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Abstract001

Existing approaches to zero-shot Named Entity002
Recognition (NER) for low-resource languages003
have primarily relied on machine translation,004
whereas more recent methods have shifted005
focus to phonemic representation. Build-006
ing upon this, we investigate how reducing007
the phonemic representation gap in IPA tran-008
scription between languages with similar pho-009
netic characteristics enables models trained010
on high-resource languages to perform effec-011
tively on low-resource languages. In this work,012
we propose CONtrastive Learning with IPA013
(CONLIPA) dataset containing 10 English and014
high resource languages IPA pairs from 10 fre-015
quently used language families. We also pro-016
pose a cross-lingual IPA Contrastive learning017
method (IPAC) using the CONLIPA dataset.018
Furthermore, our proposed dataset and method-019
ology demonstrate a substantial average gain020
when compared to the best performing base-021
line.022

1 Introduction023

One of the facts that links the languages of the024

world together is shared vocabulary. Languages025

that are phylogenetically related to one another in-026

herit shared words (cognates) and languages that027

are in contact with one another borrow words028

(loanwords) from one another. These etymolog-029

ically related words tend to share similar mean-030

ings and similar pronunciations. Various attempts031

have been made to leverage this similarity. For032

example, Bharadwaj et al. (2016) used phonetic033

feature representations of Uyghur and Turkish to034

leverage shared names in Named Entity Recogni-035

tion (NER) and Chaudhary et al. (2018) used IPA036

(International Phonetic Alphabet) representation037

to improve NER and machine translation in Ben-038

gali (pivoting from Hindi). However, these past039

approaches have proposed models that learned rep-040

resentations for phoneme strings. Loanwords or041

cognates have similar embedded representations 042

because their IPA representations are similar. We 043

propose, instead, to learn representations—using 044

contrastive learning—that capture the phonologi- 045

cal aspects of etymologically-related words across 046

languages. 047

Various approaches for zero-shot NER in low- 048

resource languages, where data acquisition is chal- 049

lenging, have been proposed over time. Most pre- 050

vious methods (Yang et al., 2022; Liu et al., 2021; 051

Mo et al., 2024) often employed machine transla- 052

tion with grapheme-based inputs. Since machine 053

translation utilizes prior knowledge of low-resource 054

languages, a method using phonemic representa- 055

tion was proposed for a stricter zero-shot setting 056

(Sohn et al., 2024). 057

We investigate how reducing the phonemic rep- 058

resentation gap in IPA transcription between lan- 059

guages with similar phonetic characteristics en- 060

ables models trained on high-resource languages 061

to perform effectively on low-resource languages 062

as shown in Figure 1. We selected 10 represen- 063

tative languages from 10 widely spoken language 064

families and collected IPA pairs with English that 065

share the same meaning and similar pronuncia- 066

tion. Using this CONtrastive Learning with IPA 067

(CONLIPA) dataset, we conducted Cross-lingual 068

IPA Contrastive learning method (IPAC) on the 069

phonemic representation space. Extensive experi- 070

ments and cosine similarity score demonstrate that 071

our method effectively brings the representations 072

of similarly pronounced words across different lan- 073

guages closer together. 074

Our approach differs from (Sohn et al., 2024) in 075

that the model is explicitly trained to represent IPA 076

in a cross-linguistically meaningful way. It is not 077

merely about token overlap; the model learns to rep- 078

resent phonetically transcribed words in a manner 079

that ensures similarity with etymologically related 080

words, such as named entities, in other languages. 081

(Zouhar et al., 2024) also employed similar tech- 082
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Figure 1: Concept Figure. As shown in (A), existing phonemic models struggle to recognize the same word
when IPA representations differ across languages, despite similar pronunciations. In contrast, our method (B)
uses IPA contrastive learning to align representations of languages with similar pronunciations, particularly for
high-resource languages. This enables effective zero-shot inference for low-resource languages, demonstrating
strong generalization.

niques, including metric learning and triplet margin083

loss, to learn neural representations of IPA strings.084

However, their approach was monolingual in na-085

ture, as both positive and negative samples were086

drawn from the same language as the anchor, and087

the metric space was defined based on phonetic088

features.089

We also explored the interesting feature of the090

Korean language, which allows foreign pronunci-091

ations to be recorded using Hangul in a way that092

closely approximates the original pronunciation.093

Leveraging this feature, we highlight the potential094

of Korean for future zero-shot NER research.095

In general, the main contributions of this paper096

are as follows:097

• We propose the CONtrastive Learning with098

IPA (CONLIPA) dataset, which contains IPA099

pairs of English and 10 languages from 10100

widely spoken language families.101

• We propose a novel Cross-Lingual IPA102

Contrastive Learning (IPAC) approach us-103

ing the CONLIPA dataset, aimed at reducing104

the gap in phonemic representations between105

high-resource languages with similar pronun-106

ciations.107

• We investigate Unimodal Contrastive Learn-108

ing using exclusively phonemic input, without109

incorporating multimodal inputs such as im-110

ages or audio.111

• To the best of our knowledge, we are the first112

to use LLMs, such as ChatGPT, to extract113

cognate pairs and train a model using these114

pairs. 115

• We evaluate the proposed method using 116

WikiANN NER dataset and compare it with 117

baseline methods. Experimental results verify 118

the effectiveness of our method and demon- 119

strate its significant advantages in Zero-Shot 120

NER with low resource language task. 121

2 Related Work 122

2.1 Zero-shot Cross-lingual NER 123

Zero-shot cross-lingual NER is crucial for low- 124

resource languages, where labeled data is scarce. 125

While previous works (Yang et al., 2022; Liu et al., 126

2021; Mo et al., 2024) used parallel data from ma- 127

chine translation, this approach faces challenges 128

for languages where machine translation is not fea- 129

sible. ZGUL (Rathore et al., 2023) established 130

a strict zero-shot setting with no target language 131

data, relying on a language adapter trained on ty- 132

pologically similar languages. However, it uses 133

grapheme-based input, limiting its applicability to 134

languages with novel orthographic systems, and is 135

restricted to specific language groups—Germanic, 136

Slavic, African, and Indo-Aryan. In contrast, our 137

approach covers 10 widely spoken language fami- 138

lies and does not require overlap between the train- 139

ing and inference languages. 140

Some works (Bharadwaj et al., 2016; Chaudhary 141

et al., 2018) have utilized phonemic representation 142

for NER, but they did not operate in a zero-shot 143

setting. In contrast, (Sohn et al., 2024) performed 144
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NER by using IPA phonemes as input in a strict145

zero-shot setting, where no data or prior knowledge146

was available for the inference language. However,147

it trained the model exclusively on English data148

and did not fully address discrepancies in IPA nota-149

tion for languages with similar pronunciations. The150

XPhoneBERT(The Nguyen et al., 2023) backbone151

model used by (Sohn et al., 2024) learns to repre-152

sent phoneme strings such that similar strings have153

similar representations. In contrast, our CONLIPA154

learns to represent phoneme strings, such as names,155

in a way that ensures they have similar represen-156

tations to phonologically and semantically related157

strings in other languages.158

2.2 Multimodal and Unimodal Contrastive159

Learning160

Contrastive learning is a self-supervised approach161

that brings similar data points closer in feature162

space while pushing dissimilar points apart, en-163

abling the learning of meaningful representations164

without labeled data by typically using InfoNCE165

loss (van den Oord et al., 2018; Chen et al., 2020).166

CLIP (Radford et al., 2021) extends this to learn167

joint representations of images and text by aligning168

their features in a shared embedding space, advanc-169

ing contrastive learning in the multimodal domain,170

primarily focusing on bridging image-text gaps.171

As mentioned in (Huang et al., 2024), unimodal172

contrastive learning has generally not achieved the173

same level of success as the unprecedented success174

of multimodal contrastive learning. The founda-175

tional work on contrastive learning has explored176

key aspects such as alignment and uniformity of177

contrastive loss (Wang and Isola, 2020), the impact178

of auxiliary tasks on learning representations (Lee179

et al., 2021), and optimization perspectives on self-180

supervised learning (Tian et al., 2020). Addition-181

ally, several studies have analyzed contrastive learn-182

ing in single-modal and multi-view settings (Arora183

et al., 2019; HaoChen et al., 2021; Tosh et al.,184

2021; Saunshi et al., 2022). (Wen and Li, 2021)185

study ReLU networks but differs by requiring an ad-186

justable bias term and not considering multimodal187

contrastive learning. (Zouhar et al., 2024) also em-188

ployed related approaches, such as metric learning189

and triplet margin loss, to learn neural represen-190

tations of IPA strings. However, their approach191

was purely monolingual, with positive and nega-192

tive samples drawn from the same language as the193

anchor and the metric space defined by phonetic194

features. Unlike these studies, our approach differs195

in that it employs a unimodal contrastive learning 196

methodology using only phonemic input based on 197

phonetic features across different languages in a 198

multilingual setting. 199

2.3 Contrastive Learning with Phoneme 200

Embedding 201

There have been some research on contrastive learn- 202

ing utilizing phoneme embedding. IPA-CLIP (Mat- 203

suhira et al., 2023) is a multimodal method that 204

uses image, text, and IPA, with only using English 205

in both text and IPA. As zero-shot inference experi- 206

ments on various languages were not conducted, it 207

is difficult to guarantee strong performance across 208

all languages, as IPA symbols may differ between 209

English and other languages. 210

PLCL (Kewei et al., 2024) is also a multi- 211

modal approach that performs contrastive learn- 212

ing between English audio-audio and audio-text 213

pairs. We note that our Cross-Lingual IPA Con- 214

trastive Learning (IPAC) clearly differentiates it- 215

self by focusing on contrastive learning between 216

phoneme embedding of different languages, rather 217

than within the multimodal domain. 218

3 CONLIPA Dataset 219

In this section we provide an overview of how 220

we created the CONtrastive Learning with IPA 221

(CONLIPA) dataset. The dataset is used in the 222

cross-lingual IPA contrastive learning experiments 223

presented in Section 4. 224

Language Family Language Data

Atlantic-Congo Swahili 27
Austronesian Indonesian 86
Indo-European Hindi 128
Sino-Tibetan Mandarin 6
Afro-Asiatic Arabic 34
Austroasiatic Vietnamese 10
Tai-Kadai Thai 31
Dravidian Tamil 71
Turkic Turkish 52
Koreanic Korean 7521

Table 1: Selected 10 language families, one of their rep-
resentative Languages, and the number of data samples
per each language.
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Figure 2: Samples in our CONLIPA dataset for each language.

3.1 Language Selection225

We selected 10 major language families and chose226

one representative language from each family.227

These languages are high-resource, which makes228

it easier to obtain IPA pairs with similar phonetic229

characteristics between the target language and En-230

glish. We selected the top 9 most widely used231

language families in the world (Atlantic-Congo,232

Austronesian, Indo-European, Sino-Tibetan, Afro-233

Asiatic, Austroasiatic, Tai-Kadai, Drividian, Tur-234

kic), and added Korean from the Koreanic language235

family. We included Korean because it is a well-236

resourced language with a strongly phonemic or-237

thography that, like IPA, has the potential to rep-238

resent other languages phonemically. This charac-239

teristic enabled us to collect a significantly larger240

amount of data compared to other 9 languages.241

Additionally, our CONLIPA dataset used for242

training contains a minimum of 6 and up to 512243

instances per language, enabling efficient and fast244

fine-tuning. Due to the relatively low computa-245

tional and memory requirements, the training pro-246

cess incurs minimal computational cost and power247

consumption, making it more environmentally sus-248

tainable. The 10 selected language families, along249

with the representative languages from each family250

and the corresponding number of data samples, are251

presented in Table 1.252

3.2 Dataset Creation253

We collected pairs of foreign loanwords from En-254

glish and 10 representative languages that have255

similar meanings and pronunciations using Chat- 256

GPT1. Since these languages borrow and use En- 257

glish words directly, the words are transcribed in 258

the closest possible form to original English pro- 259

nunciation. These words are all loanwords, so it 260

seems that ChatGPT recognizes them as part of a 261

translation task. Additionally, these 10 languages 262

are high-resource languages, meaning that Chat- 263

GPT has likely been trained on a large amount of 264

translation data for them. The words obtained were 265

then manually verified by the authors to ensure 266

their pronunciation similarity for each representa- 267

tive language, using Google Translate2 and online 268

dictionaries. The choice of English as a reference 269

language was motivated by its status as a high- 270

resource language with extensive datasets in NLP, 271

making it likely that models already possess strong 272

representations for English. 273

As shown in Table 1, the number of such pairs 274

varied significantly across languages. For instance, 275

Mandarin had only 6 pairs due to the limited num- 276

ber of similar pronunciations with English, while 277

Korean, with its ability to represent foreign words 278

phonetically using Hangul, allowed for a much 279

larger collection of 7,521 samples. Through exper- 280

imental evaluation, we found that using only 512 281

samples out of the 7,521 Korean samples yielded 282

the best performance, as shown in Section 6.3.1 283

Table 4. 284

We converted the grapheme notation G 285

1https://chatgpt.com/
2https://translate.google.co.kr/
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Figure 3: Overall architecture of our IPA Contrastive Learning (IPAC). First, the IPA representations of word pairs
with similar pronunciations are obtained from the phonemic encoder for two high-resource languages, such as
English and Hindi. Then, these pairs are considered positive pairs , while the remaining samples in the batch are

treated as negative pairs to compute the contrastive loss.

of English e and the 10 target languages t ∈286

{swa, ind, hin, cmn, ara, vie, tha, tam, tur, kor},287

into IPA notation I . We used CharsiuG2P toolkit288

(Zhu et al., 2022) which XPhoneBERT(The289

Nguyen et al., 2023) originally employed for290

IPA transliteration. As shown in Figure 2, the291

dataset format consist of 4 components, which are292

(Gt, Ge, It, Ie).293

4 Cross-Lingual IPA Contrastive294

Learning (IPAC)295

Contrastive learning is a widely used self-296

supervised learning approach, particularly in297

image-text representation tasks. Its core concept298

involves training a model to determine whether two299

input samples are similar or different by evaluating300

them within a learned latent space.301

Our approach differs in that, instead of using302

image-text pairs of two different modalities, we303

input IPA transcriptions of two different languages304

into a phonemic encoder. The goal is to cross-305

lingually align their phonemic representations. As306

shown in Figure 3, we performed IPAC by treat-307

ing pairs of similar-sounding English IPA and tar-308

get language IPA as positive samples from the309

CONLIPA dataset, while considering other sam-310

ples within the batch as negative samples.311

We utilized the InfoNCE loss (van den Oord312

et al., 2018; Chen et al., 2020) in our IPA con-313

trastive learning framework, as it is a widely314

adopted loss function in contrastive learning. This315

loss function enhances the mutual information be-316

tween positive pairs while reducing it between pos- 317

itive and negative pairs. The loss is defined as 318

follows: 319

l(Ie, It) =
1

N

∑
i

−log
exp ((Iie)

T Iit/τ)∑
k exp ((I

i
e)

T Iit/τ)

(1)

320

where τ is a hyperparameter called temperature 321

coefficient, N refers to the batch size, T refers to 322

the transpose of a matrix and i refers to the ith 323

sample of the batch. 324

Following the convention, we also perform 325

l(It, Ie) symmetrically and calculated the average 326

as shown below, which is used as the final IPA 327

Contrastive loss lIPAC . 328

lIPAC =
1

2
(l(Ie, It) + l(It, Ie)) (2) 329

5 Experiment Setting 330

5.1 Models 331

We followed (Sohn et al., 2024) experimental set- 332

ting for the three baseline models, mBERT (Devlin 333

et al., 2019), CANINE (Clark et al., 2022) and 334

XPhonebert (The Nguyen et al., 2023). We also 335

compared (Sohn et al., 2024)’s result with ours. 336

We conducted experiments with models of 337

BERT-base scale: mBERT with 177M parame- 338

ters, CANINE-C with 132M, and XPhoneBERT 339

with 87,559,687 parameters. Our model initially 340

shares the same number of parameters as the base 341

XPhoneBERT model, as used during pre-training 342

with the WikiANN NER dataset following (Sohn 343
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Case Input Model Languages AVG STD

CASE 1

sin som mri quy uig aii kin ilo

grapheme mBERT 10.71 44.76 38.48 55.07 18.70 12.58 62.37 79.51 40.27 25.00
grapheme CANINE 26.31 43.35 51.30 59.48 27.19 22.38 54.74 80.70 45.68 19.99
phoneme XPhoneBERT(baseline) 43.61 38.91 38.07 51.90 44.82 31.03 49.67 73.05 46.38 12.67
phoneme CONLIPA(ours) 45.69 38.7 39.67 57.7 45.17 34.92 50.58 73.35 48.22 12.44

CASE 2

epo khm tuk amh mlt ori san ina grn bel kur snd

grapheme mBERT 71.31 16.12 64.52 11.90 63.83 9.96 48.73 73.89 50.44 83.12 54.16 35.02 48.58 25.13
grapheme CANINE 68.19 27.33 58.07 22.65 61.58 33.53 26.79 68.78 55.37 80.07 57.33 29.87 49.13 19.86
phoneme XPhoneBERT(baseline) 75.26 31.86 61.17 44.85 52.58 40.73 59.42 68.68 49.95 77.61 52.95 47.28 55.20 13.83
phoneme CONLIPA(ours) 74.11 39.95 60.97 50.14 54.03 40.1 53.49 70.73 53.17 72.72 52 48.44 55.82 11.62

CASE 3

tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir

grapheme mBERT 74.10 56.60 74.30 73.59 57.09 74.98 64.44 84.93 69.94 67.24 80.04 53.98 68.14 69.18 9.28
grapheme CANINE 62.12 51.15 44.28 61.11 42.41 76.82 70.36 77.51 48.29 37.29 72.54 45.74 57.73 57.49 13.77
phoneme XPhoneBERT(baseline) 48.93 50.87 35.12 45.98 33.37 61.76 58.72 58.76 32.52 28.93 60.92 43.85 35.95 45.82 11.85
phoneme CONLIPA(ours) 48.19 50.05 38.97 46.24 31.35 62.83 58.16 59.17 39.5 32.57 60.38 49.48 39.37 47.40 10.61

Table 2: Zero-shot F1 score (%) result in Case 1, 2, and 3. The skyblue boxes indicate better performance
compared to the baseline, and the bold text represents the best performance for each case and language.

et al., 2024). However, during fine-tuning on344

the CONLIPA dataset, we incorporated a LoRA345

adapter and a projection layer. The LoRA adapter346

adds 1,327,104 parameters, while the projection347

layer contributes 49,216 parameters, resulting in a348

total of 88,936,007 parameters. It is important to349

note that during zero-shot inference, the projection350

layer is removed, leaving only the LoRA adapter.351

Given the relatively small size of the LoRA adapter352

compared to the original XPhoneBERT parameters,353

this modification resulted in a substantial perfor-354

mance improvement with only a modest increase355

in model size.356

5.2 Dataset357

For training, we followed the procedure outlined358

in Sohn et al. (2024) to train XPhoneBERT on the359

English WikiANN NER dataset(Pan et al., 2017),360

which includes seven named entity tags: B-PER,361

I-PER, B-ORG, I-ORG, B-LOC, I-LOC, and O.362

We then fine-tuned the model using our CON-363

LIPA dataset with our IPA contrastive learning364

methodology. For zero-shot inference, we adopted365

the settings from (Sohn et al., 2024) for cases 1, 2,366

and 3. Case 1 includes languages that were not part367

of the pre-training corpora of mBERT, CANINE, or368

XPhoneBERT. Case 2 includes only the languages369

that XPhoneBERT was pre-trained on, while Case370

3 includes only the languages that mBERT and371

CANINE were pre-trained on.372

5.3 Implementation Details373

For pre-training, we followed the previous ap-374

proach by setting the max sequence length, as well375

as both the train and validation batch sizes, to 128.376

We fine-tuned the pre-trained XPhoneBERT (The377

Nguyen et al., 2023) from Hugging Face (Wolf,378

2019) on the English WikiAnn (Pan et al., 2017) 379

dataset. The training used a learning rate of 1e- 380

5, a weight decay of 0.01, and a warmup ratio of 381

0.0025. 382

After obtaining the pre-trained checkpoint, we 383

further performed IPA contrastive learning on our 384

CONLIPA dataset. During this process, we froze 385

the parameters of the original model and added 386

a LoRA adapter with r=8, lora_alpha=32, and 387

lora_dropout=0.1. Additionally, we added a linear 388

projection layer with 64 dimensions, and only the 389

LoRA adapter and projection layer were activated 390

for fine-tuning for 2 epochs. All the other hyperpa- 391

rameters were kept the same as in the pre-training 392

phase. 393

6 Result and Analysis 394

6.1 Overall Results 395

Table 2 compares the overall performance be- 396

tween our method and previous zero-shot NER 397

approaches. It can be observed that our method out- 398

performs the previous phonemic approach (Sohn 399

et al., 2024) in all cases (Case 1, 2, and 3). Ad- 400

ditionally, in Case 1, the most stringent zero-shot 401

setting, our model outperformed mBERT (Devlin 402

et al., 2019) and CANINE (Clark et al., 2022) on 403

average. 404

Notably, in Case 1, which represents a strict 405

zero-shot setting not including any languages used 406

in pre-training, our method shows improved per- 407

formance in most languages compared to (Sohn 408

et al., 2024). The average performance increases by 409

1.84%, and the standard deviation decreases in the 410

phonemic contrastive learning condition, indicating 411

more stable and cross-lingually robust results. 412
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Language Model
Sample Index

1 2 3 4 5 6 7 8 9 10 avg

eng-ori
(Sohn et al., 2024) 82.41 60.54 97.17 74.43 88.50 90.70 86.91 93.74 90.46 81.86 84.67
ours 90.13 62.06 97.17 73.02 88.00 92.70 90.72 93.20 90.78 86.09 86.39

eng-khm
(Sohn et al., 2024) 80.72 89.65 88.91 93.94 98.24 92.32 57.05 76.12 69.02 80.05 82.60
ours 86.64 89.80 90.83 93.67 97.77 92.03 65.39 78.38 70.54 80.54 84.56

Table 3: Cosine similarity scores(%) for 10 samples of eng-ori and eng-khm pairs.

Model Languages
AVG STD

sin som mri quy uig aii kin ilo

XPhoneBERT 43.61 38.91 38.07 51.90 44.82 31.03 49.67 73.05 46.38 12.67

Korean-16† 44.62 38.89 38.19 53.59 45.13 31.87 49.59 72.39 46.78 12.40
Korean-32† 44.68 38.82 38.02 55.24 45.08 30.70 49.88 73.10 46.94 12.98
Korean-64† 45.90 38.10 38.60 55.69 44.44 33.67 48.25 72.53 47.15 12.33
Korean-128† 45.56 38.49 38.94 54.28 44.48 32.60 47.92 72.22 46.81 12.21
Korean-256† 45.88 37.53 38.73 54.47 44.38 33.93 47.70 72.32 46.87 12.16
Korean-512† 45.69 38.70 39.67 57.70 45.17 34.92 50.58 73.35 48.22 12.44

Korean-1024† 45.50 36.77 40.91 50.40 42.48 39.74 48.62 72.05 47.06 11.08
Korean-2048† 45.52 37.14 41.36 54.63 42.14 37.46 48.93 72.93 47.51 11.82
Korean-4096† 44.04 33.61 40.14 47.02 40.96 39.83 45.62 70.88 45.26 11.15
Korean-7521† 32.52 25.66 28.52 42.20 36.80 32.16 43.61 64.15 38.20 12.19

Table 4: Ablation study on Korean data number in Case 1. † indicates that the model was trained using all 10
languages of CONLIPA, but with a different number of samples of Korean. The skyblue boxes indicate better
performance compared to the baseline, and the bold text represents the best performance for each case and language.

6.2 Cosine Similarity of Phonemic413

Representation414

The goal of IPA contrastive learning is to align415

the cross-lingual representations of languages with416

similar pronunciations but slightly different IPA417

transcriptions. To evaluate this, we computed the418

distance between named entity pairs in English419

and two low-resource languages, Oriya and Khmer,420

where each pair has the same meaning, similar421

pronunciation but different IPA transcription. The422

distance between the embeddings from each lan-423

guage was calculated using the cosine similarity424

metric. Figures 5 and 6 in the Appendix present425

the 10 samples for Oriya and Khmer, respectively.426

As shown in Table 3, compared to (Sohn et al.,427

2024), the results after applying our IPA contrastive428

learning on both eng-ori and eng-khm showed429

higher cosine similarity scores in most cases, with430

the average score also being higher for our method.431

This demonstrates that our method successfully432

brought phonemic embeddings with similar mean-433

ings and pronunciations closer together across dif-434

ferent languages. The t-SNE visualization results435

for these samples are also provided in the section436

G of Appendix.437

6.3 Ablation Study 438

6.3.1 Ablation on the number of Korean 439

samples 440

As can be seen in Table 1, the number of Korean 441

data samples is 7,521, which is significantly higher 442

than that of the other languages. To determine the 443

optimal number of samples for achieving the best 444

performance, we conducted an ablation study by 445

varying the amount of Korean data used in training 446

the model with IPA contrastive learning. 447

We conducted experiments by gradually increas- 448

ing the number of Korean data samples, doubling 449

them from 16, 32, 64, ..., up to 7,521, while keep- 450

ing the data samples of the other 10 languages 451

fixed. As shown in Table 4, the best performance 452

was achieved when the number of Korean data 453

samples was 512. This demonstrates that simply 454

increasing the number of data samples used for 455

IPA contrastive learning does not always lead to 456

better results. While IPA contrastive learning helps 457

bring the representations of similar-sounding words 458

across different languages closer together, exces- 459

sive usage of it may potentially harm the repre- 460

sentations of models pre-trained on original NER 461

datasets. The experimental results of Case 2,3 are 462

also available on Table 9 of Appendix. 463
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Model Languages
AVG STD

sin som mri quy uig aii kin ilo

XPhoneBERT 43.61 38.91 38.07 51.90 44.82 31.03 49.67 73.05 46.38 12.67

Swahili 44.74 38.71 38.12 53.66 44.89 31.65 49.43 73.24 46.81 12.71
Indonesian 44.43 39.05 39.00 55.53 44.84 32.54 49.43 72.46 47.16 12.39

Hindi 44.62 38.53 38.08 53.69 44.97 30.98 49.28 73.25 46.68 12.85
Mandarin 44.37 39.2 38.56 53.61 45.00 31.28 49.63 72.66 46.79 12.53

Arabic 44.46 39.11 38.55 55.02 44.90 32.56 49.4 72.71 47.09 12.44
Vietnamese 44.53 39.07 38.03 55.31 44.95 31.94 50.1 72.69 47.08 12.64

Thai 44.61 39.15 37.94 54.53 45.25 31.94 49.89 72.42 46.97 12.48
Tamil 44.43 39.07 37.95 54.68 45.00 30.75 50.01 72.81 46.84 12.01

Turkish 44.62 38.89 38.22 54.93 44.98 30.81 50.09 73.24 46.97 12.96
Korean 44.57 38.51 38.75 55.48 44.86 33.56 49.5 72.5 47.22 12.30
Total 45.69 38.7 39.67 57.7 45.17 34.92 50.58 73.35 48.22 12.44

Table 5: Ablation study on each language in case 1. The skyblue boxes indicate better performance compared to
the baseline, and the bold text represents the best performance for each inference language.

6.3.2 Ablation on each Language464

We conducted experiments using only the data from465

each of the 10 languages in CONLIPA to identify466

which language performs best when training the467

model with IPA contrastive learning. As shown468

in Table 5, Korean achieved the best performance,469

followed by Indonesian, Arabic, and Vietnamese.470

However, we can still observe that the Total result,471

using all 10 languages, performed the best, indi-472

cating that the data from multiple languages are473

complementary to each other. The experimental474

results for Case 2 and Case 3 can also be found in475

Appendix Table 10.476

7 Conclusion477

This paper proposes a novel cross-lingual IPA478

Contrastive learning(IPAC) methodology to make479

the phonemic representations of languages with480

similar pronunciations more similar, aimed at zero-481

shot cross-lingual NER for low-resource languages.482

For this purpose, we selected 10 commonly used483

language families and introduce the CONtrastive484

Learning with IPA(CONLIPA) dataset, which in-485

cludes IPA pairs of similar-sounding words be-486

tween English and these languages.487

Through experiments, we demonstrate that our488

approach outperforms existing subword, character489

grapheme-based models, and the basic phoneme-490

based model. Performance improvements across all491

cases 1, 2, and 3 confirm the our method’s effect on492

the cross-lingual generalization of phonemic repre-493

sentation, which is crucial for zero-shot NER tasks494

in low-resource languages where data is scarce.495

8 Limitations 496

Our methodology does not consider all language 497

families worldwide, but rather focuses on 10 lan- 498

guage families. Additionally, it is difficult to claim 499

that the representative language selected from each 500

of the 10 language families fully represents all the 501

characteristics of every language within that fam- 502

ily. However, our approach demonstrates the po- 503

tential to improve performance for low-resource 504

languages by leveraging data from high-resource 505

languages, which are relatively easier to obtain. 506

9 Ethics Statement 507

In this study, we utilize the publicly available 508

WikiANN dataset (Pan et al., 2017) to train various 509

models across different languages, ensuring that 510

no ethical concerns arise. During the creation of 511

the CONLIPA dataset, we encountered no ethical 512

issues related to its curation or annotation. There 513

were no significant ethical concerns, such as vio- 514

lent or offensive content, and the dataset was used 515

in accordance with its intended purpose. 516
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A Language Codes694

Table 6 presents the ISO 639-3 language codes for695

all the languages utilized in the experiments.696

Language ISO 639-3

Amharic amh
Assyrian Neo-Aramaic aii
Ayacucho quechua quy
Cebuano ceb
Croatian hrv
English eng
Esperanto epo
Ilocano ilo
Javanese jav
Khmer khm
Kinyarwanda kin
Kyrgyz kir
Malay msa
Malayalam mal
Maltese mlt
Maori mri
Marathi mar
Punjabi pan
Sinhala sin
Somali som
Tajik tgk
Telugu tel
Turkmen tuk
Urdu urd
Uyghur uig
Uzbek uzb
Yoruba yor
Swahili swa
Indonesian ind
Hindi hin
Mandarin cmn
Arabic ara
Vietnamese vie
Thai tha
Tamil tam
Turkish tur
Korean kor

Table 6: Language codes for all languages used in the
experiments.
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Dataset Lang. Script Train Dev Test License

WikiANN

eng Latn 20k 10k 10k

ODC-BY

sin Sinh 100 100 100
som Latn 100 100 100
mri Latn 100 100 100
quy Latn 100 100 100
uig Arab 100 100 100
aii Syrc 100 100 100
kin Latn 100 100 100
ilo Latn 100 100 100
epo Latn 15k 10k 10k
khm Khmr 100 100 100
tuk Latn 100 100 100
amh Ethi 100 100 100
mlt Latn 100 100 100
ori Orya 100 100 100
san Deva 100 100 100
ina Latn 100 100 100
grn Latn 100 100 100
bel Cyrl 15k 1k 1k
kur Latn 100 100 100
snd Arab 100 100 100
tgk Cyrl 100 100 100
yor Latn 100 100 100
mar Deva 5k 1k 1k
jav Latn 100 100 100
urd Arab 20k 1k 1k
msa Latn 20k 1k 1k
ceb Latn 100 100 100
hrv Latn 20k 10k 10k
mal Mlym 10k 1k 1k
tel Telu 1k 1k 1k
uzb Cyrl 1k 1k 1k
pan Guru 100 100 100
kir Latn 100 100 100
swa Latn 1k 1k 1k
ind Latn 20k 10k 10k
hin Deva 5k 1k 1k
cmn Han 20k 10k 10k
ara Arab 20k 10k 10k
vie Latn 20k 10k 10k
tha Thai 20k 10k 10k
tam Telu 15k 1k 1k
tur Latn 20k 10k 10k
kor Hangul 20k 10k 10k

Table 7: Statistics and license types for the dataset.
The table lists the script, number of examples in the
training, development, and testing sets for languages
in the WikiANN dataset. The dataset is strictly used
within the bounds of these licenses.

B Benchmark and License697

Table 7 provides information on the datasets, in-698

cluding their statistics and licensing details. Addi-699

tionally, the CharsiuG2P toolkit (Zhu et al., 2022),700

used for transliteration, is employed under the MIT701

license.702

C Experimental Result on the trained703

High Resource Language704

The main task of our paper is to perform NER in a705

strict zero-shot setting, where the inference is con-706

ducted on a low-resource language that has never707

been seen before. However, we also compared the708

validation set results before and after training on709

the CONLIPA dataset, which consists of 10 high-710

resource languages used for Cross-lingual IPA con-711

trastive learning.712

As shown in Table 8, in most cases, the perfor- 713

mance improved compared to the existing base- 714

line. Although there were occasional instances 715

where the performance dropped below the baseline, 716

the maximum performance improvement was 1.14, 717

while the maximum performance degradation was 718

0.33. Since the largest performance drop is small, 719

it suggests that performing IPA contrastive learning 720

using the CONLIPA dataset may also be effective 721

in improving the performance of high-resource lan- 722

guages. Additionally, it can be observed that using 723

all 10 languages as total shows the best perfor- 724

mance both on average and for most individual 725

languages in high-resource languages, too. This 726

suggests that the interaction among 10 representa- 727

tive languages from 10 different language families 728

leads to better results. 729

D Experimental Result with number of 730

Korean data 731

We present the ablation study examining the num- 732

ber of Korean instances across all three cases in 733

Table 9. 734

E Experimental Result with single 735

language 736

We present the quantitative result of all three cases 737

in Table 10. The method using phoneme represen- 738

tation outperforms in Case 1 and Case 2 in terms of 739

average F1 score(%) and demonstrates more stable 740

results with a lower standard deviation. 741

F Ablation on the Temperature 742

Coefficient 743

As discussed in paper (Kim and Kim, 2025), In- 744

foNCE loss (van den Oord et al., 2018; Chen et al., 745

2020) is commonly employed in contrastive learn- 746

ing since it facilitates learning data representations 747

by capturing the similarities between pairs. While 748

InfoNCE loss plays a crucial role (Wang and Liu, 749

2021; Zhang et al.), it requires the tuning of a tem- 750

perature parameter. This critical hyperparameter 751

modifies the similarity scores and governs the inten- 752

sity of penalties applied to difficult negative sam- 753

ples(Wang and Liu, 2021). This temperature coef- 754

ficient is represented by τ in equation 1 of Section 755

4. 756

To identify an optimal temperature, we con- 757

ducted an ablation study by varying only the tem- 758

perature coefficient. The study was performed us- 759

ing 512 Korean data samples, along with data from 760
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Train Language
Zero-shot Inference Language

AVG STD
eng kor swa ind hin cmn ara vie tha tam tur

XPhoneBERT 76.78 54.88 61.40 64.00 64.99 39.16 55.24 58.49 16.74 59.39 67.28 56.21 16.05

kor 76.69 55.09 61.36 64.02 65.26 38.83 55.22 58.64 16.69 59.96 67.18 56.27 16.11
swa 76.79 54.81 61.36 64.07 64.81 39.20 55.14 58.46 16.75 59.28 67.18 56.17 16.03
ind 76.8 55.03 61.23 63.98 65.08 39.22 55.22 58.53 16.77 59.54 67.34 56.25 16.05
hin 76.74 54.68 61.48 64.04 64.86 39.22 55.10 58.51 16.72 59.46 67.15 56.18 16.04
cmn 76.85 55.03 61.31 63.95 65.07 39.14 55.26 58.45 16.76 59.51 67.35 56.24 16.06
ara 76.82 55.00 61.34 64.08 65.13 39.19 55.15 58.57 16.74 59.55 67.28 56.26 16.07
vie 76.87 55.11 61.52 64.03 65.21 39.06 55.31 58.52 16.75 59.66 67.36 56.31 16.10
tha 76.87 55.08 61.33 63.99 65.25 39.07 55.32 58.51 16.77 59.49 67.43 56.28 16.09
tam 76.82 55.01 61.40 63.96 65.01 39.14 55.27 58.43 16.76 59.38 67.36 56.23 16.06
tur 76.77 54.73 61.45 64.02 64.84 39.19 55.08 58.42 16.75 59.44 67.23 56.17 16.04

total 76.93 55.82 61.15 64.09 66.13 38.87 55.25 58.49 16.87 60.49 67.55 56.51 16.17

Table 8: F1 score(%) for zero-shot inference on each high-resource language after training on each language of
CONLIPA.

10 other languages. As shown in Figure 11, a tem-761

perature coefficient of 0.1 yielded the best perfor-762

mance in our experiment.763

G Visualization of Phonemic764

Representation765

We analyzed the distance between eng-ori and eng-766

khm word pairs in Section 6.2 of the main paper.767

Here, we also visualize the distribution of represen-768

tations in a zero-shot setting, where phoneme input769

from a low-resource language is presented solely770

during inference, without prior exposure during771

training.772

We employed t-SNE to compare how the distri-773

bution of representations changes before and af-774

ter IPA contrastive learning. For this study, we775

selected Oriya and Khmer as low-resource lan-776

guages. We used IPA inputs corresponding to 10777

English-target language pairs for both Oriya and778

Khmer, focusing on words with similar pronuncia-779

tions. The selected words consisted of person, or-780

ganization, and location named entities. Figures 5781

and 6 present the 10 samples for Oriya and Khmer,782

respectively.783

As shown in Figure 4, we compared the t-SNE784

results before and after IPA contrastive learning785

using our CONLIPA dataset. The results before786

learning are shown in (a) and (c), while those after787

learning are shown in (b) and (d). In the figure,788

dots of the same color represent pairs of English789

and target language words with the same meaning,790

with only the English labels displayed.791

In (a) and (c), most of the paired points were792

distant from each other. Since Oriya and Khmer are793

low-resource languages, even when input is given794

in IPA notation, there was a noticeable distance795

between the paired points. However, in (b) and (d), 796

the distance between these points was significantly 797

reduced. 798

Note that only the IPA representations of both 799

English and the target language, rather than their 800

grapheme notations, are used for visualization in 801

this process. Additionally, it should be noted that 802

the examples of Oriya and Khmer were not used for 803

any training, such as pre-training with WikiANN 804

or IPA contrastive learning, nor for zero-shot infer- 805

ence. These samples were created and used solely 806

for cosine similarity calculation and t-SNE visual- 807

ization purposes. 808

We configured the t-SNE with perplexity=2 and 809

n_iter=300 to generate the visualizations. To en- 810

sure a fair comparison, we standardized the axis 811

ranges: for eng-ori, the x-axis range was [-100, 812

100] and the y-axis range was [-150, 150], while 813

for eng-khm, the x-axis range was [-80, 80] and the 814

y-axis range was [-190, 150]. 815
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Case Model Languages AVG STD

CASE 1

sin som mri quy uig aii kin ilo

XPhoneBERT 43.61 38.91 38.07 51.90 44.82 31.03 49.67 73.05 46.38 12.67

Korean-16† 44.62 38.89 38.19 53.59 45.13 31.87 49.59 72.39 46.78 12.40
Korean-32† 44.68 38.82 38.02 55.24 45.08 30.70 49.88 73.10 46.94 12.98
Korean-64† 45.90 38.10 38.60 55.69 44.44 33.67 48.25 72.53 47.15 12.33
Korean-128† 45.56 38.49 38.94 54.28 44.48 32.60 47.92 72.22 46.81 12.21
Korean-256† 45.88 37.53 38.73 54.47 44.38 33.93 47.70 72.32 46.87 12.16
Korean-512† 45.69 38.70 39.67 57.70 45.17 34.92 50.58 73.35 48.22 12.44
Korean-1024† 45.50 36.77 40.91 50.40 42.48 39.74 48.62 72.05 47.06 11.08
Korean-2048† 45.52 37.14 41.36 54.63 42.14 37.46 48.93 72.93 47.51 11.82
Korean-4096† 44.04 33.61 40.14 47.02 40.96 39.83 45.62 70.88 45.26 11.15
Korean-7521† 32.52 25.66 28.52 42.20 36.80 32.16 43.61 64.15 38.20 12.19

CASE 2

epo khm tuk amh mlt ori san ina grn bel kur snd

XPhoneBERT 75.26 31.86 61.17 44.85 52.58 40.73 59.42 68.68 49.95 77.61 52.95 47.28 55.20 13.83

Korean-16† 73.48 38.79 59.45 52.41 55.46 39.91 54.14 70.22 54.98 72.48 51.89 48.19 55.95 11.45
Korean-32† 73.35 38.56 59.00 51.96 55.09 40.22 54.59 70.03 54.55 72.29 52.15 47.96 55.81 11.38
Korean-64† 73.78 39.74 59.28 52.17 53.76 40.23 53.58 70.37 53.61 72.32 51.89 47.88 55.72 11.39
Korean-128† 73.66 39.85 59.60 52.08 53.62 40.39 53.38 70.50 54.28 72.45 52.21 48.94 55.91 11.30
Korean-256† 73.79 40.01 60.13 52.01 53.56 41.12 53.68 70.80 53.36 72.38 52.14 48.69 55.97 11.28
Korean-512† 74.11 39.95 60.97 50.14 54.03 40.1 53.49 70.73 53.17 72.72 52.00 48.44 55.82 11.62
Korean-1024† 73.96 44.88 59.86 49.16 51.71 41.15 52.58 71.05 51.73 72.80 51.76 50.02 55.89 11.03
Korean-2048† 73.98 41.60 60.37 49.64 52.46 41.42 53.53 70.86 52.23 72.59 52.13 48.80 55.80 11.27
Korean-4096† 72.81 42.18 57.96 50.42 50.78 43.14 50.46 68.43 50.13 71.59 52.33 49.18 54.95 10.49
Korean-7521† 68.01 38.03 56.40 46.82 46.69 39.18 48.62 65.08 45.87 69.23 52.78 45.70 51.87 10.65

CASE 3

tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir

XPhoneBERT 48.93 50.87 35.12 45.98 33.37 61.76 58.72 58.76 32.52 28.93 60.92 43.85 35.95 45.82 11.85

Korean-16† 49.01 50.19 38.15 46.19 32.63 61.78 59.21 58.95 39.52 32.54 60.70 49.36 38.49 47.44 10.56
Korean-32† 48.90 50.60 37.94 45.99 33.39 61.79 58.72 58.72 38.93 32.12 61.08 47.56 37.73 47.19 10.60
Korean-64† 49.22 49.55 38.03 46.20 32.09 62.36 58.25 58.72 39.40 32.17 60.40 48.51 38.34 47.17 10.60
Korean-128† 49.56 49.38 38.54 45.54 32.16 61.81 59.13 59.12 39.83 32.69 60.33 48.99 38.81 47.38 10.50
Korean-256† 48.88 49.50 38.41 46.03 31.70 62.16 58.68 58.90 39.83 32.50 60.25 49.42 38.39 47.28 10.58
Korean-512† 48.19 50.05 38.97 46.24 31.35 62.83 58.16 59.17 39.50 32.57 60.38 49.48 39.37 47.40 10.61
Korean-1024† 45.16 47.22 38.90 46.63 28.61 62.57 58.36 58.26 39.64 33.16 57.91 51.73 36.86 46.54 10.77
Korean-2048† 45.87 48.20 38.45 45.77 29.32 62.69 56.68 58.08 39.12 32.13 57.60 51.77 38.32 46.46 10.58
Korean-4096† 45.18 45.81 37.48 45.57 28.17 61.26 53.28 56.11 40.01 31.82 55.50 52.10 36.12 45.26 10.14
Korean-7521† 31.09 42.08 35.00 44.58 23.80 56.53 50.39 51.34 38.94 30.32 46.19 46.79 35.88 40.99 9.51

Table 9: Ablation study on korean data number in Case 1, 2 and 3. † indicates that the model was trained using
all 10 languages of CONLIPA, but with a different number of samples of Korean. The skyblue boxes indicate
better performance compared to the baseline, and the bold text represents the best performance for each case and
language.

.
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Case Model Languages AVG STD

CASE 1

sin som mri quy uig aii kin ilo

XPhoneBERT 43.61 38.91 38.07 51.90 44.82 31.03 49.67 73.05 46.38 12.67

Swahili 44.74 38.71 38.12 53.66 44.89 31.65 49.43 73.24 46.81 12.71
Indonesian 44.43 39.05 39.00 55.53 44.84 32.54 49.43 72.46 47.16 12.39

Hindi 44.62 38.53 38.08 53.69 44.97 30.98 49.28 73.25 46.68 12.85
Mandarin 44.37 39.20 38.56 53.61 45.00 31.28 49.63 72.66 46.79 12.53

Arabic 44.46 39.11 38.55 55.02 44.90 32.56 49.4 72.71 47.09 12.44
Vietnamese 44.53 39.07 38.03 55.31 44.95 31.94 50.10 72.69 47.08 12.64

Thai 44.61 39.15 37.94 54.53 45.25 31.94 49.89 72.42 46.97 12.48
Tamil 44.43 39.07 37.95 54.68 45.00 30.75 50.01 72.81 46.84 12.01

Turkish 44.62 38.89 38.22 54.93 44.98 30.81 50.09 73.24 46.97 12.96
Korean 44.57 38.51 38.75 55.48 44.86 33.56 49.5 72.5 47.22 12.30

CASE 2

epo khm tuk amh mlt ori san ina grn bel kur snd

XPhoneBERT 75.26 31.86 61.17 44.85 52.58 40.73 59.42 68.68 49.95 77.61 52.95 47.28 55.20 13.83

Swahili 73.34 38.81 58.95 51.75 55.16 40.54 54.62 70.00 54.23 72.33 51.76 47.71 55.77 11.35
Indonesian 73.47 38.71 58.98 52.25 55.02 40.04 54.45 70.05 54.88 72.33 51.72 47.87 55.81 11.42

Hindi 73.3 38.62 58.79 51.61 55.06 40.62 54.79 69.88 54.35 72.32 52.04 47.71 55.76 11.33
Mandarin 73.41 38.62 59.07 51.76 55.31 40.07 54.38 70.07 54.68 72.36 51.63 48.07 55.79 11.43

Arabic 73.46 38.66 58.99 52.20 55.10 39.97 54.17 70.01 54.85 72.27 51.80 47.76 55.77 11.43
Vietnamese 73.54 38.56 59.23 51.93 55.41 39.94 54.51 70.07 54.94 72.36 52.15 48.15 55.90 11.45

Thai 73.48 38.68 59.25 51.84 55.41 39.91 54.24 70.1 54.89 72.4 52.13 48.04 55.86 11.45
Tamil 73.41 38.64 59.19 51.73 55.28 40.12 54.38 70.08 54.88 72.29 52.08 47.94 55.84 11.41

Turkish 73.30 38.81 59.32 51.63 55.13 40.24 55.06 70.01 55.14 72.36 52.33 47.34 55.89 11.39
Korean 73.66 38.73 58.87 51.78 54.8 40.01 54.74 70.18 55.04 72.21 51.63 47.15 55.73 11.51

CASE 3

tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir

XPhoneBERT 48.93 50.87 35.12 45.98 33.37 61.76 58.72 58.76 32.52 28.93 60.92 43.85 35.95 45.82 11.85

Swahili 48.35 51.09 37.65 46.04 33.54 61.67 58.66 58.66 38.79 31.78 60.98 47.44 37.36 47.08 10.66
Indonesian 49.03 50.55 38.13 46.22 33.22 62.01 59.04 58.84 39.27 32.22 60.83 49.13 37.78 47.41 10.62

Hindi 48.56 51.35 37.65 46.03 33.56 61.66 58.35 58.56 38.57 31.78 61.01 47.40 37.42 47.07 10.64
Mandarin 48.92 50.78 38.11 46.09 33.21 62.00 58.98 58.95 39.34 32.21 60.94 48.27 37.94 47.36 10.62

Arabic 49.12 50.67 38.01 46.17 33.11 61.99 58.94 58.81 39.15 32.20 60.97 48.21 37.96 47.33 10.63
Vietnamese 49.20 50.90 38.14 46.01 32.98 62.07 58.81 58.95 39.09 32.45 60.92 48.54 38.11 47.40 10.62

Thai 49.05 50.72 38.08 46.02 33.04 62.11 59.13 58.98 39.17 32.35 61.03 48.47 37.99 47.40 10.67
Tamil 49.00 50.80 38.05 46.06 33.29 62.00 58.68 58.90 39.14 32.20 61.01 48.19 37.92 47.33 10.61

Turkish 48.26 51.14 37.69 45.97 33.54 61.73 58.37 58.71 38.55 31.85 61.16 47.41 37.38 47.06 10.67
Korean 48.41 51.48 37.76 45.57 32.59 62.25 57.4 58.71 38.35 31.91 60.54 48.04 37.66 46.97 10.68

Table 10: Ablation study on each language in case 1,2,3.
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Case Temperature Languages AVG STD

CASE 1

sin som mri quy uig aii kin ilo

0.01 37.99 42.86 39.96 49.51 49.15 27.4 53.71 72.49 46.63 13.29
0.05 46.05 39.14 39.27 54.87 44.96 32.59 49.38 72.02 47.29 12.11
0.1 45.69 38.7 39.67 57.70 45.17 34.92 50.58 73.35 48.22 12.44
0.15 46.62 36.92 40.10 54.49 44.17 37.74 48.50 72.74 47.66 11.71
0.2 46.09 36.25 40.15 52.45 42.44 38.01 47.84 73.33 47.07 11.88
0.3 45.73 36.04 40.05 51.32 41.57 38.83 47.28 72.97 46.72 11.70
0.4 45.62 35.47 38.73 48.45 41.08 39.76 47.8 72.81 46.22 11.68
0.5 45.71 35.38 38.67 48.8 40.82 39.17 47.8 72.74 46.14 11.75
0.6 45.82 35.45 39.69 49.35 41.14 39.90 47.56 72.71 46.45 11.57
0.7 45.71 35.41 38.51 48.68 41.28 39.98 47.81 72.20 46.20 11.49
0.8 45.76 35.27 38.52 48.67 40.41 39.17 48.11 72.07 46.00 11.59
0.9 45.35 35.34 39.50 49.22 41.07 39.93 47.56 72.63 46.33 11.58
1.0 46.07 35.24 38.37 48.34 41.16 39.99 47.77 72.12 46.13 11.49

CASE 2

epo khm tuk amh mlt ori san ina grn bel kur snd

0.01 72.95 34.90 59.68 51.80 57.01 35.83 55.04 71.36 53.09 72.91 46.56 48.52 54.97 12.92
0.05 73.70 38.54 59.87 51.11 54.43 39.20 55.01 71.18 53.75 72.71 51.58 49.31 55.87 11.76
0.1 74.11 39.95 60.97 50.14 54.03 40.10 53.49 70.73 53.17 72.72 52.00 48.44 55.82 11.62
0.15 74.05 42.78 60.45 51.14 52.32 41.34 52.77 71.22 52.12 72.54 51.95 49.20 55.99 11.14
0.2 74.08 44.28 60.38 50.84 51.91 42.05 52.57 70.80 51.58 72.61 51.56 49.00 55.97 10.94
0.3 73.98 45.82 60.26 51.41 51.24 42.98 52.55 70.39 51.14 72.44 51.98 48.78 56.08 10.61
0.4 73.79 45.82 59.18 52.46 51.59 43.21 52.29 70.77 52.14 72.37 52.98 49.57 56.35 10.40
0.5 73.78 45.84 59.15 52.45 51.51 43.21 52.28 70.63 51.82 72.31 53.01 49.26 56.27 10.40
0.6 73.86 46.17 60.01 51.81 50.93 43.17 51.76 70.30 50.98 72.30 52.02 49.09 56.03 10.52
0.7 73.85 46.33 60.46 52.40 51.66 42.84 52.34 70.78 50.96 72.36 52.12 48.95 56.25 10.56
0.8 73.73 45.61 59.16 52.32 51.58 43.21 52.24 70.28 51.78 72.32 53.08 49.18 56.21 10.38
0.9 73.81 45.91 59.98 51.84 50.90 43.04 51.80 70.27 51.04 72.32 52.15 48.71 55.98 10.56
1.0 73.83 46.84 59.63 52.46 51.61 42.91 52.56 70.76 51.31 72.31 52.18 48.93 56.28 10.44

CASE 3

tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir

0.01 49.89 50.81 38.58 46.08 33.89 61.09 58.91 61.24 39.41 33.90 60.15 48.14 38.13 47.71 10.35
0.05 50.14 49.08 38.90 45.63 32.24 62.13 59.37 59.74 40.11 33.13 60.58 49.81 39.62 47.73 10.50
0.1 48.19 50.05 38.97 46.24 31.35 62.83 58.16 59.17 39.50 32.57 60.38 49.48 39.37 47.40 10.61
0.15 47.19 47.85 38.41 46.08 30.27 62.52 58.43 58.57 39.45 32.86 59.42 50.17 38.00 46.86 10.66
0.2 45.62 47.96 38.03 46.19 30.11 62.44 58.24 57.91 38.95 32.25 59.41 50.98 37.35 46.57 10.79
0.3 44.99 47.35 38.10 46.23 29.87 62.09 58.13 57.70 38.99 32.35 58.96 50.59 36.90 46.33 10.70
0.4 45.38 46.90 38.22 45.15 30.32 61.33 57.82 57.88 39.69 32.75 58.89 51.01 37.09 46.34 10.44
0.5 44.94 47.15 38.13 45.10 30.29 61.31 57.76 57.82 39.62 32.73 58.84 50.93 36.09 46.21 10.52
0.6 45.24 47.21 38.05 46.23 29.79 61.67 57.92 57.54 39.09 32.37 58.51 51.19 36.67 46.27 10.61
0.7 45.41 46.80 38.31 46.05 29.76 61.60 58.35 57.79 39.60 32.82 58.36 51.96 36.86 46.44 10.58
0.8 44.00 46.94 38.15 45.27 30.08 61.21 57.72 57.72 39.80 32.81 58.64 51.39 35.96 46.13 10.52
0.9 44.95 47.00 38.08 46.10 29.78 61.50 58.00 57.50 39.20 32.34 58.48 51.36 36.09 46.18 10.64
1.0 45.33 46.83 38.30 46.04 29.68 61.56 58.31 57.75 39.69 32.83 58.25 52.05 36.73 46.41 10.58

Table 11: Ablation study on contrastive learning temperature in case 1,2,3.
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(a) eng-ori before training (b) eng-ori after training

(c) eng-khm before training (d) eng-khm after training

Figure 4: t-SNE (perplexity=2) visualization using 10 eng-ori pairs and 10 eng-khm pairs. Panels (a) and (c)
represent the results before IPA contrastive learning, while panels (b) and (d) show the results after learning. Dots
of the same color indicate pairs of english and target language words with the same meaning.

Figure 5: Ten eng-ori pairs with similar pronunciations
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Figure 6: Ten eng-khm pairs with similar pronunciations
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