFQL, Theorem 3.2 Uniform Coverage 2.3
∑H

h=1 16dH · Eπ⋆

[√
∇⊤

θ f(θ
⋆
h, ϕ(sh, ah))Σ

⋆−1
h ∇θf(θ⋆h, ϕ(sh, ah))

]
VAFQL, Theorem 4.1 Uniform Coverage 2.3 16d ·

∑H
h=1 Eπ⋆

[√
∇⊤

θ f(θ
⋆
h, ϕ(sh, ah))Λ

⋆−1
h ∇θf(θ⋆h, ϕ(sh, ah))

]
Table 1: Suboptimality gaps for different algorithms with differentiable function class 1.1. Here
we omit the higher order term for clear comparison. With Concentrability, we can only achieve the
worst case bound that does not explicit depend on the function model f . With the stronger uniform
coverage 2.3, better instance-dependent characterizations become available. Here Ceff is in 2.2, Σ⋆

in 3.2, Λ⋆ in 4.1 and ϵF in 2.1.

it draws significant interest for the finite sample analysis (Jin et al., 2020b; Yang and Wang, 2019).
Since then, people put tremendous efforts towards generalizing over linear function approximations
and examples include Linear Bellman complete models (Zanette et al., 2020), Eluder dimension
(Russo and Van Roy, 2013; Jin et al., 2021a), linear deterministic Q⋆ (Wen and Van Roy, 2013)
or Bilinear class (Du et al., 2021). While those extensions are valuable, the structure conditions
assumed usually make the classes hard to track beyond the linear case. For example, the practical
instances of Eluder Dimension are based on the linear-in-feature (or its transformation) represen-
tations (Section 4.1 of Wen and Van Roy (2013)). As a comparison, differentiable function class
contains a range of functions that are widely used in practical algorithms (Riedmiller, 2005).

Offline RL with general function approximation (GFA). Another interesting thread of work con-
sidered offline RL with general function approximation (Ernst et al., 2005; Chen and Jiang, 2019;
Liu et al., 2020; Xie et al., 2021a) which only imposes realizability and completeness/concentrability
assumptions. The major benefit is that the function hypothesis can be arbitrary with no structural
assumptions and it has been shown that offline RL with GFA is provably efficient. However, the
generic form of functions in GFA makes it hard to go beyond worst-case analysis and obtain fine-
grained instance-dependent learning bounds similar to those under linear cases. On the contrary, our
results with DFA can be more problem adaptive by leveraging gradients and higher order informa-
tion. In addition to the above, there are more connected works. Zhang et al. (2022a) first considers
the differentiable function approximation (DFA) for the off-policy evaluation (OPE) task and builds
the asymptotic theory, Fan et al. (2020) analyzes the deep Q-learning with the specific ReLu activa-
tions, and Kallus and Uehara (2020) considers semi-parametric / nonparametric methods for offline
RL (as opposed to our parametric DFA in 1.1). These are nice complementary studies to our work.

Our contribution. We provide the first Instance-dependent offline learning bound under non-linear
function approximation. Informally, we show that (up to a lower order term) the natural complexity

measure is proportional to
∑H

h=1 Eπ⋆,h[
√
gθ(s, a)⊤Σ

−1
h gθ(s, a)] where gθ(s, a) := ∇f(θ, ϕ(s, a))

is the gradient w.r.t. the parameter θ⋆ at feature ϕ and Σh =
∑

i g(si,h, ai,h)g(si,h, ai,h)
⊤ is the

Fisher information matrix of the observed data at θ̂. This is achieved by analyzing the pessimistic
fitted Q-learning (PFQL) algorithm (Theorem 3.2). In addition, we further analyze its variance-
reweighting variant, which recovers the variance-dependent structure and can yield faster sample
convergence rate. Last but not least, existing offline RL studies with tabular models, linear models
and GLM models can be directly indicated by the appropriate choice of our model F .

2 PRELIMINARIES

Episodic Markov decision process. Let M = (S,A, P, r,H, d1) to denote a finite-horizon Markov
Decision Process (MDP), where S is the arbitrary state space and A is the arbitrary action space
which can be infinite or continuous. The transition kernel Ph : S × A 7→ ∆S (∆S represents a
distribution over states) maps each state action(sh, ah) to a probability distribution Ph(·|sh, ah) and
Ph can be different for different h (time-inhomogeneous). H is the planning horizon and d1 is the
initial state distribution. Besides, r : S × A 7→ R is the mean reward function satisfying 0 ≤ r ≤ 1.
A policy π = (π1, . . . , πH) assigns each state sh ∈ S a probability distribution over actions by
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mapping sh 7→ πh(·|sh) ∀h ∈ [H] and induces a random trajectory s1, a1, r1, . . . , sH , aH , rH , sH+1

with s1 ∼ d1, ah ∼ π(·|sh), sh+1 ∼ Ph(·|sh, ah), ∀h ∈ [H].

Given a policy π, the V -value functions and state-action value function (Q-functions) Qπ
h(·, ·) ∈

RS×A are defined as: V π
h (s) = Eπ[

∑H
t=h rt|sh = s], Qπ

h(s, a) = Eπ[
∑H

t=h rt|sh, ah =
s, a], ∀s, a, h ∈ S,A, [H]. The Bellman (optimality) equations follow ∀h ∈ [H], s, a ∈ S ×
A:Qπ

h(s, a) = rh(s, a) +
∫
S V π

h+1(·)dPh(·|s, a), V π
h (s) = Ea∼πh(s)[Q

π
h(s, a)], Q

⋆
h(s, a) = rh(s, a) +∫

S V ⋆
h+1(·)dPh(·|s, a), V ⋆

h (s) = maxa Q
⋆
h(s, a). We define Bellman operator Ph for any func-

tion V ∈ RS as Ph(V ) = rh +
∫
S V dPh, then Ph(V

π
h+1) = Qπ

h and Ph(V
⋆
h+1) = Q⋆

h.
The performance measure is vπ := Ed1 [V

π
1 ] = Eπ,d1

[∑H
t=1 rt

]
. Lastly, the induced state-

action marginal occupancy measure for any h ∈ [H] is defined to be: for any E ⊆ S × A,
dπh(E) := E[(sh, ah) ∈ E|s1 ∼ d1, ai ∼ π(·|si), si ∼ Pi−1(·|si−1, ai−1), 1 ≤ i ≤ h] and
Eπ,h[f(s, a)] :=

∫
S×A f(s, a)dπh(s, a)dsda.

Offline Reinforcement Learning. The goal of Offline RL is to learn the policy π⋆ := argmaxπ v
π

using only the historical data D = {(sτh, aτ
h, r

τ
h, s

τ
h+1)}

h∈[H]

τ∈[K]. The data generating behavior policy is
denoted as µ. In the offline regime, we have neither the knowledge about µ nor the access to further
exploration for a different policy. The agent is asked to find a policy π̂ such that v⋆− vπ̂ ≤ ϵ for the
given batch data D and a specified accuracy ϵ > 0.

2.1 ASSUMPTIONS

Function approximation in offline RL requires sufficient expressiveness of F . In fact, even under
the realizability and concentrability conditions, sample efficient offline RL might not be achievable
(Foster et al., 2021). Therefore, under the differentiable function setting (Definition 1.1), we make
the following assumptions.
Assumption 2.1 (Realizability+Bellman Completeness). The differentiable function class F in Def-
inition 1.1 satisfies:

• Realizability: for optimal Q⋆
h, there exists θ⋆h ∈ Θ such that Q⋆

h(·, ·) = f(θ⋆h, ϕ(·)) ∀h;

• Bellman Completeness: Let G := {V (·) ∈ RS : such that ‖V ‖∞ ≤ H}. Then in this
case supV ∈G inff∈F ‖f − Ph(V )‖∞ ≤ ϵF for some ϵF ≥ 0.

Realizability and Bellman Completeness are widely adopted in the offline RL analysis with general
function approximations (Chen and Jiang, 2019; Xie et al., 2021a) and Assumption 2.1 states its dif-
ferentiable function approximation version. There are other forms of completeness, e.g. optimistic
closure defined in Wang et al. (2021b).

Data coverage assumption. Furthermore, in the offline regime, it is known that function approxi-
mation cannot be sample efficient for learning a ϵ-optimal policy without data-coverage assumptions
when ϵ is small (i.e. high accuracy) (Wang et al., 2021a). In particular, we consider two types of
coverage assumptions and provide guarantees for them separately.
Assumption 2.2 (Concentrability Coverage). For any fixed policy π, define the marginal state-
action occupancy ratio as dπh(s, a)/d

µ
h(s, a) ∀s, a. Then the concentrability coefficient is defined

as Ceff := supπ suph∈[H] ‖dπh/d
µ
h‖

2

2,dµ
h

, where ‖g(·, ·)‖2,dµ :=
√

Edµ [g(·, ·)2] and Ceff <∞.

This is the standard coverage assumption that has has been widely assumed in (Ernst et al., 2005;
Szepesvári and Munos, 2005; Chen and Jiang, 2019; Xie and Jiang, 2020a), and 2.2 is fully charac-
terized by the MDPs. In addition, we can make an alternative assumption 2.3 that depends on both
the MDPs and the function approximation class F .3 It assumes a curvature condition for F .
Assumption 2.3 (Uniform Coverage). We have ∀h ∈ [H], there exists κ > 0,

• Eµ,h

[
(f(θ1, ϕ(·, ·))− f(θ2, ϕ(·, ·)))2

]
≥ κ ∥θ1 − θ2∥22 , ∀θ1, θ2 ∈ Θ; (⋆)

• Eµ,h

[
∇f(θ, ϕ(s, a)) · ∇f(θ, ϕ(s, a))⊤

]
≻ κI, ∀θ ∈ Θ. (⋆⋆)

3Generally speaking, 2.2 and 2.3 are not directly comparable. However, for the specific function class
f = ⟨θ, ϕ⟩ with ϕ = 1(s, a) and tabular MDPs, it is easy to check 2.3 is strong than 2.2.
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In the linear function approximation regime, Assumption 2.3 reduces to 2.4 since (⋆)
and (⋆⋆) are identical assumptions. Concretely, if f(θ, ϕ) = 〈θ, ϕ〉, then (⋆)
Eµ,h[(f(θ1, ϕ(·, ·))− f(θ2, ϕ(·, ·)))2] = (θ1−θ2)

⊤Eµ,h[ϕ(·, ·)ϕ(·, ·)⊤](θ1−θ2) ≥ κ ∥θ1 − θ2∥22 ∀θ1, θ2 ∈
Θ ⇔ 2.4⇔ (⋆⋆)Eµ,h

[
∇f(θ, ϕ(s, a)) · ∇f(θ, ϕ(s, a))⊤

]
� κI . Therefore, 2.3 can be considered as a

natural extension of 2.4 for differentiable class. We do point that 2.3 can be violated for function
class F that is “not identifiable” by the data distribution µ (i.e., there exists f(θ1), f(θ2) ∈ F , θ1 6=
θ2 s.t. Eµ,h[(f(θ1, ϕ(·, ·))− f(θ2, ϕ(·, ·)))2] = 0). Nevertheless, there are representative non-linear
differentiable classes (e.g. generalized linear model (GLM)) satisfying 2.3.
Example 2.4 (Linear function coverage assumption (Wang et al., 2021a; Min et al., 2021; Yin et al.,
2022; Xiong et al., 2022)). Σfeature

h := Eµ,h

[
ϕ(s, a)ϕ(s, a)⊤

]
� κI ∀h ∈ [H] with some κ > 0.

Example 2.5 (offline generalized linear model (Li et al., 2017; Wang et al., 2021b)). For a known
feature map ϕ : S ×A → Bd and link function f : [−1, 1] 7→ [−1, 1] the class of GLM is FGLM :=
{(s, a) 7→ f(〈ϕ(s, a), θ〉) : θ ∈ Θ} satisfying Eµ,h

[
ϕ(s, a)ϕ(s, a)⊤

]
� κI . Furthermore, f(·) is

either monotonically increasing or decreasing and 0 < κ ≤ |f ′(z)| ≤ K <∞, |f ′′(z)| ≤M <∞
for all |z| ≤ 1 and some κ,K,M . Then FGLM satisfies 2.3, see Appendix B.

3 DIFFERENTIABLE FUNCTION APPROXIMATION IS PROVABLY EFFICIENT

In this section, we present our solution for offline reinforcement learning with differentiable function
approximation. As a warm-up, we first analyze the vanilla fitted Q-learning (VFQL, Algorithm 2),
which only requires the concentrability Assumption 2.2. The algorithm is presented in Appendix I.
Theorem 3.1. Choose 0 < λ ≤ 1/2C2

Θ in Algorithm 2. Suppose Assumption 2.1,2.2. Then if

K ≥ max
{
512

κ4
1

κ2

(
log( 2Hd

δ ) + d log(1 +
4κ3

1κ2CΘK3

λ2 )
)
, 4λ

κ

}
, with probability 1−δ, the output π̂

of VFQL guarantees: v⋆−vπ̂ ≤
√
CeffH ·Õ

(√
H2d+λC2

Θ

K +
1
4

√
H3dϵF

K

)
+O(

√
CeffH3ϵF+HϵF )

If the model capacity is insufficient, 3.1 will induce extra error due to the large ϵF . If ϵF →
0, the parametric rate 1√

K
can be recovered and similar results are derived with general function

approximation (GFA) (Chen and Jiang, 2019). However, using concentrability coefficient conceals
the problem-dependent structure and omits the specific information of differentiable functions in the
complexity measure. Owing to this, we switch to the stronger “uniform” coverage 2.3 and analyze
the pessimistic fitted Q-learning (PFQL, Algorithm 1).

Motivation of PFQL. The PFQL algorithm mingles the two celebrated algorithmic choices: Fitted
Q-Iteration (FQI) and Pessimism. However, before going into the technical details, we provide some
interesting insights that motivate our analysis.

First of all, the square error loss used in FQI (Gordon, 1999; Ernst et al., 2005) naturally couples
with the differentiable function class as the resulting optimization objective is more computation-
ally tractable (since stochastic gradient descent (SGD) can be readily applied) comparing to other
information-theoretical algorithms derived with general function approximation (e.g. the maxmin
objective in Xie et al. (2021a), eqn (3.2)).4 In particular, FQI with differentiable function approx-
imation resembles the theoretical prototype of neural FQI algorithm (Riedmiller, 2005) and DQN
algorithm (Mnih et al., 2015; Fan et al., 2020) when instantiating the model f to be deep neural
networks. Furthermore, plenty of practical algorithms leverage fitted-Q subroutines for updating the
critic step (e.g. (Schulman et al., 2017; Haarnoja et al., 2018)) with different differentiable function
choices.

In addition, we also incorporate pessimism for the design. Indeed, one of the fundamental chal-
lenges in offline RL comes from the distributional shift. When such a mismatch occurs, the esti-
mated/optimized Q-function (using batch data D) may witness severe overestimation error due to
the extrapolation of model f (Levine et al., 2020). Pessimism is the scheme to mitigate the error
/ overestimation bias via penalizing the Q-functions at state-action locations that have high uncer-
tainties (as opposed to the optimism used in the online case), and has been widely adopted (e.g.
(Buckman et al., 2020; Kidambi et al., 2020; Jin et al., 2021b)).

4We mention Xie et al. (2021a) has a nice practical version PSPI, but the convergence is slower (the rate
O(n− 1

3 )).
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Algorithm 1 description. Inside the backward iteration of PFQL, Fitted Q-update is per-
formed to optimize the parameter (Line 4). θ̂h is the root of the first-order stationar-
ity equation

∑K
k=1

(
f(θ, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇⊤

θ f(θ, ϕh,k) + λθ = 0 and Σh is
the Gram matrix with respect to ∇θf |θ=θ̂h

. Note for any s, a ∈ S × A, m(s, a) :=

(∇θf(θ̂h, ϕ(s, a))
⊤Σ−1

h ∇θf(θ̂h, ϕ(s, a)))
−1 measures the effective sample size that explored s, a

along the gradient direction∇θf |θ=θ̂h
, and β/

√
m(s, a) is the estimated uncertainty at (s, a). How-

ever, the quantity m(s, a) depends on θ̂h, and θ̂h needs to be close to the true θ⋆h (i.e. Q̂h ≈ f(θ̂h, ϕ)
needs to be close to Q⋆

h) for the uncertainty estimation Γh to be valid, since putting a random θ into
m(s, a) can cause an arbitrary Γh that is useless (or might even deteriorate the algorithm). Such
an “implicit” constraint over θ̂h imposes the extra difficulty for the theoretical analysis due to that
general differentiable functions encode nonlinear structures. Besides, the choice of β is set to be
Õ(dH) in Theorem 3.2 and the extra term Õ( 1

K ) in Γh is for theoretical reason only.

Algorithm 1 Pessimistic Fitted Q-Learning (PFQL)

1: Input: Offline Dataset D =
{(

skh, a
k
h, r

k
h, s

k
h+1

)}K,H

k,h=1
. Require β. Denote ϕh,k := ϕ(skh, a

k
h).

2: Initialization: Set V̂H+1(·)← 0 and λ > 0.
3: for h = H,H − 1, . . . , 1 do

4: Set θ̂h ← argminθ∈Θ

{∑K
k=1

[
f (θ, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

]2
+ λ · ∥θ∥22

}
5: Set Σh ←

∑K
k=1∇θf(θ̂h, ϕh,k)∇⊤

θ f(θ̂h, ϕh,k) + λId.

6: Set Γh(·, ·)← β

√
∇θf(θ̂h, ϕ(·, ·))⊤Σ−1

h ∇θf(θ̂h, ϕ(·, ·))
(
+Õ( 1

K
)
)

7: Set Q̄h(·, ·)← f(θ̂h, ϕ(·, ·))− Γh(·, ·)
8: Set Q̂h(·, ·)← min

{
Q̄h(·, ·), H − h+ 1

}+
9: Set π̂h(· | ·)← argmaxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A, V̂h(·)← maxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A

10: end for
11: Output: {π̂h}Hh=1.

Model-Based vs. Model-Free. PFQL can be viewed as the strict generalization over the previous
value iteration based algorithms, e.g. PEVI algorithm (Jin et al. (2021b), linear MDPs) and the VPVI
algorithm (Yin and Wang (2021), tabular MDPs). On one hand, approximate value iteration (AVI)
algorithms (Munos, 2005) are usually model-based algorithms (for instance the tabular algorithm
VPVI uses empirical model P̂ for planning). On the other hand, FQI has the form of batch Q-
learning update (i.e. Q-learning is a special case with batch size equals to one), therefore is more
of model-free flavor. Since FQI is a concrete instantiation of the abstract AVI procedure (Munos,
2007), PFQL draws a unified view of model-based and model-free learning.

Now we are ready to state our main result for PFQL and the full proof can be found in Ap-
pendix D,E,F.
Theorem 3.2. Let β = 8dHι and choose 0 < λ ≤ 1/2C2

Θ in Algorithm 1. Suppose Assump-

tion 2.1,2.3 with ϵF = 0.5 Then if K ≥ max
{
512

κ4
1

κ2

(
log( 2Hd

δ ) + d log(1 +
4κ3

1κ2CΘK3

λ2 )
)
, 4λ

κ

}
,

with probability 1− δ, for all policy π simultaneously, the output of PFQL guarantees

vπ − vπ̂ ≤
H∑

h=1

8dH · Eπ

[√
∇⊤

θ f(θ̂h, ϕ(sh, ah))Σ
−1
h ∇θf(θ̂h, ϕ(sh, ah))

]
· ι+ Õ(

Chot

K
),

where ι is a Polylog term and the expectation of π is taken over sh, ah. In particular, if further
K ≥ max{Õ(

(κ2
1+λ)2κ2

2κ
2
1H

4d2

κ6 ),
128κ4

1 log(2d/δ)
κ2 } we have

0 ≤ vπ
⋆

− vπ̂ ≤
H∑

h=1

16dH · Eπ⋆

[√
∇⊤

θ f(θ
⋆
h, ϕ(sh, ah))Σ

⋆−1
h ∇θf(θ⋆h, ϕ(sh, ah))

]
· ι+ Õ(

C′
hot

K
).

5Here we assume model capacity is sufficient to make the presentation concise. If ϵF > 0, the complexity
bound will include the term ϵF . We include more discussion in Appendix H.
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Here Σ⋆
h =

∑K
k=1∇θf(θ

⋆
h, ϕ(s

k
h, a

k
h))∇⊤

θ f(θ
⋆
h, ϕ(s

k
h, a

k
h)) + λId and the definition of higher order

parameter Chot, C ′
hot can be found in List A.

Corollary 3.3 (Offline Generalized Linear Models (GLM)). Consider the GLM function class de-
fined in 2.5. Suppose β, λ,K are defined the same as Theorem 3.2. ϵF = 0. Then with probability
1− δ, for all policy π simultaneously, PFQL guarantees

vπ − vπ̂ ≤
H∑

h=1

8dH · Eπ

[√
f ′(⟨θ̂h, ϕ(sh, ah)⟩)2 · ϕ⊤(sh, ah)Σ

−1
h ϕ(sh, ah)

]
· ι+ Õ(

Chot

K
).

PFQL is provably efficient. Theorem 3.2 verifies PFQL is statistically efficient. In particular, by
Lemma L.5 we have ‖∇θf(θ

⋆
h, ϕ)‖Σ−1

h
≲ 2κ1√

κK
, resulting the main term to be bounded by 32dH2κ1√

κK

that recovers the standard statistical learning convergence rate 1√
K

.

Comparing to Jin et al. (2021b). Theorem 3.2 strictly subsumes the linear MDP learning bound
in Jin et al. (2021b). In fact, in the linear case ∇θf(θ, ϕ) = ∇θ〈θ, ϕ〉 = ϕ and 3.2 reduces to

O(dH
∑H

h=1 Eπ⋆ [
√
ϕ(sh, ah)⊤(Σlinear

h )−1ϕ(sh, ah)]).

Instance-dependent learning. Previous studies for offline RL with general function approxima-
tion (GFA) (Chen and Jiang, 2019; Xie and Jiang, 2020b) are more of worst-case flavors as they
usually rely on the concentrability coefficient C. The resulting learning bounds are expressed

in the form6 O(V 2
max

√
C
n ) that is unable to depict the behavior of individual instances. In con-

trast, the guarantee with differentiable function approximation is more adaptive due to the instance-

dependent structure
∑H

h=1 Eπ⋆

[√
∇⊤

θ f(θ
⋆
h, ϕ)Σ

⋆−1
h ∇θf(θ⋆h, ϕ)

]
. This Fisher-Information style

quantity characterizes the learning hardness of separate problems explicitly as for different MDP
instances M1, M2, the coupled θ⋆h,M1

, θ⋆h,M2
will generate different performances via the measure∑H

h=1 Eπ⋆

[√
∇⊤

θ f(θ
⋆
h,Mi

, ϕ)Σ⋆−1
h ∇θf(θ⋆h,Mi

, ϕ)
]

(i = 1, 2). Standard worst-case bounds (e.g.
from GFA approximation) cannot explicitly differentiate between problem instances.

Feature representation vs. Parameters. One interesting observation from Theorem 3.2 is that
the learning complexity does not depend on the feature representation dimension m but only on
parameter dimension d as long as function class F satisfies differentiability definition 1.1 (not even
in the higher order term). This seems to suggest, when changing the model f with more complex
representations, the learning hardness will not grow as long as the number of parameters need to be
learned does not increase. Note in the linear MDP analysis this phenomenon is not captured since
the two dimensions are coupled (d = m). Therefore, this heuristic might help people rethink about
what is the more essential element (feature representation vs. parameter space) in the representation
learning RL regime (e.g. low rank MDPs (Uehara et al., 2022)). We leave the concrete understanding
the connection between features and parameters as the future work.

Technical challenges with differentiable function approximation (DFA). Informally, one key
step for the analysis is to bound |f(θ̂h, ϕ) − f(θ⋆h, ϕ)|. This can be estimated by the first order
approximation ∇f(θ̂h, ϕ)⊤ · (θ̂h − θ⋆h). However, different from the least-square value iteration
(LSVI) objective (Jin et al., 2020b; 2021b), the fitted Q-update (Line 4, Algorithm 1) no longer
admits a closed-form solution for θ̂h. Instead, we can only leverage θ̂h is a stationary point of
Zh(θ) :=

∑K
k=1

[
f (θ, ϕh,k)− rh,k − V̂h+1

(
skh+1

)]
∇f(θ, ϕh,k) + λ · θ (since Zh(θ̂h) = 0). To

measure the difference θ̂h−θ⋆h, for any θ ∈ Θ, we do the Vector Taylor expansion Zh(θ)−Zh(θ̂h) =

Σs
h(θ − θ̂h) +RK(θ) (where RK(θ) is the higher-order residuals) at the point θ̂h with

Σ
s
h :=

∂

∂θ
Zh(θ)

∣∣∣∣
θ=θ̂h

=
∂

∂θ

(
K∑

k=1

[
f (θ, ϕh,k) − rh,k − V̂h+1(s

k
h+1)

]
∇f(θ, ϕh,k) + λ · θ

)
θ=θ̂h

=
K∑

k=1

(
f(θ̂h, ϕh,k) − rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(θ̂h, ϕh,k)︸ ︷︷ ︸
:=∆Σs

h

+
K∑

k=1

∇θf(θ̂h, ϕh,k)∇⊤
θ f(θ̂h,k, ϕh,k) + λId︸ ︷︷ ︸

:=Σh

.
(1)

6Here n is the number of samples used in the infinite horizon discounted setting and is similar to K in the
episodic setting.
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The perturbation term ∆Σs
h

encodes one key challenge for solving θ̂h−θ⋆h since it breaks the positive
definiteness of Σs

h, and, as a result, we cannot invert the Σs
h in the Taylor expansion of Zh. This

is due to DFA (Definition 1.1) is a rich class that incorporates nonlinear curvatures. In the linear
function approximation regime, this hurdle will not show up since ∇2

θθf ≡ 0 and ∆Σs
h

is always
invertible as long as λ > 0. Moreover, for the off-policy evaluation (OPE) task, one can overcome
this issue by expanding over the population counterpart of Zh at underlying true parameter of the
given behavior target policy (Zhang et al., 2022a).7 However, for the policy learning task, we can-
not use either population quantity or the true parameter θ⋆h since we need a computable/data-based
pessimism Γh to make the algorithm practical.

3.1 SKETCH OF THE PFQL ANALYSIS

Due to the space constraint, here we only overview the key components of the analysis. To begin
with, by following the result of general MDP in Jin et al. (2021b), the suboptimality gap can be
bounded by (Appendix D)

∑H
h=1 2Eπ [Γh(sh, ah)] if |(PhV̂h+1 − f(θ̂h, ϕ))(s, a)| ≤ Γh(s, a). To

deal with PhV̂h+1, by Assumption 2.1 we can leverage the parameter Bellman operator T (Defini-
tion D.1) so that PhV̂h+1 = f(θTV̂h+1

, ϕ). Next, we apply the second-order approximation to obtain

PhV̂h+1 − f(θ̂h, ϕ) ≈ ∇f(θ̂h, ϕ)⊤(θTV̂h+1
− θ̂h) +

1
2 (θTV̂h+1

− θ̂h)
⊤∇2

θθf(θ̂h, ϕ)(θTV̂h+1
− θ̂h).

Later, we use (1) to represent Zh(θTV̂h+1
) − Zh(θ̂h) = Σs

h(θTV̂h+1
− θ̂h) + RK(θTV̂h+1

) =

Σh(θTV̂h+1
− θ̂h) + R̃K(θTV̂h+1

) by denoting R̃K(θTV̂h+1
) = ∆Σs

h
(θ̂h − θTV̂h+1

) + RK(θTV̂h+1
).

Now that Σ−1
h is invertible thus provides the estimation (note Zh(θ̂h) = 0)

θTV̂h+1
− θ̂h = Σ−1

h · Zh(θTV̂h+1
)− Σ−1

h R̃K(θTV̂h+1
).

However, to handle the higher order terms, we need the explicit finite sample bound for ∥θTV̂h+1
−

θ̂h∥2 (or ∥θ⋆h − θ̂h∥2). In the OPE literature, Zhang et al. (2022a) uses asymptotic theory (Prohorovs
Theorem) to show the existence of B(δ) such that ‖θ̂h − θ⋆h‖ ≤

B(δ)√
K

. However, this is insufficient
for finite sample/non-asymptotic guarantees since the abstraction of B(δ) might prevent the result

from being sample efficient. For example, if B(δ) has the form eH log( 1δ ), then eH log( 1
δ )√

K
is an

inefficient bound since K needs to be eH/ϵ2 large to guarantee ϵ accuracy.

To address this, we use a novel reduction to general function approximation (GFA) learning proposed
in Chen and Jiang (2019). We first bound the loss objective Eµ[ℓh(θ̂h)] − Eµ[ℓh(θTV̂h+1

)] via a
“orthogonal” decomposition and by solving a quadratic equation. The resulting bound can be directly
used to further bound ∥θTV̂h+1

− θ̂h∥2 for obtaining efficient guarantee Õ( dH√
κK

). During the course,
the covering technique is applied to extend the finite function hypothesis to all the differentiable
functions in 1.1. See Appendix G and Appendix D,E,F for the complete proofs.

4 IMPROVED LEARNING VIA VARIANCE AWARENESS

In addition to knowing the provable efficiency for differentiable function approximation (DFA), it
is of great interest to understand what is the statistical limit with DFA, or equivalently, what is the
“optimal” sample/statistical complexity can be achieved in DFA (measured by minimaxity criteria)?
Towards this goal, we further incorporate variance awareness to improve our learning guarantee.
Variance awareness is first designed for linear Mixture MDPs (Talebi and Maillard, 2018; Zhou et al.,
2021a) to achieve the near-minimax sample complexity and it uses estimated conditional variances
VarP (·|s,a)(V

⋆
h+1) to reweight each training sample in the LSVI objective.8 Later, such a technique

is leveraged by Min et al. (2021); Yin et al. (2022) to obtained the instance-dependent results. In-
tuitively, conditional variances σ2(s, a) := VarP (·|s,a)(V

⋆
h+1) serves as the uncertainty measure of

the sample (s, a, r, s′) that comes from the distribution P (·|s, a). If σ2(s, a) is large, then the dis-
tribution P (·|s, a) has high variance and we should put less weights in a single sample (s, a, r, s′)

7i.e. expanding over Zp
h(θ) := Es,a,s′ [(f (θ, ϕ(s, a))−r−V π

h+1(s
′))∇f(θ, ϕ(s, a))], and the correspond-

ing ∆Σs
h

in ∂
∂θ

Zh(θ)|θ=θπ
h

is zero by Bellman equation.
8We mention Zhang et al. (2021b) uses variance-aware confidence sets in a slightly different way.
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rather than weighting all the samples equally. In the differentiable function approximation regime,
the update is modified to

θ̂h ← argmin
θ∈Θ

{ K∑
k=1

[
f (θ, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

]2
/σ2

h(s
k
h, a

k
h) + λ · ∥θ∥22

}
with σ2

h(·, ·) estimated by the offline data. Notably, empirical algorithms have also shown uncertainty
reweighting can improve the performances for both online RL (Mai et al., 2022) and offline RL (Wu
et al., 2021). These motivates our variance-aware fitted Q-learning (VAFQL) algorithm 3.
Theorem 4.1. Suppose Assumption 2.1,2.3 with ϵF = 0. Let β = 8dι and choose 0 < λ ≤
1/2C2

Θ in Algorithm 3. Then if K ≥ K0 and
√
d ≥ Õ(ζ), with probability 1 − δ, for all policy π

simultaneously, the output of VAFQL guarantees

vπ − vπ̂ ≤
H∑

h=1

8d · Eπ

[√
∇⊤

θ f(θ̂h, ϕ(sh, ah))Λ
−1
h ∇θf(θ̂h, ϕ(sh, ah))

]
· ι+ Õ(

C̄hot

K
),

where ι is a Polylog term and the expectation of π is taken over sh, ah. In particular, we

have 0 ≤ vπ
⋆ − vπ̂ ≤ 16d ·

∑H
h=1 Eπ⋆

[√
∇⊤

θ f(θ
⋆
h, ϕ(sh, ah))Λ

⋆−1
h ∇θf(θ⋆h, ϕ(sh, ah))

]
· ι +

Õ(
C̄′

hot

K ). Here Λ⋆
h =

∑K
k=1∇θf(θ

⋆
h, ϕh,k)∇⊤

θ f(θ
⋆
h, ϕh,k)/σ

⋆
h(s

k
h, a

k
h)

2 + λId and the σ⋆
h(·, ·)2 :=

max{1,VarPh
V ⋆
h+1(·, ·)}. The definition of K0, C̄hot, C̄ ′

hot, ζ can be found in List A.

In particular, to bound the error for uh,vh and σ̂2
h, we need to define an operator J that is similar to

the parameter Bellman operator D.1. The Full proof of Theorem 4.1 can be found in Appendix J.
Comparing to Theorem 3.2, VAFQL enjoys a net improvement of the horizon dependence since
VarP (V

⋆
h ) ≤ H2. Moreover, VAFQL provides better instance-dependent characterizations as the

main term is fully depicted by the system quantities except the feature dimension d. For instance,
when the system is fully deterministic (transition Ph’s are deterministic), σ⋆

h ≈ VarPh
V ⋆
h+1(·, ·) ≡ 0

(if ignore the truncation) and Λ⋆−1 → 0. This yields a faster convergence with rate O( 1
K ). Lastly,

when reduced to linear MDPs, 4.1 recovers the results of Yin et al. (2022) except an extra
√
d.

On the statistical limits. To complement the study, we incorporate a minimax lower bound via a re-
duction to Zanette et al. (2021). The following theorem reveals we cannot improve over Theorem 4.1
by more than a factor of

√
d in the most general cases. The full discussion is in K.

Theorem 4.2 (Minimax lower bound). Specifying the model to have linear representation f =
〈θ, ϕ〉. There exist a pair of universal constants c, c′ > 0 such that given dimension d, horizon
H and sample size K > c′d3, one can always find a family of MDP instances such that for any
algorithm π̂ (where Λ⋆,p

h = E
[∑K

k=1

∇θf(θ
⋆
h,ϕ(skh,ak

h))·∇θf(θ
⋆
h,ϕ(skh,ak

h))⊤

Varh(V ⋆
h+1

)(sk
h
,ak

h
)

]
)

inf
π̂

sup
M∈M

EM

[
v⋆ − vπ̂

]
≥ c
√
d ·

H∑
h=1

Eπ⋆

[√
∇⊤

θ f(θ
⋆
h, ϕ(·, ·))(Λ

⋆,p
h )−1∇θf(θ⋆h, ϕ(·, ·))

]
. (2)

5 CONCLUSION, LIMITATION AND FUTURE DIRECTIONS

In this work, we study offline RL with differentiable function approximation and show the sample
efficient learning. We further improve the horizon dependence via a variance aware variant. How-
ever, the dependence of the parameter space still scales with d (whereas for the linear case it is

√
d),

and this is due to applying covering argument for the rich class of differentiable functions. For large
deep models, the parameter dimension is huge, therefore it would be interesting to know if certain
algorithms can further improve the parameter dependence, or whether this d is essential.

Also, how to relax uniform coverage 2.3 is unknown under the current analysis. In addition, under-
standing the connections between the differentiable function approximation and overparameterized
neural networks approximation Nguyen-Tang and Arora (2023); Xu and Liang (2022) is important.
We leave these open problems as future work. Lastly, the differentiable function approximation
setting provides a general framework that is not confined to offline RL. Understanding the sam-
ple complexity behaviors of online reinforcement learning (Jin et al., 2020b; Wang et al., 2021b),
reward-free learning (Jin et al., 2020a; Wang et al., 2020) and representation learning (Uehara et al.,
2022) might provide new and unified views over the existing studies.
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Appendix

A NOTATION LIST

Σp
h(θ) Eµ,h

[
∇f(θ, ϕ(s, a)) · ∇f(θ, ϕ(s, a))⊤

]
κ minh,θ λmin(Σ

p
h(θ))

σ2
V (s, a) max{1,VarPh

(V )(s, a)} for any V

δ Failure probability

K0 max
{
512

κ4
1

κ2

(
log( 2Hd

δ ) + d log(1 +
4κ3

1κ2CΘK3

λ2 )
)
, 4λ

κ

}
ζ 2maxs′∼P (·|s,a),h∈[H]

(PhV
⋆
h+1)(s,a)−r−V ⋆

h+1(s
′)

σ⋆
h(s,a)

Chot = C̄hot
κ1H√

κ
+

κ2
1H

3d2

κ +

√
d3H4κ2

2κ
2
1

κ3 + κ2 max(κ1

κ , 1√
κ
)d2H3 +

d2H4κ3+λκ1CΘ

κ + H3κ2d
2

κ

C ′
hot = C̄ ′

hot Chot +
κ1κ2H

4d2

κ3/2

B FURTHER ILLUSTRATION THAT GENERALIZED LINEAR MODEL EXAMPLE
SATISFIES 2.3

Recall the definition in 2.5, then:

For (⋆⋆),

Eµ,h

[
∇f(θ, ϕ(s, a)) · ∇f(θ, ϕ(s, a))⊤

]
= Eµ,h

[
f ′(〈θ, ϕ(s, a)〉)2ϕ(·, ·) · ϕ(·, ·)⊤

]
� κ2Eµ,h

[
ϕ(·, ·) · ϕ(·, ·)⊤

]
� κ3I, ∀θ ∈ Θ

For (⋆), by Taylor’s Theorem,

Eµ,h

[
(f(θ1, ϕ(·, ·))− f(θ2, ϕ(·, ·)))2

]
= Eµ,h[f

′(θs,a, ϕ(·, ·))2(θ1 − θ2)
⊤ϕ(·, ·)ϕ(·, ·)⊤(θ1 − θ2)]

≥ κ2Eµ,h[(θ1 − θ2)
⊤ϕ(·, ·)ϕ(·, ·)⊤(θ1 − θ2)] = κ2(θ1 − θ2)

⊤Eµ,h[ϕ(·, ·)ϕ(·, ·)⊤](θ1 − θ2) ≥ κ3 ‖θ1 − θ2‖22

and choose κ3 as κ in 2.3.

C ON THE COMPUTATIONAL COMPLEXITY

For storage of Pessimistic Fitted Q-learning, at each time step h ∈ [H] in Algorithm 1, we need to
store θ̂h, Σh and∇f(θ̂h, ϕh,k). Therefore, the total space complexity is O(dH+d2H+dKH). For
computation, assuming θ̂h is solved via SGD and let M denote the number of gradient steps, then the
complexity is dominated by computing θ̂h,Σh and Σ−1

h , which results in O(MH +KdH + d3H)
complexity (where H comes from h = H, . . . , 1).

The space complexity and computational complexity for VAFQL has the same order as PFQL except
that the constant factors are larger.

D SOME BASIC CONSTRUCTIONS

First of all, Recall in the first-order condition, we have

∇θ

{
K∑

k=1

[
f (θ, ϕh,k)− rh,k − V̂h+1

(
skh+1

)]2
+ λ · ‖θ‖22

}∣∣∣∣∣
θ=θ̂h

= 0, ∀h ∈ [H].
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Therefore, if we define the quantity Zh(·, ·) ∈ Rd as

Zh(θ|V ) =

K∑
k=1

[
f (θ, ϕh,k)− rh,k − V

(
skh+1

)]
∇f(θ, ϕh,k) + λ · θ, ∀θ ∈ Θ, ‖V ‖2 ≤ H,

then we have (recall θ̂h ∈ Int(Θ))

Zh(θ̂h|V̂h+1) = 0.

In addition, according to Bellman completeness Assumption 2.1, for any bounded V (·) ∈ RS with
‖V ‖∞ ≤ H , inff∈F ‖f − Ph(V )‖∞ ≤ ϵF , ∀h (recall Ph(V ) = rh +

∫
S V dPh). Therefore, we

can define the parameter Bellman operator T as follows.

Definition D.1 (parameter Bellman operator). By the Bellman completeness Assumption 2.1, for any
‖V ‖∞ ≤ H , we can define the parameter Bellman operator T : V → θTV ∈ Θ such that

θTV = argmin
θ∈Θ

‖f(θ, ϕ)− Ph(V )‖∞

Denote δV := f(θTV , ϕ) − Ph(V ), then we have ‖f(θTV , ϕ)− Ph(V )‖∞ = ‖δV ‖∞ ≤ ϵF . In
particular, by realizability Assumption 2.1 it holds θTV ⋆

h+1
= θ⋆h and this is due to f(θTV ⋆

h+1
, ϕ) =

Ph(V
⋆
h+1) = V ⋆

h = f(θ⋆h, ϕ).
9

D.1 SUBOPTIMALITY DECOMPOSITION

Denote ιh(s, a) := PhV̂h+1(s, a)− Q̂h(s, a), by Jin et al. (2021b) we have the following decompo-
sition.

Lemma D.2 (Lemma 3.1 of Jin et al. (2021b)). Let π̂ = {π̂h}Hh=1 a policy and Q̂h be any estimates
with V̂h = 〈Q̂h(s, ·), π̂h(· | s)〉A. Then for any policy π, we have

vπ − vπ̂ =−
H∑

h=1

Eπ̂[ιh(sh, ah)] +

H∑
h=1

Eπ[ιh(sh, ah)] +

H∑
h=1

Eπ[〈Q̂h (sh, ·) , πh (· | sh)− π̂h (· | sh)〉A].

In particular, if we choose π̂h(·|s) := argmaxπ〈Q̂h(s, ·), π(· | s)〉A, then

vπ − vπ̂ =−
H∑

h=1

Eπ̂[ιh(sh, ah)] +

H∑
h=1

Eπ[ιh(sh, ah)].

Lemma D.3. Let P̂h be the general estimated Bellman operator. Suppose with probability 1− δ, it
holds for all h, s, a ∈ [H] × S × A that |(PhV̂h+1 − P̂hV̂h+1)(s, a)| ≤ Γh(s, a), then it implies
∀s, a, h ∈ S × A × [H], 0 ≤ ζh(s, a) ≤ 2Γh(s, a). Furthermore, it holds for any policy π
simultaneously, with probability 1− δ,

V π
1 (s)− V π̂

1 (s) ≤
H∑

h=1

2 · Eπ [Γh(sh, ah) | s1 = s] .

Proof of Lemma D.3. This is a generic result that holds true for the general MDPs and was first
raised by Theorem 4.2 of Jin et al. (2021b). Later, it is summarized in Lemma C.1 of Yin et al.
(2022).

With Lemma D.3, we need to bound the term |PhV̂h+1(s, a)− P̂hV̂h+1(s, a)|.

9Here without loss of generality we assume Q⋆
h can be uniquely identified, i.e. there is a unique θ⋆ such

that f(θ⋆h, ϕ) = Q⋆
h.
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E ANALYZING |PhV̂h+1(s, a)− P̂hV̂h+1(s, a)| FOR PFQL.

Throughout this section, we suppose ϵF = 0, i.e. f(θTV , ϕ) = Ph(V ). According to the regression
oracle (Line 4 of Algorithm 1), the estimated Bellman operator P̂h maps V̂h+1 to θ̂h, i.e. P̂hV̂h+1 =

f(θ̂h, ϕ). Therefore (recall Definition D.1)

PhV̂h+1(s, a)− P̂hV̂h+1(s, a) = PhV̂h+1(s, a)− f(θ̂h, ϕ(s, a))

=f(θTV̂h+1
, ϕ(s, a))− f(θ̂h, ϕ(s, a))

=∇f(θ̂h, ϕ(s, a))
(
θTV̂h+1

− θ̂h

)
+Hoth,1,

(3)

where we apply the first-order Taylor expansion for the differentiable function f at point θ̂h and
Hoth,1 is a higher-order term. Indeed, the following Lemma E.1 bounds the Hoth,1 term with
Õ( 1

K ).
Lemma E.1. Recall the definition (from the above decomposition) Hoth,1 := f(θTV̂h+1

, ϕ(s, a))−

f(θ̂h, ϕ(s, a))−∇f(θ̂h, ϕ(s, a))
(
θTV̂h+1

− θ̂h

)
, then with probability 1− δ,

|Hoth,1| ≤
18H2κ2(log(H/δ) + Cd,logK) + κ2λC

2
Θ

κK
, ∀h ∈ [H].

Proof of Lemma E.1. By second-order Taylor’s Theorem, there exists a point ξ (lies in the line seg-
ment of θ̂h and θTV̂h+1

) such that

f(θTV̂h+1
, ϕ(s, a))−f(θ̂h, ϕ(s, a)) = ∇f(θ̂h, ϕ(s, a))⊤

(
θTV̂h+1

− θ̂h
)
+
1

2

(
θTV̂h+1

− θ̂h
)⊤
∇2

θθf(ξ, ϕ(s, a))
(
θTV̂h+1

− θ̂h
)

Therefore, by directly applying Theorem G.2, with probability 1− δ, for all h ∈ [H],

|Hoth,1| =
1

2

∣∣∣∣(θTV̂h+1
− θ̂h

)⊤
∇2

θθf(ξ, ϕ(s, a))
(
θTV̂h+1

− θ̂h

)∣∣∣∣
≤1

2
κ2 ·

∥∥∥θTV̂h+1
− θ̂h

∥∥∥2
2
≤ 18H2κ2(log(H/δ) + Cd,logK) + κ2λC

2
Θ

κK

E.1 ANALYZING ∇f(θ̂h, ϕ(s, a))
(
θTV̂h+1

− θ̂h

)
VIA Zh .

From (3) and Lemma E.1, the problem further reduces to bounding∇f(θ̂h, ϕ(s, a))
(
θTV̂h+1

− θ̂h

)
.

To begin with, we first provide a characterization of θTV̂h+1
−θ̂h. Indeed, by first-order Vector Taylor

expansion (Lemma L.1), we have (note Zh(θ̂h|V̂h+1) = 0) for any θ ∈ Θ,

Zh(θ|V̂h+1)− Zh(θ̂h|V̂h+1) = Σs
h(θ − θ̂h) +RK(θ), (4)

where RK(θ) is the higher-order residuals and Σs
h := ∂

∂θZh(θ|θ̂h+1)
∣∣∣
θ=θ̂h

with

Σs
h :=

∂

∂θ
Zh(θ|V̂h+1)

∣∣∣∣
θ=θ̂h

=
∂

∂θ

(
K∑

k=1

[
f (θ, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

]
∇f(θ, ϕh,k) + λ · θ

)
θ=θ̂h

=

K∑
k=1

{(
f(θ̂h, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(θ̂h, ϕh,k)
}

︸ ︷︷ ︸
:=∆Σs

h

+

K∑
k=1

∇θf(θ̂h, ϕh,k)∇⊤
θ f(θ̂h,k, ϕh,k) + λId︸ ︷︷ ︸

:=Σh

,

(5)
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here ∇2 = ∇
⊗
∇ denotes outer product of gradients.

Note ∆Σs
h

is not desirable since it could prevent Σs
h from being positive-definite (and it could cause

Σs
h to be singular). Therefore, we first deal with ∆Σs

h
in below.

Lemma E.2. With probability 1− δ, for all h ∈ [H],

1

K

∥∥∆Σs
h

∥∥
2
=

∥∥∥∥∥ 1

K

K∑
k=1

(
f(θ̂h, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(θ̂h, ϕh)

∥∥∥∥∥
2

≤9κ2 max(
κ1√
κ
, 1)

√
dH2(log(2H/δ) + d log(1 + 2CΘHκ3K) + Cd,logK)

K
+

1

K
.

Proof of Lemma E.2. Step1: We prove for fixed θ̄ ∈ Θ, with probability 1− δ, for all h ∈ [H],∥∥∥∥∥ 1

K

K∑
k=1

(
f(θ̂h, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(θ̄, ϕh)

∥∥∥∥∥
2

≤ 9κ2 max(
κ1√
κ
, 1)

√
H2(log(2H/δ) + Cd,logK)

K
.

Indeed, we have ∥∥∥∥∥ 1

K

K∑
k=1

(
f(θ̂h, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(θ̄, ϕh)

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

K

K∑
k=1

(
f(θ̂h, ϕh,k)− f(θTV̂h+1

, ϕh,k)
)
· ∇2

θθf(θ̄, ϕh)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

K

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
· ∇2

θθf(θ̄, ϕh)

∥∥∥∥∥
2

.

(6)

On one hand, by Theorem G.2 with probability 1− δ/2 for all h ∈ [H]∥∥∥∥∥ 1

K

K∑
k=1

(
f(θ̂h, ϕh,k)− f(θTV̂h+1

, ϕh,k)
)
· ∇2

θθf(θ̄, ϕh)

∥∥∥∥∥
2

≤ κ2 ·max
θ,s,a
‖∇f(θ, ϕ(s, a))‖2

∥∥∥θ̂h − θTV̂h+1

∥∥∥
2

≤ κ2κ1

∥∥∥θ̂h − θTV̂h+1

∥∥∥
2
≤ κ2κ1

(√
36H2(log(H/δ) + Cd,logK) + 2λC2

Θ

κK
+

√
bd,K,ϵF

κ
+

√
2HϵF
κ

)
.

(7)
On other hand, recall the definition of T, we have

E
[
(f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)) · ∇2

θθf(θ̄, ϕh,k)
∣∣∣skh, akh]

=E
[
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

∣∣∣skh, akh] · ∇2
θθf(θ̄, ϕh,k)

=
(
(PhV̂h+1)(s

k
h, a

k
h)− E

[
rh,k + V̂h+1(s

k
h+1)

∣∣∣skh, akh]) · ∇2
θθf(θ̄, ϕh,k)

=
(
(PhV̂h+1)(s

k
h, a

k
h)− (PhV̂h+1(s

k
h+1))(s

k
h, a

k
h)
)
· ∇2

θθf(θ̄, ϕh,k) = 0.

Also, since
∥∥∥(f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1))

)
· ∇2

θθf(θ̄, ϕh)
∥∥∥
2
≤ Hκ2, denote σ2 := K ·

H2κ2
2, then by Vector Hoeffding’s inequality (Lemma L.2),

P

(∥∥∥∥∥ 1

K

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
· ∇2

θθf(θ̄, ϕh)

∥∥∥∥∥
2

≥ t/K

∣∣∣∣∣{skh, akh}Kk=1

)
≤ d·e−t2/8dKH2κ2

2 := δ

which is equivalent to

P

(∥∥∥∥∥ 1

K

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
· ∇2

θθf(θ̄, ϕh)

∥∥∥∥∥
2

≤
√

8dH2κ2
2 log(d/δ)

K

∣∣∣∣∣{skh, akh}Kk=1

)
≥ 1−δ
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Define A = {
∥∥∥ 1
K

∑K
k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
· ∇2

θθf(θ̄, ϕh)
∥∥∥
2

≤√
8dH2κ2

2 log(d/δ)
K }, then by law of total expectation P(A) = E[1A] = E[E[1A|{skh, akh}Kk=1]] =

E[P[A|{skh, akh}Kk=1]] ≥ E[1− δ] = 1− δ, i.e. with probability at least 1− δ/2 (and a union bound),∥∥∥∥∥ 1

K

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
· ∇2

θθf(θ̄, ϕh)

∥∥∥∥∥
2

≤
√

8dH2κ2
2 log(2Hd/δ)

K
, ∀h ∈ [H].

Using above and equation 6, equation 7 and a union bound, w.p. 1− δ, for all h ∈ [H],∥∥∥∥∥ 1

K

K∑
k=1

(
f(θ̂h, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(θ̄, ϕh)

∥∥∥∥∥
2

≤ 6κ2κ1

√
H2(log(2H/δ) + Cd,logK)

κK
+

√
8dH2κ2

2 log(2Hd/δ)

K

≤ 9κ2 max(
κ1√
κ
, 1)

√
dH2(log(2H/δ) + Cd,logK)

K

Step2: we finish the proof of the lemma.

Consider the function class
{
f(θ̄) :=

∥∥∥ 1
K

∑K
k=1

(
f(θ̂h, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(θ̄, ϕh)
∥∥∥
2

∣∣∣θ̄ ∈ Θ
}

,
then by triangular inequality

|f(θ̄1)− f(θ̄2)| ≤

∥∥∥∥∥ 1

K

K∑
k=1

(
f(θ̂h, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
·
[
∇2

θθf(θ̄1, ϕh)−∇2
θθf(θ̄2, ϕh)

]∥∥∥∥∥
2

≤H · sup
s,a

∥∥∇2
θθf(θ̄1, ϕh)−∇2

θθf(θ̄2, ϕh)
∥∥
2
≤ Hκ3

∥∥θ̄1 − θ̄2
∥∥
2
.

By Lemma L.8, the covering number C of the ϵ-net of the above function class satisfies log C ≤
d log(1+ 2CΘHκ3

ϵ ). By choosing ϵ = 1/K, by a union bound over C cases we obtain for all h ∈ [H]∥∥∥∥∥ 1

K

K∑
k=1

(
f(θ̂h, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(θ̂h, ϕh)

∥∥∥∥∥
2

≤9κ2 max(
κ1√
κ
, 1)

√
dH2(log(2H/δ) + d log(1 + 2CΘHκ3K) + Cd,logK)

K
+

1

K
.

Combing Lemma E.2 and Theorem G.2 (and a union bound), we directly have

Corollary E.3. With probability 1− δ,∥∥∥∥ 1

K
∆Σs

h
(θ̂h − θTV̂h+1

)

∥∥∥∥
2

≤
∥∥∥∥ 1

K
∆Σs

h

∥∥∥∥
2

∥∥∥θ̂h − θTV̂h+1

∥∥∥
2
≤ Õ(

κ2 max(κ1

κ , 1√
κ
)d2H2

K
)

Here Õ absorbs all the constants and Polylog terms.

Now we select θ = θTV̂h+1
in equation 4, and denote R̃K(θTV̂h+1

) = ∆Σs
h
(θ̂h − θTV̂h+1

) +

RK(θTV̂h+1
), then equation 4 is equivalent to

Zh(θTV̂h+1
|V̂h+1)−Zh(θ̂h|V̂h+1) = Σs

h(θTV̂h+1
−θ̂h)+RK(θTV̂h+1

) = Σh(θTV̂h+1
−θ̂h)+R̃K(θTV̂h+1

)

Note λ > 0 implies Σh is invertible, then we have (recall Zh(θ̂h|θ̂h+1) = 0)

θTV̂h+1
− θ̂h =Σ−1

h [Zh(θTV̂h+1
|V̂h+1)− Zh(θ̂h|V̂h+1)]− Σ−1

h R̃K(θTV̂h+1
)

=Σ−1
h [Zh(θTV̂h+1

|V̂h+1)]− Σ−1
h R̃K(θTV̂h+1

)
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Plug it back to equation 3 to get

∇f(θ̂h, ϕ(s, a))
(
θTV̂h+1

− θ̂h

)
=∇f(θ̂h, ϕ(s, a))Σ−1

h [Zh(θTV̂h+1
|V̂h+1)]−∇f(θ̂h, ϕ(s, a))Σ−1

h R̃K(θTV̂h+1
)

=∇f(θ̂h, ϕ(s, a))Σ−1
h [

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
· ∇⊤

θ f(θTV̂h+1
, ϕh,k) + λθTV̂h+1

]

−∇f(θ̂h, ϕ(s, a))Σ−1
h R̃K(θTV̂h+1

)

=∇f(θ̂h, ϕ(s, a))Σ−1
h [

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
· ∇⊤

θ f(θTV̂h+1
, ϕh,k)]︸ ︷︷ ︸

:=I

−∇f(θ̂h, ϕ(s, a))Σ−1
h

[
R̃K(θTV̂h+1

) + λθTV̂h+1

]
︸ ︷︷ ︸

:=Hot2

(8)
We will bound second term Hot2 to have higher order O( 1

K ) in Section E.5 and focus on the first
term. By direct decomposition,

I :=∇f(θ̂h, ϕ(s, a))Σ−1
h [

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
· ∇⊤

θ f(θTV̂h+1
, ϕh,k)]

=∇f(θ̂h, ϕ(s, a))Σ−1
h [

K∑
k=1

(
f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)]︸ ︷︷ ︸
:=I1

+∇f(θ̂h, ϕ(s, a))Σ−1
h [

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− f(θTV ⋆
h+1

, ϕh,k)− V̂h+1(s
k
h+1) + V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)]︸ ︷︷ ︸
:=I2

+∇f(θ̂h, ϕ(s, a))Σ−1
h

[
K∑

k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
·
(
∇⊤

θ f(θTV̂h+1
, ϕh,k)−∇⊤

θ f(θ̂h, ϕh,k)
)]

︸ ︷︷ ︸
:=I3

E.2 BOUNDING THE TERM I3

We first bound the term I3. We have the following Lemma.

Lemma E.4. For any fixed V (·) ∈ RS with ‖V ‖∞ ≤ H and any fixed θ such that ‖θTV − θ‖2 ≤√
36H2(log(H/δ)+Cd,log K)+2λC2

Θ

κK . Let

Ĩ3 := ∇f(θ̂h, ϕ(s, a))⊤Σ−1
h

[
K∑

k=1

(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k))

]
,

and if K ≥ max
{
512

κ4
1

κ2

(
log( 2dδ ) + d log(1 + 4κ1D

2κ2CΘK3

λ2 )
)
, 4λ

κ

}
, then with probability 1− δ,

(where D = max{κ1,

√
(144dH2κ2

2(H
2 log(H/δ)+Cd,log K)+8dH2κ2

2λC
2
Θ) log(d/δ)

κ })

|Ĩ3| ≤ 4κ1

√
(144dH2κ2

2 (H
2 log(H/δ) + Cd,logK) + 8dH2κ2

2λC
2
Θ) log(d/δ)

κ3

1

K
+O(

1

K3/2
).
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Proof of Lemma E.4. Indeed, with probability 1− δ/2,

|Ĩ3| =

∥∥∥∥∥∇f(θ̂h, ϕ(s, a))⊤Σ−1
h

[
K∑

k=1

(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k))

]∥∥∥∥∥
≤
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

∥∥∥∥∥
K∑

k=1

(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k))

∥∥∥∥∥
Σ−1

h

≤
(

2κ1√
κK

+O(
1

K
)

)∥∥∥∥∥
K∑

k=1

(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k))

∥∥∥∥∥
Σ−1

h

where, under the condition K ≥ max
{
512

κ4
1

κ2

(
log( 2dδ ) + d log(1 +

4κ3
1κ2CΘK3

λ2 )
)
, 4λ

κ

}
, we ap-

plied Lemma L.5 .

Next, on one hand, ‖∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k)‖2 ≤ κ2 · ‖θTV − θ‖2 ≤

κ2

√
36H2(log(H/δ)+Cd,log K)+2λC2

Θ

κK . On the other hand,

E
[(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
·
(
∇⊤

θ f(θTV , ϕh,k)−∇⊤
θ f(θ, ϕh,k)

)∣∣skh, akh]
=E

[(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)∣∣skh, akh] · (∇⊤
θ f(θTV , ϕh,k)−∇⊤

θ f(θ, ϕh,k)
)

=
(
(PhV )(skh, a

k
h)− (PhV )(skh, a

k
h)
)
·
(
∇⊤

θ f(θTV , ϕh,k)−∇⊤
θ f(θ, ϕh,k)

)
= 0

Therefore by Vector Hoeffding’s inequality (Lemma L.2) (also note the condition for boundedness∥∥(f(θTV , ϕh,k)− rh,k − V (skh+1)
)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k))

∥∥
2
≤ Hκ2 · ‖θTV − θ‖2 ≤

Hκ2

√
36H2(log(H/δ)+Cd,log K)+2λC2

Θ

κK ) with probability 1− δ/2,∥∥∥∥∥ 1

K

K∑
k=1

(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k))

∥∥∥∥∥
2

≤

√√√√√4d

(
Hκ2

√
36H2(log(H/δ)+Cd,log K)+2λC2

Θ
κK

)2

log( d
δ
)

K

=

√
(144dH2κ2

2 (H
2 log(H/δ) + Cd,logK) + 8dH2κ2

2λC
2
Θ) log(d/δ)

κ
· 1
K

and this implies with probability 1− δ/2,∥∥∥∥∥
K∑

k=1

(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k))

∥∥∥∥∥
2

≤
√

(144dH2κ2
2 (H

2 log(H/δ) + Cd,logK) + 8dH2κ2
2λC

2
Θ) log(d/δ)

κ

choose u =
∑K

k=1

(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k)) in

Lemma L.5, by a union bound we obtain with probability 1− δ

|Ĩ3| =

∥∥∥∥∥∇f(θ̂h, ϕ(s, a))⊤Σ−1
h

[
K∑

k=1

(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k))

]∥∥∥∥∥
≤
(

2κ1√
κK

+O(
1

K
)

)∥∥∥∥∥
K∑

k=1

(
f(θTV , ϕh,k)− rh,k − V (skh+1)

)
· (∇θf(θTV , ϕh,k)−∇θf(θ, ϕh,k))

∥∥∥∥∥
Σ−1

h

≤
(

2κ1√
κK

+O(
1

K
)

)(
2

√
(144dH2κ2

2 (H
2 log(H/δ) + Cd,logK) + 8dH2κ2

2λC
2
Θ) log(d/δ)

κ2K
+O(

1

K
)

)

=4κ1

√
(144dH2κ2

2 (H
2 log(H/δ) + Cd,logK) + 8dH2κ2

2λC
2
Θ) log(d/δ)

κ3

1

K
+O(

1

K3/2
).
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Lemma E.5. Under the same condition as Lemma E.4. With probability 1− δ,

|I3| ≤ 4κ1

√
(144dH2κ2

2 (H
2 log(H/δ) +Dd,logK + Cd,logK) + 8dH2κ2

2λC
2
Θ)(log(d/δ) +Dd,logK)

κ3

1

K
+O(

1

K3/2
).

Here Dd,logK := d · log(1 + 6CΘ(2κ
2
1 +Hκ2)K) + d log(1 + 6CΘHκ2K) +

d log
(
1 + 288CΘκ

2
1(κ1

√
CΘ + 2

√
Bκ1κ2)

2K2
)

+ d2 log
(
1 + 288

√
dBκ4

1K
2
)

= Õ(d2) with Õ

absorbs Polylog terms.

Proof of Lemma E.5. Define

h(V, θ̃, θ) =

K∑
k=1

(
f(θ̃, ϕh,k)− rh,k − V (skh+1)

)
·
(
∇θf(θ̃, ϕh,k)−∇θf(θ, ϕh,k)

)
,

then

|h(V1, θ̃1, θ1)− h(V2, θ̃2, θ2)|

≤

∣∣∣∣∣
K∑

k=1

(
[f(θ̃1, ϕh,k)− V1(s

k
h+1)]− [f(θ̃2, ϕh,k)− V2(s

k
h+1)]

)
·
(
∇θf(θ̃1, ϕh,k)−∇θf(θ1, ϕh,k)

)∣∣∣∣∣
+

∣∣∣∣∣
K∑

k=1

(
f(θ̃2, ϕh,k)− rh,k − V2(s

k
h+1)

)
·
(
[∇θf(θ̃1, ϕh,k)−∇θf(θ1, ϕh,k)]− [∇θf(θ̃2, ϕh,k)−∇θf(θ2, ϕh,k)]

)∣∣∣∣∣
≤K sup

s,a,s′

∣∣∣[f(θ̃1, ϕ(s, a))− f(θ̃2, ϕ(s, a))]− [V1(s
′)− V2(s

′)]
∣∣∣
2
· 2κ1

+KH · sup
s,a

∥∥∥[∇θf(θ̃1, ϕ(s, a))−∇θf(θ1, ϕ(s, a))]− [∇θf(θ̃2, ϕ(s, a))−∇θf(θ2, ϕ(s, a))]
∥∥∥
2

≤K2κ2
1

∥∥∥θ̃1 − θ̃2

∥∥∥
2
+ 2Kκ1 ‖V1 − V2‖∞ +HKκ2

∥∥∥θ̃1 − θ̃2

∥∥∥
2
+HKκ2 ‖θ1 − θ2‖2

=(2κ2
1 +Hκ2)K

∥∥∥θ̃1 − θ̃2

∥∥∥
2
+ 2κ1K ‖V1 − V2‖∞ +HKκ2 ‖θ1 − θ2‖2 .

Let Ca be the ϵ/3
(2κ2

1+Hκ2)K
-covering net of {θ : ‖θ‖2 ≤ CΘ}, CV be the ϵ

6κ1K
-covering net of V

defined in Lemma L.9 and Cb be the ϵ
3Hκ2K

-covering net of {θ : ‖θ‖2 ≤ CΘ}, then by Lemma L.8
and Lemma L.9,

log |Ca| ≤ d · log(1 + 6CΘ(2κ
2
1 +Hκ2)K

ϵ
), log |Cb| ≤ d log(1 +

6CΘHκ2K

ϵ
)

log CV ≤ d log

(
1 +

288CΘκ
2
1(κ1

√
CΘ + 2

√
Bκ1κ2)

2K2

ϵ2

)
+ d2 log

(
1 +

288
√
dBκ4

1K
2

ϵ2

)
.

Further notice with probability 1−δ/2 (by Lemma L.5), for all fixed sets of parameters θ, V satisfies

‖θTV − θ‖2 ≤
√

36H2(log(2H/δ)+Cd,log K)+2λC2
Θ

κK simultaneously,

|I3 − Ĩ3| ≤
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

·
∥∥∥h(V̂h+1, θTV̂h+1

, θ̂h)− h(V, θTV , θ)
∥∥∥
Σ−1

h

≤
(

2κ1√
κK

+O(
1

K
)

)
·
∥∥∥h(V̂h+1, θTV̂h+1

, θ̂h)− h(V, θTV , θ)
∥∥∥
Σ−1

h

and
∥∥∥θTV̂h+1

− θ̂h

∥∥∥
2
≤
√

36H2(log(2H/δ)+Cd,log K)+2λC2
Θ

κK with probability 1− δ/2 by Theorem G.2.

Now, choosing ϵ = O(1/K2) and by Lemma E.4 and union bound over covering instances, we
obtain with probability 1− δ

|I3| ≤ 4κ1

√
(144dH2κ2

2 (H
2 log(H/δ) +Dd,logK + Cd,logK) + 8dH2κ2

2λC
2
Θ)(log(d/δ) +Dd,logK)

κ3

1

K
+O(

1

K3/2
).
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E.3 BOUNDING THE SECOND TERM I2

In this section, we bound the term

I2 := ∇f(θ̂h, ϕ(s, a))Σ−1
h [

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− f(θTV ⋆
h+1

, ϕh,k)− V̂h+1(s
k
h+1) + V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)].

The following Lemma shows that I2 is a higher-order error term with rate Õ( 1
K ).

Lemma E.6 (Bounding I2). If K satisfies K ≥ 512
κ4
1

κ2

(
log( 2dδ ) + d log(1 +

4κ3
1κ2CΘK
λ2 )

)
, and

K ≥ 4λ/κ, then with probability 1− δ

|I2| ≤ Õ(
κ2
1H

2d2

κK
) + Õ(

1

K3/2
).

Here Õ absorbs constants and Polylog terms.

Proof of Lemma E.6. Step1. Define ηk(V ) := f(θTV , ϕh,k) − f(θTV ⋆
h+1

, ϕh,k) − V (skh+1) +

V ⋆
h+1(s

k
h+1) and let ‖V (·)‖∞ ≤ H be any fixed function such that supskh,ak

h,s
k
h+1
|ηk(V )| ≤

Õ(κ1H
2
√

d2

κK ), i.e. arbitrary fixed V function in the neighborhood (measured by ηk) of V ⋆
h+1.

Then by definition of T it holds E[ηk(V, θ)|skh, akh] = 0. Let the fixed θ ∈ Θ be arbitrary and define
xk(θ) = ∇θf(θ, ϕh,k). Next, define Gh(θ) =

∑K
k=1∇f(θ, ϕ(skh, akh)) · ∇f(θ, ϕ(skh, akh))⊤ + λId,

since ‖xk‖2 ≤ κ1 and |ηk| ≤ Õ(κ1H
2
√

d2

κK ), by self-normalized Hoeffding’s inequality
(Lemma L.3), with probability 1− δ (recall t := K in Lemma L.3),∥∥∥∥∥

K∑
k=1

xk(θ)ηk(V )

∥∥∥∥∥
Gh(θ)−1

≤ Õ(κ1H
2

√
d2

κK
)

√
d log

(
λ+Kκ1

λδ

)
.

Step2. Define h(V, θ) :=
∑K

k=1 xk(θ)ηk(V ) and H(V, θ) :=
∥∥∥∑K

k=1 xk(θ)ηk(V )
∥∥∥
Gh(θ)−1

, then

note by definition |ηk(V )| ≤ 2H , which implies ‖h(V, θ)‖2 ≤ 2KHκ1 and
|ηk(V1)− ηk(V2)| ≤ |PhV1 − PhV2|+ ‖V1 − V2‖∞ ≤ 2 ‖V1 − V2‖∞

and
‖h(V1, θ1)− h(V2, θ2)‖2 ≤Kmax

k
(2H ‖xk(θ1)− xk(θ2)‖2 + κ1|ηk(V1)− ηk(V2)|)

≤K(2Hκ2 ‖θ1 − θ2‖2 + 2κ1 ‖V1 − V2‖∞).

Furthermore,∥∥Gh(θ1)
−1 −Gh(θ2)

−1
∥∥
2
≤
∥∥Gh(θ1)

−1
∥∥
2
∥Gh(θ1)−Gh(θ2)∥2

∥∥Gh(θ2)
−1
∥∥
2

≤ 1

λ2
K sup

k

∥∥∥∇f(θ1, ϕh,k) · ∇f(θ1, ϕh,k)
⊤ −∇f(θ2, ϕh,k) · ∇f(θ2, ϕh,k)

⊤
∥∥∥
2

≤ 1

λ2
K sup

k

[∥∥∥(∇f(θ1, ϕh,k)−∇f(θ2, ϕh,k)) · ∇f(θ1, ϕh,k)
⊤
∥∥∥
2
+
∥∥∥∇f(θ2, ϕh,k) · (∇f(θ1, ϕh,k)

⊤ −∇f(θ2, ϕh,k)
⊤)
∥∥∥
2

]
≤2κ1K

λ2
κ2 ∥θ1 − θ2∥2 =

2κ1κ2K

λ2
∥θ1 − θ2∥2 .

All the above imply

|H(V1, θ1)−H(V2, θ2)| ≤
√
|h(V1, θ1)⊤Gh(θ1)−1h(V1, θ1)− h(V2, θ2)⊤Gh(θ2)−1h(V2, θ2)|

≤
√
‖h(V1, θ1)− h(V2, θ2)‖2 ·

1

λ
· 2KHκ1 +

√
2KHκ1 · ‖Gh(θ1)−1 −Gh(θ2)−1‖2 · 2KHκ1

+

√
2KHκ1 ·

1

λ
· ‖h(V1, θ1)− h(V2, θ2)‖2

≤2
√

K(2Hκ2 ‖θ1 − θ2‖2 + 2κ1 ‖V1 − V2‖∞) · 1
λ
· 2KHκ1 +

√
2KHκ1 ·

2κ1κ2K

λ2
‖θ1 − θ2‖2 · 2KHκ1

≤

(
4

√
K3H2κ1κ2

1

λ
+

√
8K3H2κ3

1κ2
1

λ2

)√
‖θ1 − θ2‖2 + 4

√
K3κ2

1H
1

λ
‖V1 − V2‖∞
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Then a ϵ-covering net of {H(V, θ)} can be constructed by the union of
ϵ2

4
(
4
√

K3H2κ1κ2
1
λ+
√

8K3H2κ3
1κ2

1
λ2

)2 -covering net of {θ ∈ Θ} and ϵ2

4(4
√

K3κ2
1H

1
λ )2

-covering

net of V in Lemma L.9. The covering number Nϵ satisfies

logNϵ ≤d log

1 +
8CΘ

(
4
√
K3H2κ1κ2

1
λ +

√
8K3H2κ3

1κ2
1
λ2

)2
ϵ2


+d log

1 +
8CΘ(κ1

√
CΘ + 2

√
Bκ1κ2)

2

ϵ4

16(4
√

K3κ2
1H

1
λ )4

+ d2 log

1 +
8
√
dBκ2

1
ϵ4

16(4
√

K3κ2
1H

1
λ )4

 .

Step3. First note by definition in Step2∥∥∥∥∥
K∑

k=1

(
f(θTV̂h+1

, ϕh,k)− f(θTV ⋆
h+1

, ϕh,k)− V̂h+1(s
k
h+1) + V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)

∥∥∥∥∥
Σ−1

h

= H(V̂h+1, θ̂h)

and with probability 1− δ

|ηk(V̂h+1)| =|f(θTV̂h+1
, ϕh,k)− f(θTV ⋆

h+1
, ϕh,k)− V̂h+1(s

k
h+1) + V ⋆

h+1(s
k
h+1)|

≤κ1 ·
∥∥∥θTV̂h+1

− θ⋆h

∥∥∥
2
+
∥∥∥V̂h+1 − V ⋆

h+1

∥∥∥
∞

≤κ1

√
36H2(log(H/δ) + Cd,logK) + 2λC2

Θ

κK
+ C

(
κ1H

2

√
d2

κK

)
= Õ

(
κ1H

2

√
d2

κK

)
(9)

where the second inequality uses θTV ⋆
h+1

= θ⋆hand the third inequality uses Theorem G.2 and Theo-

rem G.3. The last equal sign is due to Cd,logK ≤ Õ(d2) (recall Lemma G.1).

Now choosing ϵ = O(1/K) in Step2 and union bound over both equation 9 and covering number in
Step2, we obtain with probability 1− δ,

H(V̂h+1, θ̂h) =

∥∥∥∥∥
K∑

k=1

xk(θ̂h)ηk(V̂h+1)

∥∥∥∥∥
Gh(θ̂h)−1

≤ Õ(κ1H
2

√
d2

κK
)
√
d+ d2 = Õ(

κ1H
2d2√

κK
)

(10)
where we absorb all the Polylog terms. Meanwhile, by Lemma L.5 with probability 1− δ,∥∥∥∇f(θ̂h, ϕs,a)

∥∥∥
Σ−1

h

≤ 2κ1√
κK

+O(
1

K
). (11)

Finally, by equation 10 and equation 11 and a union bound, we have with probability 1− δ,

|I2| :=

∣∣∣∣∣∇f(θ̂h, ϕ(s, a))Σ−1
h [

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− f(θTV ⋆
h+1

, ϕh,k)− V̂h+1(s
k
h+1) + V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)]

∣∣∣∣∣
≤
∥∥∥∇f(θ̂h, ϕs,a)

∥∥∥
Σ−1

h

∥∥∥∥∥
K∑

k=1

(
f(θTV̂h+1

, ϕh,k)− f(θTV ⋆
h+1

, ϕh,k)− V̂h+1(s
k
h+1) + V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)

∥∥∥∥∥
Σ−1

h

=
∥∥∥∇f(θ̂h, ϕs,a)

∥∥∥
Σ−1

h

·H(V̂h+1, θ̂h) ≤
(

2κ1√
κK

+O(
1

K
)

)
· Õ(

κ1H
2d2√

κK
) = Õ(

κ2
1H

2d2

κK
) + Õ(

1

K3/2
)

where the first inequality is CauchySchwarz inequality.

E.4 BOUNDING THE MAIN TERM I1

In this section, we bound the dominate term

I1 := ∇f(θ̂h, ϕ(s, a))Σ−1
h [

K∑
k=1

(
f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)].
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First of all, by CauchySchwarz inequality, we have

|I1| ≤
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

·

∥∥∥∥∥
K∑

k=1

(
f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)

∥∥∥∥∥
Σ−1

h

.

(12)
Then we have the following Lemma to bound I1.
Lemma E.7. With probability 1− δ,

|I1| ≤ 4Hd
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

· Cδ,logK + Õ(
κ1√
κK

),

where Cδ,logK only contains Polylog terms.

Proof of Lemma E.7. Step1. Let the fixed θ ∈ Θ be arbitrary and define xk(θ) = ∇θf(θ, ϕh,k).
Next, define Gh(θ) =

∑K
k=1∇f(θ, ϕ(skh, akh)) · ∇f(θ, ϕ(skh, akh))⊤ + λId, then ‖xk‖2 ≤ κ1. Also

denote ηk := f(θTV ⋆
h+1

, ϕh,k) − rh,k − V ⋆
h+1(s

k
h+1), then E[ηk|skh, akh] = 0 and |ηk| ≤ H . Now

by self-normalized Hoeffding’s inequality (Lemma L.3), with probability 1 − δ (recall t := K in
Lemma L.3), ∥∥∥∥∥

K∑
k=1

xk(θ)ηk

∥∥∥∥∥
Gh(θ)−1

≤ 2H

√
d log

(
λ+Kκ1

λδ

)
.

Step2. Define h(θ) :=
∑K

k=1 xk(θ)ηk and H(θ) :=
∥∥∥∑K

k=1 xk(θ)ηk

∥∥∥
Gh(θ)−1

, then note by defini-

tion |ηk| ≤ H , which implies ‖h(θ)‖2 ≤ KHκ1 and by xk(θ1)− xk(θ2) = ∇2
θθf(ξ, ϕ) · (θ1 − θ2),

‖h(θ1)− h(θ2)‖2 ≤Kmax
k

(H ‖xk(θ1)− xk(θ2)‖2) ≤ HKκ2 ‖θ1 − θ2‖2 .

Furthermore,∥∥Gh(θ1)
−1 −Gh(θ2)

−1
∥∥
2
≤
∥∥Gh(θ1)

−1
∥∥
2
‖Gh(θ1)−Gh(θ2)‖2

∥∥Gh(θ2)
−1
∥∥
2

≤ 1

λ2
K sup

k

∥∥∇f(θ1, ϕh,k) · ∇f(θ1, ϕh,k)
⊤ −∇f(θ2, ϕh,k) · ∇f(θ2, ϕh,k)

⊤∥∥
2

≤2κ1K

λ2
κ2 ‖θ1 − θ2‖2 =

2κ1κ2K

λ2
‖θ1 − θ2‖2 .

All the above imply

|H(θ1)−H(θ2)| ≤
√
|h(θ1)⊤Gh(θ1)−1h(θ1)− h(θ2)⊤Gh(θ2)−1h(θ2)|

≤
√
‖h(θ1)− h(θ2)‖2 ·

1

λ
·KHκ1 +

√
KHκ1 · ‖Gh(θ1)−1 −Gh(θ2)−1‖2 ·KHκ1

+

√
KHκ1 ·

1

λ
· ‖h(θ1)− h(θ2)‖2

≤2
√
KHκ2 ‖θ1 − θ2‖2 ·

1

λ
·KHκ1 +

√
KHκ1 ·

2κ1κ2K

λ2
‖θ1 − θ2‖2 ·KHκ1

≤
(√

4K2H2κ1κ2/λ+
√
2K3H2κ3

1κ2/λ2

)√
‖θ1 − θ2‖2

Then a ϵ-covering net of {H(θ)} can be constructed by the union of
ϵ2(√

4K2H2κ1κ2/λ+
√

2K3H2κ3
1κ2/λ2

)2 -covering net of {θ ∈ Θ}. By Lemma L.8, the covering

number Nϵ satisfies

logNϵ ≤d log

1 +
2CΘ

(√
4K2H2κ1κ2/λ+

√
2K3H2κ3

1κ2/λ2
)2

ϵ2

 = Õ(d)
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Step3. First note by definition in Step2∥∥∥∥∥
K∑

k=1

(
f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)

∥∥∥∥∥
Σ−1

h

= H(θ̂h)

Now choosing ϵ = O(1/K) in Step2 and union bound over the covering number in Step2, we obtain
with probability 1− δ,

H(θ̂h) =

∥∥∥∥∥
K∑

k=1

xk(θ̂h)ηk

∥∥∥∥∥
Gh(θ̂h)−1

≤ 2H

√
d

[
log

(
λ+Kκ1

λδ

)
+ Õ(d)

]
+O(

1

K
). (13)

where we absorb all the Polylog terms. Combing above with equation 12, we obtain with probability
1− δ,

|I1| ≤
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

·

∥∥∥∥∥
K∑

k=1

(
f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)

∥∥∥∥∥
Σ−1

h

≤
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

·

(
2H

√
d

[
log

(
λ+Kκ1

λδ

)
+ Õ(d)

]
+O(

1

K
)

)
≤4Hd

∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥
Σ−1

h

· Cδ,logK + Õ(
κ1√
κK

),

where Cδ,logK only contains Polylog terms.

E.5 ANALYZING Hot2 IN EQUATION 8

Lemma E.8. Recall Hot2 := ∇f(θ̂h, ϕ(s, a))Σ−1
h

[
R̃K(θTV̂h+1

) + λθTV̂h+1

]
. If the number of

episode K satisfies K ≥ max
{
512

κ4
1

κ2

(
log( 2dδ ) + d log(1 +

4κ3
1κ2CΘK3

κλ2 )
)
, 4λ

κ

}
, then with proba-

bility 1− δ,

∣∣∣∇f(θ̂h, ϕ(s, a))Σ−1
h

[
R̃K(θTV̂h+1

) + λθTV̂h+1

]∣∣∣ ≤ Õ

κ2 max(κ1

κ , 1√
κ
)d2H2 + d2H3κ3+λκ1CΘ

κ

K


where Õ absorbs all the constants and Polylog terms.

Proof of Lemma E.8. Step1: we first show with probability 1− δ∣∣∣∇f(θ̂h, ϕ(s, a))Σ−1
h R̃K(θTV̂h+1

)
∣∣∣ ≤ Õ(

1

K
).

Recall by plug in θTV̂h+1
in equation 4, we have

Zh(θTV̂h+1
|V̂h+1)− Zh(θ̂h|V̂h+1) =

∂

∂θ
Zh(θ̂h|V̂h+1)(θTV̂h+1

− θ̂h) +RK(θTV̂h+1
), (14)

and by second-order Taylor’s Theorem we have∥∥∥RK(θTV̂h+1
)
∥∥∥
2
=

∥∥∥∥Zh(θTV̂h+1
|V̂h+1)− Zh(θ̂h|V̂h+1)−

∂

∂θ
Zh(θ̂h|V̂h+1)(θTV̂h+1

− θ̂h)

∥∥∥∥
2

=
1

2

∥∥∥∥(θTV̂h+1
− θ̂h)

⊤ ∂2

∂θ∂θ
Zh(ξ|V̂h+1)(θTV̂h+1

− θ̂h)

∥∥∥∥
2

≤1

2
κz2

∥∥∥θTV̂h+1
− θ̂h

∥∥∥2
2

(15)
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Note

∂2

∂θθ
Zh(θ|V̂h+1)

∣∣∣∣
θ=ξ

=
∂

∂θ
Σs

h =

K∑
k=1

∂

∂θ

{(
f(ξ, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(ξ, ϕh,k)
}

+

K∑
k=1

∂

∂θ

(
∇θf(ξ, ϕh,k)∇⊤

θ f(ξ, ϕh,k) + λId
)

(16)
Therefore, we can bound κz2 with κz2 ≤ (Hκ3+3κ1κ2)K and this implies with probability 1−δ/2,∥∥∥RK(θTV̂h+1

)
∥∥∥
2
≤1

2
κz2

∥∥∥θTV̂h+1
− θ̂h

∥∥∥2
2
≤ 1

2
(Hκ3 + 3κ1κ2)K ·

∥∥∥θTV̂h+1
− θ̂h

∥∥∥2
2

≤1

2
(Hκ3 + 3κ1κ2)K ·

36H2(log(H/δ) + Cd,logK) + 2λC2
Θ

κK

≤Õ((Hκ3 + 3κ1κ2)H
2d2/κ).

And by Corollary E.3 with probability 1− δ/2,∥∥∥∆Σs
h
(θ̂h − θTV̂h+1

)
∥∥∥
2
≤ Õ(1),

Therefore, by Lemma L.5 and a union bound with probability 1− δ,

|∇f(θ̂h, ϕ(s, a))⊤Σ−1
h R̃K(θTV̂h+1

)| =
∣∣∣∇f(θ̂h, ϕ(s, a))⊤Σ−1

h

(
∆Σs

h
(θ̂h − θTV̂h+1

) +RK(θTV̂h+1
)
)∣∣∣

≤
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

∥∥∥∆Σs
h
(θ̂h − θTV̂h+1

) +RK(θTV̂h+1
)
∥∥∥
Σ−1

h

≤
(

2κ1√
κK

+O(
1

K
)

)∥∥∥∆Σs
h
(θ̂h − θTV̂h+1

) +RK(θTV̂h+1
)
∥∥∥
Σ−1

h

≤
(

2κ1√
κK

+O(
1

K
)

)(
C√
K

+O(
1

K
)

)
= Õ

κ2 max(κ1

κ , 1√
κ
)d2H2 + d2H3κ3

κ

K


where Õ absorbs all the constants and Polylog terms. Here the last inequality uses bound for∥∥∥RK(θTV̂h+1

)
∥∥∥
2

and
∥∥∥∆Σs

h
(θ̂h − θTV̂h+1

)
∥∥∥
2
.

Step2: By Lemma L.5, with probability 1− δ,∣∣∣∇f(θ̂h, ϕ(s, a))Σ−1
h λθTV̂h+1

∣∣∣ ≤ λ
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

∥∥∥θTV̂h+1

∥∥∥
Σ−1

h

≤ λ

(
2κ1√
κK

+O(
1

K
)

)
·
(

2CΘ√
κK

+O(
1

K
)

)
=

4λκ1CΘ

κK
+O(

1

K
3
2

)

F PROOF OF THEOREM 3.2

Now we are ready to prove Theorem 3.2. In particular, we prove the first part. Also, recall that we
consider the exact Bellman completeness (ϵF = 0).

F.1 THE FIRST PART

Proof of Theorem 3.2 (first part). First of all, from the previous calculation (3), (8), we have∣∣∣PhV̂h+1(s, a)− P̂hV̂h+1(s, a)
∣∣∣ ≤ ∣∣∣∇f(θ̂h, ϕ(s, a))(θTV̂h+1

− θ̂h

)∣∣∣+ |Hoth,1|

≤|I1|+ |I2|+ |I3|+ |Hoth,2|+ |Hoth,1|
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Now by Lemma E.5, Lemma E.6, Lemma E.7, Lemma E.8 and Lemma E.1 (and a union bound),
with probability 1− δ,

|I3| ≤Õ(

√
d3H2κ2

2κ
2
1

κ3
)
1

K
,

|I2| ≤Õ(
κ2
1H

2d2

κK
) + Õ(

1

K3/2
),

|I1| ≤4Hd
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

· Cδ,logK + Õ(
κ1√
κK

),

|Hot2,h| ≤Õ

κ2 max(κ1

κ , 1√
κ
)d2H2 + d2H3κ3+λκ1CΘ

κ

K

 ,

|Hot1,h| ≤Õ(
H2κ2d

2

κ
)
1

K
.

Finally, Plug the above into Lemma D.3, by a union bound over all h ∈ [H], we have with probability
1− δ, for any policy π,

vπ − vπ̂ ≤
H∑

h=1

2 · Eπ [|I1|+ |I2|+ |I3|+ |Hoth,2|+ |Hoth,1|]

≤
H∑

h=1

8dHEπ

[√
∇⊤f(θ̂h, ϕ(sh, ah))Σ

−1
h ∇f(θ̂h, ϕ(sh, ah))

]
· ι+ Õ(

Chot

K
).

where ι = Cδ,logK only contains Polylog terms and

Chot =
κ1H√

κ
+
κ2
1H

3d2

κ
+

√
d3H4κ2

2κ
2
1

κ3
+κ2 max(

κ1

κ
,

1√
κ
)d2H3+

d2H4κ3 + λκ1CΘ

κ
+
H3κ2d

2

κ

F.2 THE SECOND PART

Next we prove the second part of Theorem 3.2.

Proof of Theorem 3.2 (second part). Step1. Choose π = π⋆ in the first part, we have

0 ≤ vπ
⋆

− vπ̂ ≤
H∑

h=1

8dH · Eπ⋆

[√
∇⊤

θ f(θ̂h, ϕ(sh, ah))Σ
−1
h ∇θf(θ̂h, ϕ(sh, ah))

]
· ι+ Õ(

Chot

K
),

Next, by the triangular inequality of the norm to obtain∣∣∣∣∥∥∥∇θf(θ̂h, ϕ(sh, ah))
∥∥∥
Σ−1

h

− ‖∇θf(θ
⋆
h, ϕ(sh, ah))‖Σ−1

h

∣∣∣∣
≤
∥∥∥∇θf(θ̂h, ϕ(sh, ah))−∇θf(θ

⋆
h, ϕ(sh, ah))

∥∥∥
Σ−1

h

=
∥∥∥∇2

θθf(ξ, ϕ(sh, ah)) ·
(
θ̂h − θ⋆h

)∥∥∥
Σ−1

h

,

since with probability 1− δ,∥∥∥∇2
θθf(ξ, ϕ(sh, ah)) ·

(
θ̂h − θ⋆h

)∥∥∥
2
≤ κ2

∥∥∥θ̂h − θ⋆h

∥∥∥
2
≤ Õ

(
κ1κ2H

2d

κ

√
1

K

)
,

where the last inequality uses part three of Theorem G.3. Then by a union bound and Lemma L.5,∥∥∥∇2
θθf(ξ, ϕ(sh, ah)) ·

(
θ̂h − θ⋆h

)∥∥∥
Σ−1

h

≤ Õ

(
κ1κ2H

2d

κ3/2
· 1
K

)
.
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Step2. Next, we show with probability 1− δ,

‖∇θf(θ
⋆
h, ϕ(sh, ah))‖Σ−1

h
≤ 2 ‖∇θf(θ

⋆
h, ϕ(sh, ah))‖Σ⋆−1

h
.

First of all,∥∥∥∥ 1

K
Σh −

1

K
Σ⋆

h

∥∥∥∥
2

=

∥∥∥∥∥ 1

K

(
K∑

k=1

∇f(θ̂h, ϕ(s, a))∇f(θ̂h, ϕ(s, a))⊤ −∇f(θ⋆h, ϕ(s, a))∇f(θ⋆h, ϕ(s, a))⊤
)∥∥∥∥∥

2

≤ sup
s,a

(∥∥∥(∇f(θ̂h, ϕ(s, a))−∇f(θ⋆h, ϕ(s, a)))∇f(θ̂h, ϕ(s, a))∥∥∥
2

+
∥∥∥(∇f(θ̂h, ϕ(s, a))−∇f(θ⋆h, ϕ(s, a)))∇f(θ̂h, ϕ(s, a))∥∥∥

2

)
≤2κ2κ1

∥∥∥θ̂h − θ⋆h

∥∥∥
2
≤ Õ

(
κ2κ

2
1H

2d

κ

√
1

K

)

Second, by Lemma L.6 with probability 1− δ∥∥∥∥Σ⋆
h

K
− Eµ[∇θf(θ

⋆
h, ϕ)∇θf(θ

⋆
h, ϕ)

⊤]− λ

K

∥∥∥∥ ≤ 4
√
2κ2

1√
K

(
log

2d

δ

)1/2

This implies ∥∥∥∥Σ⋆
h

K

∥∥∥∥ ≤ ∥∥Eµ[∇θf(θ
⋆
h, ϕ)∇θf(θ

⋆
h, ϕ)

⊤]
∥∥+ λ

K
+

4
√
2κ2

1√
K

(
log

2d

δ

)1/2

≤κ2
1 + λ+ 4

√
2κ2

1

(
log

2d

δ

)1/2

and also by Weyl’s spectrum theorem and under the condition K ≥ 128κ4
1 log(2d/δ)
κ2 , with probability

1− δ

λmin(
Σ⋆

h

K
) ≥λmin

(
Eµ[∇θf(θ

⋆
h, ϕ)∇θf(θ

⋆
h, ϕ)

⊤]
)
+

λ

K
− 4
√
2κ2

1√
K

(
log

2d

δ

)1/2

≥κ+
λ

K
− 4
√
2κ2

1√
K

(
log

2d

δ

)1/2

≥ κ

2

then
∥∥∥(Σ⋆

h

K )−1
∥∥∥ ≤ 2

κ . Similarly, with probability 1− δ,
∥∥(Σh

K )−1
∥∥ ≤ 2

κ . Then by Lemma L.7,

∥∇θf(θ
⋆
h, ϕ(s, a))∥KΣ−1

h
≤
[
1 +

√∥∥KΣ⋆−1
h

∥∥ ∥Σ⋆
h/K∥ ·

∥∥KΣ−1
h

∥∥ · ∥Σh/K − Σ⋆
h/K∥

]
· ∥∇θf(θ

⋆
h, ϕ(s, a))∥KΣ⋆−1

h

≤

1 +
√√√√ 4

κ2
O(κ2

1 + λ)Õ

(
κ2κ2

1H
2d

κ

√
1

K

) · ∥∇θf(θ
⋆
h, ϕ(s, a))∥KΣ⋆−1

h

≤2 ∥∇θf(θ
⋆
h, ϕ(s, a))∥KΣ⋆−1

h

as long as K ≥ Õ(
(κ2

1+λ)2κ2
2κ

2
1H

4d2

κ6 ). The above is equivalently to

‖∇θf(θ
⋆
h, ϕ(sh, ah))‖Σ−1

h
≤ 2 ‖∇θf(θ

⋆
h, ϕ(sh, ah))‖Σ⋆−1

h
.
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Combining Step1, Step2 and a union bound, we have with probability 1− δ,

0 ≤vπ
⋆

− vπ̂ ≤
H∑

h=1

8dH · Eπ⋆

[√
∇⊤

θ f(θ̂h, ϕ(sh, ah))Σ
−1
h ∇θf(θ̂h, ϕ(sh, ah))

]
· ι+ Õ(

Chot

K
)

≤
H∑

h=1

8dH · Eπ⋆

[√
∇⊤

θ f(θ
⋆
h, ϕ(sh, ah))Σ

−1
h ∇θf(θ⋆h, ϕ(sh, ah))

]
· ι+ Õ(

Chot

K
) + Õ

(
κ1κ2H

4d2

κ3/2
· 1
K

)

≤
H∑

h=1

16dH · Eπ⋆

[√
∇⊤

θ f(θ
⋆
h, ϕ(sh, ah))Σ

⋆−1
h ∇θf(θ⋆h, ϕ(sh, ah))

]
· ι+ Õ(

C′
hot

K
)

where C ′
hot = Chot +

κ1κ2H
4d2

κ3/2 .

G PROVABLE EFFICIENCY BY REDUCTION TO GENERAL FUNCTION
APPROXIMATION

In this section, we bound the accuracy of the parameter difference
∥∥∥θ̂h − θTV̂h+1

∥∥∥
2

via a reduction
to General Function Approximation scheme in Chen and Jiang (2019).

Recall the objective

ℓh(θ) :=
1

K

K∑
k=1

[
f
(
θ, ϕ(skh, a

k
h)
)
− r(skh, a

k
h)− V̂h+1

(
skh+1

)]2
+

λ

K
· ‖θ‖22 (17)

Then by definition, θ̂h := argminθ∈Θ ℓh(θ) and θTV̂h+1
satisfies f(θTV̂h+1

, ϕ) = PhV̂h+1 + δV̂h+1
.

Therefore, in this case, we have the following lemma:

Lemma G.1. Fix h ∈ [H]. With probability 1− δ,

Eµ[ℓh(θ̂h)]−Eµ[ℓh(θTV̂h+1
)] ≤ 36H2(log(1/δ) + Cd,logK) + λC2

Θ

K
+

√
16H3ϵF (log(1/δ) + Cd,logK)

K
+4HϵF .

where the expectation over µ is taken w.r.t. (skh, a
k
h, s

k
h+1) k = 1, ...,K only (i.e.,

first compute Eµ[ℓh(θ)] for a fixed θ, then plug-in either θ̂h+1 or θTV̂h+1
). Here

Cd,log(K) := d log(1+24CΘ(H + 1)κ1K)+d log
(
1 + 288H2CΘ(κ1

√
CΘ + 2

√
κ1κ2/λ)

2K2
)
+

d2 log
(
1 + 288H2

√
dκ2

1K
2/λ
)

.

Proof of Lemma G.1. Step1: we first prove the case where λ = 0.

Indeed, fix h ∈ [H] and any function V (·) ∈ RS . Similarly, define fV (s, a) := f(θTV , ϕ) =
PhV + δV . For any fixed θ ∈ Θ, denote g(s, a) = f(θ, ϕ(s, a)). Then define10

X(g, V, fV ) := (g(s, a)− r − V (s′))2 − (fV (s, a)− r − V (s′))2.

Since all episodes are independent of each other, Xk(g, V, fV ) :=
X(g(skh, a

k
h), V (skh+1), fV (s

k
h, a

k
h)) are independent r.v.s and it holds

1

K

K∑
k=1

Xk(g, V, fV ) = ℓ(g)− ℓ(fV ). (18)

10We abuse the notation here to use either X(g, V, fV ) or X(θ, V, fV ). They mean the same quantity.
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Next, the variance of X is bounded by:

Var[X(g, V, fV )] ≤ Eµ[X(g, f, fV )
2]

=Eµ

[(
(g(sh, ah)− rh − V (sh+1))

2 − (fV (sh, ah)− rh − V (sh+1))
2
)2]

=Eµ

[
(g(sh, ah)− fV (sh, ah))

2(g(sh, ah) + fV (sh, ah)− 2rh − 2V (sh+1))
2
]

≤4H2 · Eµ[(g(sh, ah)− fV (sh, ah))
2]

≤4H2 · Eµ

[
(g(sh, ah)− rh − V (sh+1))

2 − (fV (sh, ah)− rh − V (sh+1))
2
]
+ 8H3ϵF (∗)

=4H2 · Eµ[X(g, f, fV )] + 8H3ϵF

where the step (∗) comes from

Eµ

[
(g(sh, ah)− rh − V (sh+1))

2 − (fV (sh, ah)− rh − V (sh+1))
2
]

=Eµ [(g(sh, ah)− fV (sh, ah)) · (g(sh, ah) + fV (sh, ah)− 2rh − 2V (sh+1))]

=Eµ [(g(sh, ah)− fV (sh, ah)) · (g(sh, ah)− fV (sh, ah) + 2fV (sh, ah)− 2rh − 2V (sh+1))]

=Eµ

[
(g(sh, ah)− fV (sh, ah))

2
]
+ Eµ [2(g(sh, ah)− fV (sh, ah))EPh

[fV (sh, ah)− rh − V (sh+1) | sh, ah]]

≥Eµ

[
(g(sh, ah)− fV (sh, ah))

2
]
− 2H ‖δV ‖∞ ≥ Eµ

[
(g(sh, ah)− fV (sh, ah))

2
]
− 2HϵF

(19)
where the last step uses law of total expectation and the definition of fV .

Therefore, by Bernstein inequality, with probability 1− δ,

Eµ[X(g, f, fV )]−
1

K

K∑
k=1

Xk(g, f, fV )

≤
√

2Var[X(g, f, fV )] log(1/δ)

K
+

4H2 log(1/δ)

3K

≤
√

8H2Eµ[X(g, f, fV )] log(1/δ)

K
+

√
16H3ϵF log(1/δ)

K
+

4H2 log(1/δ)

3K
.

Now, if we choose g(s, a) := f(θ̂h, ϕ(s, a)), then θ̂h minimizes ℓh(θ), therefore, it also minimizes
1
K

∑K
k=1 Xi(θ, V̂h+1, fV̂h+1

) and this implies

1

K

K∑
k=1

Xk(θ̂h, V̂h+1, fV̂h+1
) ≤ 1

K

K∑
k=1

Xk(θTV̂h+1
, V̂h+1, fV̂h+1

) = 0.

Therefore, we obtain

Eµ[X(θ̂h, V̂h+1, fV̂h+1
)] ≤

√
8H2 · Eµ[X(θ̂h, V̂h+1, fV̂h+1

)] log(1/δ)

K
+

√
16H3ϵF log(1/δ)

K
+
4H2 log(1/δ)

3K
.

However, the above does not hold with probability 1 − δ since θ̂h and V̂h+1 :=

min{maxa f(θ̂h+1, ϕ(·, a))−
√
∇f(θ̂h+1, ϕ(·, a))⊤A · ∇f(θ, ϕ(·, a)),H} (where A is certain sym-

metric matrix with bounded norm) depend on θ̂h and θ̂h+1 which are data-dependent. Therefore, we
need to further apply covering Lemma L.10 and choose ϵ = O(1/K) and a union bound to obtain
with probability 1− δ,

Eµ[X(θ̂h, V̂h+1, fV̂h+1
)] ≤

√
8H2 · Eµ[X(θ̂h, V̂h+1, fV̂h+1

)](log(1/δ) + Cd,logK)

K
+

7H2(log(1/δ) + Cd,logK)

3K

+

√
16H3ϵF (log(1/δ) + Cd,logK)

K
+ 4HϵF
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where Cd,log(K) := log(1+24CΘ(H + 1)κ1K)+d log
(
1 + 288H2CΘ(κ1

√
CΘ + 2

√
κ1κ2/λ)

2K2
)
+

d2 log
(
1 + 288H2

√
dκ2

1K
2/λ
)

.11 Solving this quadratic equation to obtain with probability 1− δ,

Eµ[X(θ̂h, V̂h+1, fV̂h+1
)] ≤ 36H2(log(1/δ) + Cd,logK)

K
+

√
16H3ϵF (log(1/δ) + Cd,logK)

K
+4HϵF

Now according to equation 18, by definition we finally have with probability 1 − δ (recall the
expectation over µ is taken w.r.t. (skh, a

k
h, s

k
h+1) k = 1, ...,K only)

Eµ[ℓh(θ̂h+1)]− Eµ[ℓh(θTV̂h+1
)] = Eµ[X(θ̂h, V̂h+1, fV̂h+1

)]

≤ 36H2(log(1/δ) + Cd,logK)

K
+

√
16H3ϵF (log(1/δ) + Cd,logK)

K
+ 4HϵF .

(20)

Step2. If λ > 0, there is only extra term λ
K

(∥∥∥θ̂h∥∥∥
2
−
∥∥∥θTV̂h+1

∥∥∥
2

)
≤ λ

K

∥∥∥θ̂h∥∥∥
2
≤ λC2

Θ

K in addition
to above. This finishes the proof.

Theorem G.2 (Provable efficiency (Part I)). Let Cd,logK be the same as Lemma G.1. Then denote

bd,K,ϵF :=

√
16H3ϵF (log(1/δ)+Cd,log K)

K + 4HϵF , with probability 1− δ∥∥∥θ̂h − θTV̂h+1

∥∥∥
2
≤
√

36H2(log(H/δ) + Cd,logK) + 2λC2
Θ

κK
+

√
bd,K,ϵF

κ
+

√
2HϵF
κ

, ∀h ∈ [H].

Proof of Theorem G.2. Apply a union bound in Lemma G.1, we have with probability 1− δ,

Eµ[ℓh(θ̂h)]− Eµ[ℓh(θTV̂h+1
)] ≤ 36H2(log(H/δ) + Cd,logK) + λC2

Θ

K
+ bd,K,ϵF , ∀h ∈ [H]

⇒Eµ[ℓh(θ̂h)−
λ

K

∥∥∥θ̂h∥∥∥2
2
]− Eµ[ℓh(θTV̂h+1

)− λ

K

∥∥∥θTV̂h+1

∥∥∥2
2
] ≤ 36H2(log(H/δ) + Cd,logK) + 2λC2

Θ

K
+ bd,K,ϵF

(21)
Now we prove for all h ∈ [H],

Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2]
≤ Eµ

ℓh(θ̂h)− λ
∥∥∥θ̂h∥∥∥2

2

K

−Eµ

ℓh(θTV̂h+1
)−

λ
∥∥∥θTV̂h+1

∥∥∥2
2

K

+2HϵF .

(22)
Indeed, similar to equation 20, by definition we have

Eµ

ℓh(θ̂h)− λ
∥∥∥θ̂h∥∥∥2

2

K

− Eµ

ℓh(θTV̂h+1
)−

λ
∥∥∥θTV̂h+1

∥∥∥2
2

K

 = Eµ[X(θ̂h, V̂h+1, fV̂h+1
)]

=Eµ

([
f
(
θ̂h, ϕ(sh, ah)

)
− rh − V̂h+1(sh+1)

]2
−
[
f
(
θTV̂h+1

, ϕ(sh, ah)
)
− rh − V̂h+1(sh+1)

]2)
=Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2]

+Eµ

[(
f(θ̂h, ϕ(sh, ah))− f(θTV̂h+1

, ϕ(sh, ah))
)
·
(
f
(
θTV̂h+1

, ϕ(sh, ah)
)
− rh − V̂h+1(sh+1)

)]
=Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2]

+Eµ

[(
f(θ̂h, ϕ(sh, ah))− f(θTV̂h+1

, ϕ(sh, ah))
)
· E
(
f
(
θTV̂h+1

, ϕ(sh, ah)
)
− rh − V̂h+1(sh+1)

∣∣∣sh, ah)]
≥Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2]
− 2HϵF

11Here in our realization of Lemma L.9, we set B = 1/λ (since
∥∥Σ−1

h

∥∥
2
≤ 1/λ).
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where the third identity uses µ is taken w.r.t. sh, ah, sh+1 (recall Lemma G.1) and law of total
expectation. The first inequality uses the definition of θTV̂h+1

.

Now apply Assumption 2.3, we have

Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2]
≥ κ

∥∥∥θ̂h − θTV̂h+1

∥∥∥2
2
,

Combine the above with equation 21 and equation 22, we obtain the stated result.

Theorem G.3 (Provable efficiency (Part II)). Let Cd,logK be the same as
Lemma G.1 and suppose ϵF = 0. Furthermore, suppose λ ≤ 1/2C2

Θ and K ≥
max

{
512

κ4
1

κ2

(
log( 2dδ ) + d log(1 +

4κ3
1κ2CΘK3

λ2 )
)
, 4λ

κ

}
. Then, with probability 1− δ, ∀h ∈ [H],

sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣ ≤ (κ1H

√
36H2(log(H2/δ) + Cd,logK) + 2λC2

Θ

κ
+

2H2dκ1√
κ

)√
1

K
+O(

1

K
).

Furthermore, we have with probability 1− δ,

sup
h

∥∥∥V̂h − V ⋆
h

∥∥∥
∞
≤

(
κ1H

√
36H2(log(H2/δ) + Cd,logK) + 2λC2

Θ

κ
+

2H2dκ1√
κ

)√
1

K
+O(

1

K
)

=Õ

(
κ1H

2

√
d2

κ

√
1

K

)

where Õ absorbs Polylog terms and higher order terms. Lastly, it also holds for all h ∈ [H], w.p.
1− δ∥∥∥θ̂h − θ⋆h

∥∥∥
2
≤

(
κ1H

√
72H2(log(H2/δ) + Cd,logK) + 4λC2

Θ

κ
+

4H2dκ1

κ

)√
1

K
+O(

1

K
)

=Õ

(
κ1H

2d

κ

√
1

K

)

Proof of Theorem G.3. Step1: we show the first result.

We prove this by backward induction. When h = H + 1, by convention f(θ̂h, ϕ(s, a)) =
f(θ⋆h, ϕ(s, a)) = 0 so the base case holds. Suppose for h + 1, with probability 1 − (H − h)δ,

it holds true that sups,a
∣∣∣f(θ̂h+1, ϕ(s, a))− f(θ⋆h+1, ϕ(s, a))

∣∣∣ ≤ Ch+1

√
1
K + a(h + 1), we next

consider the case for t = h.

On one hand, by Theorem G.2, we have with probability 1− δ/2,

sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣

≤ sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θTV̂h+1
, ϕ(s, a))

∣∣∣+ sup
s,a

∣∣∣f(θTV̂h+1
, ϕ(s, a))− f(θ⋆h, ϕ(s, a))

∣∣∣
=sup

s,a

∣∣∣∇f(ξ, ϕ(s, a))⊤(θ̂h − θTV̂h+1
)
∣∣∣+ sup

s,a

∣∣∣f(θTV̂h+1
, ϕ(s, a))− f(θTV ⋆

h+1
, ϕ(s, a))

∣∣∣
≤κ1 ·

∥∥∥θ̂h − θTV̂h+1

∥∥∥
2
+ sup

s,a

∣∣∣Ph,s,aV̂h+1 − Ph,s,aV
⋆
h+1

∣∣∣
≤κ1

√
36H2(log(H/δ) + Cd,logK) + 2λC2

Θ

κK
+
∥∥∥V̂h+1 − V ⋆

h+1

∥∥∥
∞

,

Recall V̂h+1(·) := min{maxa f(θ̂h+1, ϕ(·, a)) − Γh(·, a),H} and V ⋆
h+1(·) =

maxa f(θ
⋆
h+1, ϕ(·, a)) = min{maxa f(θ

⋆
h+1, ϕ(·, a)),H}, we obtain∥∥∥V̂h+1 − V ⋆

h+1

∥∥∥
∞
≤ sup

s,a

∣∣∣f(θ̂h+1, ϕ(s, a))− f(θ⋆h+1, ϕ(s, a))
∣∣∣+ sup

h,s,a
Γh(s, a) (23)
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Note the above holds true for any generic Γh(s, a). In particular, according to Algorithm 1, we
specify

Γh(·, ·) = dH

√
∇θf(θ̂h, ϕ(·, ·))⊤Σ−1

h ∇θf(θ̂h, ϕ(·, ·))
(
+Õ(

1

K
)

)
and by Lemma L.5, with probability 1− δ,

Γh ≤
2dHκ1√

κK
+ Õ(

1

K
)

and by a union bound this implies with probability 1− (H − h+ 1)δ,

sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣

≤Ch+1

√
1

K
+ κ1

√
36H2(log(H/δ) + Cd,logK) + 2λC2

Θ

κK
+

2dHκ1√
κK

+ Õ(
1

K
) := Ch

√
1

K
+ Õ(

1

K
)

Solving for Ch, we obtain Ch ≤ κ1H

√
36H2(log(H/δ)+Cd,log K)+2λC2

Θ

κ +H 2dHκ1√
κ

for all H . By a
union bound (replacing δ by δ/H), we obtain the stated result.

Step2: Utilizing the intermediate result equation 23, we directly have with probability 1− δ,

sup
h

∥∥∥V̂h − V ⋆
h

∥∥∥
∞
≤ sup

s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣+ 2dHκ1√

κK
+O(

1

K
),

where sups,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣ can be bounded using Step1.

Step3: Denote M :=

(
κ1H

√
36H2(log(H2/δ)+Cd,log K)+2λC2

Θ

κ + 2H2dκ1√
κ

)√
1
K + O( 1

K ), then by

Step1 we have with probability 1− δ (here ξ is some point between θ̂h and θ⋆h) for all h ∈ [H]

M2 ≥ sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣2

≥Eµ,h[(f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a)))
2] ≥ κ

∥∥∥θ̂h − θ⋆h

∥∥∥2
2

where the last inequality is by Assumption 2.3. Solve this to obtain the stated result.

H WITH POSITIVE BELLMAN COMPLETENESS COEFFICIENT ϵF > 0

In Theorem 3.2, we consider the case where ϵF = 0. If ϵF > 0, similar guarantee can be
achieved with the measurement of model misspecification. For instance, the additional error√

16H3ϵF (log(1/δ)+Cd,log K)
K + 4HϵF will show up in Lemma G.1 (as stated in the current version),√

bd,K,ϵF
κ +

√
2HϵF

κ will show up in Lemma G.2. Then the decomposition in equation 3 will incur
the extra δV̂h+1

term with δV̂h+1
might not be 0. The analysis with positive ϵF > 0 will make the

proofs more intricate but incurs no additional technical challenge. Since the inclusion of this quan-
tity is not our major focus, as a result, we only provide the proof for the case where ϵF = 0 so the
readers can focus on the more critical components that characterize the hardness of differentiable
function class.

I VFQL AND ITS ANALYSIS

We present the vanilla fitted Q-learning (VFQL) Algorithm 2 as follows. For VFQL, no pessimism
is used and we assume θ̂h ∈ Θ without loss of generality.
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Algorithm 2 Vanilla Fitted Q-Learning (VFQL)

1: Input: Offline Dataset D =
{(

skh, a
k
h, r

k
h, s

k
h+1

)}K,H

k,h=1
. Denote ϕh,k := ϕ(skh, a

k
h).

2: Initialization: Set V̂H+1(·)← 0 and λ > 0.
3: for h = H,H − 1, . . . , 1 do

4: Set θ̂h ← argminθ∈Θ

{∑K
k=1

[
f (θ, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

]2
+ λ · ‖θ‖22

}
5: Set Q̂h(·, ·)← min

{
f(θ̂h, ϕ(·, ·)),H − h+ 1

}+

6: Set π̂h(· | ·)← argmaxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A, V̂h(·)← maxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A

7: end for
8: Output: {π̂h}Hh=1.

I.1 ANALYSIS FOR VFQL (THEOREM 3.1)

Recall ιh(s, a) := PhV̂h+1(s, a) − Q̂h(s, a) and the definition of Bellman operator D.1. Note
min{·,H − h+ 1}+ is a non-expansive operator, therefore we have

|ιh(s, a)| =|PhV̂h+1(s, a)− Q̂h(s, a)| =
∣∣∣∣min

{
PhV̂h+1(s, a),H − h+ 1

}+

−min
{
f(θ̂h, ϕ(·, ·)),H − h+ 1

}+
∣∣∣∣

≤
∣∣∣PhV̂h+1(s, a)− f(θ̂h, ϕ(·, ·))

∣∣∣ ≤ ∣∣∣f(θTV̂h+1
)− f(θ̂h, ϕ(·, ·))

∣∣∣+ ϵF .

By Lemma D.2, we have for any π,

vπ − vπ̂ =−
H∑

h=1

Eπ̂[ιh(sh, ah)] +

H∑
h=1

Eπ[ιh(sh, ah)] ≤
H∑

h=1

Eπ̂[|ιh(sh, ah)|] +
H∑

h=1

Eπ[|ιh(sh, ah)|]

≤
H∑

h=1

Eπ̂[|f(θTV̂h+1
, ϕ(·, ·))− f(θ̂h, ϕ(·, ·))|] +

H∑
h=1

Eπ[|f(θTV̂h+1
, ϕ(·, ·))− f(θ̂h, ϕ(·, ·))|] + 2HϵF

≤
H∑

h=1

√
Eπ̂[|f(θTV̂h+1

, ϕ(·, ·))− f(θ̂h, ϕ(·, ·))|2] +
H∑

h=1

√
Eπ[|f(θTV̂h+1

, ϕ(·, ·))− f(θ̂h, ϕ(·, ·))|2] + 2HϵF

≤2
√
Ceff

H∑
h=1

√
Eµ,h[|f(θTV̂h+1

, ϕ(·, ·))− f(θ̂h, ϕ(·, ·))|2] + 2HϵF

(24)
where the second inequality uses Cauchy inequality and the third one uses the definition of concen-
trability coefficient 2.2.

Next, for VFQL, there is no pessimism therefore the quantity B in Lemma L.10 is zero, hence the
covering number applied in Lemma G.1 is bounded by Cd,log(K) ≤ Õ(d) and

Eµ[ℓh(θ̂h)]−Eµ[ℓh(θTV̂h+1
)] ≤ 36H2(log(1/δ) + Cd,logK) + λC2

Θ

K
+

√
16H3ϵF (log(1/δ) + Cd,logK)

K
+4HϵF .

Now leveraging equation 21 and equation 22 in Theorem G.2 to obtain

Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2]
≤Eµ

ℓh(θ̂h)− λ
∥∥∥θ̂h∥∥∥2

2

K

− Eµ

ℓh(θTV̂h+1
)−

λ
∥∥∥θTV̂h+1

∥∥∥2
2

K

+ 2HϵF

≤36H2(log(H/δ) + Cd,logK) + 2λC2
Θ

K
+ bd,K,ϵF + 2HϵF
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Plug the above into equation 24, we obtain with probability 1− δ, for all policy π,

vπ − vπ̂ ≤ 2
√
CeffH

√
36H2(log(H/δ) + Cd,logK) + 2λC2

Θ

K
+ bd,K,ϵF + 2HϵF + 2HϵF

=2
√
CeffH

√
36H2(log(H/δ) + Cd,logK) + 2λC2

Θ

K
+

√
16H3ϵF (log(1/δ) + Cd,logK)

K
+ 6HϵF + 2HϵF

=
√
CeffH · Õ

(√
H2d+ λC2

Θ

K
+

1
4

√
H3dϵF

K

)
+O(

√
CeffH3ϵF +HϵF )

This finishes the proof of Theorem 3.1.

J PROOFS FOR VAFQL

In this section, we present the analysis for variance-aware fitted Q learning (VAFQL). Throughout
the whole section, we assume ϵF = 0, i.e. the exact Bellman-Completeness holds. The algorithm
is presented in the following. Before giving the proofs of Theorem 3, we first prove some useful
lemmas.

Algorithm 3 Variance-Aware Fitted Q Learning (VAFQL)

1: Input: Split dataset D =
{(

skh, a
k
h, r

k
h

)}K,H

k,h=1
D′ =

{(
s̄kh, ā

k
h, r̄

k
h

)}K,H

k,h=1
. Require β.

2: Initialization: Set V̂H+1(·)← 0. Denote ϕh,k := ϕ(skh, a
k
h), ϕ̄h,k := ϕ(s̄kh, ā

k
h)

3: for h = H,H − 1, . . . , 1 do

4: Set uh ← argminθ∈Θ

{∑K
k=1

[
f
(
θ, ϕ̄h,k

)
− V̂h+1(s̄

k
h+1)

]2
+ λ · ∥θ∥22

}
5: Set vh ← argminθ∈Θ

{∑K
k=1

[
f
(
θ, ϕ̄h,k

)
− V̂ 2

h+1(s̄
k
h+1)

]2
+ λ · ∥θ∥22

}
6: Set

[
V̂arhV̂h+1

]
(·, ·) = f(vh, ϕ(·, ·))[0,(H−h+1)2] −

[
f(uh, ϕ(·, ·))[0,H−h+1]

]2
7: Set σ̂h(·, ·)2 ← max{1, V̂arPh V̂h+1(·, ·)}

8: Set θ̂h ← argminθ∈Θ

{∑K
k=1

[
f (θ, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

]2
/σ̂2

h(s
k
h, a

k
h) + λ · ∥θ∥22

}
9: Set Λh ←

∑K
k=1∇f(θ̂h, ϕh,k)∇f(θ̂h, ϕh,k)

⊤/σ̂2(skh, a
k
h) + λ · I ,

10: Set Γh(·, ·)← β

√
∇θf(θ̂h, ϕ(·, ·))⊤Λ−1

h ∇θf(θ̂h, ϕ(·, ·))
(
+Õ( 1

K
)
)

11: Set Q̄h(·, ·)← f(θ̂h, ϕ(·, ·))− Γh(·, ·), Q̂h(·, ·)← min
{
Q̄h(·, ·), H − h+ 1

}+
12: Set π̂h(· | ·)← argmaxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A, V̂h(·)← maxπh

〈
Q̂h(·, ·), πh(· | ·)

〉
A

13: end for
14: Output: {π̂h}Hh=1.

J.1 PROVABLE EFFICIENCY FOR VARIANCE-AWARE FITTED Q LEARNING

Recall the objective

ℓh(θ) :=
1

K

K∑
k=1

[
f
(
θ, ϕ(skh, a

k
h)
)
− r(skh, a

k
h)− V̂h+1(s

k
h+1)

]2
/σ̂2

h(s
k
h, a

k
h) +

λ

K
· ‖θ‖22

Then by definition, θ̂h := argminθ∈Θ ℓh(θ) and θTV̂h+1
satisfies f(θTV̂h+1

, ϕ) = PhV̂h+1(s
k
h+1)

(recall ϵF = 0). Therefore, in this case, we have the following lemma:
Lemma J.1. Fix h ∈ [H]. With probability 1− δ,

Eµ[ℓh(θ̂h)]− Eµ[ℓh(θTV̂h+1
)] ≤ 36H2(log(1/δ) + Cd,logK) + λC2

Θ

K

where the expectation over µ is taken w.r.t. (skh, a
k
h, s

k
h+1) k = 1, ...,K only (i.e.,

first compute Eµ[ℓh(θ)] for a fixed θ, then plug-in either θ̂h+1 or θTV̂h+1
). Here
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Cd,log(K) := d log(1+24CΘ(H + 1)κ1K)+d log
(
1 + 288H2CΘ(κ1

√
CΘ + 2

√
κ1κ2/λ)

2K2
)
+

d2 log
(
1 + 288H2

√
dκ2

1K
2/λ
)
+ d log(1 + 16CΘH

2κ1K) + d log(1 + 32CΘH
3κ1K).

Proof of Lemma J.1. Step1: Consider the case where λ = 0. Indeed, fix h ∈ [H] and any function
V (·) ∈ RS . Similarly, define fV (s, a) := f(θTV , ϕ) = PhV . For any fixed θ ∈ Θ, denote
g(s, a) = f(θ, ϕ(s, a)). Moreover, for any u, v ∈ Θ, define

σ2
u,v(·, ·) := max{1, f(v, ϕ(·, ·))[0,(H−h+1)2] −

[
f(u, ϕ(·, ·))[0,H−h+1]

]2}
Then define (we omit the subscript u, v of σ2

u,v for the illustration purpose when there is no ambigu-
ity)

X(g, V, fV , σ
2) :=

(g(s, a)− r − V (s′))2 − (fV (s, a)− r − V (s′))2

σ2
u,v(s, a)

.

Since all episodes are independent of each other, Xk(g, V, fV ) :=
X(g(skh, a

k
h), V (skh+1), fV (s

k
h, a

k
h), σ

2(skh, a
k
h)) are independent r.v.s and it holds

1

K

K∑
k=1

Xk(g, V, fV , σ
2) = ℓ(g)− ℓ(fV ). (25)

Next, the variance of X is bounded by

Var[X(g, V, fV , σ
2)] ≤ Eµ[X(g, f, fV , σ

2)2]

=Eµ

[(
(g(sh, ah)− rh − V (sh+1))

2 − (fV (sh, ah)− rh − V (sh+1))
2
)2

/σ2(sh, ah)
2

]
=Eµ

[
(g(sh, ah)− fV (sh, ah))

2

σ2(sh, ah)
· (g(sh, ah) + fV (sh, ah)− 2rh − 2V (sh+1))

2

σ2(sh, ah)

]
≤4H2 · Eµ[

(g(sh, ah)− fV (sh, ah))
2

σ2(sh, ah)
]

=4H2 · Eµ

[
(g(sh, ah)− rh − V (sh+1))

2 − (fV (sh, ah)− rh − V (sh+1))
2

σ2(sh, ah)

]
(∗)

=4H2 · Eµ[X(g, f, fV , σ
2)]

(∗) follows from that

Eµ

[
f(θ̂h, ϕ(sh, ah))− f(θTV̂h+1

, ϕ(sh, ah))

σ2(sh, ah)
· E
(
f
(
θTV̂h+1

, ϕ(sh, ah)
)
− rh − V̂h+1(sh+1)

∣∣∣sh, ah)] = 0.

Therefore, by Bernstein inequality, with probability 1− δ,

Eµ[X(g, f, fV , σ
2)]− 1

K

K∑
k=1

Xk(g, f, fV , σ
2)

≤
√

2Var[X(g, f, fV , σ2)] log(1/δ)

K
+

4H2 log(1/δ)

3K

≤
√

8H2Eµ[X(g, f, fV , σ2)] log(1/δ)

K
+

4H2 log(1/δ)

3K
.

Now, if we choose g(s, a) := f(θ̂h, ϕ(s, a)) and u = uh, v = vh from Algorithm 3, then θ̂h
minimizes ℓh(θ), therefore, it also minimizes 1

K

∑K
k=1 Xi(θ, V̂h+1, fV̂h+1

, σ̂2
h) and this implies

1

K

K∑
k=1

Xk(θ̂h, V̂h+1, fV̂h+1
, σ̂2

h) ≤
1

K

K∑
k=1

Xk(θTV̂h+1
, V̂h+1, fV̂h+1

, σ̂2
h) = 0.
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Thus, we obtain

Eµ[X(θ̂h, V̂h+1, fV̂h+1
, σ̂2

h)] ≤

√
8H2 · Eµ[X(θ̂h, V̂h+1, fV̂h+1

, σ̂2
h)] log(1/δ)

K
+

4H2 log(1/δ)

3K
.

However, the above does not hold with probability 1 − δ since θ̂h, σ̂2
h and V̂h+1 :=

min{maxa f(θ̂h+1, ϕ(·, a))−
√
∇f(θ̂h+1, ϕ(·, a))⊤A · ∇f(θ, ϕ(·, a)),H} (where A is certain sym-

metric matrix with bounded norm) depend on θ̂h, θ̂h+1 which are data-dependent. Therefore, we
need to further apply covering Lemma L.11 and choose ϵ = O(1/K) and a union bound to obtain
with probability 1− δ,

Eµ[X(θ̂h, V̂h+1, fV̂h+1
, σ̂2

h)] ≤

√
8H2 · Eµ[X(θ̂h, V̂h+1, fV̂h+1

, σ̂2
h)](log(1/δ) + Cd,logK)

K
+
4H2(log(1/δ) + Cd,logK)

3K
.

where Cd,log(K) := d log(1+24CΘ(H + 1)κ1K)+d log
(
1 + 288H2CΘ(κ1

√
CΘ + 2

√
κ1κ2/λ)

2K2
)
+

d2 log
(
1 + 288H2

√
dκ2

1K
2/λ
)
+ d log(1 + 16CΘH

2κ1K) + d log(1 + 32CΘH
3κ1K) (where

we let B = 1/λ since
∥∥Λ−1

h

∥∥
2
≤ 1/λ). Solving this quadratic equation to obtain with probability

1− δ,

Eµ[X(θ̂h, V̂h+1, fV̂h+1
)] ≤ 36H2(log(1/δ) + Cd,logK)

K
.

Now according to equation 25, by definition we finally have with probability 1 − δ (recall the
expectation over µ is taken w.r.t. (skh, a

k
h, s

k
h+1) k = 1, ...,K only)

Eµ[ℓh(θ̂h+1)]− Eµ[ℓh(θTV̂h+1
)] = Eµ[X(θ̂h, V̂h+1, fV̂h+1

)] ≤ 36H2(log(1/δ) + Cd,logK)

K
(26)

where we used f(θTV̂h+1
, ϕ) = PhV̂h+1 = fV̂h+1

.

Step2. If λ > 0, there is only extra term λ
K

(∥∥∥θ̂h∥∥∥
2
−
∥∥∥θTV̂h+1

∥∥∥
2

)
≤ λ

K

∥∥∥θ̂h∥∥∥
2
≤ λC2

Θ

K in addition
to above. This finishes the proof.

Theorem J.2 (Provable efficiency for VAFQL). Let Cd,logK be the same as Lemma J.1. Then, with
probability 1− δ∥∥∥θ̂h − θTV̂h+1

∥∥∥
2
≤
√

36H4(log(H/δ) + Cd,logK) + 2λC2
Θ

κK
, ∀h ∈ [H].

Proof of Theorem J.2. Apply a union bound in Lemma J.1, we have with probability 1− δ,

Eµ[ℓh(θ̂h)]− Eµ[ℓh(θTV̂h+1
)] ≤ 36H2(log(H/δ) + Cd,logK) + λC2

Θ

K
, ∀h ∈ [H]

⇒Eµ[ℓh(θ̂h)−
λ

K

∥∥∥θ̂h∥∥∥2
2
]− Eµ[ℓh(θTV̂h+1

)− λ

K

∥∥∥θTV̂h+1

∥∥∥2
2
] ≤ 36H2(log(H/δ) + Cd,logK) + 2λC2

Θ

K
(27)

Now we prove for all h ∈ [H],

Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2]

= Eµ

ℓh(θ̂h)− λ
∥∥∥θ̂h∥∥∥2

2

K

−Eµ

ℓh(θTV̂h+1
)−

λ
∥∥∥θTV̂h+1

∥∥∥2
2

K

 .

(28)
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Indeed, identical to equation 26,

Eµ

ℓh(θ̂h)− λ
∥∥∥θ̂h∥∥∥2

2

K

− Eµ

ℓh(θTV̂h+1
)−

λ
∥∥∥θTV̂h+1

∥∥∥2
2

K

 = Eµ[X(θ̂h, V̂h+1, fV̂h+1
)]

=Eµ

([
f
(
θ̂h, ϕ(sh, ah)

)
− rh − V̂h+1(sh+1)

]2
/σ̂2

h(sh, ah)−
[
f
(
θTV̂h+1

, ϕ(sh, ah)
)
− rh − V̂h+1(sh+1)

]2
/σ̂2

h(sh, ah)

)
=Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2

/σ̂2
h(·, ·)

]
+Eµ

[(
f(θ̂h, ϕ(sh, ah))− f(θTV̂h+1

, ϕ(sh, ah))
)
·
(
f
(
θTV̂h+1

, ϕ(sh, ah)
)
− rh − V̂h+1(sh+1)

)
/σ̂2

h(sh, ah)
]

=Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2

/σ̂2
h(·, ·)

]
+Eµ

[(
f(θ̂h, ϕ(sh, ah))− f(θTV̂h+1

, ϕ(sh, ah))
)
· E
(
f
(
θTV̂h+1

, ϕ(sh, ah)
)
− rh − V̂h+1(sh+1)

∣∣∣sh, ah

)
/σ̂2

h(sh, ah)
]

=Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2

/σ̂2
h(·, ·)

]
where the third identity uses law of total expectation and that µ is taken w.r.t. sh, ah, sh+1 only
(recall Lemma J.1) so the σ̂2

h can be move outside of the conditional expectation.12 The fourth
identity uses the definition of θTV̂h+1

since f(θTV̂h+1
, ϕ(s, a)) = Ph,s,aV̂h+1.

Then we have

Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2

/σ̂2
h(·, ·)

]
≥Eµ

[(
f(θ̂h, ϕ(·, ·))− f(θTV̂h+1

, ϕ(·, ·))
)2]

/H2 ≥ κ

H2

∥∥∥θ̂h − θTV̂h+1

∥∥∥2
2
,

where the third identity uses µ is over sh, ah only and the last one uses σ̂2
h(·, ·) ≤ H2. Combine the

above with equation 27 and equation 28, we obtain the stated result.

Theorem J.3 (Provable efficiency of VAFQL (Part II)). Let Cd,logK be the same as Lemma J.1. Fur-

thermore, suppose λ ≤ 1/2C2
Θ and K ≥ max

{
512

κ4
1

κ2

(
log( 2dδ ) + d log(1 +

4κ3
1κ2CΘK3

λ2 )
)
, 4λ

κ

}
.

Then, with probability 1− δ, ∀h ∈ [H]

sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣ ≤ (κ1H

√
36H4(log(H/δ) + Cd,logK) + 2λC2

Θ

κ
+

2dH3κ1√
κ

)√
1

K
+O(

1

K
),

Furthermore, we have with probability 1− δ,

sup
h

∥∥∥V̂h − V ⋆
h

∥∥∥
∞
≤

(
κ1H

√
36H4(log(H/δ) + Cd,logK) + 2λC2

Θ

κ
+

2dH3κ1√
κ

)√
1

K
+O(

1

K
)

=Õ

(
κ1H

3

√
d2

κ

√
1

K

)

where Õ absorbs Polylog terms and higher order terms. Lastly, it also holds for all h ∈ [H], w.p.
1− δ∥∥∥θ̂h − θ⋆h

∥∥∥
2
≤

(
κ1H

√
72H4(log(H2/δ) + Cd,logK) + 4λC2

Θ

κ
+

4H3dκ1

κ

)√
1

K
+O(

1

K
)

=Õ

(
κ1H

3d

κ

√
1

K

)
12Recall σ̂2

h computed in Algorithm 3 uses an independent copy D′.
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Proof of Theorem J.3. Step1: we show the first result.

We prove this by backward induction. When h = H + 1, by convention f(θ̂h, ϕ(s, a)) =
f(θ⋆h, ϕ(s, a)) = 0 so the base case holds. Suppose for h + 1, with probability 1 − (H − h)δ,

sups,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣ ≤ Ch+1

√
1
K , we next consider the case for t = h.

On one hand, by Theorem J.2, we have with probability 1− δ/2,

sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣

≤ sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θTV̂h+1
, ϕ(s, a))

∣∣∣+ sup
s,a

∣∣∣f(θTV̂h+1
, ϕ(s, a))− f(θ⋆h, ϕ(s, a))

∣∣∣
=sup

s,a

∣∣∣∇f(ξ, ϕ(s, a))⊤(θ̂h − θTV̂h+1
)
∣∣∣+ sup

s,a

∣∣∣f(θTV̂h+1
, ϕ(s, a))− f(θTV ⋆

h+1
, ϕ(s, a))

∣∣∣
≤κ1 ·

∥∥∥θ̂h − θTV̂h+1

∥∥∥
2
+ sup

s,a

∣∣∣Ph,s,aV̂h+1 − Ph,s,aV
⋆
h+1

∣∣∣
≤κ1

√
36H4(log(H/δ) + Cd,logK) + 2λC2

Θ

κK
+
∥∥∥V̂h+1 − V ⋆

h+1

∥∥∥
∞

,

Recall we have the form V̂h+1(·) := min{maxa f(θ̂h+1, ϕ(·, a)) − Γh(·, a),H} and V ⋆
h+1(·) =

maxa f(θ
⋆
h+1, ϕ(·, a)) = min{maxa f(θ

⋆
h+1, ϕ(·, a)),H}, we obtain∥∥∥V̂h+1 − V ⋆

h+1

∥∥∥
∞
≤ sup

s,a

∣∣∣f(θ̂h+1, ϕ(s, a))− f(θ⋆h+1, ϕ(s, a))
∣∣∣+ sup

h,s,a
Γh(s, a) (29)

Note the above holds true for any generic Γh(s, a). In particular, according to Algorithm 3, we
specify

Γh(·, ·) = d

√
∇θf(θ̂h, ϕ(·, ·))⊤Λ−1

h ∇θf(θ̂h, ϕ(·, ·))
(
+Õ(

1

K
)

)
and by Lemma L.5, with probability 1−δ (note here Σ−1

h is replaced by Λ−1
h and

∥∥Λ−1
h

∥∥
2
≤ H2/κ),

Γh ≤
2dH2κ1√

κK
+O(

1

K
)

and by a union bound this implies with probability 1− (H − h+ 1)δ,

sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣

≤Ch+1

√
1

K
+ κ1

√
36H4(log(H/δ) + Cd,logK) + 2λC2

Θ

κK
+

2dH2κ1√
κK

+O(
1

K
) := Ch

√
1

K
.

Solving for Ch, we obtain Ch ≤ κ1H

√
36H4(log(H/δ)+Cd,log K)+2λC2

Θ

κ +H 2dH2κ1√
κ

for all H . By a
union bound (replacing δ by δ/H), we obtain the stated result.

Step2: Utilizing the intermediate result equation 29, we directly have with probability 1− δ,

sup
h

∥∥∥V̂h − V ⋆
h

∥∥∥
∞
≤ sup

s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣+ 2dH2κ1√

κK
+O(

1

K
),

where sups,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣ can be bounded using Step1.

Step3: Denote M :=

(
κ1H

√
36H4(log(H2/δ)+Cd,log K)+2λC2

Θ

κ + 2H3dκ1√
κ

)√
1
K + O( 1

K ), then by

Step1 we have with probability 1− δ (here ξ is some point between θ̂h and θ⋆h) for all h ∈ [H]

M2 ≥ sup
s,a

∣∣∣f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))
∣∣∣2

≥ Eµ[
(
f(θ̂h, ϕ(s, a))− f(θ⋆h, ϕ(s, a))

)2
] ≥ κ

∥∥∥θ̂h − θ⋆h

∥∥∥2
2
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where the last step is by Assumption 2.3. Solving this to obtain the stated result.

J.2 BOUNDING |σ̂2
h − σ⋆2

h |

Recall the definition σ⋆2
h (·, ·) = max{1, [VarPh

V ⋆
h+1](·, ·)}. In this section, we bound the term

|σ̂2
h − σ⋆2

h | :=
∥∥σ̂2

h(·, ·)− σ⋆2
h (·, ·)

∥∥
∞ and

uh =argmin
θ∈Θ

{
1

K

K∑
k=1

[
f
(
θ, ϕ̄h,k

)
− V̂h+1(s̄

k
h+1)

]2
+

λ

K
· ‖θ‖22

}

vh =argmin
θ∈Θ

{
1

K

K∑
k=1

[
f
(
θ, ϕ̄h,k

)
− V̂ 2

h+1(s̄
k
h+1)

]2
+

λ

K
· ‖θ‖22

} (30)

where
σ̂2
h(·, ·) := max{1, f(vh, ϕ(·, ·))[0,(H−h+1)2] −

[
f(uh, ϕ(·, ·))[0,H−h+1]

]2}
and true parameters u⋆

h,v
⋆
h satisfy f(u⋆

h, ϕ(·, ·)) = EP (s′|·,·)[V
⋆
h (s

′)], f(v⋆
h, ϕ) =

EP (s′|·,·)[V
⋆2
h (s′)]. Furthermore, we define

σ2
V̂h+1

(·, ·) := max{1, [VarPh
V̂h+1](·, ·)}

and the parameter Expectation operator J : V ∈ RS → θJV ∈ Θ such that:
f(θJV , ϕ) = EPh

[V (s′)], ∀ ‖V ‖2 ≤ BF .
Note θJV ∈ Θ by Bellman completeness, reward r is constant and differentiability (Definition 1.1)
is an additive closed property. By definition,

|σ̂2
h − σ2

V̂h+1
| ≤|f(vh, ϕ)− f(θJV̂ 2

h+1
, ϕ)|+ |f(uh, ϕ)

2 − f(θJV̂h+1
, ϕ)2|

≤|f(vh, ϕ)− f(θJV̂ 2
h+1

, ϕ)|+ 2H · |f(uh, ϕ)− f(θJV̂h+1
, ϕ)|

and
|σ⋆2

h − σ̂2
h| ≤|f(v⋆

h, ϕ)− f(vh, ϕ)|+ |f(u⋆
h, ϕ)

2 − f(vh, ϕ)
2|

≤|f(v⋆
h, ϕ)− f(vh, ϕ)|+ 2H · |f(u⋆

h, ϕ)− f(vh, ϕ)|

We first give the following result.

Lemma J.4. Suppose λ ≤ 1/2C2
Θ and K ≥ max

{
512

κ4
1

κ2

(
log( 2dδ ) + d log(1 +

4κ3
1κ2CΘK3

λ2 )
)
, 4λ

κ

}
.

Then, with probability 1− δ, ∀h ∈ [H],∥∥∥uh − θJV̂h+1

∥∥∥
2
≤

√
36H2(log(H/δ) + Õ(d2)) + 2λC2

Θ

κK
, ∀h ∈ [H],

∥∥∥vh − θJV̂ 2
h+1

∥∥∥
2
≤

√
36H4(log(H/δ) + Õ(d2)) + 2λC2

Θ

κK
, ∀h ∈ [H].

and

sup
s,a
|f(uh, ϕ(s, a))− f(u⋆

h, ϕ(s, a))| ≤

κ1H

√
36H2(log(H2/δ) + Õ(d2)) + 2λC2

Θ

κ
+

2H2dκ1√
κ

√ 1

K
+O(

1

K
),

sup
s,a
|f(vh, ϕ(s, a))− f(v⋆

h, ϕ(s, a))| ≤

κ1H

√
36H4(log(H2/δ) + Õ(d2)) + 2λC2

Θ

κ
+

2H3dκ1√
κ

√ 1

K
+O(

1

K
).

The above directly implies for all h ∈ [H], with probability 1− δ,

|σ⋆2
h − σ̂2

h| ≤

3κ1H
2

√
36H4(log(H2/δ) + Õ(d2)) + 2λC2

Θ

κ
+

6H4dκ1√
κ

√ 1

K
+O(

1

K
)

|σ̂2
h − σ2

V̂h+1
| ≤3Hκ1

√
36H4(log(H/δ) + Õ(d2)) + 2λC2

Θ

κK
.
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Proof of Lemma J.4. In fact, the proof follows a reduction from the provable efficiency procedure
conducted in Section G. This is due to the regression procedure in equation 30 is the same as
the procedure equation 17 except the parameter Bellman operator T is replaced by the param-
eter Expectation operator J (recall here ϕ̄h,k uses the independent copy D′ and Õ(d2) comes
from the covering argument.). Concretely, the X(g, V, fV ) used in Lemma G.1 will be modified
to X(g, V, fV ) = (g(s, a)−V (s′))2− (f(θJV , ϕ(s, a))−V (s′))2 by removing reward information
and the decomposition

Eµ
[
(g(sh, ah)− V (sh+1))

2 − (f(θJV , ϕ(sh, ah))− V (sh+1))
2
]
= Eµ

[
(g(sh, ah)− f(θJV , ϕ(sh, ah)))

2
]

holds true. Then with probability 1− δ,

|σ⋆2
h − σ̂2

h| ≤|f(v⋆
h, ϕ)− f(vh, ϕ)|+ 2H · |f(u⋆

h, ϕ)− f(vh, ϕ)|

≤

3κ1H
2

√
36H4(log(H2/δ) + Õ(d2)) + 2λC2

Θ

κ
+

6H4dκ1√
κ

√ 1

K
+O(

1

K
).

and

|σ̂2
h − σ2

V̂h+1
| ≤|f(vh, ϕ)− f(θJV̂ 2

h+1
, ϕ)|+ 2H · |f(uh, ϕ)− f(θJV̂h+1

, ϕ)|

≤κ1

∥∥∥vh − θJV̂ 2
h+1

∥∥∥
2
+ 2Hκ1

∥∥∥uh − θJV̂h+1

∥∥∥
2

≤3Hκ1

√
36H4(log(H/δ) + Õ(d2)) + 2λC2

Θ

κK
.

J.3 PROOF OF THEOREM 4.1

In this section, we sketch the proof of Theorem 4.1 since the most components are identical to
Theorem 3.2. We will focus on highlighting the difference for obtaining the tighter bound.

First of all, Recall in the first-order condition, we have

∇θ


K∑

k=1

[
f (θ, ϕh,k)− rh,k − V̂h+1

(
skh+1

)]2
σ̂2
h(s

k
h, a

k
h)

+ λ · ‖θ‖22


∣∣∣∣∣∣∣
θ=θ̂h

= 0, ∀h ∈ [H].

Therefore, if we define the quantity Zh(·, ·) ∈ Rd as

Zh(θ|V, σ2) =

K∑
k=1

[
f (θ, ϕh,k)− rh,k − V

(
skh+1

)]
σ(skh, a

k
h)

∇f(θ, ϕh,k)

σ(skh, a
k
h)

+ λ · θ, ∀θ ∈ Θ, ‖V ‖2 ≤ H,

then we have
Zh(θ̂h|V̂h+1, σ̂

2
h) = 0.

According to the regression oracle (Line 8 of Algorithm 3), the estimated Bellman operator P̂h maps
V̂h+1 to θ̂h, i.e. P̂hV̂h+1 = f(θ̂h, ϕ). Therefore (recall Definition D.1)

PhV̂h+1(s, a)− P̂hV̂h+1(s, a) = PhV̂h+1(s, a)− f(θ̂h, ϕ(s, a))

=f(θTV̂h+1
, ϕ(s, a))− f(θ̂h, ϕ(s, a))

=∇f(θ̂h, ϕ(s, a))
(
θTV̂h+1

− θ̂h

)
+Hoth,1,

(31)

where we apply the first-order Taylor expansion for the differentiable function f at point θ̂h and
Hoth,1 is a higher-order term. Indeed, the following Lemma E.1 bounds the Hoth,1 term with
Õ( 1

K ).
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Lemma J.5. Recall the definition (from the above decomposition) Hoth,1 := f(θTV̂h+1
, ϕ(s, a)) −

f(θ̂h, ϕ(s, a))−∇f(θ̂h, ϕ(s, a))
(
θTV̂h+1

− θ̂h

)
, then with probability 1− δ,

|Hoth,1| ≤ Õ(
1

K
), ∀h ∈ [H].

Proof. The proof is identical to that of Lemma E.1 but with the help of Lemma J.2.

Next, according to the expansion of Zh(θ|V̂h+1, σ̂
2
h), we have

∇f(θ̂h, ϕ(s, a))
(
θTV̂h+1

− θ̂h

)
= I1 + I2 + I3 +Hot2, (32)

where

Hot2 :=∇f(θ̂h, ϕ(s, a))Λ−1
h

[
R̃K(θTV̂h+1

) + λθTV̂h+1

]
∆Λs

h
=

K∑
k=1

(
f(θ̂h, ϕh,k)− rh,k − V̂h+1(s

k
h+1)

)
· ∇2

θθf(θ̂h, ϕh,k)

σ̂2(skh, a
k
h)

Λh =

K∑
k=1

∇θf(θ̂h, ϕh,k)∇⊤
θ f(θ̂h,k, ϕh,k)

σ̂2(skh, a
k
h)

+ λId

R̃K(θTV̂h+1
) =∆Λs

h
(θ̂h − θTV̂h+1

) +RK(θTV̂h+1
)

where RK(θTV̂h+1
) is the second order residual that is bounded by Õ(1/K) and

I1 =∇f(θ̂h, ϕ(s, a))Λ−1
h

K∑
k=1

(
f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)

σ̂2
h(s

k
h, a

k
h)

I2 =∇f(θ̂h, ϕ(s, a))Λ−1
h

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− f(θTV ⋆
h+1

, ϕh,k)− V̂h+1(s
k
h+1) + V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)

σ̂2
h(s

k
h, a

k
h)

I3 =∇f(θ̂h, ϕ(s, a))Λ−1
h

K∑
k=1

(
f(θTV̂h+1

, ϕh,k)− rh,k − V̂h+1(s
k
h+1)

)
·
(
∇⊤

θ f(θTV̂h+1
, ϕh,k)−∇⊤

θ f(θ̂h, ϕh,k)
)

σ̂2
h(s

k
h, a

k
h)

Similar to the PFQL case, I2, I3,Hot2 can be bounded to have order O(1/K) via provably efficiency
theorems in Section J.1 and in particular, the inclusion of σ2

u,v will not cause additional order in d.13

Now we prove the result for the dominate term I1.

Lemma J.6. With probability 1− δ,

|I1| ≤ 4Hd
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Σ−1
h

· Cδ,logK + Õ(
κ1√
κK

),

where Cδ,logK only contains Polylog terms.

Proof of Lemma J.6. First of all, by CauchySchwarz inequality, we have

|I1| ≤
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Λ−1
h

·

∥∥∥∥∥∥
K∑

k=1

(
f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)

σ̂2
h(s

k
h, a

k
h)

∥∥∥∥∥∥
Λ−1

h

.

(33)
Recall that σ2

u,v(·, ·) := max{1, f(v, ϕ(·, ·))[0,(H−h+1)2] −
[
f(u, ϕ(·, ·))[0,H−h+1]

]2}.
13Note in Lemma L.11, we only have additive terms that has the same order has Lemma L.10.
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Step1. Let the fixed θ ∈ Θ be arbitrary and fixed u, v such that σ2
u,v(·, ·) ≥ 1

2σ
2
u⋆

h,v
⋆
h
(·, ·) =

1
2σ

⋆2
h (·, ·) and define xk(θ, u, v) = ∇θf(θ, ϕh,k)/σu,v(s

k
h, a

k
h). Next, define Gu,v(θ) =∑K

k=1∇f(θ, ϕ(skh, akh)) · ∇f(θ, ϕ(skh, akh))⊤/σ2
u,v(s

k
h, a

k
h) + λId, then ‖xk‖2 ≤ κ1. Also denote

ηk := [f(θTV ⋆
h+1

, ϕh,k)− rh,k − V ⋆
h+1(s

k
h+1)]/σu,v(s

k
h, a

k
h), then E[ηk|skh, akh] = 0 and

Var[ηk|skh, akh] =
Var[f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)|skh, akh]

σ2
u,v(s

k
h, a

k
h)

≤
2Var[f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)|skh, akh]

σ⋆2
h (skh, a

k
h)

=
2[VarPh

V ⋆
h+1](s

k
h, a

k
h)

σ⋆2
h (skh, a

k
h)

≤ 2,

then by Self-normalized Bernstein’s inequality (Lemma L.4), with probability 1− δ,∥∥∥∥∥
K∑

k=1

xk(θ, u, v)ηk

∥∥∥∥∥
G(θ,u,v)−1

≤ 16

√
d log

(
1 +

Kκ2
1

λd

)
· log

(
4K2

δ

)
+4ζ log

(
4K2

δ

)
≤ Õ(

√
d)

where |ηk| ≤ ζ with ζ = 2maxs,a,s′
|f(θTV ⋆

h+1
,ϕ(s,a))−r−V ⋆

h+1(s
′)|

σ⋆
h(s,a)

and the last inequality uses
√
d ≥

Õ(ζ).

Step2. Define h(θ, u, v) :=
∑K

k=1 xk(θ, u, v)ηk(u, v) and H(θ, u, v) := ‖h(θ, u, v)‖Gu,v(θ)−1 ,

‖h(θ1, u1, v1)− h(θ2, u2, v2)‖2 ≤ Kmax
k
‖(xk · ηk)(θ1, u1, v1)− (xk · ηk)(θ2, u2, v2)‖2

≤ Kmax
k

{
H

∣∣∣∣∣∇f(θ1, ϕh,k)−∇f(θ2, ϕh,k)

σ2
u1,v1

(skh, a
k
h)

∣∣∣∣∣+Hκ1

∣∣∣∣∣σ2
u1,v1

(skh, a
k
h)− σ2

u2,v2
(skh, a

k
h)

σ2
u1,v1

(skh, a
k
h)σ

2
u2,v2

(skh, a
k
h)

∣∣∣∣∣
}

≤ KHκ1 ‖θ1 − θ2‖2 +KHκ1

∥∥σ2
u1,v1

− σ2
u2,v2

∥∥
2

Furthermore,∥∥Gh(θ1, u1, v1)
−1 −Gh(θ2, u2, v2)

−1
∥∥
2
≤
∥∥Gh(θ1, u1, v1)

−1
∥∥
2
∥Gh(θ1, u1, v1)−Gh(θ2, u2, v2)∥2

∥∥Gh(θ2, u2, v2)
−1
∥∥
2

≤ 1

λ2
K sup

k

∥∥∥∥∇f(θ1, ϕh,k) · ∇f(θ1, ϕh,k)
⊤

σ2
u1,v1(s

k
h, a

k
h)

− ∇f(θ2, ϕh,k) · ∇f(θ2, ϕh,k)
⊤

σ2
u2,v2(s

k
h, a

k
h)

∥∥∥∥
2

≤ 1

λ2

(
Kκ2κ1 ∥θ1 − θ2∥2 +Kκ2

1

∥∥σ2
u1,v1 − σ2

u2,v2

∥∥
2

)
All the above imply

|H(θ1, u1, v1)−H(θ2, u2, v2)| ≤
√
|h(θ1, u1, v1)⊤Gu1,v1(θ1)

−1h(θ1, u1, v1)− h(θ2, u2, v2)⊤Gu2,v2(θ2)
−1h(θ2, u2, v2)|

≤
√
∥h(θ1, u1, v1)− h(θ2, u2, v2)∥2 ·

1

λ
·KHκ1 +

√
KHκ1 · ∥Gu1,v1(θ1)

−1 −Gu2,v2(θ2)
−1∥2 ·KHκ1

+

√
(KHκ1 ·

1

λ
) · ∥h(θ1, u1, v1)− h(θ2, u2, v2)∥2

≤2
√

KHκ1(∥θ1 − θ2∥2 +
∥∥σ2

u1,v1 − σ2
u2,v2

∥∥
2
) · 1

λ
·KHκ1 +

√
K2H2κ2

1 ·
Kκ1

λ2

(
κ2 ∥θ1 − θ2∥2 + κ1

∥∥σ2
u1,v1 − σ2

u2,v2

∥∥
2

)
≤
(√

4K2H2κ2
1/λ+

√
K3H2κ3

1κ2/λ2

)√
∥θ1 − θ2∥2 +

(√
4K2H2κ2

1/λ+
√

K3H2κ4
1/λ

2

)√∥∥σ2
u1,v1 − σ2

u2,v2

∥∥
2

note

|σ2
u1,v1

(s, a)− σ2
u2,v2

(s, a)| ≤ |f(v1, ϕ(s, a))− f(v2, ϕ(s, a))|+ 2H |f(u1, ϕ(s, a))− f(u2, ϕ(s, a))|
≤κ1 ‖v1 − v2‖2 + 2Hκ1 ‖u1 − u2‖2 ,

Then a ϵ-covering net of {H(θ, u, v)} can be constructed by the union of covering net for θ, u, v and
by Lemma L.8, the covering number Nϵ satisfies (where Õ absorbs Polylog terms)

logNϵ ≤Õ(d)
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Step3. First note by definition in Step2∥∥∥∥∥∥
K∑

k=1

(
f(θTV ⋆

h+1
, ϕh,k)− rh,k − V ⋆

h+1(s
k
h+1)

)
· ∇⊤

θ f(θ̂h, ϕh,k)

σ̂2
h(s

k
h, a

k
h)

∥∥∥∥∥∥
Λ−1

h

= H(θ̂h,uh,vh)

Now choosing ϵ = O(1/K) in Step2 and union bound over the covering number in Step2, we obtain
with probability 1− δ (recall

√
d ≥ Õ(ζ)),

H(θ̂h,uh,vh) ≤16

√
d log

(
1 +

Kκ2
1

λd

)
· [log

(
4K2

δ

)
+ Õ(d)] + 4ζ[log

(
4K2

δ

)
+ Õ(d)] +O(

1

K
)

≤Õ(d) +O(
1

K
)

where we absorb all the Polylog terms. Combing above with equation 33, we obtain with probability
1− δ,

|I1| ≤
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Λ−1
h

·H(θ̂h,uh,vh)

≤
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Λ−1
h

·
[
Õ(d) +O(

1

K
)

]
≤Õ

(
d
∥∥∥∇f(θ̂h, ϕ(s, a))∥∥∥

Λ−1
h

)
+ Õ(

κ1√
κK

),

Combing dominate term I1 (via Lemma J.6) and all other higher order terms we can obtain the first
result together with Lemma D.3.

The proof of the second result is also very similar to the proofs in Section F.2. Concretely, when
picking π = π⋆, we can convert the quantity√

∇⊤
θ f(θ̂h, ϕ(sh, ah))Λ

−1
h ∇θf(θ̂h, ϕ(sh, ah))

to √
∇⊤

θ f(θ
⋆
h, ϕ(sh, ah))Λ

−1
h ∇θf(θ⋆h, ϕ(sh, ah))

using Theorem J.3, and convert√
∇⊤

θ f(θ
⋆
h, ϕ(sh, ah))Λ

−1
h ∇θf(θ⋆h, ϕ(sh, ah))

to √
∇⊤

θ f(θ
⋆
h, ϕ(sh, ah))Λ

⋆−1
h ∇θf(θ⋆h, ϕ(sh, ah))

using Lemma J.4.

K THE LOWER BOUND

Theorem K.1 (Restatement of Theorem 4.2). Specifying the model to have linear representation
f = 〈θ, ϕ〉. There exist a pair of universal constants c, c′ > 0 such that given dimension d, horizon
H and sample size K > c′d3, one can always find a family of MDP instances such that for any
algorithm π̂

inf
π̂

sup
M∈M

EM

[
v⋆ − vπ̂

]
≥ c
√
d ·

H∑
h=1

Eπ⋆

[√
∇⊤

θ f(θ
⋆
h, ϕ(·, ·))(Λ

⋆,p
h )−1∇θf(θ⋆h, ϕ(·, ·))

]
, (34)

where Λ⋆,p
h = E

[∑K
k=1

∇θf(θ
⋆
h,ϕ(skh,ak

h))·∇θf(θ
⋆
h,ϕ(skh,ak

h))⊤

Varh(V ⋆
h+1

)(sk
h
,ak

h
)

]
.

Remark K.2. Note Theorem 4.2 is a valid lower bound for comparison. This is because the upper
bound result holds true for all model f such that the corresponding F satisfies Assumption 2.1, 2.3.
Therefore, for the lower bound construction it suffices to find one model f such that the lower bound
equation 34 holds. Here we simply choose the linear function approximation.
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K.1 REGARDING THE PROOF OF LOWER BOUND

The proof of Theorem 4.2 can be done via a reduction to linear function approximation lower bound.
In fact, it can be directly obtained from Theorem 3.5 of Yin et al. (2022), and the original proof
comes from Theorem 2 of Zanette et al. (2021).

Concretely, all the proofs in Theorem 3.5 of Yin et al. (2022) follows and the only modification is to
replace √

Eπ⋆ [ϕ]⊤ (Λ⋆
h)

−1 Eπ⋆ [ϕ] ≤ 1

2
‖ϕ (+1, uh)‖(Λ⋆,p

h )
−1 +

1

2
‖ϕ (−1, uh)‖(Λ⋆,p

h )
−1

in Section E.5 by

Eπ⋆

[√
ϕ(·, ·)⊤(Λ⋆,p

h )−1ϕ(·, ·)
]
=

1

2

∥∥ϕ(+1, uh)
∥∥
(Λ⋆,p

h )−1 +
1

2

∥∥ϕ(−1, uh)
∥∥
(Λ⋆,p

h )−1 ,

and the final result holds with ϕ(·, ·) = ∇θf(θ
⋆
h, ϕ(·, ·)) by the reduction f = 〈θ, ϕ〉.

L AUXILIARY LEMMAS

Lemma L.1 (k-th Order Mean Value Form of Taylor’s Expansion). Let k ≥ 1 be an integer and let
function f : Rd → R be k times differentiable and continuous over the compact domain Θ ⊂ Rd.
Then for any x, θ ∈ Θ, there exists ξ in the line segment of x and θ, such that

f(x)− f(θ) =∇f(θ)⊤(x− θ) +
1

2!
(x− θ)⊤∇2

θθf(θ)(x− θ) + . . .+
1

(k − 1)!
∇k−1f(θ)

(⊗
(x− θ)

)k−1

+
1

k!
∇kf(ξ)

(⊗
(x− θ)

)k
.

Here∇kf(θ) denotes k-dimensional tensor and
⊗

denotes tensor product.
Lemma L.2 (Vector Hoeffding’s Inequality). Let X = (X1, . . . , Xd) be d-dimensional vector Ran-
dom Variable with E[X] = 0 and ‖X‖2 ≤ R. X(1), . . . , X(n)’s are n samples. Then with probabil-
ity 1− δ, ∥∥∥∥∥ 1n

n∑
i=1

X(i)

∥∥∥∥∥
2

≤
√

4dR2

n
log(

d

δ
).

Proof of Lemma L.2. Since ‖X‖2 ≤ R implies |Xj | ≤ R, by the univariate Hoeffding’s inequality,
for a fixed j ∈ {1, ..., d}, denote Yj :=

1
n

∑n
i=1 X

(i)
j . Then with probability 1−δ (note |X(i)

j | ≤ R),

P

(
|Yj | ≥ 2

√
R2

n
log(

1

δ
)

)
≤ δ.

By a union bound,

P

(
∃ i s.t. |Yj | ≥ 2

√
R2

n
log(

1

δ
)

)
≤ dδ ⇔ P

(
∀ i |Yj | ≤ 2

√
R2

n
log(

1

δ
)

)
≥ 1− dδ

⇔ P
(
∀ i Y 2

j ≤
4R2

n
log(

1

δ
)

)
≥ 1− dδ ⇒ P

(
‖Y ‖2 ≤

√
4dR2

n
log(

1

δ
)

)
≥ 1− dδ

⇔ P

(
‖Y ‖2 ≤

√
4dR2

n
log(

d

δ
)

)
≥ 1− δ.

Lemma L.3 (Hoeffding inequality for self-normalized martingales (Abbasi-Yadkori et al., 2011)).
Let {ηt}∞t=1 be a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-
measurable. Assume ηt also satisfies ηt given Ft−1 is zero-mean and R-subgaussian, i.e.

∀λ ∈ R, E
[
eληt | Ft−1

]
≤ eλ

2R2/2
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Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and ‖xt‖ ≤ L. Let
Λt = λId +

∑t
s=1 xsx

⊤
s . Then for any δ > 0, with probability 1− δ, for all t > 0,∥∥∥∥∥

t∑
s=1

xsηs

∥∥∥∥∥
2

Λ−1
t

≤ 8R2 · d
2
log

(
λ+ tL

λδ

)
.

Lemma L.4 (Bernstein inequality for self-normalized martingales (Zhou et al., 2021a)). Let {ηt}∞t=1
be a real-valued stochastic process. Let {Ft}∞t=0 be a filtration, such that ηt is Ft-measurable.
Assume ηt also satisfies

|ηt| ≤ R,E [ηt | Ft−1] = 0,E
[
η2t | Ft−1

]
≤ σ2.

Let {xt}∞t=1 be an Rd-valued stochastic process where xt is Ft−1 measurable and ‖xt‖ ≤ L. Let
Λt = λId +

∑t
s=1 xsx

⊤
s . Then for any δ > 0, with probability 1− δ, for all t > 0,∥∥∥∥∥

t∑
s=1

xsηs

∥∥∥∥∥
Λ−1

t

≤ 8σ

√
d log

(
1 +

tL2

λd

)
· log

(
4t2

δ

)
+ 4R log

(
4t2

δ

)
Lemma L.5. Let ∇f(θ, ϕ(·, ·)) : S × A → Rd be a bounded function s.t.
supθ∈Θ ‖∇f(θ, ϕ(·, ·))‖2 ≤ κ1. If K satisfies

K ≥ max

{
512

κ4
1

κ2

(
log(

2d

δ
) + d log(1 +

4κ1B
2κ2CΘK

3

λ2
)

)
,
4λ

κ

}
Then with probability at least 1− δ, for all ‖u‖2 ≤ B simultaneously, it holds that

‖u‖Σ−1
h
≤ 2B√

κK
+O(

1

K
)

where Σh =
∑K

k=1∇f(θ̂h, ϕ(skh, akh)) · ∇f(θ̂h, ϕ(skh, akh))⊤ + λId.

Proof of Lemma L.5. For a fixed θ, define Ḡ =
∑K

k=1∇f(θ, ϕ(skh, akh)) ·∇f(θ, ϕ(skh, akh))⊤+λId,
and G = Eµ[∇f(θ, ϕ(sh, ah)) · ∇f(θ, ϕ(sh, ah))⊤], then by Lemma H.5. of Min et al. (2021), as
long as

K ≥ max{512κ4
1

∥∥G−1
∥∥2 log(2d

δ
), 4λ

∥∥G−1
∥∥
2
}, (35)

then with probability 1− δ, for all u ∈ Rd simultaneously, ‖u‖Ḡ−1 ≤ 2√
K
‖u‖G−1 . As a corollary,

if we constraint u to the subspace ‖u‖2 ≤ B, then we have: with probability 1− δ, for all {u ∈ Rd :
‖u‖2 ≤ B} simultaneously,

‖u‖Ḡ−1 ≤
2√
K
‖u‖G−1 =

2√
K

√
u⊤G−1u ≤

2B
√
‖G−1‖2√
K

. (36)

Next, for any θ, define

hu(θ) := ‖u‖Ḡ−1 =
√
u⊤Ḡ−1u =

√√√√u⊤

(
K∑

k=1

∇f(θ, ϕ(skh, akh)) · ∇f(θ, ϕ(skh, akh))⊤ + λId

)−1

u

and Ḡ(θ) =
∑K

k=1∇f(θ, ϕ(skh, akh)) · ∇f(θ, ϕ(skh, akh))⊤ + λId, we have for any θ1, θ2∥∥Ḡ(θ1)− Ḡ(θ2)
∥∥
2
≤

∥∥∥∥∥
K∑

k=1

(
∇f(θ1, ϕ(skh, akh))−∇f(θ2, ϕ(skh, akh))

)
· ∇f(θ1, ϕ(skh, akh))⊤

∥∥∥∥∥
+

∥∥∥∥∥
K∑

k=1

∇f(θ2, ϕ(skh, akh))
(
∇f(θ1, ϕ(skh, akh))−∇f(θ2, ϕ(skh, akh))

)⊤∥∥∥∥∥
≤Kκ2κ1 ‖θ1 − θ2‖2 +Kκ2κ1 ‖θ1 − θ2‖2 ≤ 2Kκ2κ1 ‖θ1 − θ2‖2 .
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Use the basic inequality for a, b > 0⇒ |
√
a−
√
b| ≤

√
|a− b|,

sup
u
|hu(θ1)− hu(θ2)| ≤ sup

u

√∣∣u⊤
(
Ḡ(θ1)−1 − Ḡ(θ2)−1

)
u
∣∣ ≤√B2 ·

∥∥Ḡ(θ1)−1 − Ḡ(θ2)−1
∥∥
2

≤
√
B2 ·

∥∥Ḡ(θ1)−1
∥∥
2

∥∥Ḡ(θ1)− Ḡ(θ2)
∥∥
2

∥∥Ḡ(θ2)−1
∥∥
2

≤
√
B2

1

λ
2Kκ2κ1 ‖θ1 − θ2‖2

1

λ
=

√
2B2Kκ1κ2 ‖θ1 − θ2‖2

λ2

Therefore, the ϵ-covering net of {h(θ) : θ ∈ Θ} is implies by the λ2ϵ2

2KB2κ1κ2
-covering net of {θ :

θ ∈ Θ}, so by Lemma L.8, the covering number Nϵ satisfies

logNϵ ≤ d log(1 +
4B2Kκ1κ2CΘ

λ2ϵ2
).

Select θ = θ̂h. Choose ϵ = O(1/K) and by a union bound over equation 36 to get with probability
1− δ, for all ‖u‖2 ≤ B (note By Assumption 2.3

∥∥G−1
∥∥
2
≤ 1/κ),

‖u‖Σ−1
h
≤ 2B√

κK
+O(

1

K
)

if (union bound over the condition equation 35)

K ≥ max

{
512

κ4
1

κ2

(
log(

2d

δ
) + d log(1 +

4κ1B
2κ2CΘK

3

λ2
)

)
,
4λ

κ

}
where this condition is satisfied by the Lemma statement.

Lemma L.6. let ϕ : S × A → Rd satisfies ‖ϕ(s, a)‖ ≤ C for all s, a ∈ S × A. For any
K > 0, λ > 0, define ḠK =

∑K
k=1 ϕ(sk, ak)ϕ(sk, ak)

⊤ + λId where (sk, ak)’s are i.i.d samples
from some distribution ν. Then with probability 1− δ,∥∥∥∥ ḠK

K
− Eν

[
ḠK

K

]∥∥∥∥ ≤ 4
√
2C2

√
K

(
log

2d

δ

)1/2

.

Proof of Lemma L.6. See Lemma H.5 of Yin et al. (2022) or Lemma H.4 of Lemma Min et al. (2021)
for details.

Lemma L.7 (Lemma H.4 in Yin et al. (2022)). Let Λ1 and Λ2 ∈ Rd×d are two positive semi-definite
matrices. Then: ∥∥Λ−1

1

∥∥ ≤ ∥∥Λ−1
2

∥∥+ ∥∥Λ−1
1

∥∥ · ∥∥Λ−1
2

∥∥ · ‖Λ1 − Λ2‖
and

‖ϕ‖Λ−1
1
≤
[
1 +

√∥∥Λ−1
2

∥∥ ‖Λ2‖ ·
∥∥Λ−1

1

∥∥ · ‖Λ1 − Λ2‖
]
· ‖ϕ‖Λ−1

2
.

for all ϕ ∈ Rd.

L.1 COVERING ARGUMENTS

Lemma L.8. (Covering Number of Euclidean Ball) For any ϵ > 0, the ϵ-covering number of the
Euclidean ball in Rd with radius R > 0 is upper bounded by (1 + 2R/ϵ)d.
Lemma L.9. Define V to be the class mapping S to R with the parametric form

V (·) := min{max
a

f(θ, ϕ(·, a))−
√
∇f(θ, ϕ(·, a))⊤A · ∇f(θ, ϕ(·, a)),H}

where the parameter spaces are {θ : ‖θ‖2 ≤ CΘ} and {A : ‖A‖2 ≤ B}. Let NV
ϵ be the covering

number of ϵ-net with respect to l∞ distance, then we have

logNV
ϵ ≤ d log

(
1 +

8CΘ(κ1

√
CΘ + 2

√
Bκ1κ2)

2

ϵ2

)
+ d2 log

(
1 +

8
√
dBκ2

1

ϵ2

)
.
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Proof of Lemma L.9.

sup
s
|V1(s)− V2(s)|

≤ sup
s,a

∣∣∣f(θ1, ϕ(s, a))−√∇f(θ1, ϕ(s, a))⊤A1 · ∇f(θ1, ϕ(s, a))− f(θ2, ϕ(s, a)) +
√
∇f(θ2, ϕ(s, a))⊤A2 · ∇f(θ2, ϕ(s, a))

∣∣∣
=sup

s,a

∣∣∣∇f(ξ, ϕ(s, a)) · (θ1 − θ2)−
√
∇f(θ1, ϕ(s, a))⊤A1 · ∇f(θ1, ϕ(s, a)) +

√
∇f(θ2, ϕ(s, a))⊤A2 · ∇f(θ2, ϕ(s, a))

∣∣∣
≤κ1 · ∥θ1 − θ2∥2 + sup

s,a

∣∣∣√∇f(θ1, ϕ(s, a))⊤A1 · ∇f(θ1, ϕ(s, a))−
√
∇f(θ2, ϕ(s, a))⊤A2 · ∇f(θ2, ϕ(s, a))

∣∣∣
≤κ1 · ∥θ1 − θ2∥2 + sup

s,a

√
|[∇f(θ1, ϕ(s, a))−∇f(θ2, ϕ(s, a))]⊤A1 · ∇f(θ1, ϕ(s, a))|

+sup
s,a

√
|∇f(θ2, ϕ(s, a))⊤(A1 −A2) · ∇f(θ1, ϕ(s, a))|+ sup

s,a

√
|∇f(θ2, ϕ(s, a))⊤A2 · [∇f(θ1, ϕ(s, a))−∇f(θ2, ϕ(s, a))]|

≤κ1 · ∥θ1 − θ2∥2 + 2 sup
s,a

√
∥∇f(θ1, ϕ(s, a))−∇f(θ2, ϕ(s, a))∥2 ·B · κ1 +

√
κ2
1 ∥A1 −A2∥2

≤κ1 · ∥θ1 − θ2∥2 + 2 sup
s,a

√
∥∇f(θ1, ϕ(s, a))−∇f(θ2, ϕ(s, a))∥2 ·B · κ1 +

√
κ2
1 ∥A1 −A2∥2

≤κ1 · ∥θ1 − θ2∥2 + 2 sup
s,a

√
∥∇f(θ1, ϕ(s, a))∥2 · ∥θ1 − θ2∥2 ·B · κ1 +

√
κ2
1 ∥A1 −A2∥2

≤κ1 · ∥θ1 − θ2∥2 + 2
√

κ2 · ∥θ1 − θ2∥2 ·B · κ1 +
√

κ2
1 ∥A1 −A2∥2

≤
(
κ1

√
CΘ + 2

√
Bκ1κ2

)√
∥θ1 − θ2∥2 + κ1

√
∥A1 −A2∥2 ≤

(
κ1

√
CΘ + 2

√
Bκ1κ2

)√
∥θ1 − θ2∥2 + κ1

√
∥A1 −A2∥F

Here ‖·‖F is Frobenius norm. Let Cθ be the ϵ2

4(κ1

√
CΘ+2

√
Bκ1κ2)2

-net of space {θ : ‖θ‖2 ≤ CΘ}

and Cw be the ϵ2

4κ2
1

-net of the space {A : ‖A‖F ≤
√
dB}, then by Lemma L.8,

|Cw| ≤
(
1 +

8CΘ(κ1

√
CΘ + 2

√
Bκ1κ2)

2

ϵ2

)d

, |CA| ≤

(
1 +

8
√
dBκ2

1

ϵ2

)d2

Therefore, the covering number of space V satisfies

logNV
ϵ ≤ log(|Cw|·|CA|) ≤ d log

(
1 +

8CΘ(κ1

√
CΘ + 2

√
Bκ1κ2)

2

ϵ2

)
+d2 log

(
1 +

8
√
dBκ2

1

ϵ2

)

Lemma L.10 (Covering of Eµ(X(g, V, f))). Define

X(θ, θ′) := (f(θ, ϕ(s, a))− r − Vθ′(s′))2 − (fVθ′ (s, a)− r − Vθ′(s′))2,

where fV := PhV +δV and V (s) has form Vθ(s) that belongs to V (as defined in Lemma L.9). Here
X(θ, θ′) is a function of s, a, r, s′ as well, and we suppress the notation for conciseness only. Then
the function class H = {h(θ, θ′) := Eµ[X(θ, θ′)]| ‖θ‖2 ≤ CΘ, Vθ ∈ V} has the covering number
of (ϵ+ 4HϵF )-net bounded by

d log(1+
24CΘ(H + 1)κ1

ϵ
)+d log

(
1 +

288H2CΘ(κ1

√
CΘ + 2

√
Bκ1κ2)

2

ϵ2

)
+d2 log

(
1 +

288H2
√
dBκ2

1

ϵ2

)
.

Proof of Lemma L.10. First of all,

X(θ, θ′) =f(θ, ϕ(s, a))2 − fVθ′ (s, a)
2 − 2f(θ, ϕ(s, a)) · (r + Vθ′(s′)) + 2fVθ′ (s, a) · (r + Vθ′(s′)),
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For any (θ1, θ
′
1), (θ2, θ

′
2),

|X(θ1, θ
′
1)−X(θ2, θ

′
2)| ≤ |f(θ1, ϕ(s, a))2 − f(θ2, ϕ(s, a))

2|
+|fVθ′1

(s, a)2 − fVθ′2
(s, a)2|+ 2|fVθ′1

(s, a)− fVθ′2
(s, a)| · (r + Vθ′

1
(s′))

+2fVθ′2
(s, a) · |Vθ′

1
(s′)− Vθ′

2
(s′)|+ 2|f(θ1, ϕ(s, a))− f(θ2, ϕ(s, a))| · (r + Vθ′

1
(s′))

+2|f(θ2, ϕ(s, a))| · |Vθ′
1
(s′)− Vθ′

2
(s′)|

≤2H · |f(θ1, ϕ(s, a))− f(θ2, ϕ(s, a))|+ 2H · |fVθ′1
(s, a)− fVθ′2

(s, a)|

+4H · |Vθ′
1
(s′)− Vθ′

2
(s′)|+ 4(H + 1) · |f(θ1, ϕ(s, a))− f(θ2, ϕ(s, a))|

≤(6H + 1) · |f(θ1, ϕ(s, a))− f(θ2, ϕ(s, a))|+ 2Hmax
s′
|Vθ′

1
(s′)− Vθ′

2
(s′)|+ 4HϵF

+4H · |Vθ′
1
(s′)− Vθ′

2
(s′)|

≤(6H + 1) ‖∇f(ξ, ϕ(s, a))‖2 · ‖θ1 − θ2‖2 + 6H
∥∥Vθ′

1
− Vθ′

2

∥∥
∞ + 4HϵF

≤(6H + 1)κ1 · ‖θ1 − θ2‖2 + 6H
∥∥Vθ′

1
− Vθ′

2

∥∥
∞ + 4HϵF

where the second inequality comes from fV = PhV +δV . Note the above holds true for all s, a, r, s′,
therefore it implies

|Eµ[X(θ1, θ
′
1)]− Eµ[X(θ2, θ

′
2)]| ≤ sup

s,a,s′
|X(θ1, θ

′
1)−X(θ2, θ

′
2)|

≤(6H + 1)κ1 · ‖θ1 − θ2‖2 + 6H
∥∥Vθ′

1
− Vθ′

2

∥∥
∞ + 4HϵF

Now let C1 be the ϵ
12(H+1)κ1

-net of {θ : ‖θ‖2 ≤ CΘ} and C2 be the ϵ/6H-net of V , applying
Lemma L.8 and Lemma L.9 to obtain

log |C1| ≤ d log(1+
24CΘ(H + 1)κ1

ϵ
), log |C2| ≤ d log

(
1 +

288H2CΘ(κ1

√
CΘ + 2

√
Bκ1κ2)

2

ϵ2

)
+d2 log

(
1 +

288H2
√
dBκ2

1

ϵ2

)
which implies the covering number ofH to be bounded by

log |C1|·|C2| ≤ d log(1+
24CΘ(H + 1)κ1

ϵ
)+d log

(
1 +

288H2CΘ(κ1

√
CΘ + 2

√
Bκ1κ2)

2

ϵ2

)
+d2 log

(
1 +

288H2
√
dBκ2

1

ϵ2

)
.

Lemma L.11. Denote σ2
u,v(·, ·) := max{1, f(v, ϕ(·, ·))[0,(H−h+1)2] −

[
f(u, ϕ(·, ·))[0,H−h+1]

]2}
and define

X̄(θ, θ′, u, v) :=
(f(θ, ϕ(s, a))− r − Vθ′(s′))2 − (fVθ′ (s, a)− r − Vθ′(s′))2

σ2
u,v(s, a)

,

where fV := PhV and V (s) has form Vθ(s) that belongs to V (as defined in Lemma L.9). Here
X̄(θ, θ′, u, v) is a function of s, a, r, s′ as well, and we suppress the notation for conciseness only.
Then the function class H = {h(θ, θ′, u, v) := Eµ[X̄(θ, θ′, u, v)]| ‖θ‖2 ≤ CΘ, Vθ ∈ V} has the
covering number of ϵ-net bounded by

d log(1 +
24CΘ(H + 1)κ1

ϵ
) + d log

(
1 +

288H2CΘ(κ1

√
CΘ + 2

√
Bκ1κ2)

2

ϵ2

)
+ d2 log

(
1 +

288H2
√
dBκ2

1

ϵ2

)

+ d log(1 +
16CΘH

2κ1

ϵ
) + d log(1 +

32CΘH
3κ1

ϵ
)

Proof of Lemma L.11. Recall σ2
u,v(·, ·) := max{1, f(v, ϕ(·, ·))[0,(H−h+1)2] −[

f(u, ϕ(·, ·))[0,H−h+1]

]2}, and since max, truncation are non-expansive operations, then we
can achieve for any s, a

|σ2
u1,v1

(s, a)− σ2
u2,v2

(s, a)| ≤ |f(v1, ϕ(s, a))− f(v2, ϕ(s, a))|+ 2H |f(u1, ϕ(s, a))− f(u2, ϕ(s, a))|
≤κ1 ‖v1 − v2‖2 + 2Hκ1 ‖u1 − u2‖2 ,
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Hence∣∣X̄(θ1, θ
′
1, u1, v1)− X̄(θ2, θ

′
2, u2, v2)

∣∣ = ∣∣∣∣X(θ1, θ
′
1)

σ2
u1,v1

− X(θ2, θ
′
2)

σ2
u2,v2

∣∣∣∣
≤
∣∣∣∣X(θ1, θ

′
1)−X(θ2, θ

′
2)

σ2
u1,v1

∣∣∣∣+ ∣∣∣∣ X(θ2, θ
′
2)

σ2
u1,v1

σ2
u2,v2

(
σ2
u1,v1

− σ2
u2,v2

)∣∣∣∣
≤ |X(θ1, θ

′
1)−X(θ2, θ

′
2)|+ 2H2

∣∣σ2
u1,v1

− σ2
u2,v2

∣∣
≤ |X(θ1, θ

′
1)−X(θ2, θ

′
2)|+ 2H2κ1 ‖v1 − v2‖2 + 4H3κ1 ‖u1 − u2‖2

≤ (6H + 1)κ1 · ‖θ1 − θ2‖2 + 6H
∥∥Vθ′

1
− Vθ′

2

∥∥
∞ + 2H2κ1 ‖v1 − v2‖2 + 4H3κ1 ‖u1 − u2‖2

Note the above holds true for all s, a, r, s′, therefore it implies

|Eµ[X̄(θ1, θ
′
1, u1, v1)]− Eµ[X̄(θ2, θ

′
2, u2, v2)]|

≤(6H + 1)κ1 · ‖θ1 − θ2‖2 + 6H
∥∥Vθ′

1
− Vθ′

2

∥∥
∞ + 2H2κ1 ‖v1 − v2‖2 + 4H3κ1 ‖u1 − u2‖2

and similar to Lemma L.10, the covering number of ϵ-net will be bounded by

d log(1 +
24CΘ(H + 1)κ1

ϵ
) + d log

(
1 +

288H2CΘ(κ1

√
CΘ + 2

√
Bκ1κ2)

2

ϵ2

)
+ d2 log

(
1 +

288H2
√
dBκ2

1

ϵ2

)

+ d log(1 +
16CΘH

2κ1

ϵ
) + d log(1 +

32CΘH
3κ1

ϵ
)

Comparing to Lemma L.10, the last two terms are incurred by covering u, v arguments.
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