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ABSTRACT

Diffusion models are a popular class of generative models trained to reverse a
noising process starting from a target data distribution. Training a diffusion model
consists of learning how to denoise noisy samples at different noise levels. When
training diffusion models for point clouds such as molecules and proteins, there
is often no canonical orientation that can be assigned. To capture this symmetry,
the true data samples are often augmented by transforming them with random
rotations sampled uniformly over SO(3). Then, the denoised predictions are often
rotationally aligned via the Kabsch-Umeyama algorithm to the ground truth samples
before computing the loss. However, the effect of this alignment step has not been
well studied. Here, we show that the optimal denoiser can be expressed in terms
of a matrix Fisher distribution over SO(3). Alignment corresponds to sampling
the mode of this distribution, and turns out to be the zeroth order approximation
for small noise levels, explaining its effectiveness. We build on this perspective to
derive better approximators to the optimal denoiser in the limit of small noise. Our
experiments highlight that alignment is often a ‘good enough’ approximation for
the noise levels that matter most for training diffusion models.

1 INTRODUCTION

Diffusion-based generative models have emerged as a powerful class of generative models for
complex distributions in high-dimensional spaces, such as natural images and videos.

Diffusion models operate on the principle of reversing a noising process by learning how to denoise.
Let p, be our data distribution defined over R?. Let py(+;0) be the distribution of y = x + on
where © ~ p,,n ~ N(0,I4). y represents a noisy sample at a particular noise level o. When the
noise level is zero, we have that py(-; o = 0) = p,, as expected. On the other end, as ¢ — oo, the
data distribution p,, is effectively wiped out by the noise and p,(-; o) — N(0,0%1,). As explained
by Karras et al.|(2022), the idea of diffusion models is to randomly sample an initial noisy sample
ynm ~ N(0,0%,14), where oy is some large enough noise level, and sequentially denoise it into
samples y; with noise levels opr > opr—1 > -+ > 0o = 0 so that at each noise level y; ~ p(y; o).
Assuming the denoising process has no error, the endpoint yg of this process will be distributed
according to p,.

Many schemes (Song et al., 2022;|Yang et al.,|2024; |Karras et al., [2022) have been built for sampling
diffusion models; the details of which are not relevant here. The essential component across these is
that one trains a denoiser model D that minimizes the denoising 10ss lgenoise aCross noisy samples at a
range of noise levels:

ml%n lgenoise (D) = m[%n]ExNPI]EVJan]Eo—NpU [[|D(z + on;0) — I||2] (D

Once learned, the denoiser model D is then used to iteratively sample the next y; from y;1 using a
numerical integration scheme, such as the DDIM update rule (Song et al.||2022) (for example):

gj
Yi = Yiy1 + (1 - ) (D(Yit1,0i41) — Yit1) 2
Oi+1
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Figure 1: Overview of the training process of a denoising diffusion model, represented by D. A
sample point cloud z is first noised to give y. D denoises y to give a new point cloud D(y; o),
which gets matched to an estimator Dy (y; x, o) of the optimal denoiser D*. The usual estimator is
Des(y; x,0) = x. Here, we show that rotational alignment gives rise to better estimators of D*.

We are particularly interested in the setting where the data samples naturally live in three-dimensional
space, such as molecular conformations, protein structures and point clouds. Often in these settings,
there is no canonical 3D orientation that can be assigned to the data samples. Thus, we would like
to sample all orientations of the data samples with equal probability. Formally, this means that our
‘true’ data distribution is Aug[p,], where each sample x ~ p, has been augmented with uniformly
sampled rotations R € SO(3).

There are two main approaches to obtain this goal of making the sampled distribution SO(3)-invariant
(at least approximately): 1) learning an SO(3)-equivariant denoiser D or 2) learning with rotational
augmentation.

Furthermore, to enforce this rotational symmetry, it is common (Xu et al.,|2022; |Abramson et al.|
2024; Wohlwend et al., [2024; |Daigavane et al., 2025} Klein et al.,|2023b; Dunn & Koes), [2025) to
perform an alignment step (either between y and x, or between D(y; o) and x) with the Kabsch-
Umeyama algorithms (Kabsch, [1976f [Umeyamal [1991) before computing the loss of denoising.
However, not much is known about the effect of this alignment step. In particular, does alignment
introduce bias in the learning objective? If so, can we improve the alignment operation to reduce this
bias? Our paper answers these key questions, and is organized as follows:

* In[Section 3| we derive the optimal denoiser for point cloud diffusion. Importantly this
denoiser separates into an expectation of the optimal augmented single sample denoiser.

* In[Section 4] we show that training a diffusion model is equivalent to matching the single
sample optimal denoiser, motivating the construction of better estimators of the optimal
denoiser.

e In we show the optimal single sample denoiser involves an expectation of a
matrix Fisher distribution over SO(3) and rotation alignment corresponds to a zeroth order
approximation using the mode of this distribution.

e In we build on this insight to obtain better estimators of the optimal denoiser by
approximating the expectation via Laplace’s method. These estimators enjoy reduced bias
relative to the standard alignment based estimator, at no additional computational cost, with
numerical evidence in[Section 8

* In[Section 9| we experiment with these improved estimators to train better diffusion models.
At lower noise levels, the effective improvement from using these higher-order correction
terms is minimal, suggesting that alignment is already a good enough approximation.



Under review as a conference paper at ICLR 2026

2 PROBLEM SETUP

Point Clouds: Let x € R™ 3 represent a point cloud with N points living in 3D space. The entries
in = denote the Cartesian coordinates of each point in the point cloud; each row z, is the vector of

3D coordinates of the ith point. We define ||z||* = Zfil [EAR

Often, the point clouds are associated with some SO(3)-invariant features (eg. atomic numbers
or charges for atoms in a molecule). These features may be sampled a priori and provided to the
denoiser, or undergo their own denoising process with a separate denoiser model (Hoogeboom et al.,
2022; Yim et al., [2023;2024; |Campbell et al.l 2024). Our analysis is not affected in either case, so
we omit these features from further discussion.

Rotations: SO(3) refers to the group of rotations in three dimensions. Since we are working with
point clouds which are sets of vectors, it is natural to consider the representation of rotations as

rotation matrices R € R3*3. Thus, the action of a rotation R on the point cloud = = [z, ], is
R o z obtained by rotating the coordinates of each point by R independently:
Roz=zR" =[z/RTY,. 3)
Note that rotation matrices are orthonormal: R R. = I5. Further, the group action is associative:
RiRy oz =R 0 (Ryox). 4)
SO(3)-Invariance: Let p be a distribution over RV >3, We say that p is SO(3)-invariant if:
p(Rox)=p(z) forallR € SO(3),z € RYV*3, )

Since there is no way to appropriately normalize a translation-invariant p,, we center point clouds x

such that Zf\il x; = 0, as is commonly done in the literature. This operation does not change our
analysis.

Rotational Augmentation: The simple (yet approximate) approach to obtain an equivariant distribu-
tion is to augment the data distribution p, with randomly sampled rotations. In particular, we sample
x ~ p, from our data distribution p,, R ~ ug from the uniform distribution ur over SO(3) as
defined by the Haar measure, and return R o x ~ Aug[p,], which is defined as:

Auglp](=) = /50(3) pe(R7 0 2’ Jun(R)IR. (6)

By construction, Aug[p,|(R o ) = p,(z)ur (R) for any R.. A simple proof (Appendix A.2) shows

that Aug(p,] is always SO(3)-invariant. When training with rotational augmentation/'| the loss
becomes:

minlug(D) = minErvug Eonp, Egnp, Eonp, [I DR 0 (x + on)i0) —Roz|*]. ()

SO(3)-Equivariant Denoisers: An SO(3)-equivariant denoiser D commutes with all rotations R.
Formally:

DRo (z+0on))=RoD(z+on) ®)
for all point clouds z, noise 7, noise levels o and rotations R.

In|Appendix A.1} we show that, given a SO(3)-invariant initial distribution, the result of diffusion
sampling with a SO(3)-equivariant denoiser is a SO(3)-invariant distribution. In our case, our initial
noise distribution is an isotropic multivariate Gaussian, so the conditions are satisfied. Further, for an

equivariant denoiser, data augmentation has no effect (Appendix A.3): luyg (D) = ldenoise (D) for an
equivariant D.

In[Appendix B.1]| we show that there is no perfect denoiser under rotational augmentation, implying
that [, has a non-zero minimum. To summarize, the fundamental issue is that there is an ambiguity
with respect to which orientation R o x to denoise to. This inspires the idea of alignment to simply
cancel out the effect of any such rotation. However, to analyze the alignment step, we first need to
characterize the form of the optimal denoiser D* which minimizes [ay,.

'We could have also denoted the augmentated input to D as R o 2 + o7, which is equivalent in expectation
due to the isotropy of the Gaussian distribution.
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3 THE OPTIMAL DENOISER

Having established that there does not exist a perfect denoiser, we can now ask about the optimal
denoiser D* obtaining the minimum possible 10ss lyg(D*) = minp lye (D) > 0. Here, we adapt
the derivation performed in Karras et al.| (2022).

3.1 THE OPTIMAL DENOISER IN THE SINGLE SAMPLE SETTING

We first state the optimal denoiser D* in the single sample case, where p,(x) = §(z — xp). Let
D*(y; zo, o) be the optimal denoiser for y conditional on a particular z( at a noise level o, which we
term the optimal conditional denoiser. Then:

ER~ug N (y; R 0 29, 02Ty« 3)R 0 z0]
Erur N (y; R oz, 02N «3)]

as we prove in[Appendix B.2] Above:

D~ (ya o, U) = = IERf\/p(R | y,xz0,0) [R o JC()] 9)

p(R|y,z9,0) = N(y; R o 29, 0°Ly x3)ur(R)
h Jso@ Ny R'zo, 0%In «3)ur(R)dR/

(10)

Thus, we see that the optimal conditional denoiser essentially corresponds to an expectation over
different orientations R o . Importantly, it turns out that the optimal conditional denoiser is SO(3)-
equivariant:

D*(Roy;x0,0) =Ro D*(y;20,0) (1D

We provide a short proof using the invariance of the Haar measure in Further, the
optimal conditional denoiser is invariant under rotations R, of the conditioning z:

D~ (y; Raugaja 0) = ]ER~p(R | y,Ragox; o) [R © (Raug © I)] =D~ (y; &€, 0) (12)

3.2 THE OPTIMAL DENOISER IN THE GENERAL SETTING

In the general setting where p,. is arbitrary, the optimal denoiser D*(y; o) is an expectation over
x ~ p(x | y, o) of the optimal conditional denoiser D*(y; x, o), as we prove in[Appendix B.3
D*(y;0) = Bz Rp(e R | .0 [R 0 7]
= Eonp@ | 9.0 BR (R | o) [R O 7] = Eap(a | y.0) [D" (2, 0)] (13)
It follows from the SO(3)-equivariance of D*(y; x, o) that D*(y; o) is also SO(3)-equivariant.

Given that there is an analytic expression of the optimal denoiser, a natural question arises. Instead of
minimizing the usual denoising loss (Equation IJ), can we instead try to match the optimal denoiser?
Indeed, we shall see that these approaches are actually identical.

4 MATCHING THE OPTIMAL DENOISER

Here, we motivate why we would want to match the optimal denoiser D*. To do so, we first consider
matching to some general estimator Dey(y; 2, R, o) potentially dependent on all the random variables.
Given any estimator Dey(y; z, R, o) we want to match to D, we can define a matching loss by:

lest(D; Dest) = ]ERNURIEJJNPIE"']NPN]EUNPU [[ID(R o (x+0n);0) — Dey(Ro (x +on); z, R, ‘7)||2]
2
= ]ERNUREHSszEUN;Da]Eywp(y\w,a,R)[”D(y§ U) - Dest(y§ z, R, U)” ]
2
=Eorp. Eypylo)Exnpa | y.0) ER~p(R | y,2,0) [ D 0) = Dest(y; 2, R, 0)[7] (14)

after identifying y = R o (z 4+ o). As we prove in|[Appendix B.7| averaging an estimator Dey
over R ~ p(R | y,z,0) to obtain a new estimator Eg,.(R, | y,z,0) | Dest] gives us an equivalent loss

from a minimization perspective: les(D; ERp(R | y,2,0)[Dest]) = lest(D; Dest) + C, where C'is a
constant that does not depend on D. The same reasoning applies to averaging an estimator D over
x ~ p(z | y,0) to obtain a new estimator Eq (5 | y,0) [Dest]-
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Setting Deg(y; 2, R, 0) = R o x recovers lyg. Now, for this choice of Deg, Erp(r | y,2,0) [Dest]
corresponds to the optimal conditional denoiser. Further, B, p(z | y,0)ER~p(R | y,2,0) [Degt] corre-
sponds to the optimal denoiser. Thus, from the previous arguments, optimal denoiser matching is
equivalent to the standard denoising loss.

The advantage of averaging, however, comes from a practical perspective. In practice, we can only
estimate this loss through sampling which introduces a sampling error for each random variable (ie,
x, R) in the argument. By averaging, we remove the dependence of the argument on the random
variable being averaged over and reduce this sampling error.

Performing the averaging over x is tricky, because the expectation over p(x | y, o) requires access to
Dy Approximating this expectation over a finite set of x can suffer from overfitting (Vastola, 2025}
Kadkhodaie et al., 2024; L1 et al., 2023). Niedoba et al.| (2024) tried to address this by building
estimators based on the nearest-neighbor approximation. However, the averaging over R to give the
optimal conditional denoiser is indeed feasible, as we discuss next.

In conclusion, rather than optimizing /., we can instead match to the optimal conditional denoiser:

lest(D§ D*(y,x, ‘7)) = lmatch(D) = ]EUNPaEpr(le)EOCNP(w | y,o)[”D(y? ‘7) - D*(Z/Q xva)Hz}-
(15)

5 THE MATRIX FISHER DISTRIBUTION ON SO(3)

Here, we connect the optimal conditional denoiser to the matrix Fisher distribution. Recall our expres-
sion of D*(y; x, o) involves an expectation over p(R | y, , o). Some simple algebraic manipulation

(Appendix B.4) shows us that:
R 2 T
p(R|y,z,0) o exp (—M> X exp (Tr [HR}> (16)

202 202

In particular, the distribution p(R | y, =, o) belongs to a well-studied family of distributions called
the matrix Fisher distribution over SO(3) (Mohlin et al., 2020; [Leel |2018). This distribution is
parametrized by a 3 x 3 matrix F":

exp Tr[F TR

Z(F)
where Z(F') is the partition function, ensuring that the distribution is normalized over SO(3).
Thus, conditional on y, z and o, R is distributed according to a matrix Fisher distribution with
T
F = L35 € R3*3. We can write:

D*(y;z,0) =E

MF(R; F) = (17)

)[Rom]:E )[R]ox. (18)

R~MF (R;% R~MF (R;%

Therefore computing the optimal denoiser involves computing the first moment of a matrix Fisher
distribution.

6 ROTATIONAL ALIGNMENT

It turns out rotation alignment gives a very good approximation for the first moment. Assuming z, y
T

have no rotational self symmetries (which is generically the case), then MF (R; ygf) is a unimodal

distribution. In fact, for small ¢ this distribution becomes very sharply peaked, so the mode becomes
a good approximation of the first moment.

‘We can see the mode of the distribution satisfies:

y'z y'z T
Riode = argmax MF (R; 2> = argmax Tr {QR} = argmin — Tr[y  zR]
ReSO(3) o ReSO(3) 20 ReSO(3)

1
= argmin —(Tr[y"y] — 2Tr[y 2R] 4+ Tr[R"z"zR) = argmin ||y — Roz||*> (19)
RESO(3) ReS0(3)

=R*(y, ) (20)
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where R*(y, x) is the optimal rotation for aligning « to y, exactly the rotation matrix returned by the
Kabsch and Proscrutes alignment algorithms.

Probability
Density

R*(y,2)

T

MF (R; F= %)
g

Figure 2: A depiction of the unimodal MF(R;; F') over SO(3), highlighting the mode R*(y, z). As
o decreases, the distribution becomes more peaked around R*(y, ).

This marks our first 1n51ght ahgnment allows us to approximate Eg [R] &~ R*(y, ) in the optimal

single sample denoiser S0
D*(y;z,0) =Er[R] oz =~ R"(y, x)z.

Substituting R*(y, )z for D¢y in[Equation 14} we obtain
lalign-aug(D) = }ERNuR]E.erT Enrvpn Errwp,, [”D(R o (SU + 077); U) - R* (yv l‘) © :C”Q] (21)
exactly the loss used for rotation alignment!

Can better estimators for D* be constructed by better approximations of Eg [R]? Yes! In|Section 7]
we show that there exist better approximators of Eg[R] with no additional asymptotic runtime cost
over alignment.

7 APPROXIMATING THE OPTIMAL DENOISER VIA AN ASYMPTOTIC
EXPANSION OF THE MATRIX-FISHER DISTRIBUTION

Here, we derive additional correction terms to the moment Eg[R] in the limit of & — 0. These
correction terms can be implemented with no additional cost.

7.1 FOR A GENERAL MATRIX FISHER DISTRIBUTION

We provide a high level summary of the method used to derive additional correction terms. More
detail can be found in[Appendix C|
We note that the partition function Z(F) = |, 50(3) exp(Tr[F TR])dR gives all the information we

need. In particular, taking derivatives of Z(F') allows us to calculate any necessary moments. For
example,

Rexp(Tr FTR)dR d
Ervrm:m)[R] = Jsots e;(F)[ - FZZ(P})?) %1 Z(F)

(22)

using the trace derivative identity: % Tr[FTR] = R. To control peakedness, we replace F with A\F'
so that as A — oo, the distribution becomes a delta function centered at the mode.

Next, recall that in Kabsch alignment we use SVD to decompose where U,V € SO(3) and S =
diag[s1, s2, s3] where s > so > |s3|. It turns out that Z(AF) = Z(A\S) so we restrict to only
expanding Z for diagonal S. To approximate Z(\S), we use Laplace’s method.

First, we choose to use the exponential map parameterization R(0,,6,,,0,) = exp(0, R, + 0, R, +

0.R.. Next, we Taylor expand the argument Tr[S T R(8)] around 6 = 0. It is not hard to check that I
maximizes this so there is no first order term. Hence taking up to second order terms, we obtain some

exp(AAo(S) + A0 A5(S)0) which can be interpreted as a Gaussian because A, must be negative
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definite since I is the maximum. In some sense this captures the peak of the distribution and we can
write

exp(Tr[ASTR(0]) = exp(AAo(S) + M0 A2(5)0)B(8, S, \)

Next, we can perform the usual Taylor expansion of B(8, S, \)u(@), the remaining terms in the
integral where 1(0) is the corresponding Haar measure. We also do this around 6 = 0 because only
the neighborhood around the peak matters. Finally, we note that as A — oo, the width of the peak
described by exp(AAg(S) + AT A3(S)6) decreases. Hence, replacing the domain {|@| < 7} with
the larger domain {6 € R3} not gives us a good approximation for each of the expanded terms, but
also gives us Gaussian integrals which are analytically evaluable.

Finally, we obtain an expression of the form:

ZOS) = N(S,\) (1 + Ll(S)i + L2(S)% + Lg(S)% +. ) (23)
where N (.5, \) is a normalization term. The corresponding expected rotation can be computed as:
OlnZ(AS) 0InZ(\S) Oln Z()\S)}
351 ’ 881 ’ 853

1 .
Er~mrm:as)[R] = Y diag {

1 1
=1 — — ... 24
+Ci(8)5 + CalS) 55 + 24)
For an arbitrary F' = US VT, we would then have:
Ermr®rAm)[R] = UERovr®ras) RV (25)

.
7.2 FOR THE SPECIFIC F' = L%

We are specifically interested in the case where F' = y;“’, asp(R|y,z,0) = MF(R; y;z ). From
the Kabsch algorithm, we have that R*(y, ) = UV " where U, S,V T = SVD(y"x) = SVD(F")

with det(U) = det(V) = 1 and S = diag[s1, s, s3] where 51 > so > |s3].

Following the procedure outlined in we used Mathematica (Inc) to find the coefficients in
explicitly:

1 1 1 1 1 1 1
C1(S) = —= diag + , , (26)
2 S1 + So 81+ 83" S2 + 81 So + 83" 83+ S1 83 + S9
1 1 1 1 1 1 1
C5(S) = —= dia + , T , T
2(5) g8 {(81 +52)2  (s1+83)2 (s2+51)?  (s2+s3)? (s3+s1)%  (s3+ 82)2}
(27)

These represent the first-order and second-order correction terms respectively. This approximation is
exact in the limit 0 — 0.

allows us to approximate the optimal conditional denoiser as:
D*(ya ‘T) = ERNp(R | y,x,0) [R © SC] = ERNp(R | y,z,0) [R} ox (28)
= (R*(y,x) + 0?By(y,z) + 0*By(y,x)) o = + O(c°). (29)
where Bi(y,z) = UC1(S)VT and Ba(y,z) = UC(S)V .

Thus, alignment corresponds to the zeroth-order (in o) approximation of D*(y; z, o). From|[Equa]
tion 29| we define the successive first-order and second-order approximations to the optimal denoiser:

Dg(y;x,0) = R*(y,z) o (30)
Di(y;x,0) = (R*(y,2) + 0’Bi(y,x)) o x (31)
Di(y;x,0) = (R*(y,2) + 0 B1(y,2) + 0*Ba(y,x)) o x (32)

Our improved estimators D7 and D3 have reduced bias relative to the usual alignment-based Dy .
Importantly, these improved estimators can be constructed at no additional computational cost to the
standard Kabsch alignment, since U and V have already been computed. They simply correspond to
adjusting the rotation R* before multiplying with z.
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Figure 3: Mean-squared error relative to the optimal denoiser D*(y; x) as a function of o. x here
is a randomly chosen conformation of the AEQN tetrapeptide from the TIMEWARP 4 A A-LARGE
dataset, and y is sampled as x + o7. For larger o, we see that the error rates drop significantly using
higher order correction terms. For smaller o, we quickly reach the regime where error is dominated
by numerical precision rather than approximation error when using higher order correction terms.

8 NUMERICAL ERROR IN APPROXIMATIONS OF THE OPTIMAL DENOISER

In|[Figure 3] we compute error in the zeroth-order D, first-order D7, and second-order D3 approxi-
mations compared to an estimate of D*(y; x) obtained by numerically integrating the expectation in
[Equation 28|in Mathematica, which automatically adjusts the resolution of the grid for the numerical
quadrature on SO(3).

In the next section, we experiment with the practical utility of these estimators.

9 RESULTS IN PRACTICE

We train a simple 2-layer MLP (with 2.3M parameters) on 3D configurations of the tetrapeptide
AEQN as obtained from the TIMEWARP 4AA-LARGE dataset (Klein et al.| [2023a)), utilizing the
codebase of the JAMUN (Daigavane et al., |2025) model. We train this model using the losses
corresponding to the estimators D, Dj, D] and D3 discussed above, at 4 different noise levels
o0 =0.5A, 1.0A, 5A and 10 A. This captures most of the noise levels usually used to train diffusion
models on data of this size (Wohlwend et al.| 2024). We perform two experiments which allow
us to measure the impact of the estimators in learning 1. the optimal denoiser and 2. the optimal
conditional denoiser.

1. We sample x from all 50000 frames of a molecular dynamics simulation for the AEQN
peptide, as obtained from |Klein et al.| (2023a).

2. We fix z as the first frame of the same molecular dynamics simulation.

The results are shown in [Figure 4| and [Figure 5| where we report the RMSD (root mean square
deviation) to the ground truth z. In[Appendix D] we also show plots of the aligned RMSD for the
same training runs.

We see that at the largest noise level, the second-order correction tends to diverge. At the lowest noise
levels, the magnitude of the correction is not significant, and all estimators perform similarly. We see
that in practice, the zeroth-order approximation Dy is usually good enough at the important noise
levels; in particular, it seems like the model is unable to take advantage of the variance reduction from
the higher-order corrections. We hypothesize that this may be due to the fact that the variance of the
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Figure 4: Training progress for the MLP, as measured by RMSD to ground-truth  (sampled from all

frames), when trained using Dag, Dj, D and D3.
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Figure 5: Training progress for the MLP, as measured by RMSD to ground-truth x (fixed as the first
frame), when trained using De, Dfj, D7 and D3.

gradients over the multiple « is much greater than the variance of the gradients due to the rotational
symmetries. These results are preliminary, but they suggest that alignment itself may not be super
critical to learn a good denoiser.
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A PROOFS

A.1 EQUIVARIANT DENOISERS SAMPLE INVARIANT DISTRIBUTIONS

The proof is similar to that of Proposition 1 inXu et al.| (2022).

Suppose that p, (; o;+1) is a SO(3)-invariant distribution:
Py(it1;0i01) = py(Royit1;0641) (33)

Using the DDIM update rule (Equation 2) at step (i + 1), we see that the next distribution py (; 0;) is
also SO(3)-invariant. Under an arbitrary rotation R:

0;
DDIM; 1 (Roy;t1) =Royy1 + (1 - 1) (D(Royit1,0i+1) —Royit1) (34)
i+
g5
=Royip1 + (1 - U(ﬂ) (Ro D(Yit1,0i41) — Royiy1) (35)
o
=Ro (Z/z‘+1 + <1 - z1> (D(Yit1,0i41) — y7;+1)> (36)
i+
=Royi (37)
=Ro DDIMH—l(yH—l) (38)

We used the SO(3)-equivariance of the denoiser above: D(R o y;11,0:+1) = Ro D(yi11,0i+1)
for all y; 1.

Hence:
py(Yi;00) = /p(yi\yiﬂ)py(yiﬂ; Tiv1)dYit1 (39)
= /5(% — DDIMi 41 (¥i+1))Py (Yit15 0it1) dYitr (40)
= /5(%‘ — DDIM 11 (yi+1))py (R © Yi1; 0ig1)dyita (41)
= /5(3 oy; — R oDDIM;11(yit1))py (R 0 Yiv1;0it1)dyiv1 (42)
= /5(R oy; — DDIMi41(R 0 yit1))py (R 0 yiv1; 0ig1)dyisa (43)
= / O(R o y; — DDIMit1(Yi41))Py (Yig 13 0it1) i (44)
= py(Royi;0;) (45)

using the change of variables y;, ; = R o y; 1 which does not induce any change of measure. Hence,
py(;09)

is a SO(3)-invariant distribution. The initial distribution is N'(0,03%,1;), which is also SO(3)-
invariant distribution due to the isotropy of the multivariate Gaussian. We can conclude that at each
noise level o; in the diffusion process, the p,,(; 0;) is SO(3)-invariant.

The same proof can be generalized to stochastic samplers such as DDSM (Yang et al., 2024).
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A.2 ROTATIONALLY AUGMENTED DISTRIBUTIONS ARE INVARIANT

For any arbitrary rotation R:

Aug[p,](Roz) = / p.(R'7'R o z)ug (R’)dR’ (46)
50(3)
:/ p.(R7'R)) ' oz)ur(R(RT'R))d(RR™'R/) (47)
S0(3)
= / po(R""! o 2)ur (RR")d(RR") (48)
S0O(3)
= / pe(R" ! ox)ug (R”)dR” (49)
S0O(3)
= Aug[ps|(). (50)

A.3 ROTATIONAL AUGMENTATION DOES NOT AFFECT EQUIVARIANT DENOISERS

Using the equivariance of D and the fact that for any rotation R, we have RTR. = I3 3:

ID(R(z + 1)) — Ra|® = [RD(z + 1) — Rz||? (51
= |R(D(z +n) — )| (52)
= (R(D(z +1n) — z))"R(D(z +n) — x) (53)
= (D(z +n) —2))"R"R(D(x + 1) — x) (54)
= (D(z +n) —2))"(D(z +n) — z) (55)
= |(D(z +n) - 2)| (56)

Hence, the 10ss lyo-aug (D) is invariant under rotations R. Thus, if D is equivariant:

lo-aug(D) = ERun Banp, By, ID(R(@ + 1)) = Ra|” = lug (D) (57)

B NO PERFECT DENOISER EXISTS WITH ROTATIONAL AUGMENTATION

Suppose we only had one sample x¢ where ||zo|| > 0. Hence, our distribution is a delta function
pz(z) = 6(x — xp). Fix anoise level ¢ > 0. Here, we argue why a perfect denoiser cannot exisﬂ

In this setting, assume that there exists a perfect denoiser Dpers:
Dyert(R o (9 + 0m)) = Roxg (58)
for all rotations R and noise 7. Such a Dyt obtains zero loss: laug(Dperf) =0.

We show that such a Dy cannot exist, by contradiction. Set R = I in[Equation 58| to see that
Dyperi(z0 + 0m) = ¢ for all instantiations of 7). Fix some noise 7, arbitrarily. Now, consider any
non-identity rotation R. Let ng be such that:

R' + -
R0 (20 + o) = 20 + 07 T o (zg 00770) To (59)

where we used the fact that R is orthonormal. Now, setting 7 = g in
Dperi(R o (29 + onr)) = R o xo. (60)
But from the definition of nr, we have:
Dperi(R o (g + 0mRr)) = Dper(xo + 010) = 0. (61)

As R is not the identity, we have a contradiction. Thus, Dys cannot exist.

*This argument can be made rigorous to allow for exceptions of zero measure. We do this in[Appendix B.1}
but ignore such exceptions for clarity here.
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B.1 NO PERFECT DENOISER EXISTS WITH ROTATIONAL AUGMENTATION

We can formalize the argument of to include exceptions of measure 0.
Assume that there exists a perfect denoiser Dpeq:
Dpert(R o (2o +01)) =R o xg (62)

for all rotations R. and noise 7, except on a set S of measure 0 over SO(3) x RY*3, Now, define the
family of sets:

R(y) ={(R,n) : Ro(zg+0on) =y} (63)

for each y € RV >3 Itis easy to verify that { R(y)},crw~xs is a partition of the space SO(3) x RV >3,
Further, each R(y) is diffeomorphic to SO(3), since we can always find a n) for every R to satisfy
R o (zg + on) = y. Thus, we have pgo(s)(R(y)) = 1 where pgo(s) is the Haar measure over
SO(3).

Thus, we can measure any measurable set A by integrating the measure of its intersections with each
R(y). Formally, by the co-area formula, where y represents the product measure over SO(3) x RV *3:

ua) = [ o (A0 B@)Iw)dy (64

where J(y) > 0 is the Jacobian factor. (Essentially, this is the ‘change of variables’ formula.) Now,
applying this to S with p(.S) = 0, we see that:

/ 5o (S N R(y)(y)dy = 0 65)
yE]RNxs

= s0(3)(S N R(y)) = 0 for almost every y € RV *? (66)
Pick any such y . Then,
tsoe) (R(y) —S) = psos) (R(y)) — pso@) (SN R(y)) =1-0=1. (67)

Thus, for this particular y, psos)(R(y) —S) =1 >0 = R(y) — S is uncountable, and has
infinitely many points. In particular, there exist atleast two different points (R1,7;) and (Rg,72) in
R(y) — S such that R; # Ras. Now, for each of these two points:

Rio(xzg+om)=y=Rsoo(xg+on). (68)

But, since (R1,71) and (Rq,72) in R(y) — S (and hence, not in S), we must have perfect denoising
for the corresponding inputs:

Rl oy = Dperf(Rl o (IO + 0771)) = Dperf(y) == Dperf(R2 o (IO + 0772)) = R2 o To (69)
which is a contradiction as ||zo|| > 0 and Ry # Ro. Thus, perfect denoising is impossible.
B.2 THE OPTIMAL DENOISER IN THE SINGLE SAMPLE SETTING

In the single sample case where p,(z) = 6(z — o), using the isotropy of the Gaussian p;,:

laug (D) = ERreun By (0,025 o) [ID(R(w0 + 1)) — Rao|” (70)
= ERmun Enon(0.0%1x 1) || D(RTo + 1) — Rag|? (71)
= ERNUREyNN(RwO,UQHNX3) HD(y) - RI0||2 (72)

= / (/ 1D(y) — RI0|2N(y;RI0,02]INx3)dy> ur (R)dR (73)
S0O(3) RN x3

= / </ HD(y) — RJ?QHQN(y;R$0,UQHNX3)UR(R)dR> dy (74)
RN X3 SO(3)

_ / (D 1, 0)dy (75)
RN x3

14
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where we define:

lug(Di . 0) = / ()HD(y)—R:c0||2./\/(y;Rxo,UQ]Ing)uR(R)dR (76)
SO(3

= Ereug | D(y) — Rao||> N (y; R, 02y 3) 77
Note that e (D;y) is non-negative for all y. Thus, the optimal denoiser D* should minimize
laug (D; y) for each possible y. Taking the gradient of l,,,(D;y) with respect to D(y) and setting it to
0:

VD(y)laug(D;y,J) =0 (78)
= Er~ur [2(D*(y) — Rao)N (y; Rao, 0% Inxs)] =0 (79)
ER~ug [RZo N (y; Rag, 0%In x3)]
ER~ug [V (y; Rro, 021N «3)]
This is the optimal denoiser in the single sample setting! We can rewrite this a bit:

R(ﬂoN(y; Rmo, 0’2]IN 3)UR(R)dR
D*(y) = Jso) . 81)

— D'(y) = (80)

Jso N (y; Rao, 0?1y xs)ur(R)dR
_ fSO(B) RaoN (y; Rxo, 02 In x3)ur (R)dR &
B fso(g)N(yéRlﬂCO,UQHng)uR(R’)dR’
; Ro, 0?1 R)dR
:/ Rag—— VW 20,9 N;g)uR( ) , 3
50(3 fSO(g) (y; R'zo, 02Inx3)ur (R')dR/
:/ Rao p(R | y, z0)dR 54)
50(3)
= ERp(R | y,20) [RZ0] (85)
as:
Rz, oI R
p(R |y, 20) = -— Wi R0, Plvg)ur(®) 50
fso(s (y; R'wo, 0%y x3)ur (R/)dR
is the distribution over rotations R conditional on ¥, because:
p(y | R,z0) = N(y; Rzo, 0N «3) 87)
and Bayes’ rule:
Rz R,z Rlz
(R | y.20) = PURIT0) _ py| Rozo)p(R | o) -

py|zo) fSO(3)p(y | R/, z0)p(R/ | zo)dR/
and noticing that p(R | ) = ur (R).

B.3 THE OPTIMAL DENOISER IN THE GENERAL SETTING

The same idea and calculations from [Section 3.1]hold in the general setting, where p,, is arbitrary.
Using the isotropy of the Gaussian p,;:

lug(D) = ERmug Banp, By (0,025 o) ID(R(2 + 1)) = Ro || (89)
= ER~un Eonp, Enan (0,025 15) [D(R 02 + 1) — Roz|? (90)
= ERmur Eomps Byl (Roz.021x 1s) || D(y) — Roz)? 91)
= [ foos (L 1P = R0l N 0%y ) e i Ry
3 x x3
(92)
/.. ( /.. ( / o IP®) = Rox||2N<y;Rox,a%mmR(R)dR) m(w)dx) dy
(93)
:/N Slaug(D;y7U)dy (94)
R X
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where:

lawg(Dsy,0) = / / ID(y) —Ro x||2./\/(y; Roz,0%nys) ur(R)dR p,(z) dz (95)
RN*3 ./ S0(3)
= Eyrp, ERug [ D(y) = Roz|> N(y; Rox, 0T xa) (96)

Note that I, (D;y) is non-negative for all y. Thus, the optimal denoiser D* should minimize
lag (D; y) for each possible y. Taking the gradient of . (D; y) with respect to D(y) and setting it to
0:

Vi y)lag(D3y,0) =0 O7)
= Eop.ERvun [2(D7(y) —Rox)N(y; R oz, 0%Inx3)] =0 98)
Eip, ERvug [R o2 N(y; R oz, 021N 3)]

— D* = Pz R ) ? 99

(y) EszIERNuR [N(Zh Ro x, UQHNXB)] ( )
which clearly specializes to in the single sample setting. As before, we can write this as:

E,, ErusR ‘Rox, o2l
D*(y) = ZrreEReunRo 2 Ny ° 2,0 Inx3) (100)
EwNplERN’U«RN<y7 Ro z,0 HN><3>
B fso(g) Janxs Roz N(y; R oz, 0%Inx3)pa (@)ur (R)dzdR o

f50(3) Janxs Ny R'a!, 021N« 3)pe (2 )ur (R')da’ dR/

_ / / Rogz N(y; R o2, 0%Ly 3)pe (2)ur (R)dwdR (102)
50(3) JrN x3 fSO(S) Jrnxs N(y; R'a!, 02N «3)pe (2" )ur (R’)dz’dR/

= / / Roxp(x,R|y,o)dzdR (103)
SO(3) JRN %3

=E; Rep(aR | y,o) R 0 2] (104)

=Eup(a | y,0) ER~p(R | y,2,0)[R 0 7]] (105)

=Eanpa |y [D* (45 7)] (106)

as the conditional probability distribution p(x, R | y, o) over both point clouds z and rotations R is:

_ ply|R,z,0)p(z)p(R)
PR 19:9) = TR, 2, o) p@)p(R) (1on
N(y;R oz, 0%y x3)pz(z)ur(R)

 Jso) Jeves Ny R'2', 0%In xa)pe (2! Jur (RY)da' dR/

(108)

Note that the marginal distribution over R under p(z, R | y,0) is indeed p(R | y, 2, o) as derived in
Equation 10] Note that:

N(y;RO x, 0'2HN><3)UR(R)

Rly.@.0)= (109)
PRl ) fso(g) N(y;R'z, 0% N x3)ur(R')dR’
because:
p(y | R,z,0) ZN(y;Rom,J2]INX3) (110)
and Bayes’ rule:
R R R
(R |y.z) = PORID) _ Py | Rz, 0)p(R |2) i

pPylz)  [so@ Py R, 2)p(R' | z)dR/

and noticing that p(R | ) = ur (R).
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B.4 CONNECTION TO THE MATRIX FISHER DISTRIBUTION

Here, we show that p(R | y; 2o, o) belongs to the family of Matrix Fisher distributions:

p(R | y;20,0) < N(y; R o 20,0 Iy x3)ur (R) (112)
R
X exp ( ly = Oxo” ) (113)
R —2Tr R
exp ||y|| + |R o xo? [y" (R o z9)] (114)
202
xp (1017 + loll” — 2 Trly" (R0 o)) 115)
202
Tr|
o<exp( at Roxo]) (116)
T T
X exp ( Y mOR ) (117)
T T,T
ocexp( rRymo) (118)
Tr|
ocexp( - y xo ) (119)
x exp (Tr y xo RD (120)
Hence, p(R | y; xo,0) = MF(R; "Z?O)
B.5 THE OPTIMAL CONDITIONAL DENOISER IS SO(3)-EQUIVARIANT
Here, we show the that the optimal denoiser D* is indeed equivariant under rotations of y.
For an arbitrary rotation R’
ERr~ug [R 0 20 N (R'y; R o 2, 0% xx3)]
D*(R'y; zg,0) = B ! ’ 121
Ryiw0,0) = g IN(RIy: R o 0, 0% a)] (12
ERur IV (y; (R)) 'R 0 20, 0%y x3)]
_ Erun [RU(R) T R)zo Ny (R) Ry, oTwvs)] 1
Er~ur [V (y; (R)7'R)zo, 0?In x3)]
i ]ER//NuR [RIR//ZEO ./\/(y7 RH.’E07 JQ]Ing)] (124)
ER/mug N (y; R 20, 0N x3)]
E o " R/ 2]1
— R/ R R[R ];0 N(y;/R .130270' N><3)] (125)
ER/ g [N (y; R0, 02N x3)]
= R'D"(y;20,0) (126)

where we used the fact that ug is uniform so R” = (R/)"!R is also distributed as ugr, by the
invariance of the Haar measure.
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Next, we show that the optimal conditional denoiser D* is indeed invariant under rotations of
conditioning x. For an arbitrary rotation R’

Er~ug [R o R'zo N (y; R o R'wg, 0%In3)]

xR/ _
D*(y;R'zg,0) = Eron V(5 RoRizg, 02 o) (127)
_ Ervun [(RR)z0 N (y; (RRY) 0 20, 0° Iy x3)] (128)
ER~ugr [N (y; (RRY) 0 20, 021 x3)]
_ Erreun[R"2o N(y; R 0 20,0%In3)] (129
]ERNUR [./\/(y, R o zg, UQ]INXB)]
= D*(y;x0,0) (130)

where we again used the fact that ugr is uniform so R” = RR/ is also distributed as ur, by the
invariance of the Haar measure.

B.6 ROTATIONAL ALIGNMENT COMMUTES WITH ROTATIONAL AUGMENTATION

Here, we show that alignment commutes with the rotation R, used for augmentation. In particular,
the alignment procedure returns R*(Raug oy, Rayg © x) = R, R* (y, JJ)R This is because:

aug*
R*(Rug oy, Rag 0 @) = argmm |Raug © ¥ — RRayg 0 | (131)
ReSO(3)
= argmin ||y R ug RRaug ox” (132)
ReSO(3)
— R:;FugR*(Raug oy, Raug 0 )Rayg = R*(y, ) (133)
= R*(Ray 0¥, Ragg © 7) = RayeR*(y, 2)RY, (134)

Thus, on aligning R,ug02 to Raygoy, we get R* (Raugy; Raug®)o(Raug®) = RayeR*(y, « )Rdungugo
r = RaugR* (y7 SC) ©

B.7 AVERAGING AN ESTIMATOR INDUCES AN EQUIVALENT MATCHING LOSS

Here, we show that averaging an estimator D, gives us an equivalent matching loss from the
perspective of minimization with respect to D. Formally, for any estimator Dy we have:

lesl(D§ ]ERNp(R | y,x,0) [Desl]) = lesl(D§ Dest) +C (135)
where C'is a constant that does not depend on D. We have:

lest(D; Desl)

= Eorp, Bymp(ulo) Ermp(e | 1.0) ER~p(R | y.2.0) [ D(Y;0) = Des(ys 2, R, 0)]|”] (136)
=E,E,E,Er[||D(y;0) — Des(y; 2, R, o)) (137)
= BBy EEr[|D(y; 0) — Er[Des(y; 2, R, 0)] + Er[Dest(y; 2, R, 0)] — Deat(y; 2, R, U)||2(]138)
= E,E,E.Er[|D(y; 0) — Er[Des(y; 2, R, 0)][|* + |[ER [Des (v; 2, R, 0)] = Des(y; 2, R, 0)|”
+2(D(y; 0) — Er[Dest(y; 7, R, 0)]) " (Er[Dest(y; 2, R, 0)] = Desi(y; 2, R, 0))] (139)
where we omit the explicit distributions for clarity. Now, focusing on the last term:
Er[2(D(y; ) — Er[Dest(y: 2, R, 0)]) " (ER [Dest(y; 2. R, 0)] — Desi(y; 2, R, 0))] (140)
= 2(D(y;0) — Er[Dest(y; 2, R, 0)]) ' ER [(Er [Dew(y; 2, R, 0)] — Dest(y: 2, R, 0))]  (141)
= 2(D(y;0) — Er[Deu(y; 7, R, 0)]) " (Er[Des(y; 7, R, 0)] — Er[Des(y; 7, R, 0)])  (142)
= 2(D(y;0) — Er[Des(y: 2. R, 0)]) 0 (143)
—o. (144)
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as the first term in the product is a constant with respect to R. Thus,

lest(D; Degt) (145)
= E,ByE.Er[|D(y; 0) — Er[Des(y; 2, R, 0)]||* + |ER [Des(y; 2, R, 0)] — Dew(y; 2, R, 0)||*]

(146)
= lest(D§ ER[Dest]) + EoEyEwER[HER[DeSI(y§ z, R, U)} - Dest(?ﬁ z, R, U)||2] . (147)

independent of D

as claimed.

C FOR A GENERAL MATRIX FISHER DISTRIBUTION

We note that the partition function Z(F) = [, 3) exp(Tr[FTR])dR gives all the information we

need. In particular, taking derivatives of Z(F') allows us to calculate any necessary moments. For
example,

fso Rexp(Tr[F TR])dR L Z(F) d
Ermrr;m)[R] = 7(F) =7 :d—Fan(F) (148)

using the trace derivative identity: = Tr[FTR] = R.

Now, we remove the explicit o-dependence of ' = 02 -, by deﬁnlng F'=yTzand A = 2 , so that
F = \F'. We are interested in computing Eg . nr(r;xp/) [R] in the limit of A — oo.

Recall that we can always factorize ' = USV T where U,V € SO(3) and S = diag[s1, s2, s3]
where s1 > so > |s3/, by the Singular Value Decomposition. In particular, we see that:

Tr[F'"R] =Tr[VSTUTR] = Te[STUTRV] = Tr[ST(UTRV)] (149)
by the cyclic property of the trace. Since U,V € SO(3) it follows that Z (F") = Z(S) (by change of
variables R — U T RV') so we can restrict our calculations to the diagonal case .

Laplace’s method provides a powerful tool to expand integrals of sharply peaked functions. The
key idea is that only the neighborhood of a sharp peak has significant contributions and that such a
region can be approximated with a Gaussian distribution. In our case, we seek to apply this method
to Z(AS) in the limit of A — oc.

As S is diagonal, it is easy to see that argmaxg,.go(3)[A Tr[SR]] = I3x3. Hence, a natural

parameterization to use is the exponential map expansion of SO(3) which expands around the
identity. In this chart, we have parameters 8 = (6, 6,,,6,) and our rotation is given by

R(0,,0,,0.) = exp(6, Ry + 0,R, + 0.R.) (150)

where R, R, R are the generators of x, y, z rotations. In this parameterization, the Haar measure
can be found to be

1 — cos(||6]))

6)do,do,dls, = ————~
8 0:0,40: = — g

d6,.d6,,db. . (151)

Next, we would like to expand the argument AA(6, S) = A Tr[SR(8)] around 6 = 0. Because this
is maximized at R = [ so @ = 0, we obtain an expression of the form:

(0 S +ZA2 ij 9293 —&—ZAg,Uk(S)GlHJQk + ... (152)
ijk
where the indices 4, j, k run over {x, y, z}

Define B(6, S, \) = exp(A(A(0,S5) — Ao(S) — Zij A ;;(5)6;0;)). We can then write:
exp(AA(0, S)) =exp(AA(S) + Z Ay ;;(9)60;6;) exp(A(A(8, S) — ZA2 i

=exp(Ao(S +Z/\A2” 0,)B(0,5,\).
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To integrate over all of SO(3), we simply need to integrate over the domain {|@| < 7}. Hence, we
would like to evaluate:

/ Mo +223; M2,05(9)9:05 B9 S X)1u(0)d. (153)
|o|<m

Since 8 = 0 is a local maxima, A ;;(.S) must be negative definite so the exponential component can
be interpreted as a Gaussian. As A — oo, this Gaussian becomes increasingly peaked; therefore, only
the neighborhood around € = 0 matters. Hence, we can expand B(8, S, \)u(6) around 0 to get:

B(0, S, )\)/,6(0) = My + Z Mg,iﬂﬁj + Z M37ijk(s7 )\)HZGJ@;C + ... (154)
ij ijk

where the contributions up to second order can only come from the expansion of the measure (which
has no S or A dependence), and there is no first order term since the measure is symmetric around 0.

Hence, [Equation becomes:

/ EAAO(S)""ZU A‘Aliﬂ‘(s)elej MO —+ Z MQ,ijeiej —+ Z MS,ijk(Sy /\)Gﬂjﬂk —+ ... de
|6 <m ij ijk
(155)

Finally, we note that as A — oo, the Gaussian part has an increasingly sharp peak. Thus, for the
expansion terms in the boundaries of integration matter increasingly less. Hence,
replacing the domain {|@] < 7} with the larger domain {6 € R3} gives us a good approximation for
each of the expanded terms, but also gives us Gaussian integrals which are analytically evaluable.

Finally, we obtain an expression of the form:
1 1 1
Z(AS) = N(S,\) <1 + Ll(S)X + LQ(S)F + Lg(S)F + .. ) (156)

where N (S, ) is a normalization term. The corresponding expected rotation can be computed as:

dlnZ(AS) dlnZ(AS) dlnZ(AS) }

1 .
Ermrr;rs)[R] = N diag {

0s1 Os1 0s3
1 1
=T+ C(S)5 +CalS) 35+ (157)
For an arbitrary F/ = USV T, we would then have:
Ermr@®iar) [R] = UBRmr@ias) RV (158)

D ADDITIONAL RESULTS IN PRACTICE

Here, we report the RMSD after alignment for the same training runs in[Figure 4|and |[Figure 5| Note
that our estimators are not optimal for this metric; indeed, they minimize the deviation to the optimal
denoiser, not to the aligned ground truth z. The complication is that computing the optimal denoiser
is not practical in a training setup.
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Figure 6: Training progress for the MLP, as measured by RMSD to ground-truth z after alignment,
when trained using Dy, Dg, D] and D3. x is sampled from all 50000 frames of a molecular
dynamics simulation for the AEQN peptide.

RMSD Aligned (A)

RMSD Aligned (&)

3x10°
2 x 10°

100_

6x 107!

5x 1071
4%x10°1

3x1071

o=10.0A
I

Training Steps

Training Steps

0 10000

0 10000

= 109 -
i
26x107?
<
[a)
24x107?
o

3x1071
2 4x1071
®
§3x107!
<
3
Z2x107!

0 10000

Training Steps

oc=05A

0 10000

Training Steps

Figure 7: Training progress for the MLP, as measured by RMSD to ground-truth x after alignment,
when trained using Dy, Dg, DT and D3. x is fixed as the first frame in the molecular dynamics
simulation for the AEQN peptide.
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