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ABSTRACT

Electroencephalography (EEG) is a non-invasive brain-computer interface tech-
nology used for recording brain electrical activity. It plays an important role in
human life and has been widely uesd in real life, including sleep staging, emotion
recognition, and motor imagery. However, existing EEG-related models cannot be
well applied in practice, especially in clinical settings, where new patients with
individual discrepancies appear every day. Such EEG-based model trained on
fixed datasets cannot generalize well to the continual flow of numerous unseen
subjects in real-world scenarios. This limitation can be addressed through continual
learning (CL), wherein the CL model can continuously learn and advance over
time. Inspired by CL, we introduce a novel Unsupervised Individual Continual
Learning paradigm for handling this issue in practice. We propose the BrainUICL
framework, which enables the EEG-based model to continuously adapt to the
incoming new subjects. Simultaneously, BrainUICL helps the model absorb new
knowledge during each adaptation, thereby advancing its generalization ability
for all unseen subjects. The effectiveness of the proposed BrainUICL has been
evaluated on three different mainstream EEG tasks. The BrainUICL can effectively
balance both the plasticity and stability during CL, achieving better plasticity on
new individuals and better stability across all the unseen individuals, which holds
significance in a practical setting.

1 INTRODUCTION

Electroencephalography (EEG) is a non-invasive brain-computer interface (BCI) technology, record-
ing brain electrical activity through electrodes placed on the scalp. Due to the non-invasive nature and
relatively high temporal resolution, EEG plays an important role in human life and has been widely
used in practice, especially in clinical settings (i.e., sleep staging Perslev et al. (2019); Aboalayon et al.
(2016), emotion recognition Song et al. (2018); Cowie et al. (2001), motor imagery Tabar & Halici
(2016) and disease diagnosis Petit et al. (2004); Jeong (2004)). However, existing EEG-related models
cannot perform well in real life. In practical situations, there are gradually varying new subjects every
day. Moreover, there are significant individual discrepancies (i.e., physiological structures, physical
characteristics) among different subjects. Such EEG-based models trained on fixed datasets cannot
generalize well to the new unseen individuals. The above limitation motivates us to address this
issue for practical applications. Fortunately, this problem can be reduced to continual learning (CL),
wherein the CL model can learn and advance by continuously absorbing new knowledge. The major
challenge in CL is to overcome the Stability-Plasticity (SP) dilemma Mermillod et al. (2013), with
Plasticity (P) denotes the model’s adapting ability to newly emerging individuals, while Stability (S)
indicates the model’s generalization ability to both previously seen and unseen individuals (i.e., new
subjects). Inspired by CL, and considering that the incoming individuals lack ground truth labels, we
propose a novel Unsupervised Individual Continual Learning (UICL) paradigm for handling EEG
tasks in practical applications shown in Fig. 1 (a). Notably, considering the individual discrepancies,
we treat each subject as a distinct individual domain Yang et al. (2023) in our study. As shown in Fig.
1 (a), the pre-trained model is required to continuously adapt to multiple individual target domains
one by one while absorbing the new knowledge to advance, and finally becomes a universal expert for
all unseen individuals. Our main objectives are twofold: (1) Better Plasticity: the model can adapt
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Figure 1: (a). The proposed paradigm of Unsupervised Individual Continual Learning; (b). Continual
domain adaptation for better Plasticity; (c). Generalizable model for better Stability.

well to each new subject from the continual individual flow shown in Fig. 1 (b). (2) Better Stability:
the model can achieve stronger generalization ability on all the unseen subjects after continuously
learning the knowledge from the continual individual flow shown in Fig. 1 (c).

However, it is not a straightforward task to enable the model to continuously adapt well to multiple
newly emerging subjects (better P) and simultaneously improve its generalization ability for all
unseen subjects (better S). There are three main reasons. First, a better Plasticity is difficult to obtain,
because the individual discrepancies among the continual individual flow lead to continual domain
shifts between the distribution of the source domain and that of the individual target domains. Second,
the Stability could decrease on all unseen individuals, because the model may be overfitted to some
individual target domains for a better plasticity. What’s worse is that if the model adapts to some
outlier individuals, the model may dramatically degrade in performance and may not be able to
recover during subsequent continual adaptation Wang et al. (2022). Third, balancing the plasticity and
stability is challenging, which means the model needs to ensure its adaptability to new individuals
while improving the generalization ability on all the unseen individuals. There have been some
existing studies addressing similar issues, but they are not so adaptable in practice. For example,
the studies Wang et al. (2022); Taufique et al. (2022; 2021) face a small quantity of varying target
domains, and tackle the SP dilemma in scenarios such as object detection and image classification.
They typically assume that the domain change in continual batches is minimal and conduct study at
the sample level. However, the practical scenario is quite different, where there is a continual flow of
numerous new subjects and there exist significant individual domain changes. Meanwhile, in real life,
it is required to be conducted at the individual level (i.e., testing the EEG data of only one person at a
time) instead of the sample level.

To achieve both better plasticity and stability, we propose a novel EEG-based Unsupervised Individual
Continual Learning framework, called BrainUICL. It is well-suited to real-world scenarios where
a large number of unseen and unordered individuals continuously emerge, enabling the model to
continuously adapt to a long-term individual flow in a plug-and-play manner, while also balancing
the SP dilemma during such CL process. We have designed two novel modules: the Dynamic
Confident Buffer (DCB) and Cross Epoch Alignment (CEA) to tackle the aforementioned challenges.
Specifically, the DCB employs a selective replay strategy that ensures the accuracy of labels for
replay samples in an unsupervised setting while maintaining the diversity of these samples. The CEA
module innovatively aligns the incremental model across different time states to prevent overfitting,
ensuring that the incremental model remains unaffected by varying learning trajectories, which is
particularly relevant given that continual flows are unordered in real-world scenarios. Besides, it is
worth pointing that BrainUICL is easy to be implemented without any modifications to the model
structure. The contributions of this paper can be summarized as follows:

• We first explore the concept of the Unsupervised Individual Continual Learning(UICL) in
EEG-related applications, which is well-suited to the real-world scenario and meets the
practical needs in real life. The proposed BrainUICL framework can effectively balance
Stability-Plasticity dilemma during the CL process.

• We design novel DCB and CEA modules to dynamically adjust the adaptation process
during the long-term individual continual learning, overcoming the challenges of overfitting
and preserving the knowledge learned from the past individual flow.
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Figure 2: The workflow of the proposed BrainUICL framework. The latest incremental modelMi−1

arrives at the Ti time step. After adapting to the current individual from the continual flow, the model
updates fromMi−1 toMi, and is arriving to the next time step Ti+1 to adapt to the next individual.

• Validated on three different mainstream EEG tasks, BrainUICL enables the model to adapt
well to continual individual flow (better Plasticity), and achieve stronger generalization
ability on all unseen individuals(better Stability), resulting in a win-win gain.

2 RELATED WORK
EEG Decoding. Recently, numerous deep learning-based models have been proposed for EEG tasks.
For instance, Wang et al. (2024a); Zhou et al. (2024); Phan et al. (2021) employed EEG-based model
for sleep staging, replacing the need for manual scoring. Wang et al. (2024b; 2023); Alturki et al.
(2020) utilized EEG-based model to assist in clinical disease diagnosis. Liu et al. (2023b;a) are
able to recognize subjects’ emotions through EEG signals. However, they overlook the practical
situations, as the parameters of these models typically remain fixed after training, leading to limited
generalization ability and constraining their application in practical settings.

Continual Learning. Numerous CL methods have been developed to tackle the stability-plasticity
(SP) dilemma. Research on continual learning can be categorized into three major streams. The
regularization-based methods: Kirkpatrick et al. (2017); Zenke et al. (2017); Aljundi et al. (2018);
Li & Hoiem (2017); Chaudhry et al. (2018b) directly apply regularization to the parameters to prevent
significant changes to those crucial parameters. The parameter isolation based methods: Rusu
et al. (2016); Mallya & Lazebnik (2018); Fernando et al. (2017) allocate different parameters to
different tasks to prevent subsequent tasks from interfering with parameters learned previously. The
rehearsal-based methods: Rebuffi et al. (2017); Castro et al. (2018); Lopez-Paz & Ranzato (2017);
Aljundi et al. (2019) alleviate catastrophic forgetting by replaying a subset of past tasks from a stored
memory buffer. Based on these classical CL methods, some of works like Wang et al. (2022); Tang
et al. (2021); Saporta et al. (2022) focus on Continual Domain Adaptation(CDA) problem, which
shares the same setting as ours. UCL-GV Taufique et al. (2022) utilized a contrastive loss to align the
gap between the samples in the existing buffer and the gradually varying target domain.

Continual EEG Decoding. Recently, existing studies have focused on cross-subject continual EEG
decoding. Duan et al. (2023) proposed a dynamic memory evolution based replay method to decode
streaming EEG signals. Duan et al. (2024b) proposed a bi-level mutual information maximization
based meta optimizer to for sequential EEG classification. Duan et al. (2024a) employed a balanced
and informative memory buffer to address this continual EEG decoding challenge.

In this paper, we propose the BrainUICL framework to address the aforementioned challenges and
help the incremental model achieve better stability-plasticity for a win-win gain in practical settings.

3 METHODOLOGY
3.1 PROBLEM SETUP AND PRELIMINARIES
Facing practical applications, we try to make the model not only adapt well to continuously incoming
new subjects, but also generalize well to all the unseen subjects, taking advantage of the idea of unsu-
pervised individual continual learning. We consider each subject as an individual domain. Formally,
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given multiple labeled individual domains (i.e., source domain, training set) DS={X i
S ,YS

i}NS

i=1 with
NS subjects, multiple unlabeled individual target domains (i.e., continual individual flow, incremental
set) DT ={X i

T }
NT
i=1 with NT subjects, and multiple labeled test domains (i.e., generalization set)

DG={X i
G,Yi

G}
NG

i=1 with NG subjects, where NG < NS ≪ NT . Different individual target domains
follow non-identical data distributions P(Di

T ) ̸= P(D
j
T ), where 1 ≤ i ̸= j ≤ NT . We denote the

incremental model asM and its probability distribution as P(M), whereM0 denotes the initial
model trained from the source domain DS , andMi denotes the current updated model when it has
adapted to Di

T . In our UICL setting, we consider the incremental modelM is available with only an
individual target domain at once. WhenMi →Mi+1 after each round updating, the corresponding
distribution change can be described as ∆P = ∆(P(Mi),P(Mi+1)). During the CL process, the
BrainUICL will gradually increase the penalty on the incremental individual target domain with
continual update iterations, leading to smaller distribution change, i.e., limi→+∞ ∆P = 0. The
objective of BrainUICL is to enable the incremental modelM, trained from a small source domain
DS , to adapt to multiple individual target domains DT and improve the generalization ability for the
unseen test domain DG after continuously absorbing new knowledge. During each round iteration,
our goal can be described as follows:

min
θM

(E(X i
T ,Yi

T )∼Di
T
L(M(X i

T ),Yi
T ) + E(XG,YG)∼DG

L(M(XG),YG)) (1)

whereMi parameterized by θMi
. Here, E(XG,YG)∼DG

L(M(XG),YG) can be understood as the
penalty terms for model updates. In other words, the penalty imposed by BrainUICL on continual
individual flow could effectively prevent the model from overfitting to incremental individual target
domain Di

T , while learning new knowledge to improve the model’s generalization ability on DG.

3.2 OVERVIEW

Inspired by the rehearsal-based CL methods Castro et al. (2018); Rebuffi et al. (2017); Lopez-Paz
& Ranzato (2017); Aljundi et al. (2019), which alleviate catastrophic forgetting by replaying a
subset of past samples from a storage center, we also adopt a replay-based strategy in this work.
As shown in Fig. 2, the workflow of the BrainUICL framework can be divided into three parts
when an incremental individual comes in. First, producing pseudo-labels: since the incoming
subject is without labels, self-supervised learning (SSL) is needed to provide pseudo-labels. We only
preserve the confident pseudo-labels whose prediction probabilities are higher than the confidence
threshold, for subsequent fine-tuning. Second, updating incremental modelsM: for each batch
of the incremental individual data X i

T , the storage center provides a real-pseudo mixed buffer XB
with the same size for joint training. The details of this procedure are in Sec. 3.3.2. We input X i

T
and XB to the modelMe

i−1 and then obtain the hidden features F i
T and FB. Throughing the same

classifier, the corresponding prediction ŷiT and ŷB can be obtained, respectively. For the prediction
ŷiT of the incremental individual, we employ the confident pseudo-label ỹiT generated in the first step
to compute the loss LCT . Similarly, for buffer’s prediction ŷB, we adopt the corresponding replayed
label yB to compute the loss LCB . Every two epochs of fine-tuning, we align the hidden features FB
and F ′

B, which are generated from modelsMe
i−1 andMe+2

i−1 at different temporal states, by using
the Kullback-Leibler divergence to compute the loss LKL. Notably,Me

i−1 andMe+2
i−1 denote the

incremental model at the e-th and the (e+2)-th fine-tuning epoch, respectively. More details of this
procedure are in Sec. 3.3.3. Third, updating the storage center: after adapting to the incremental
individual target domain Di

T , the model has been updated fromMi−1 toMi. Then we utilize the
current modelMi to predict the previous individual’s sample X i

T , and preserve the pseudo-labeled
samples with high quality into the storage center.

3.3 BRAINUICL

In this study, we employ identical model architectures across each downstream EEG task, thereby
ensuring equitable validation of the effectiveness of our proposed BrainUICL framework. The model
is equipped with a feature extractor to extract EEG features and a temporal encoder to learn the
temporal information from the EEG sequences. Given a labeled source domain DS (i.e., multiple
labeled individual domain, training set), we pretrain the model by minimizing the cross-entropy loss.
The detailed model architecture diagram and pretraining process are listed in the Appendix. A. After
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pretraining the model on the source domain DS , we have obtained the initial incremental modelM0.
Currently, given a continual individual flow (i.e., incremental set), which contains NT unlabeled
individual target domains, the modelM0 is required to adapt to each individual target domain X i

T
one by one (i.e.,M0 → · · · →Mi → · · · →MNT ). After each adaptation, the model is validated
on the test domains (i.e., generalization set) to evaluate its generalization ability.

3.3.1 SSL TRAINING FOR SUBJECT-SPECIFIC PSEUDO LABEL

Commonly, the existing unsupervised domain incremental learning (Domain-IL) studies Taufique
et al. (2022); Lamers et al. (2023); Xie et al. (2022) employ cluster-based techniques to provide
the pseudo-labels in other areas. However, cluster-based are not effective for EEG signals due to
their low signal-to-noise ratio Goldenholz et al. (2009). Considering the sequential nature of EEG
signals, we opt for the Contrastive Predictive Coding (CPC) Oord et al. (2018) algorithm to conduct
self-supervised training. Specifically, whenever an incremental individual arrives, we fine-tune the
guiding model, which is copied from the latest incremental modelMi−1, using its samples with the
CPC algorithm. By doing so, we believe the guiding model can initially fit the incremental individual,
thereby producing pseudo labels with higher-quality. Furthermore, we have set a confidence threshold
ξ1 to filter out low-quality pseudo-labels. More details about the CPC is listed in the Appendix. B.

3.3.2 DYNAMIC CONFIDENT BUFFER

The selection mechanisms of the buffer samples are crucial for those rehearsal-based CL meth-
ods. The common option is to store all encountered samples beforehand and randomly select a
subset for replay Castro et al. (2018). Besides, the selection based on FIFO (first-in, first-out) Tau-
fique et al. (2022), minimum logit distance Chaudhry et al. (2018a), minimum confidence Hayes
& Kanan (2021), etc., are also commonly employed for replay. However, these buffer sample
selections, which primarily rely on past incremental samples, are not suitable for our UICL set-
ting. Even though we employ the confidence threshold ξ1 to increase the quality of pseudo-labels,

Algorithm 1: UICL Algorithm

Input: {X i
S ,YS

i}NS

i=1, {X i
T }

NT
i=1, {X i

G,Yi
G}

NG

i=1
Output:M
Incremental Model Pretraining:
Pretrain the modelM0 using the source data
X i

S ,Yi
S .

Unsupervised Individual Continual Learning:
for i← 1 to NT do

Generate the guiding modelMg , copied from
the latest incremental modelMi−1;

OptimizeMg by minimizing Eq. (8);
Generate confident pseudo labels ỹiT byMg;
if i=1 then
XB ←XS∈Strue

;
else
XB = XS∈Strue

∪ XT ∈Spseudo
;

end
for j ← 1 to 10 do

Input XB, X i
T toMi−1 and obtain ŷB, ŷiT ;

OptimizeMi−1 by minimizing Eq. (4);
if j | 2 = 0 then

OptimizeMi−1 by minimizing Eq. (3);
end

end
Obtain current incremental modelMi;
Input X i

T toMi and generate confident
pseudo-labeled samples (X̃ i

T , Ỹi
T );

Update storage Spseudo = Spseudo ∪ (X̃ i
T , Ỹi

T );
end

it still inevitably introduces noise, result-
ing in error accumulation during the fine-
tuning stage without the help of true la-
beled samples. To tackle this, we pro-
pose a selected storage and real-pseudo
mixed replay strategy. Specifically, our
storage center consists of two parts: the
storage of true labeled samples from the
training set Strue = {XS ,YS} and the
storage of pseudo-labeled samples from
the continual individual flow Spseudo =

{XT , ỸT }. At each time step, for the
new coming batch of incremental individ-
uals, we select buffer samples from both
Strue and Spseudo in an 8:2 ratio, respec-
tively. It can be described as follows:

XB = XS∈Strue
∪ XT ∈Spseudo

(2)

Here, we utilize relatively more real la-
beled samples from the Strue, and rela-
tively less previously preserved pseudo-
labeled samples from the Spseudo for re-
play. It can be regarded as another form
of penalty terms incorporated on the incre-
mental individuals, as we solely employ a
small number of past incremental samples
to maintain the diversity of buffer sam-
ples. After each round of updating (i.e.,
Mi−1 →Mi), we utilize the current in-
cremental model Mi to predict the i-th
individual and update its pseudo-labeled
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samples, whose prediction probability is higher than the confidence threshold ξ2, into the storage
Spseudo (i.e., Spseudo = {(X̃ 0

T , Ỹ0
T ) ∪ (X̃ 1

T , Ỹ1
T )∪, ...,∪(X̃

i−1
T , Ỹi−1

T ) ∪ (X̃ i
T , Ỹi

T )}). Due to the
limited number of samples from the source domain and the preservation of only partial samples from
incremental individuals, it is acceptable to incur additional storage costs during the CL process.

3.3.3 CROSS EPOCH ALIGNMENT

During each round of the individual domain adaptation, the incremental model may excessively overfit
to some specific individuals without any constraints, which leads to the catastrophic forgetting of
previously learned information. This problem can be especially exacerbated if the model encounters
outlier individuals whose EEG signals are significantly abnormal. Wang et al. (2022) employed
stochastic restoration to randomly restore some tensor elements back to their initial weights. However,
this approach may result in certain crucial parameters being completely reset. In our study, we
propose the cross epoch alignment method to overcome the overfitting while taking the preservation
of model parameters into consideration. Specifically, given the same incremental model with different
temporal statesMe

i−1 andMe+2
i−1 , here e denotes the current e-th training epoch. We denote their

probability distribution as P(Me
i−1) and P(Me+2

i−1 ), respectively. Every two epochs, we employ
Kullback-Leibler (KL) Divergence loss to align the gap between P(Me

i−1) and P(Me+2
i−1 ) as follows:

LKL(Mi−1, θ;XB) = DKL(P(Me
i−1) ∥ P(Me+2

i−1 )) (3)

where θ denotes the optimization parameters of the model. By aligning the distribution of the previous
model state, the network prevents itself from deviating too much even when encountering outlier
individuals, enabling the model to achieve better stability. Moreover, avoiding overfitting provides
more capacity for further continual domain adaptation, leading to better plasticity.

3.3.4 OVERALL LOSS FUNCTION

We use the cross-entropy loss for both buffer samples and incremental individual samples as follows:

LC(Mi−1, θ;XB,X i
T , yB) = LCB + αLCT = −

∑
c

yBc
log ŷBc

+ α(−
∑
c

ỹiTc
log ŷiTc

) (4)

1 10

0.001

0.010

Figure 3: The hyper-parameter α con-
trols the influence of incremental indi-
viduals on the model. As α decreases
throughout the continual learning pro-
cess, the impact of incremental individu-
als on the model decreases.

α =

{
0.01, i < n

0.1(lg
i
n )+2, i ≥ n

(5)

Here, α is a hyper-parameter that gradually decreases as
the continual learning process progresses shown in Fig.3.
And i denotes the i-th individual and n represents the num-
ber of individuals involved in the training set (i.e.,NS ). In
other words, the penalty on incremental individuals gradu-
ally increases during the CL. Stated differently, this setting
is for the model to progressively stabilize itself after it has
acquired enough knowledge from the continual individual
flow. The overall loss is as follows:

Loverall =

{
LC , e | 2 ̸= 0
LC + LKL, e | 2 = 0

(6)

where e denotes the e-th fine-tuning epoch. The overall algorithm is illustrated in Algorithm. 1.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

As shown in Tab. 1, we employ three mainstream EEG tasks for evaluation: sleep staging, emotion
recognition and motor imagery. Specifically, for each EEG task, we conduct our study using a
publicly available dataset, namely ISRUC Khalighi et al. (2016), FACED Chen et al. (2023), and
Physionet-MI Schalk et al. (2004), respectively.
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Table 1: Overview of the processed EEG datasets.
BCI Task Dataset Subject Sampling Class Channel Pretraining Generalization Incremental

Sleep Staging ISRUC 98 100 5 8 30 19 49
Emotion Recognition FACED 123 250 9 32 38 24 61

Motor Imagery Physionet 103 160 4 64 32 20 51

ISRUC, a five-class sleep staging database consists of three sub-groups. We specifically selected
sub-group 1, which involves all-night EEG signals from 100 individuals. We excluded subjects 8
and 40 due to some missing channels. The sleep recordings are band-pass filtered (0.3Hz–35Hz)
and resampled to 100Hz. FACED, an emotion recognition database comprises 32-channel EEG
recordings from 123 subjects when they watched 28 emotion-elicitation video clips, and it involves
nine emotion categories. The recordings are resampled to 250Hz. Physionet, a motor imagery
database comprises 64-channel EEG recordings from 109 subjects, covering four motor imagery
tasks. We excluded 6 subjects (38, 88, 89, 92, 100, 104) due to differences in the sampling rate or
duration of the performed tasks. The recordings are resampled to 160Hz. More details of the datasets
are listed in the Appendix. D.

For incremental model pretraining, we set the number of training epoch to 100 and the learning rate
is set to 1e-4. For the SSL training and the subsequent fine-tuning, we both set the epoch to 10. The
default learning rate for these two process are set to 1e-6 and 1e-7, respectively.

Based on our UICL setting, each dataset is divided into three parts: pretraining, incremental
and generalization sets, with a ratio of 3:5:2. The pretraining set is used to pretrain the initial
incremental modelM0. The incremental set (i.e., continual individual flow) is used for individual
continual domain adaptation and for evaluating the model’s plasticity. During this step, the
incremental model needs to continuously adapt to each unseen individual one by one. The
generalization set is used to evaluate the model’s stability after each round of incremental individual
adaptation is completed. The detailed UICL processes are listed in the Appendix. C Fig. 8.

We adopt four metrics to evaluate the stability and the plasticity of our proposed method. For each
new incremental individual, we employ Accuracy (ACC) and Macro-F1 (MF1) to evaluate its
performance. Subsequently, we compute the Average ACC and Average MF1 across all incremental
individuals involved in the continual individual flow as metrics to evaluate the plasticity of our
model. After each round of individual domain adaptation, we evaluate the stability of the updated
model on the generalization set using Average Anytime Accuracy (AAA) Caccia et al. (2021)
and Average Anytime Macro-F1 (AAF1) metrics. Here, AAAi and AAF1i denote the average
ACC and the average MF1 of incremental models {M0,M1, ...,Mi} on the unseen individuals (i.e.,
generalization set), respectively. The detailed formulas are as follows:

AAAi =
1

i

i∑
j=1

1

NG

NG∑
k=1

ACC(Ŷi
G,Yi

G) AAF1i =
1

i

i∑
j=1

1

NG

NG∑
k=1

MF1(Ŷi
G,Yi

G) (7)

where i denotes the i-th incremental individual (i.e., the current individual) and NG denotes the
number of individual involved in the test domain DG (i.e., the generalization set). Yi

G and Ŷi
G

denote the true labels and the corresponding predictions of the model, respectively. Notably, for the
subsequent comparison and ablation studies, we conduct multiple runs by randomly shuffling the
input order of the continual flow (maintaining the consistency of the data partitions) to conduct a
statistical evaluation. Therefore, we calculate the mean and variance of the results(i.e., ACC, MF1,
AAA, AAF1) from each run to provide statistical results.

4.2 RESULT ANALYSIS

4.2.1 OVERVIEW PERFORMANCE

We have conducted our BrainUICL framework on three different downstream EEG tasks shown in Tab.
2. Specifically, for i-th incremental individual, we compute its personal performance through
the same model at three different temporal states (i.e.,M0,Mi−1,Mi). After each adaptation,
we measure the latest model’s stability on generalization set. Here,M0 denotes the initial model.
Mi−1 andMi represent the incremental model before and after adapting to the i-th individual,
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Table 2: Overview performance of BrainUICL on three downstream EEG tasks. The results of the
Plasticity are evaluated on the incremental set (i.e., continual individual flow) and the results of the
Stability are evaluated on the generalization set.

Evaluation of Plasticity Evaluation of Stability

Average ACC Average MF1 AAA AAF1

M0 Mi−1 Mi M0 Mi−1 Mi M0 MNT M0 MNT

ISRUC 65.1 72.8 75.1 (+10.0) 57.6 67.1 70.0 (+13.4) 72.0 74.1 (+2.1) 69.9 72.1 (+2.2)
FACED 24.2 38.9 40.3 (+16.1) 17.6 35.2 37.1 (+19.5) 24.0 36.5 (+12.5) 18.7 34.5 (+15.8)

Physionet 46.1 47.4 48.2 (+2.1) 44.6 46.3 47.4 (+2.8) 46.9 48.8 (+1.9) 46.3 48.5 (+2.2)

respectively.MNT denotes the final model after continual adaptation to all incremental individuals.
The results demonstrate that our method can achieve both the better plasticity and stability. For
plasticity, after each round iteration, the latest model Mi can improved the performance on the
incremental individual compared to the previous state of the modelMi−1. When compared to the
initial modelM0, there is a significant improvement in the performance of incremental individuals,
particularly on the ISRUC and FACED datasets (with 13.4% improvement in average MF1 on ISRUC
and 19.5% improvement in average MF1 on FACED). For stability, when most Domain-IL methods
simply manage to lower the forgetting rate of prior information, our approach is capable of absorbing
new knowledge while further enhancing the model’s generalization ability on the generalization set.
It can be clearly observed from the comparison of AAA and AAF1 metrics betweenM0 andMNT
(e.g., the AAA metric on the FACED dataset betweenM0 andMNT : 24.0 vs. 36.5).

4.2.2 COMPARISON WITH OTHER METHODS

We have compared our method against several existing unsupervised domain learning (UDA),
continual learning (CL) and unsupervised continual domain adaptation (UCDA) methods: MMD
Gretton et al. (2006) is a UDA method to match the Maximum Mean Discrepancy distance of feature
distributions. TSTCC Eldele et al. (2021) can learn time-series representation from unlabeled data,
making it suitable for EEG data. EWC Kirkpatrick et al. (2017) and LwF Li & Hoiem (2017) are both
regularization-based CL methods, applying regularization to prevent the crucial parameters. UCL-GV
Taufique et al. (2022) employs FIFO-based buffer and contrastive alignment strategies. ConDA
adopts a strategy of selectively mixing samples from the incoming batch and buffer data. CoTTA
Wang et al. (2022) uses weight-averaged and augmentation averaged prediction and stochastically
restore strategies. Duan et al. (2023) employ a dynamic memory evolution based replay method to
continual decode EEG signals. We implemented these methods based on proposed UICL setting.
In practice, the appearance of each new individual in the continual flow is entirely random, and we
cannot determine the order in which they arrive. The difference in the order of continual individual
domain adaptation could directly influence the model’s learning trajectory. Therefore, to provide
a statistical comparison, we evaluate the stability and robustness of each method under different
orders of continual individual flow. Specifically, we maintained the consistent partitioning of
training, incremental, and generalization sets, and only altered the input order of the continual
individual flow for each methods by random shuffling, repeated five times in total. Here, we only
report the Plasticity ofMi state and the Stability ofMNT state, since each method performs
the same in the M0 state. The statistical results are shown in Tab. 3 and Fig. 4. Compared
with other methods, BrainUICL achieves the best plasticity and stability. Among the compared
methods, UDA-based methods perform the worst. While they could achieve better P on ISRUC
and FACED, they dramatically degrade the S. Additionally, on Physionet, both the SP degrades.
The performance of CL-based models is slightly better than that of the UDA methods, indicating
that continual learning has a greater impact on performance than unsupervised domain adaptation
in our UICL setting. In most cases, UCDA-based methods outperform other methods, as they can
consider the continuously varying domains. However, UCDA-based methods still fail to achieve
better plasticity while simultaneously maintaining the stability. As shown in Fig. 4, the trend of
stability changes during each round updating can be visually observed. On the ISRUC and Physionet
datasets, all the compared methods exhibit a decline in the AAA and AAF1 curves, except for our
method. On the FACED dataset, all the curves demonstrate a fluctuating upward trend; nevertheless,
BrainUICL outperforms other methods in the later stages of continual learning. Furthermore, our
AAA and AAF1 curves first exhibit a smooth ascending trend and ultimately converge to stability.
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Table 3: Performance comparison with existing UDA, CL and UCDA methods.
ISRUC FACED Physionet

ACC MF1 AAA AAF1 ACC MF1 AAA AAF1 ACC MF1 AAA AAF1

UDA MMD 68.6±1.8 62.2±1.5 68.1±0.7 65.5±0.9 34.5±1.1 29.7±1.1 30.8±0.7 27.1±0.9 44.5±0.2 43.7±0.2 45.0±0.4 44.4±0.4

TSTCC 68.9±0.8 63.8±1.4 61.3±1.2 55.5±1.7 37.8±0.5 33.7±0.3 33.5±0.5 30.7±0.5 44.9±1.5 43.3±0.2 45.4±0.1 44.1±0.1

CL EWC 70.2±0.6 65.2±0.5 68.4±0.4 66.1±0.5 37.5±1.3 33.3±1.4 33.4±0.7 30.5±0.8 46.9±0.2 45.9±0.1 46.3±0.2 45.4±0.2

LwF 71.7±0.1 67.0±0.2 65.1±0.2 59.9±0.1 38.3±0.3 34.8±0.4 34.7±0.3 32.3±0.4 47.0±0.3 45.9±0.5 45.8±0.3 44.2±0.6

UCDA

UCL-GV 71.8±0.3 66.4±0.3 70.7±0.2 68.6±0.2 38.8±0.3 34.8±0.5 34.3±0.3 31.7±0.4 42.7±0.4 41.5±0.3 42.5±0.2 42.0±0.4

ConDA 71.6±0.3 66.4±0.3 70.6±0.1 68.5±0.1 38.1±1.2 34.3±1.5 33.9±0.9 31.1±1.1 45.5±0.1 44.4±0.2 44.9±0.2 43.6±0.3

CoTTA 72.2±0.4 67.6±0.3 69.2±0.2 64.7±0.2 39.3±0.6 35.5±1.1 34.7±0.7 32.1±0.9 47.4±0.3 46.3±0.5 46.1±0.3 44.6±0.5

ReSNT 70.7±0.6 66.2±0.7 71.3±0.5 69.4±0.6 37.2±1.3 33.3±1.3 33.8±0.8 31.1±1.1 45.5±0.6 44.5±0.6 45.5±0.1 44.7±0.2

BrainUICL 74.9±0.2 69.9±0.1 74.0±0.1 72.0±0.1 40.3±0.5 36.8±0.6 36.0±0.5 33.9±0.6 48.4±0.3 47.5±0.3 48.7±0.1 48.3±0.2
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Figure 4: AAA and AAF1 curves of the compared methods and the proposed BrainUICL method.
Each point denotes an individual from the continual individual flow, and the middle-line represents
the mean value of the AAA and AAF1 metrics under different input orders, while the shaded areas
indicate their 95% confidence intervals. Notably, all methods have five same input orders and these
orders are randomly different. Our BrainUICL demonstrates the best stability compared to other
methods, with a p-value of less than 0.001.

Moreover, it is worth noting that the confidence intervals of the curves also exhibit a converging trend,
with larger intervals at the beginning and ultimately converging to a smaller interval. To sum up, our
BrainUICL demonstrates strong stability and robustness during long-term continual learning,
effectively balancing plasticity and stability when compared to other methods.

4.2.3 ABLATION STUDY

To investigate the effectiveness of DCB and CEA modules in BrainUICL, we conducted an ablation
study. The ablated methods are as follows: Base: both DCB and CEA modules are removed;
Base+CEA: only DCB module is removed; Base+DCB: only CEA module is removed. BrainUICL:
the framework with all components. Here, we aslo only report the Plasticity ofMi state and the
Stability ofMNT state, since each ablated method performs the same in theM0 state. The results
are shown in Tab. 4 and Fig. 5. Compared with the Base, both the CEA and DCB modules can
achieve better SP, demonstrating their effectiveness in the UICL setting. For plasticity, DCB module
contributes more to our BrainUICL framework compared to CEA in most cases. Only on the average
ACC on ISRUC, CEA performs slightly better than DCB (74.2% vs. 73.7%). It is reasonable
that the objective of CEA is to prevent the model from overfitting to the newly added individuals,
which could result in lower performance on them. Interestingly, even though we continuously
add penalty terms on incremental individuals, the model achieves better plasticity on them.
This can be explained by the fact that if the model has overfitted to some outlier individuals without
any constraints, the strong domain shift leads to difficulty for further continual individual domain
adaptation. What’s worse is that the model may fail to recover and deviate further and further away
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Table 4: Performance comparison with ablated methods.
ISRUC FACED Physionet

ACC MF1 AAA AAF1 ACC MF1 AAA AAF1 ACC MF1 AAA AAF1

Base 73.3±0.4 68.5±0.4 73.2±0.3 71.2±0.3 36.2±1.1 31.8±1.4 32.6±0.6 29.6±0.9 47.3±0.2 46.5±0.3 47.6±0.3 47.2±0.4

Base + CEA 73.9±0.2 68.6±0.1 73.5±0.3 71.6±0.3 37.6±1.3 33.9±1.7 34.3±0.9 31.7±1.2 47.7±0.3 46.8±0.3 48.0±0.1 47.6±0.1

Base + DCB 74.1±0.2 69.1±0.3 73.4±0.2 71.4±0.2 37.4±0.8 33.0±1.1 33.4±0.4 30.4±0.4 48.1±0.2 47.4±0.3 47.9±0.3 47.5±0.4

BrainUICL 74.9±0.2 69.9±0.1 74.0±0.1 72.0±0.1 40.3±0.5 36.8±0.6 36.0±0.5 33.9±0.6 48.4±0.3 47.5±0.3 48.7±0.1 48.3±0.2

0 10 20 30 40
0.71

0.72

0.73

0.74

IS
R

U
C

AAA

0 10 20 30 40
0.69

0.70

0.71

0.72
AAF1

0 10 20 30 40 50 60
0.25

0.30

0.35

FA
C

ED

0 10 20 30 40 50 60
0.2

0.3

0 10 20 30 40 50
0.47

0.48

Ph
ys

io
ne

t-M
I

0 10 20 30 40 50

0.47

0.48

BrainUICL DCB CEA Base

Figure 5: AAA and AAF1 curves of the ablated methods. Each point denotes an individual from
the continual individual flow with the middle-line indicating the mean value of the AAA and AAF1
metrics under different input orders, while the shaded areas indicate their 95% confidence intervals.
Notably, all methods share five same input orders and these orders are randomly different. The
experimental results demonstrate the effectiveness of the proposed DCB and CEA components.

during the subsequent CL process. For instance, on Physionet, the stability curves of the Base model
even surpass those of the CEA and DCB at the beginning of training. However, they consistently
decline upon encountering outlier individuals and moreover, fail to recover through subsequent
adaptation. For stability, the performances of DCB and CEA are close at the final model state
MNT , indicating they make roughly equal contributions to the model’s stability. Combined with
DCB and CEA, BrainUICL outperforms the ablated methods in both plasticity and stability across
three datasets. Furthermore, during long-term continual individual adaptation, our method
effectively enables the model to maintain stability even when encountering outliers. The detailed
analysis of the impacts of outliers can be found in the Appendix. G.

5 CONCLUSION

In this work, facing practical applications, we try to make the model not only adapt well to continu-
ously newly incoming subjects, but also generalize well to all the unseen subjects. We propose a novel
UICL paradigm for handling EEG tasks in practical applications. And we propose the BrainUICL
framework to balance the plasticity-stability dilemma in this setup. The main objective of BrainUICL
is to enable the model to continuously adapt well to multiple newly emerging subjects (better P) and
simultaneously improve its generalization ability for all unseen subjects (better S), finally becoming a
universal expert. We effectively prevent the model from overfitting to incremental individuals during
long-term continual individual domain adaptation by increasing the penalty imposed on them. The
penalty consists of two parts. First, we employ a selected storage and real-pseudo mixed replay
strategy to improve the reliability of replayed EEG samples. Second, we align the incremental model
at different temporal states every two epochs to prevent overfitting the model to specific individual
distributions. The effectiveness of the proposed BrainUICL has been evaluated on three different
downstream EEG tasks. It enables continual individual domain adaptation applications that hold
significance in a practical setting.
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A PRETRAINED MODEL DETAILS

To fairly validate our BrainUICL framework on different downstream EEG tasks, we employ an
identical model architecture consisting of three parts: a feature extractor, a feature encoder and a
classifier. The feature extractor consists of multiple CNN blocks to extract EEG features, each of
which includes a CNN layer, a batch normalization (BN) layer, an activation layer, and a pooling
layer(only the first and the fourth CNN layer include the pooling layer). The feature encoder contains
multiple TransformerEncoder layers to learn the temporal information from the EEG data. The
classifier is composed of several fully connected layers. Notably, we only modified the parameters of
the input and output layers to adapt to different EEG tasks. Further details are illustrated in Tab. 8

CNN Block

×4

Output
EEG

×3

Encoder Layer Classifier

Conv1D

GELU FC

Pooling

BN

Encoder LayerDrop

Softmax

Figure 6: The detailed pre-trained model architecture.

B CONTRASTIVE PREDICTIVE CODING

For each arrived individual, we employ a guiding model to produce high-quality pseudo-labels for
them, and the pseudo-labels are used for subsequent adaptation. Considering the sequential nature of
EEG data, we use the Contrastive Predictive Coding (CPC) algorithm to perform self-supervised fine-
tuning on the guiding model, improving the quality of the generated pseudo-labels. Given the latent
representation H = {h0, h1, h2, h3, ..., ht, ht+1, ht+2, ht+3} from the feature encoder, the objective
of CPC is to use the preceding t time steps Hi≤t to predict the subsequent time steps Ht≤i≤L, where
t and L denote the predicted time step and the sequence length, respectively. Specifically, we employ
a transformer as an autoregressive model to encode Hi≤t into a contextual vector ct. Subsequently,
we establish a prediction task in which we utilize linear layers to predict the future EEG time steps,
from ht+1 until hL, by leveraging the contextual vector ct, such that zt+k = fk(ct), where zjt+k
denotes the predicted time steps for ht+k. Then, we leverage contrastive loss to update the network.
The objective is to specifically align the guiding model with the distribution of the individual target
domain. The loss function is as follows:

LCPC = −E
Hb

[log
exp(hT

t+k(fk(ct)))∑
hj∈Hb

exp((hT
j fk(ct)))

] (8)

. . . .

Feature Encoder

Autoregressive Model

FC FC FC

Feature Extractor

EEG

Figure 7: The overview of Contrastive Predictive Coding.
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Figure 8: The process of the Unsupervised Individual Continual Learning.

Specifically, when an incremental individual arrives, we first conduct CPC algorithm on the guiding
model Mg , which is copied from the lastest model Mi−1, using the incremental individual’s samples.
After the adaptation, we use the fine-tuned Mg to generate pseudo labels for subsequent training.
Specifically, we obtain the classification prediction probabilities(i.e., after the softmax layer) for
each sample by inputting the incremental individual samples into guiding model Mg. Then, we
retain only the high-confidence pseudo-labels with prediction probabilities exceeding the threshold
ξ1 for subsequent training. For the threshold ξ1, setting it too high may result in too few generated
pseudo-labels, while setting it too low can introduce additional low-quality pseudo-labels. To address
this, we conducted a parameter selection experiment to evaluate the impact of different thresholds on
the performance of the generated pseudo-labels, ultimately setting ξ1 to 0.9.

C UNSUPERVISED INDIVIDUAL CONTINUAL LEARNING SETTING

The detailed process of the UICL is shown in Fig. 8. At the beginning, we initialize the incremental
modelM0 using the pretraining set. The incremental model then needs to continuously adapt to each
unseen individual one by one. After each round of adaptation, we evaluate the model’s stability and
plasticity on the generalization set and the latest individual, respectively. For example, the initial
modelM0 needs to adapt to the first individual in the continual flow, resulting in the incremental
modelM1. We evaluate the stability of the current incremental modelM1 on the generalization set
and evaluate the plasticity of theM1 on the latest individual(i.e., the first individual). After that, the
incremental modelM1 needs to adapt to the next individual, and so on.

In sections 4.2.2 and 4.2.3, we assessed the effectiveness of our method under varying input orders
of the continual individual flow while maintaining a consistent dataset partition. To facilitate
understanding, we provide a simple illustrative example, as shown in the Tab. 5.

Train Set Generalization Set Incremental Set (i.e., Continual Individual Flow)
Order 1 1, 2, 3 4, 5 6→ 7→ 8→ 9→ 10
Order 2 1, 2, 3 4, 5 8→ 9→ 6→ 7→ 10
Order 3 1, 2, 3 4, 5 10→ 9→ 6→ 8→ 7
Order 4 1, 2, 3 4, 5 9→ 8→ 6→ 7→ 10
Order 5 1, 2, 3 4, 5 7→ 9→ 10→ 8→ 6

Table 5: Overview of Training and Incremental Orders. Here, the numbers denote the different
individual IDs.

D DATA PREPARATION

ISRUC: A sleep dataset consisted of the three sub-groups. We specifically selected sub-group
1, which consists of all-night polysomnography (PSG) recordings from 100 adult individuals and
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Table 6: Analysis of the Strue-Spseudo Selected Ratio in DCB.

Strue: Spseudo
ISRUC FACED Physionet

ACC MF1 AAA AAF1 ACC MF1 AAA AAF1 ACC MF1 AAA AAF1

0:10 72.6 67.1 72.6 70.6 38.5 34.3 34.3 31.7 47.0 46.1 48.0 47.4
2:8 72.2 66.9 72.8 70.8 39.0 35.3 35.0 32.6 47.9 47.0 48.4 47.9
5:5 74.1 69.0 73.2 71.2 39.3 35.7 35.1 32.7 48.0 47.1 48.6 48.2
8:2 75.1 70.0 74.1 72.1 40.3 37.1 36.5 34.5 48.2 47.4 48.8 48.5

10:0 74.3 69.1 73.8 71.8 40.8 37.4 35.6 33.5 48.2 47.3 48.7 48.4

contains 86400 samples. We use six EEG channels (F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, O2-A1)
and two EOG channels (E1-M2, E2-M1), and the data is resampled to 100 Hz for evaluation. All EEG
signals are divided into 30-second segments, which are then categorized into five distinct sleep stages
(Wake, N1, N2, N3, REM) by sleep experts based on the standards set by the American Academy
of Sleep Medicine (AASMIber (2007)). The transition patterns between sleep epochs are essential
for sleep staging. In line with previous sleep staging studiesPhan & Mikkelsen (2022), we treat this
task as a sequence-to-sequence classification problem, defining the sequence length as 20, which
corresponds to one sleep sequence consisting of 20 30-seconds samples. We excluded subject 8 and
40 due to some missing channels.

FACED: A large finer-grained affective computing EEG dataset covers nine emotion categories
(amusement, inspiration, joy, tenderness, anger, fear, disgust, sadness, and neutral emotion) from
recordings of 123 subjects. Each recording contains 32-channel EEG signals at 250 Hz sampling
rate. All EEG signals are divided into 10-second segments. All the 123 recordings were used for
evaluation.

Physionet-MI: A motor imagery EEG dataset covers four motor classes (left fist, right fist, both fists
and both feet) from recordings of 109 subjects. Each recording contains 64-channel EEG signals at
160 Hz sampling rate. All EEG signals are divided into 4-second segments. All the 109 recordings
were used for evaluation.

E HYPER-PARAMETER STUDY

E.1 DYNAMIC CONFIDENT BUFFER

In the Dynamic Confident Buffer, the buffer samples XB are selected from both Strue and Spseudo in
an 8:2 radio. In this section, we conduct a hyper-parameter study to validate the effectiveness of our
settings shown in Tab. 6.

In most cases, when the selected ratio is set to 8:2, the incremental model can achieve better SP.
This suggests that the preference for replaying samples from the true-labeled storage Strue can
lead to a better review. The experimental results also indicate that replaying samples from the
pseudo-labeled storage Spseudo in moderation can improve the performances, as it provides more
diversity in replaying. In the FACED dataset, the model achieves better plasticity with a ratio of
10:0 than with 8:2. However, it provides much poorer stability without replaying any pseudo-labeled
samples from the incremental individuals (35.6% vs. 36.5% in AAA). Compared with the radio of
10:0 and 0:10, the latter performs much worse on both stability and plasticity. This indicates that
relying entirely on replaying pseudo-labeled samples can introduce additional noise, leading to error
accumulation and forgetting. To sum up, we replay relatively more real samples from the training set
to ensure the accuracy of the labels for the replay samples. Meanwhile, we replay a small amount of
pseudo-labeled samples produced from the CL process to increase the diversity of the replay samples.

E.2 CROSS EPOCH ALIGNMENT

In the CEA module, The alignment interval can be regarded as a hyper-parameter that controls the
impact of the incremental individual on the model. As the alignment interval decreases (e.g., from
every two epochs to every epoch), the model performs the alignment operation with the previous
model state more frequently. It means the penalty for the impact of incremental individuals is
greater and the incremental model is less likely to be affected by new individuals. Meanwhile,
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Table 7: Analysis of the Alignment Interval in CEA.

Alignment Interval ISRUC FACED Physionet

ACC MF1 AAA AAF1 ACC MF1 AAA AAF1 ACC MF1 AAA AAF1

Every Epoch 75.5 70.3 73.7 71.7 39.2 35.2 35.5 33.3 47.8 47.2 48.6 48.4
Every 2 Epochs 75.1 70.0 74.1 72.1 40.3 37.1 36.5 34.5 48.2 47.4 48.8 48.5
Every 3 Epochs 74.9 70.2 73.6 71.6 40.3 36.5 35.7 33.3 48.0 47.1 48.7 48.5
Every 4 Epochs 74.8 70.0 73.7 71.7 40.7 36.9 35.6 33.3 48.2 47.4 48.5 48.1
Every 5 Epochs 74.4 69.9 73.8 71.8 39.3 35.7 35.1 32.7 48.2 47.2 48.6 48.2

as the alignment interval increases (e.g., from every two epochs to every five epochs), the model
performs fewer alignment operations, which increases the influence of incremental individuals on the
model. To better verify the impact of different selections of the alignment interval, we conducted a
hyper-parameter study.

Based on our setting, the training epoch of the fine-tune stage is set to 10. Therefore, we only test
the alignment interval from 1(i.e., every epoch) to 5(i.e., every 5 epochs) as the bigger interval is
meaningless. The results show that in most cases, when we align with the previous model state every
two epochs (i.e., align a total of five times), the incremental model can better balance stability and
plasticity. For instance, in FACED, when we perform alignment every 4 epochs, it can achieve better
plasticity than every 2 epochs. However, it provides much poorer stability (35.6% vs. 36.5% in AAA
and 33.3% vs. 34.5% in AAF1). To sum up, our proposed CEA module aligns the distribution of the
previous model states every two epochs. When the model begins to overfit to new individuals, this is
mitigated by aligning with the distribution of earlier model states. This approach is beneficial as it
effectively prevents the model from overfitting to specific individuals, thereby avoiding a deviation
from the original learning trajectory and ensuring the model stability during such long-term continual
learning process.

The details of the experimental settings for our BrainUICL framework are listed in Tab. 8.

Table 8: Hyper-parameters of the proposed BrainUICL. For Conv1D, the parameters from left to
right are: (filter, kernel_size, and stride).

Pre-training

Epoch 100
Learning Rate 1e-4
AdamW β1 0.5
AdamW β2 0.99

AdamW Weight Decay 3e-4
Batch 32

CNN Blocks

1-th Conv1D (64, 50, 6)
1-th MaxPool1D (8,8)

2-th Conv1D (128, 8)
3-th Conv1D (256, 8)
4-th Conv1D (512, 8)

4-th MaxPool1D (4, 4)

Transformer

Attention Head 8
Attention Dim 512

Attention Layer 3
Dropout 0.1

Self-supervised Learning Epoch 10
Learning Rate 1e-6

Continual Adaptation

Epoch 10
Learning Rate 1e-7

Confident Threshold ξ1 0.9
Confident Threshold ξ2 0.9

Alignment Interval 2

F COMPUTATIONAL COST

To assess the computational efficiency of our proposed BrainUICL framework, we conducted a
comprehensive analysis of the time cost per individual across three diverse datasets, as illustrated
in Fig. 9. Our BrainUICL framework enables the model to rapidly adapt to an unseen individual,
with an average processing time of just a few seconds. This rapid adaptation capability is a crucial
feature of our BrainUICL framework, positioning it as an ideal solution for real-world applications
that demand quick and seamless integration.
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Figure 9: The computational cost per individual.

G IMPACT OF OUTIERS

We have listed the performance changes of partial outliers and their impact on the incremental model
on the ISRUC dataset in Tab. 9. As we can see, the initial performance of the modelM0 on these
outliers is quite low. Then, with the model continuously absorbs the new knowledge, before the
adaptation Mi−1, the performance of these outliers has already seen a significant improvement
compared to the initial state M0. After adaptation, their performance is further enhanced Mi.
Meanwhile, the model’s generalization ability is also steadily increasing, demonstrating that our
method can not only improve the performance on outliers, but also achieve better stability after each
adaptation.

Table 9: The performance changes of partial outliers and their impact on the model on the ISRUC
dataset. Here, ID denotes the position of outliers in the continuous individual flow.M0 denotes the
initial model.Mi−1 andMi denote the incremental model before and after adapting to the current
individual, respectively.

Evaluation of Plasticity Evaluation of Stability

Individual ACC Individual MF1 AAA AAF1

Outlier ID M0 Mi−1 Mi M0 Mi−1 Mi Mi−1 Mi Mi−1 Mi

ID = 6 35.93 46.51 53.37 19.62 36.01 48.96 72.87 73.08 70.91 71.12
ID = 10 28.87 45.75 60.85 9.92 38.59 52.78 73.23 73.29 71.24 71.32
ID = 12 36.07 41.90 46.31 10.60 37.93 39.97 73.37 73.47 71.39 71.53
ID = 24 34.06 49.38 50.42 24.04 40.97 41.47 73.47 73.51 71.48 71.53
ID = 25 37.86 52.74 63.33 10.98 46.53 52.90 73.51 73.56 71.53 71.59
ID = 27 24.87 39.49 54.62 9.58 34.51 49.99 73.60 73.62 71.63 71.64
ID = 37 20.83 55.42 56.25 14.52 47.97 51.81 73.88 73.90 71.90 71.91
ID = 40 28.54 66.45 76.56 20.37 62.01 69.86 73.99 74.03 72.00 72.05

H PERFORMANCE VARIATIONS IN TRAIN SET

In this section, we evaluate the performance variations of the training set throughout the continual
learning process, as illustrated in Fig. 10. The training set is used solely for pretraining the initial
incremental model M0 and does not participate in the subsequent continual learning process. We do
not analyze the results on the Physionet-MI dataset, as the initial model M0 has already demonstrated
high performance on this dataset. In contrast, on the ISRUC and FACE datasets, the model’s
performance on the training set shows an overall improvement, rather than the catastrophic forgetting
typically associated with continual learning. This is reasonable, given that 80% of the samples we
replay are sourced from the training set, which enhances performance as we continuously replay the
labeled samples from the training set.
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Figure 10: The performance variations of the train set during the continual learning.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

I COMPARED WITH OTHER MEMORY SAMPLING METHODS

To validate the effectiveness of the proposed DCB-based memory sampling approach, we conduct
a comparative study with other popular memory sampling methods: FIFO (i.e., First-In-First-Out),
RS (i.e., reservoir sampling), and Uniform (i.e., uniform random sampling). Notably, in this study,
we only replace our DCB-based memory sampling method with the other methods, maintaining the
consistency of other components to ensure a fair comparison. Our method significantly outperforms
the compared methods, as illustrated in Tab. 11 and Fig. 11, particularly on the FACE and Physionet-
MI datasets. Overall, the FIFO-based approach performs the worst, as it relies heavily on data from
the previous individual for replay. When encountering outliers, the model’s performance inevitably
declines and may not be recoverable (see the FIFO curve in Physionet). On the Physionet dataset,
the UCLGV method using the FIFO setting exhibits a similar downward trend, as shown in Fig. 4.
Among the comparison methods, the uniform approach performs the best. This is because, although
we save all newly added individual samples into storage, the number of true labeled samples from the
training set remains significantly higher than that of pseudo-labeled samples during the early stages of
training. Consequently, the randomly sampled replay samples are predominantly accurately labeled.
However, in the later stages of training, as pseudo-labeled samples are continuously added to storage
without filtering, each replay introduces a substantial number of low-quality samples, resulting in a
decline in model performance (see the Uniform curve in ISRUC).

Table 10: Performance comparison with other memory sampling methods is presented. Notably,
FIFO refers to First-In-First-Out, RS denotes reservoir sampling, and Uniform indicates uniform
random sampling, respectively.

ISRUC FACED Physionet-MI

ACC MF1 AAA AAF1 ACC MF1 AAA AAF1 ACC MF1 AAA AAF1

FIFO 70.5 65.6 74.1 72.1 34.9 29.6 30.4 26.8 43.1 41.9 43.9 43.2
RS 71.2 65.8 70.7 68.6 33.4 28.8 30.7 27.0 44.8 43.4 45.7 44.7

Uniform 74.2 68.7 73.4 71.4 37.8 33.3 33.1 30.5 47.3 46.3 47.7 47.5
Ours (DCB) 75.1 70.0 74.1 72.1 40.3 37.1 36.5 34.5 48.2 47.4 48.8 48.5
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Figure 11: AAA and AAF1 curves of the compared memory sampling methods and our DCB method.

J PARTITION STUDY

In sections 4.2.2 and 4.2.3, we assessed the effectiveness of our method under varying input orders
of the continual individual flow while maintaining a consistent dataset partition. To evaluate the
effectiveness of our proposed method across different dataset partitions, we conducted a partition study.
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Table 11: Overview performance of BrainUICL on three EEG tasks under different datasets
Evaluation of Plasticity Evaluation of Stability

Average ACC Average MF1 AAA AAF1

M0 Mi−1 Mi M0 Mi−1 Mi M0 MNT M0 MNT

ISRUC

Partition1 67.5 72.6 74.4 (+6.9) 60.0 67.9 70.4 (+10.4) 68.9 73.4 (+4.5) 65.6 70.9 (+5.3)
Partition2 65.3 72.9 74.5 (+9.2) 57.8 67.1 69.6 (+11.8) 71.9 74.7 (+2.8) 69.0 72.0 (+3.0)
Partition3 65.0 72.1 73.6 (+8.6) 56.3 66.9 69.0 (+12.7) 72.5 76.6 (+4.1) 70.3 74.8 (+4.5)
Original 65.1 72.8 75.1 (+10.0) 57.6 67.1 70.0 (+13.4) 72.0 74.1 (+2.1) 69.9 72.1 (+2.2)

FACED

Partition1 23.6 36.9 37.1 (+13.5) 16.9 35.6 33.1 (+16.2) 25.4 35.7 (+10.3) 20.8 33.2 (+12.4)
Partition2 23.8 38.6 39.2 (+15.4) 17.3 34.6 35.1 (+17.8) 24.9 37.1 (+12.2) 19.8 34.6 (+14.8)
Partition3 24.1 38.8 39.3 (+15.2) 17.5 35.5 35.7 (+18.2) 24.1 35.6 (+11.5) 18.3 33.2 (+14.9)
Original 24.2 38.9 40.3 (+16.1) 17.6 35.2 37.1 (+19.5) 24.0 36.5 (+12.5) 18.7 34.5 (+15.8)

Physionet-MI

Partition1 44.5 45.6 45.9 (+1.4) 43.0 44.5 44.9 (+1.9) 50.9 52.5 (+1.6) 50.4 52.3 (+1.9)
Partition2 47.4 49.8 50.1 (+2.7) 46.0 48.7 49.4 (+3.4) 43.3 44.2 (+0.9) 42.9 44.0 (+1.1)
Partition3 45.6 46.7 48.2 (+2.6) 44.4 45.6 47.4 (+3.0) 48.1 49.9 (+1.8) 47.6 49.6 (+2.0)
Original 46.1 47.4 48.2 (+2.1) 44.7 46.3 47.4 (+2.7) 46.9 48.8 (+1.9) 46.3 48.5 (+2.2)
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Figure 12: AAA and AAF1 curves of the our methods with different dataset partitions.

In this study, while keeping other experimental settings unchanged, we randomly shuffled the dataset
partitions (i.e., pretraining set, incremental set, generalization set) for experimentation, repeating
the process three times, as shown in Tab. 11 and Fig. 12. The experimental results demonstrate that
our method consistently exhibits strong performance across various dataset partitions, remaining
unaffected by the specific partitioning of the dataset.

K FUTURE WORK

In current practice, many EEG-related traditional manual assessments have been replaced by deep
learning based models. These models are typically trained on a source domain and then applied
to practical testing. However, there are many limitations within this application. On the one hand,
the model’s generalization performance is limited due to constraints on the size of the source
domain. On the other hand, the model with fixed parameters may not adapt to each unseen individual
due to individual discrepancies. To address this issue, we proposed the BrainUICL framework
which enables the EEG-based model to continuously adapt to newly appearing subjects, while
simultaneously strengthening its generalization ability for those unseen subjects. On the downside,
we have only applied our proposed BrainUICL framework to three mainstream EEG tasks (i.e. sleep
staging, emotion recognition, and motor imagery). The primary reason is the limited size of publicly
available datasets for other EEG tasks, which typically only include a few dozen individuals at
most. In future work, in addition to the aforementioned three EEG tasks, we intend to extend our
proposed BrainUICL framework to include a broader range of practical EEG-based tasks (e.g., Major
Depressive Disorder Diagnosis, Fatigue Detection, Disorders of Consciousness Diagnosis).
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