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Abstract

Existing approaches to zero-shot Named Entity
Recognition (NER) for low-resource languages
have primarily relied on machine translation,
whereas more recent methods have shifted
focus to phonemic representation. Build-
ing upon this, we investigate how reducing
the phonemic representation gap in IPA tran-
scription between languages with similar pho-
netic characteristics enables models trained
on high-resource languages to perform effec-
tively on low-resource languages. In this work,
we propose CONtrastive Learning with IPA
(CONLIPA) dataset containing 10 English and
high resource languages IPA pairs from 10 fre-
quently used language families. We also pro-
pose a cross-lingual IPA Contrastive learning
method (IPAC) using the CONLIPA dataset.
Furthermore, our proposed dataset and method-
ology demonstrate a substantial average gain
when compared to the best performing base-
line.

1 Introduction

One of the facts that links the languages of the
world together is shared vocabulary. Languages
that are phylogenetically related to one another in-
herit shared words (cognates) and languages that
are in contact with one another borrow words
(loanwords) from one another. These etymolog-
ically related words tend to share similar mean-
ings and similar pronunciations. Various attempts
have been made to leverage this similarity. For
example, Bharadwaj et al. (2016) used phonetic
feature representations of Uyghur and Turkish to
leverage shared names in Named Entity Recogni-
tion (NER) and Chaudhary et al. (2018) used IPA
(International Phonetic Alphabet) representation
to improve NER and machine translation in Ben-
gali (pivoting from Hindi). However, these past
approaches have proposed models that learned rep-
resentations for phoneme strings. Loanwords or

cognates have similar embedded representations
because their IPA representations are similar. We
propose, instead, to learn representations—using
contrastive learning—that capture the phonologi-
cal aspects of etymologically-related words across
languages.

Various approaches for zero-shot NER in low-
resource languages, where data acquisition is chal-
lenging, have been proposed over time. Most pre-
vious methods (Yang et al., 2022; Liu et al., 2021;
Mo et al., 2024) often employed machine transla-
tion with grapheme-based inputs. Since machine
translation utilizes prior knowledge of low-resource
languages, a method using phonemic representa-
tion was proposed for a stricter zero-shot setting
(Sohn et al., 2024).

We investigate how reducing the phonemic rep-
resentation gap in IPA transcription between lan-
guages with similar phonetic characteristics en-
ables models trained on high-resource languages
to perform effectively on low-resource languages
as shown in Figure 1. We selected 10 represen-
tative languages from 10 widely spoken language
families and collected IPA pairs with English that
share the same meaning and similar pronuncia-
tion. Using this CONtrastive Learning with IPA
(CONLIPA) dataset, we conducted Cross-lingual
IPA Contrastive learning method (IPAC) on the
phonemic representation space. Extensive experi-
ments and cosine similarity score demonstrate that
our method effectively brings the representations
of similarly pronounced words across different lan-
guages closer together.

Our approach differs from (Sohn et al., 2024) in
that the model is explicitly trained to represent IPA
in a cross-linguistically meaningful way. It is not
merely about token overlap; the model learns to rep-
resent phonetically transcribed words in a manner
that ensures similarity with etymologically related
words, such as named entities, in other languages.
(Zouhar et al., 2024) also employed similar tech-
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Figure 1: Concept Figure. As shown in (A), existing phonemic models struggle to recognize the same word
when IPA representations differ across languages, despite similar pronunciations. In contrast, our method (B)
uses IPA contrastive learning to align representations of languages with similar pronunciations, particularly for
high-resource languages. This enables effective zero-shot inference for low-resource languages, demonstrating

strong generalization.

niques, including metric learning and triplet margin
loss, to learn neural representations of IPA strings.
However, their approach was monolingual in na-
ture, as both positive and negative samples were
drawn from the same language as the anchor, and
the metric space was defined based on phonetic
features.

We also explored the interesting feature of the
Korean language, which allows foreign pronunci-
ations to be recorded using Hangul in a way that
closely approximates the original pronunciation.
Leveraging this feature, we highlight the potential
of Korean for future zero-shot NER research.

In general, the main contributions of this paper
are as follows:

* We propose the CONtrastive Learning with
IPA (CONLIPA) dataset, which contains IPA
pairs of English and 10 languages from 10
widely spoken language families.

* We propose a novel Cross-Lingual TPA
Contrastive Learning (IPAC) approach us-
ing the CONLIPA dataset, aimed at reducing
the gap in phonemic representations between
high-resource languages with similar pronun-
ciations.

* We investigate Unimodal Contrastive Learn-
ing using exclusively phonemic input, without
incorporating multimodal inputs such as im-
ages or audio.

* To the best of our knowledge, we are the first
to use LLMs, such as ChatGPT, to extract
cognate pairs and train a model using these

pairs.

* We evaluate the proposed method using
WikiANN NER dataset and compare it with
baseline methods. Experimental results verify
the effectiveness of our method and demon-
strate its significant advantages in Zero-Shot
NER with low resource language task.

2 Related Work

2.1 Zero-shot Cross-lingual NER

Zero-shot cross-lingual NER is crucial for low-
resource languages, where labeled data is scarce.
While previous works (Yang et al., 2022; Liu et al.,
2021; Mo et al., 2024) used parallel data from ma-
chine translation, this approach faces challenges
for languages where machine translation is not fea-
sible. ZGUL (Rathore et al., 2023) established
a strict zero-shot setting with no target language
data, relying on a language adapter trained on ty-
pologically similar languages. However, it uses
grapheme-based input, limiting its applicability to
languages with novel orthographic systems, and is
restricted to specific language groups—Germanic,
Slavic, African, and Indo-Aryan. In contrast, our
approach covers 10 widely spoken language fami-
lies and does not require overlap between the train-
ing and inference languages.

Some works (Bharadwaj et al., 2016; Chaudhary
et al., 2018) have utilized phonemic representation
for NER, but they did not operate in a zero-shot
setting. In contrast, (Sohn et al., 2024) performed



NER by using IPA phonemes as input in a strict
zero-shot setting, where no data or prior knowledge
was available for the inference language. However,
it trained the model exclusively on English data
and did not fully address discrepancies in IPA nota-
tion for languages with similar pronunciations. The
XPhoneBERT(The Nguyen et al., 2023) backbone
model used by (Sohn et al., 2024) learns to repre-
sent phoneme strings such that similar strings have
similar representations. In contrast, our CONLIPA
learns to represent phoneme strings, such as names,
in a way that ensures they have similar represen-
tations to phonologically and semantically related
strings in other languages.

2.2 Multimodal and Unimodal Contrastive
Learning

Contrastive learning is a self-supervised approach
that brings similar data points closer in feature
space while pushing dissimilar points apart, en-
abling the learning of meaningful representations
without labeled data by typically using InfoNCE
loss (van den Oord et al., 2018; Chen et al., 2020).
CLIP (Radford et al., 2021) extends this to learn
joint representations of images and text by aligning
their features in a shared embedding space, advanc-
ing contrastive learning in the multimodal domain,
primarily focusing on bridging image-text gaps.
As mentioned in (Huang et al., 2024), unimodal
contrastive learning has generally not achieved the
same level of success as the unprecedented success
of multimodal contrastive learning. The founda-
tional work on contrastive learning has explored
key aspects such as alignment and uniformity of
contrastive loss (Wang and Isola, 2020), the impact
of auxiliary tasks on learning representations (Lee
et al., 2021), and optimization perspectives on self-
supervised learning (Tian et al., 2020). Addition-
ally, several studies have analyzed contrastive learn-
ing in single-modal and multi-view settings (Arora
et al., 2019; HaoChen et al., 2021; Tosh et al.,
2021; Saunshi et al., 2022). (Wen and Li, 2021)
study ReLU networks but differs by requiring an ad-
justable bias term and not considering multimodal
contrastive learning. (Zouhar et al., 2024) also em-
ployed related approaches, such as metric learning
and triplet margin loss, to learn neural represen-
tations of IPA strings. However, their approach
was purely monolingual, with positive and nega-
tive samples drawn from the same language as the
anchor and the metric space defined by phonetic
features. Unlike these studies, our approach differs

in that it employs a unimodal contrastive learning
methodology using only phonemic input based on
phonetic features across different languages in a
multilingual setting.

2.3 Contrastive Learning with Phoneme
Embedding

There have been some research on contrastive learn-
ing utilizing phoneme embedding. IPA-CLIP (Mat-
suhira et al., 2023) is a multimodal method that
uses image, text, and IPA, with only using English
in both text and IPA. As zero-shot inference experi-
ments on various languages were not conducted, it
is difficult to guarantee strong performance across
all languages, as IPA symbols may differ between
English and other languages.

PLCL (Kewei et al., 2024) is also a multi-
modal approach that performs contrastive learn-
ing between English audio-audio and audio-text
pairs. We note that our Cross-Lingual IPA Con-
trastive Learning (IPAC) clearly differentiates it-
self by focusing on contrastive learning between
phoneme embedding of different languages, rather
than within the multimodal domain.

3 CONLIPA Dataset

In this section we provide an overview of how
we created the CONtrastive Learning with IPA
(CONLIPA) dataset. The dataset is used in the
cross-lingual IPA contrastive learning experiments
presented in Section 4.

Language Family Language Data
Atlantic-Congo Swahili 27
Austronesian Indonesian 86
Indo-European Hindi 128
Sino-Tibetan Mandarin 6
Afro-Asiatic Arabic 34
Austroasiatic Vietnamese 10
Tai-Kadai Thai 31
Dravidian Tamil 71
Turkic Turkish 52
Koreanic Korean 7521

Table 1: Selected 10 language families, one of their rep-
resentative Languages, and the number of data samples
per each language.



Language Target Language Grapheme | English Grapheme | Target Language IPA English IPA
Swahili kompyuta computer kompjuta kom 'pjuts
Indonesian Cokelat chocolate Tok'elat ‘tfako tert
Hindi FFT camera ke mrd: ka'meis
Mandarin WL salad salllad 'setad
Arabic NEL television tilfizjun_a: ‘teto vizon
Vietnamese véc xin vaccine vak1l_sinid vek'sin
Thai Tdwma hotel ho:d.the: 14 houv 'tet
Tamil @erv Aif b ice cream 2a1s_kigiim ‘ars _'kiim
Turkish Miizik music myz 1k ‘mjuzik
Korean o] =HIX] adventure Adwbenfghia dvenf}

Figure 2: Samples in our CONLIPA dataset for each language.

3.1 Language Selection

We selected 10 major language families and chose
one representative language from each family.
These languages are high-resource, which makes
it easier to obtain IPA pairs with similar phonetic
characteristics between the target language and En-
glish. We selected the top 9 most widely used
language families in the world (Atlantic-Congo,
Austronesian, Indo-European, Sino-Tibetan, Afro-
Asiatic, Austroasiatic, Tai-Kadai, Drividian, Tur-
kic), and added Korean from the Koreanic language
family. We included Korean because it is a well-
resourced language with a strongly phonemic or-
thography that, like IPA, has the potential to rep-
resent other languages phonemically. This charac-
teristic enabled us to collect a significantly larger
amount of data compared to other 9 languages.

Additionally, our CONLIPA dataset used for
training contains a minimum of 6 and up to 512
instances per language, enabling efficient and fast
fine-tuning. Due to the relatively low computa-
tional and memory requirements, the training pro-
cess incurs minimal computational cost and power
consumption, making it more environmentally sus-
tainable. The 10 selected language families, along
with the representative languages from each family
and the corresponding number of data samples, are
presented in Table 1.

3.2 Dataset Creation

We collected pairs of foreign loanwords from En-
glish and 10 representative languages that have

similar meanings and pronunciations using Chat-
GPT!. Since these languages borrow and use En-
glish words directly, the words are transcribed in
the closest possible form to original English pro-
nunciation. These words are all loanwords, so it
seems that ChatGPT recognizes them as part of a
translation task. Additionally, these 10 languages
are high-resource languages, meaning that Chat-
GPT has likely been trained on a large amount of
translation data for them. The words obtained were
then manually verified by the authors to ensure
their pronunciation similarity for each representa-
tive language, using Google Translate? and online
dictionaries. The choice of English as a reference
language was motivated by its status as a high-
resource language with extensive datasets in NLP,
making it likely that models already possess strong
representations for English.

As shown in Table 1, the number of such pairs
varied significantly across languages. For instance,
Mandarin had only 6 pairs due to the limited num-
ber of similar pronunciations with English, while
Korean, with its ability to represent foreign words
phonetically using Hangul, allowed for a much
larger collection of 7,521 samples. Through exper-
imental evaluation, we found that using only 512
samples out of the 7,521 Korean samples yielded
the best performance, as shown in Section 6.3.1
Table 4.

We converted the grapheme notation G

'https://chatgpt.com/
Zhttps://translate.google.co.kr/
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Figure 3: Overall architecture of our IPA Contrastive Learning (IPAC). First, the IPA representations of word pairs
with similar pronunciations are obtained from the phonemic encoder for two high-resource languages, such as
English and Hindi. Then, these pairs are considered | positive pairs , while the remaining samples in the batch are

treated as to compute the contrastive loss.

of English e and the 10 target languages ¢ €

{swa, ind, hin, cmn, ara, vie, tha, tam, tur, kor},

into IPA notation I. We used CharsiuG2P toolkit
(Zhu et al.,, 2022) which XPhoneBERT(The
Nguyen et al., 2023) originally employed for
IPA transliteration. As shown in Figure 2, the

dataset format consist of 4 components, which are
(Gta Gea It7 Ie)‘

4 Cross-Lingual IPA Contrastive
Learning (IPAC)

Contrastive learning is a widely used self-
supervised learning approach, particularly in
image-text representation tasks. Its core concept
involves training a model to determine whether two
input samples are similar or different by evaluating
them within a learned latent space.

Our approach differs in that, instead of using
image-text pairs of two different modalities, we
input IPA transcriptions of two different languages
into a phonemic encoder. The goal is to cross-
lingually align their phonemic representations. As
shown in Figure 3, we performed IPAC by treat-
ing pairs of similar-sounding English IPA and tar-
get language IPA as positive samples from the
CONLIPA dataset, while considering other sam-
ples within the batch as negative samples.

We utilized the InfoNCE loss (van den Oord
et al., 2018; Chen et al., 2020) in our IPA con-
trastive learning framework, as it is a widely
adopted loss function in contrastive learning. This
loss function enhances the mutual information be-

tween positive pairs while reducing it between pos-
itive and negative pairs. The loss is defined as
follows:

exp ((IHT1i)7)
rexp (IDTT/7)
(1)

where 7 is a hyperparameter called temperature
coefficient, IV refers to the batch size, 1" refers to
the transpose of a matrix and 4 refers to the *"
sample of the batch.

Following the convention, we also perform
(I, I.) symmetrically and calculated the average
as shown below, which is used as the final IPA
Contrastive loss l;pac.

(le, It) =

NZ

1
lipac = i(l(le’ Ii) + (1, L)) ()

S Experiment Setting

5.1 Models

We followed (Sohn et al., 2024) experimental set-
ting for the three baseline models, mBERT (Devlin
et al., 2019), CANINE (Clark et al., 2022) and
XPhonebert (The Nguyen et al., 2023). We also
compared (Sohn et al., 2024)’s result with ours.
We conducted experiments with models of
BERT-base scale: mBERT with 177M parame-
ters, CANINE-C with 132M, and XPhoneBERT
with 87,559,687 parameters. Our model initially
shares the same number of parameters as the base
XPhoneBERT model, as used during pre-training
with the WikiANN NER dataset following (Sohn



Case ‘ Input Model Languages AVG STD
‘ sin som mri quy uig aii kin ilo
CASE 1 | grapheme mBERT 10.71 4476 3848 55.07 1870 12.58 62.37 79.51 40.27  25.00
grapheme CANINE 2631 4335 5130 59.48 27.19 2238 5474 80.70 45.68 19.99
phoneme XPhoneBERT(baseline) 43.61 3891 38.07 5190 44.82 31.03 49.67 73.05 46.38  12.67
phoneme CONLIPA (ours) 45.69 387 39.67 577 4517 3492 50.58 73.35 48.22 12.44
epo khm tuk amh mit ori san ina grn bel kur snd
CASE 2 | grapheme mBERT 71.31 1612 64.52 1190 63.83 9.96 4873 7389 5044 83.12 54.16 35.02 48.58 2513
grapheme CANINE 68.19 2733 5807 22.65 61.58 33.53 2679 68.78 55.37 80.07 57.33 29.87 49.13  19.86
phoneme XPhoneBERT(baseline) 75.26 31.86 61.17 44.85 52.58 40.73 5942 68.68 49.95 77.61 5295 4728 5520 13.83
phoneme CONLIPA (ours) 74.11 3995 60.97 50.14 54.03 40.1 5349 70.73 53.17 7272 52 4844 55.82 11.62
tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir
CASE 3 | grapheme mBERT 74.10 56.60 7430 73.59 57.09 7498 6444 8493 69.94 67.24 80.04 5398 68.14 69.18 9.28
grapheme CANINE 62,12 51.15 4428 61.11 4241 76.82 7036 77.51 4829 3729 7254 4574 5773 5749 13.77
phoneme XPhoneBERT(baseline) 4893 50.87 35.12 4598 3337 61.76 5872 5876 32.52 2893 60.92 4385 3595 4582 11.85
phoneme CONLIPA(ours) 48.19 50.05 3897 4624 3135 6283 58.16 59.17 39.5 3257 60.38 49.48 3937 4740 10.61

Table 2: Zero-shot F1 score (%) result in Case 1, 2, and 3. The skyblue boxes indicate better performance
compared to the baseline, and the bold text represents the best performance for each case and language.

et al.,, 2024). However, during fine-tuning on
the CONLIPA dataset, we incorporated a LoRA
adapter and a projection layer. The LoRA adapter
adds 1,327,104 parameters, while the projection
layer contributes 49,216 parameters, resulting in a
total of 88,936,007 parameters. It is important to
note that during zero-shot inference, the projection
layer is removed, leaving only the LoRA adapter.
Given the relatively small size of the LoRA adapter
compared to the original XPhoneBERT parameters,
this modification resulted in a substantial perfor-
mance improvement with only a modest increase
in model size.

5.2 Dataset

For training, we followed the procedure outlined
in Sohn et al. (2024) to train XPhoneBERT on the
English WikiANN NER dataset(Pan et al., 2017),
which includes seven named entity tags: B-PER,
I-PER, B-ORG, I-ORG, B-LOC, I-LOC, and O.

We then fine-tuned the model using our CON-
LIPA dataset with our IPA contrastive learning
methodology. For zero-shot inference, we adopted
the settings from (Sohn et al., 2024) for cases 1, 2,
and 3. Case 1 includes languages that were not part
of the pre-training corpora of mBERT, CANINE, or
XPhoneBERT. Case 2 includes only the languages
that XPhoneBERT was pre-trained on, while Case
3 includes only the languages that mBERT and
CANINE were pre-trained on.

5.3 Implementation Details

For pre-training, we followed the previous ap-
proach by setting the max sequence length, as well
as both the train and validation batch sizes, to 128.
We fine-tuned the pre-trained XPhoneBERT (The
Nguyen et al., 2023) from Hugging Face (Wolf,

2019) on the English WikiAnn (Pan et al., 2017)
dataset. The training used a learning rate of le-
5, a weight decay of 0.01, and a warmup ratio of
0.0025.

After obtaining the pre-trained checkpoint, we
further performed IPA contrastive learning on our
CONLIPA dataset. During this process, we froze
the parameters of the original model and added
a LoRA adapter with r=8, lora_alpha=32, and
lora_dropout=0.1. Additionally, we added a linear
projection layer with 64 dimensions, and only the
LoRA adapter and projection layer were activated
for fine-tuning for 2 epochs. All the other hyperpa-
rameters were Kept the same as in the pre-training
phase.

6 Result and Analysis

6.1 Overall Results

Table 2 compares the overall performance be-
tween our method and previous zero-shot NER
approaches. It can be observed that our method out-
performs the previous phonemic approach (Sohn
et al., 2024) in all cases (Case 1, 2, and 3). Ad-
ditionally, in Case 1, the most stringent zero-shot
setting, our model outperformed mBERT (Devlin
et al., 2019) and CANINE (Clark et al., 2022) on
average.

Notably, in Case 1, which represents a strict
zero-shot setting not including any languages used
in pre-training, our method shows improved per-
formance in most languages compared to (Sohn
et al., 2024). The average performance increases by
1.84%, and the standard deviation decreases in the
phonemic contrastive learning condition, indicating
more stable and cross-lingually robust results.



Sample Index

Language Model ‘
|1 2 3 4 5 6 7 8 9 10 | avg
cnewor | (Sohnetal 2024) | 8241 60.54 9717 7443 8850 9070 8691 9374 9046 81.86 | 84.67
EOM urs 90.13 62.06 97.17 73.02 88.00 9270 90.72 9320 90.78 86.09 | 86.39
(hy  (Sohnetal,2024) [ 80.72 89.65 8891 9394 9824 9232 5705 7612 69.02 80.05 | 82.60
CeKAm s 86.64 89.80 90.83 93.67 97.77 92.03 6539 78.38 70.54 80.54 | 84.56

Table 3: Cosine similarity scores(%) for 10 samples of eng-ori and eng-khm pairs.

Model |

Languages

‘ AVG STD
‘ sin som mri quy uig aii kin ilo ‘

XPhoneBERT ‘ 43.61 3891 38.07 5190 44.82 31.03 49.67 73.05 ‘ 46.38 12.67
Korean-167  44.62 38.89 38.19 53.59 45.13 31.87 4959 7239 | 46.78 12.40
Korean-321  44.68 38.82 38.02 5524 4508 30.70 49.88 73.10 | 46.94 1298
Korean-64T 4590 38.10 38.60 55.69 44.44 33.67 4825 72.53 | 47.15 12.33
Korean-128" 4556 38.49 38.94 54.28 4448 3260 47.92 7222 | 46.81 1221
Korean-2567 4588 37.53 38.73 54.47 4438 3393 4770 7232 | 4687 12.16
Korean-512f  45.69 38.70 39.67 57.70 45.17 3492 50.58 73.35 | 4822 12.44
Korean-1024T 4550 36.77 4091 50.40 4248 39.74 48.62 72.05 | 47.06 11.08
Korean-2048T 4552 37.14 4136 54.63 42.14 3746 4893 7293 | 47.51 11.82
Korean-40967 44.04 33.61 40.14 47.02 4096 39.83 4562 70.88 | 4526 11.15
Korean-75217 ‘ 3252 25.66 28.52 4220 36.80 32.16 43.61 64.15 | 3820 12.19

Table 4: Ablation study on Korean data number in Case 1. { indicates that the model was trained using all 10
languages of CONLIPA, but with a different number of samples of Korean. The skyblue boxes indicate better
performance compared to the baseline, and the bold text represents the best performance for each case and language.

6.2 Cosine Similarity of Phonemic
Representation

The goal of IPA contrastive learning is to align
the cross-lingual representations of languages with
similar pronunciations but slightly different IPA
transcriptions. To evaluate this, we computed the
distance between named entity pairs in English
and two low-resource languages, Oriya and Khmer,
where each pair has the same meaning, similar
pronunciation but different IPA transcription. The
distance between the embeddings from each lan-
guage was calculated using the cosine similarity
metric. Figures 5 and 6 in the Appendix present
the 10 samples for Oriya and Khmer, respectively.

As shown in Table 3, compared to (Sohn et al.,
2024), the results after applying our IPA contrastive
learning on both eng-ori and eng-khm showed
higher cosine similarity scores in most cases, with
the average score also being higher for our method.
This demonstrates that our method successfully
brought phonemic embeddings with similar mean-
ings and pronunciations closer together across dif-
ferent languages. The t-SNE visualization results
for these samples are also provided in the section
G of Appendix.

6.3 Ablation Study

6.3.1 Ablation on the number of Korean
samples

As can be seen in Table 1, the number of Korean
data samples is 7,521, which is significantly higher
than that of the other languages. To determine the
optimal number of samples for achieving the best
performance, we conducted an ablation study by
varying the amount of Korean data used in training
the model with IPA contrastive learning.

We conducted experiments by gradually increas-
ing the number of Korean data samples, doubling
them from 16, 32, 64, ..., up to 7,521, while keep-
ing the data samples of the other 10 languages
fixed. As shown in Table 4, the best performance
was achieved when the number of Korean data
samples was 512. This demonstrates that simply
increasing the number of data samples used for
IPA contrastive learning does not always lead to
better results. While IPA contrastive learning helps
bring the representations of similar-sounding words
across different languages closer together, exces-
sive usage of it may potentially harm the repre-
sentations of models pre-trained on original NER
datasets. The experimental results of Case 2,3 are
also available on Table 9 of Appendix.



Model |

Languages

‘ AVG STD

‘ sin som mri quy uig ail kin ilo ‘
XPhoneBERT ‘ 43.61 3891 38.07 5190 44.82 31.03 49.67 73.05 ‘ 46.38 12.67
Swahili 4474 3871 38.12 53.66 44.89 31.65 49.43 7324 | 46.81 12.71
Indonesian ~ 44.43 39.05 39.00 55.53 44.84 3254 4943 7246 | 47.16 12.39
Hindi 44.62 38.53 38.08 53.69 4497 3098 49.28 73.25 | 46.68 12.85
Mandarin 4437 39.2 3856 53.61 4500 31.28 49.63 72.66 | 46.79 12.53
Arabic 4446 39.11 3855 55.02 4490 3256 494 7271 |47.09 1244
Vietnamese  44.53 39.07 38.03 5531 4495 3194 50.1 72.69 | 47.08 12.64
Thai 44.61 39.15 3794 5453 4525 31.94 49.89 7242 | 4697 12.48
Tamil 4443 39.07 3795 54.68 45.00 30.75 50.01 72.81 | 46.84 12.01
Turkish 44.62 38.89 3822 5493 4498 30.81 50.09 73.24 | 46.97 12.96
Korean 4457 38.51 3875 5548 44.86 33.56 495 725 | 4722 1230
Total 45.69 387 39.67 57.7 45.17 3492 50.58 73.35 | 48.22 1244

Table 5: Ablation study on each language in case 1. The skyblue boxes indicate better performance compared to
the baseline, and the bold text represents the best performance for each inference language.

6.3.2 Ablation on each Language

We conducted experiments using only the data from
each of the 10 languages in CONLIPA to identify
which language performs best when training the
model with IPA contrastive learning. As shown
in Table 5, Korean achieved the best performance,
followed by Indonesian, Arabic, and Vietnamese.
However, we can still observe that the 7oral result,
using all 10 languages, performed the best, indi-
cating that the data from multiple languages are
complementary to each other. The experimental
results for Case 2 and Case 3 can also be found in
Appendix Table 10.

7 Conclusion

This paper proposes a novel cross-lingual IPA
Contrastive learning(IPAC) methodology to make
the phonemic representations of languages with
similar pronunciations more similar, aimed at zero-
shot cross-lingual NER for low-resource languages.
For this purpose, we selected 10 commonly used
language families and introduce the CONitrastive
Learning with IPA(CONLIPA) dataset, which in-
cludes IPA pairs of similar-sounding words be-
tween English and these languages.

Through experiments, we demonstrate that our
approach outperforms existing subword, character
grapheme-based models, and the basic phoneme-
based model. Performance improvements across all
cases 1, 2, and 3 confirm the our method’s effect on
the cross-lingual generalization of phonemic repre-
sentation, which is crucial for zero-shot NER tasks
in low-resource languages where data is scarce.

8 Limitations

Our methodology does not consider all language
families worldwide, but rather focuses on 10 lan-
guage families. Additionally, it is difficult to claim
that the representative language selected from each
of the 10 language families fully represents all the
characteristics of every language within that fam-
ily. However, our approach demonstrates the po-
tential to improve performance for low-resource
languages by leveraging data from high-resource
languages, which are relatively easier to obtain.

9 [Ethics Statement

In this study, we utilize the publicly available
WikiANN dataset (Pan et al., 2017) to train various
models across different languages, ensuring that
no ethical concerns arise. During the creation of
the CONLIPA dataset, we encountered no ethical
issues related to its curation or annotation. There
were no significant ethical concerns, such as vio-
lent or offensive content, and the dataset was used
in accordance with its intended purpose.
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A Language Codes

Table 6 presents the ISO 639-3 language codes for
all the languages utilized in the experiments.
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Language ISO 639-3
Ambharic amh
Assyrian Neo-Aramaic  aii
Ayacucho quechua quy
Cebuano ceb
Croatian hrv
English eng
Esperanto €po
Ilocano ilo
Javanese jav
Khmer khm
Kinyarwanda kin
Kyrgyz kir
Malay msa
Malayalam mal
Maltese mlt
Maori mri
Marathi mar
Punjabi pan
Sinhala sin
Somali som
Tajik tgk
Telugu tel
Turkmen tuk
Urdu urd
Uyghur uig
Uzbek uzb
Yoruba yor
Swahili swa
Indonesian ind
Hindi hin
Mandarin cmn
Arabic ara
Vietnamese vie
Thai tha
Tamil tam
Turkish tur
Korean kor

Table 6: Language codes for all languages used in the
experiments.
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Dataset Lang. Script Test License

Latn
Sinh
Latn
Latn
Latn
Arab
Syre
Latn
Latn
Latn
Khmr
Latn
Ethi
Latn
Orya
Deva
Latn
Latn
Cyrl
Latn
Arab
Cyrl
Latn
Deva
Latn
Arab
Latn
Latn
Latn
Mlym
Telu
Cyrl
Guru
Latn
Latn
Latn
Deva
Han
Arab
Latn
Thai
Telu
Latn
Hangul

eng
sin
som
mri
quy
uig
aii
kin
ilo
epo
khm
tuk
amh
mlt
ori
san
ina
grn
bel
kur
snd
tgk
yor
mar
jav
urd
msa
ceb
hrv
mal
tel
uzb
pan
kir
swa
ind
hin
cmn
ara
vie
tha
tam
tur
kor

WikiANN ODC-BY

20k 10k 10k

Table 7: Statistics and license types for the dataset.
The table lists the script, number of examples in the
training, development, and testing sets for languages
in the WikiANN dataset. The dataset is strictly used
within the bounds of these licenses.

B Benchmark and License

Table 7 provides information on the datasets, in-
cluding their statistics and licensing details. Addi-
tionally, the CharsiuG2P toolkit (Zhu et al., 2022),
used for transliteration, is employed under the MIT
license.

C Experimental Result on the trained
High Resource Language

The main task of our paper is to perform NER in a
strict zero-shot setting, where the inference is con-
ducted on a low-resource language that has never
been seen before. However, we also compared the
validation set results before and after training on
the CONLIPA dataset, which consists of 10 high-
resource languages used for Cross-lingual IPA con-
trastive learning.
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As shown in Table 8, in most cases, the perfor-
mance improved compared to the existing base-
line. Although there were occasional instances
where the performance dropped below the baseline,
the maximum performance improvement was 1.14,
while the maximum performance degradation was
0.33. Since the largest performance drop is small,
it suggests that performing IPA contrastive learning
using the CONLIPA dataset may also be effective
in improving the performance of high-resource lan-
guages. Additionally, it can be observed that using
all 10 languages as fotal shows the best perfor-
mance both on average and for most individual
languages in high-resource languages, too. This
suggests that the interaction among 10 representa-
tive languages from 10 different language families
leads to better results.

D Experimental Result with number of
Korean data

We present the ablation study examining the num-
ber of Korean instances across all three cases in
Table 9.

E Experimental Result with single
language

We present the quantitative result of all three cases
in Table 10. The method using phoneme represen-
tation outperforms in Case 1 and Case 2 in terms of
average F1 score(%) and demonstrates more stable
results with a lower standard deviation.

F Ablation on the Temperature
Coefficient

As discussed in paper (Kim and Kim, 2025), In-
foNCE loss (van den Oord et al., 2018; Chen et al.,
2020) is commonly employed in contrastive learn-
ing since it facilitates learning data representations
by capturing the similarities between pairs. While
InfoNCE loss plays a crucial role (Wang and Liu,
2021; Zhang et al.), it requires the tuning of a tem-
perature parameter. This critical hyperparameter
modifies the similarity scores and governs the inten-
sity of penalties applied to difficult negative sam-
ples(Wang and Liu, 2021). This temperature coef-
ficient is represented by 7 in equation 1 of Section
4.

To identify an optimal temperature, we con-
ducted an ablation study by varying only the tem-
perature coefficient. The study was performed us-
ing 512 Korean data samples, along with data from



Zero-shot Inference Language

‘ AVG

Train Language ‘ STD
‘ eng kor swa ind hin cmn ara vie tha tam tur ‘
XPhoneBERT ‘ 76.78 5488 6140 64.00 64.99 39.16 5524 5849 16.74 59.39 67.28 ‘ 56.21 16.05
kor 76.69 55.09 6136 64.02 6526 3883 5522 58.64 16.69 59.96 67.18 | 56.27 16.11
swa 76.79 5481 6136 64.07 64.81 3920 55.14 5846 16.75 59.28 67.18 | 56.17 16.03
ind 76.8 55.03 6123 6398 6508 39.22 5522 5853 16.77 59.54 67.34 | 56.25 16.05
hin 76.74 5468 6148 64.04 064.86 39.22 5510 5851 16.72 59.46 67.15 | 56.18 16.04
cmn 76.85 55.03 6131 6395 65.07 39.14 5526 5845 16.76 59.51 67.35 | 56.24 16.06
ara 76.82 5500 61.34 64.08 65.13 39.19 5515 5857 16.74 59.55 67.28 | 56.26 16.07
vie 76.87 55.11 61.52 64.03 6521 39.06 5531 5852 16.75 59.66 67.36 | 5631 16.10
tha 76.87 55.08 61.33 6399 6525 39.07 5532 5851 16.77 5949 6743 | 5628 16.09
tam 76.82 5501 6140 6396 65.01 39.14 5527 5843 16.76 59.38 67.36 | 56.23 16.06
tur 76.77 5473 6145 64.02 64.84 39.19 55.08 5842 16.75 59.44 67.23 | 56.17 16.04
total 7693 55.82 61.15 64.09 66.13 38.87 5525 5849 16.87 60.49 67.55 | 56.51 16.17

Table 8: F1 score(%) for zero-shot inference on each high-resource language after training on each language of

CONLIPA.

10 other languages. As shown in Figure 11, a tem-
perature coefficient of 0.1 yielded the best perfor-
mance in our experiment.

G Visualization of Phonemic
Representation

We analyzed the distance between eng-ori and eng-
khm word pairs in Section 6.2 of the main paper.
Here, we also visualize the distribution of represen-
tations in a zero-shot setting, where phoneme input
from a low-resource language is presented solely
during inference, without prior exposure during
training.

We employed t-SNE to compare how the distri-
bution of representations changes before and af-
ter IPA contrastive learning. For this study, we
selected Oriya and Khmer as low-resource lan-
guages. We used IPA inputs corresponding to 10
English-target language pairs for both Oriya and
Khmer, focusing on words with similar pronuncia-
tions. The selected words consisted of person, or-
ganization, and location named entities. Figures 5
and 6 present the 10 samples for Oriya and Khmer,
respectively.

As shown in Figure 4, we compared the t-SNE
results before and after IPA contrastive learning
using our CONLIPA dataset. The results before
learning are shown in (a) and (c), while those after
learning are shown in (b) and (d). In the figure,
dots of the same color represent pairs of English
and target language words with the same meaning,
with only the English labels displayed.

In (a) and (c), most of the paired points were
distant from each other. Since Oriya and Khmer are
low-resource languages, even when input is given
in IPA notation, there was a noticeable distance
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between the paired points. However, in (b) and (d),
the distance between these points was significantly
reduced.

Note that only the IPA representations of both
English and the target language, rather than their
grapheme notations, are used for visualization in
this process. Additionally, it should be noted that
the examples of Oriya and Khmer were not used for
any training, such as pre-training with WikiANN
or IPA contrastive learning, nor for zero-shot infer-
ence. These samples were created and used solely
for cosine similarity calculation and t-SNE visual-
ization purposes.

We configured the t-SNE with perplexity=2 and
n_iter=300 to generate the visualizations. To en-
sure a fair comparison, we standardized the axis
ranges: for eng-ori, the x-axis range was [-100,
100] and the y-axis range was [-150, 150], while
for eng-khm, the x-axis range was [-80, 80] and the
y-axis range was [-190, 150].



Case ‘ Model Languages AVG STD

‘ sin som mri quy uig aii kin ilo
CASE 1 ‘ XPhoneBERT 43.61 38.91 38.07 5190 44.82 31.03 49.67 73.05 46.38 12.67
Korean-167  44.62 38.89 38.19 53.59 45.13 31.87 49.59 72.39 46.78 12.40
Korean-32f  44.68 38.82 38.02 5524 4508 30.70 49.88 73.10 46.94 12.98
Korean-641 4590 38.10 38.60 55.69 44.44 33.67 4825 7253 47.15 12.33
Korean-1287 4556 38.49 3894 5428 4448 3260 47.92 7222 46.81 12.21
Korean-2567  45.88 37.53 3873 54.47 44.38 3393 4770 72.32 46.87 12.16
Korean-512f  45.69 3870 39.67 57.70 4517 3492 50.58 73.35 48.22 12.44
Korean-1024T 4550 36.77 4091 5040 4248 39.74 48.62 72.05 47.06 11.08
Korean-2048" 4552 37.14 41.36 54.63 42.14 37.46 4893 7293 4751 11.82
Korean-4096"  44.04 33.61 40.14 47.02 4096 39.83 4562 70.88 4526 11.15
Korean-75217 32,52 25.66 2852 4220 36.80 32.16 43.61 64.15 38.20 12.19
‘ epo  khm  tuk amh mit ori san ina grn bel kur snd
CASE 2 ‘ XPhoneBERT 7526 31.86 61.17 4485 5258 40.73 59.42 68.68 4995 77.61 5295 4728 5520 13.83
Korean-161  73.48 3879 59.45 5241 5546 3991 54.14 7022 5498 7248 51.89 48.19 5595 1145
Korean-32f  73.35 3856 59.00 51.96 55.09 4022 54.59 70.03 54.55 7229 5215 47.96 55.81 11.38
Korean-641 7378 39.74 5928 52.17 53.76 4023 53.58 7037 53.61 7232 51.89 47.88 5572 11.39
Korean-1287  73.66 39.85 59.60 52.08 53.62 4039 53.38 70.50 5428 7245 5221 4894 5591 11.30
Korean-256" 7379 40.01 60.13 5201 53.56 41.12 53.68 70.80 53.36 72.38 52.14 48.69 55.97 11.28
Korean-512f 7411 39.95 60.97 50.14 54.03 40.1 5349 70.73 53.17 7272 5200 48.44 5582 11.62
Korean-1024" 7396 44.88 59.86 49.16 51.71 41.15 52.58 71.05 51.73 72.80 51.76 50.02 55.89 11.03
Korean-2048"  73.98 41.60 6037 49.64 5246 41.42 53.53 70.86 5223 7259 52.13 48.80 55.80 11.27
Korean-4096"  72.81 42.18 57.96 5042 50.78 43.14 5046 6843 50.13 7159 5233 49.18 5495 10.49
Korean-7521T  68.01 38.03 56.40 46.82 46.69 39.18 48.62 6508 4587 69.23 52.78 45.70 51.87 10.65
‘ tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir
CASE 3 ‘ XPhoneBERT 4893 50.87 35.12 4598 3337 61.76 5872 58.76 32.52 2893 60.92 43.85 3595 4582 11.85
Korean-167  49.01 50.19 38.15 46.19 32.63 61.78 59.21 5895 39.52 3254 60.70 49.36 3849 47.44 10.56
Korean-32f  48.90 50.60 37.94 4599 3339 61.79 5872 5872 3893 32.12 61.08 47.56 37.73 47.19 10.60
Korean-641 4922 49.55 38.03 4620 32.09 6236 5825 5872 3940 32.17 60.40 4851 3834 47.17 10.60
Korean-1287  49.56 4938 3854 4554 32.16 61.81 59.13 59.12 39.83 32.69 60.33 4899 3881 47.38 10.50
Korean-2567  48.88 49.50 38.41 46.03 31.70 62.16 58.68 5890 39.83 3250 6025 49.42 3839 4728 10.58
Korean-512f  48.19 50.05 38.97 4624 31.35 62.83 5816 59.17 39.50 32.57 60.38 49.48 39.37 47.40 10.61
Korean-1024T 4516 4722 3890 46.63 28.61 62.57 5836 5826 39.64 33.16 5791 51.73 36.86 46.54 10.77
Korean-2048" 4587 4820 3845 4577 2932 62.69 56.68 58.08 39.12 32.13 57.60 51.77 3832 4646 10.58
Korean-4096" 4518 4581 37.48 4557 28.17 6126 5328 56.11 4001 31.82 5550 52.10 36.12 4526 10.14
Korean-7521T  31.09 42.08 35.00 44.58 23.80 56.53 50.39 5134 3894 3032 46.19 46.79 3588 4099 9.51

Table 9: Ablation study on korean data number in Case 1, 2 and 3. { indicates that the model was trained using
all 10 languages of CONLIPA, but with a different number of samples of Korean. The skyblue boxes indicate
better performance compared to the baseline, and the bold text represents the best performance for each case and
language.
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Case ‘ Model Languages AVG STD
‘ sin som mri quy uig aii kin ilo
| XPhoneBERT 43.61 3891 38.07 5190 44.82 31.03 49.67 73.05 4638 12.67
Swahili 4474 3871 38.12 53.66 44.89 31.65 4943 7324 46.81 1271
Indonesian  44.43 39.05 39.00 55.53 44.84 3254 4943 7246 47.16 1239
Hindi 4462 3853 3808 53.69 4497 3098 4928 7325 46.68 12.85
CASE1 | Mandarin =~ 4437 3920 3856 53.61 4500 3128 49.63 72.66 46.79 12.53
Arabic 4446 39.11 3855 5502 4490 3256 494 7271 4709 1244
Viethamese ~ 44.53 39.07 38.03 5531 44.95 3194 50.10 72.69 47.08 12.64
Thai 44.61 39.15 37.94 54.53 4525 31.94 49.89 72.42 4697 1248
Tamil 4443 39.07 3795 54.68 4500 30.75 50.01 72.81 46.84 12.01
Turkish ~ 44.62 38.89 3822 5493 4498 3081 50.09 73.24 4697 12.96
Korean 4457 3851 3875 5548 4486 3356 495 725 4722 1230
‘ epo  khm tuk amh mlt ori san ina grn bel kur snd
| XPhoneBERT 7526 31.86 61.17 44.85 5258 40.73 5942 68.68 4995 77.61 5295 47.28 5520 13.83
Swahili 7334 3881 5895 5175 55.16 4054 5462 7000 5423 7233 5176 47.71 5577 1135
Indonesian 7347 3871 58.98 5225 55.02 40.04 5445 70.05 54.88 7233 5172 47.87 55.81 11.42
Hindi 733 3862 5879 51.61 5506 40.62 5479 69.88 5435 7232 52.04 47.71 5576 1133
CASE2 | Mandarin =~ 7341 38.62 59.07 5176 5531 40.07 5438 70.07 5468 72.36 51.63 48.07 5579 1143
Arabic 7346 38.66 58.99 5220 55.10 39.97 54.17 70.01 54.85 7227 51.80 47.76 5577 1143
Vietnamese ~ 73.54 3856 59.23 5193 5541 39.94 5451 70.07 5494 7236 52.15 48.15 5590 1145
Thai 7348 38.68 59.25 51.84 5541 3991 5424 70.1 5489 724 5213 48.04 55.86 1145
Tamil 7341 3864 59.19 5173 5528 40.12 5438 70.08 54.88 7229 52.08 47.94 55.84 1141
Turkish 7330 3881 59.32 51.63 55.13 4024 5506 70.01 55.14 7236 52.33 47.34 55.89 1139
Korean 73.66 3873 58.87 5178 548 4001 5474 7018 5504 7221 51.63 47.15 5573 1151
‘ tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir
| XPhoneBERT 4893 50.87 3512 4598 3337 6176 5872 5876 3252 2893 60.92 4385 3595 4582 11.85
Swahili ~ 4835 51.09 37.65 46.04 33.54 61.67 58.66 58.66 3879 31.78 6098 4744 37.36 47.08 10.66
Indonesian  49.03 50.55 38.13 4622 3322 6201 59.04 58.84 3927 3222 60.83 49.13 37.78 4741 10.62
Hindi 48.56 5135 37.65 4603 33.56 61.66 58.35 S58.56 38.57 3178 6101 47.40 3742 47.07 10.64
CASE3 | Mandarin 4892 5078 38.11 46.09 3321 62.00 5898 5895 3934 3221 60.94 4827 37.94 47.36 10.62
Arabic 49.12 50.67 3801 46.17 33.11 61.99 5894 5881 39.15 3220 60.97 4821 37.96 47.33 10.63
Vietnamese ~ 49.20 5090 38.14 4601 3298 62.07 S58.81 5895 39.09 3245 60.92 48.54 3811 47.40 10.62
Thai 49.05 5072 38.08 46.02 33.04 62.11 59.13 5898 39.17 3235 61.03 4847 37.99 47.40 10.67
Tamil 4900 50.80 38.05 46.06 3329 62.00 58.68 5890 39.14 3220 61.01 48.19 37.92 47.33 10.61
Turkish 4826 51.14 37.69 4597 3354 6173 5837 5871 3855 31.85 6116 4741 37.38 47.06 10.67
Korean 4841 5148 37.76 4557 3259 6225 574 5871 3835 3191 60.54 48.04 37.66 4697 10.68

Table 10: Ablation study on each language in case 1,2,3.
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Case ‘Temperature Languages AVG STD

‘ sin som mri quy uig ail kin ilo
0.01 37.99 42.86 3996 49.51 49.15 274 5371 7249 46.63 13.29
0.05 46.05 39.14 39.27 54.87 4496 32.59 4938 72.02 4729 12.11
0.1 45.69 38.7 39.67 57.70 45.17 3492 5058 73.35 48.22 1244
0.15 46.62 36.92 40.10 5449 44.17 37.74 4850 72.74 47.66 11.71
CASE 1 0.2 46.09 36.25 40.15 5245 4244 38.01 47.84 73.33 47.07 11.88
0.3 45.73 36.04 40.05 5132 41.57 3883 4728 7297 46.72 11.70
0.4 45.62 3547 38.73 4845 41.08 39.76 478 7281 46.22 11.68
0.5 4571 3538 38.67 48.8 4082 39.17 478 7274 46.14 11.75
0.6 45.82 3545 39.69 4935 41.14 3990 4756 72.71 46.45 11.57
0.7 4571 3541 3851 48.68 4128 3998 47.81 72.20 46.20 11.49
0.8 4576 3527 38.52 48.67 4041 39.17 48.11 72.07 46.00 11.59
0.9 4535 3534 39.50 4922 41.07 3993 4756 72.63 46.33 11.58
1.0 46.07 3524 38.37 4834 41.16 39.99 47777 72.12 46.13 11.49
epo khm tuk amh mlt ori san ina grmn bel kur snd
0.01 7295 3490 59.68 51.80 57.01 35.83 55.04 7136 53.09 7291 46.56 4852 5497 12.92
0.05 73770 38.54 59.87 S51.11 54.43 3920 55.01 71.18 53.75 7271 51.58 49.31 55.87 11.76
0.1 74.11 3995 60.97 50.14 54.03 40.10 53.49 70.73 53.17 7272 52.00 48.44 55.82 11.62
0.15 74.05 4278 60.45 51.14 5232 4134 5277 7122 5212 7254 5195 49.20 5599 11.14
CASE 2 0.2 74.08 4428 6038 50.84 5191 42.05 5257 70.80 5158 72.61 51.56 49.00 5597 10.94
0.3 7398 4582 6026 51.41 5124 4298 5255 7039 51.14 7244 5198 48.78 56.08 10.61
0.4 73779 4582 59.18 5246 5159 4321 5229 70.77 52.14 7237 5298 49.57 56.35 10.40
0.5 7378 45.84 59.15 5245 51.51 4321 5228 70.63 51.82 7231 53.01 49.26 56.27 10.40
0.6 73.86 46.17 60.01 51.81 5093 43.17 51.76 7030 50.98 7230 52.02 49.09 56.03 10.52
0.7 73.85 46.33 6046 5240 51.66 42.84 5234 70.78 5096 7236 52.12 4895 56.25 10.56
0.8 73773 45.61 59.16 5232 51.58 43.21 5224 7028 51.78 7232 53.08 49.18 56.21 10.38
0.9 73.81 4591 5998 51.84 5090 43.04 51.80 7027 51.04 7232 52.15 48.71 5598 10.56
1.0 73.83 46.84 59.63 5246 51.61 4291 5256 70.76 5131 7231 52.18 4893 56.28 10.44
tgk yor mar jav urd msa ceb hrv mal tel uzb pan kir

0.01 49.89 50.81 38.58 46.08 33.89 61.09 5891 61.24 3941 3390 60.15 48.14 38.13 47.71 10.35
0.05 50.14 49.08 3890 45.63 3224 62.13 59.37 59.74 40.11 33.13 60.58 49.81 39.62 47.73 10.50
0.1 48.19 50.05 38.97 46.24 3135 62.83 58.16 59.17 39.50 3257 60.38 4948 39.37 4740 10.61
0.15 47.19 4785 3841 46.08 30.27 62.52 5843 5857 3945 3286 5942 50.17 38.00 46.86 10.66
CASE 3 0.2 45.62 4796 38.03 46.19 30.11 62.44 5824 5791 3895 3225 5941 5098 3735 46.57 10.79
0.3 4499 4735 38.10 46.23 29.87 62.09 58.13 57.70 3899 3235 5896 50.59 36.90 4633 10.70
0.4 4538 4690 3822 45.15 3032 6133 57.82 57.88 39.69 3275 58.89 51.01 37.09 46.34 1044
0.5 4494 47.15 38.13 45.10 3029 6131 57.76 57.82 39.62 3273 58.84 50.93 36.09 46.21 10.52
0.6 4524 4721 38.05 4623 29.79 61.67 5792 5754 39.09 3237 5851 51.19 36.67 4627 10.61
0.7 4541 46.80 3831 46.05 29.76 61.60 5835 57.79 39.60 32.82 5836 5196 36.86 4644 10.58
0.8 44.00 46.94 38.15 4527 30.08 6121 57.72 57.72 39.80 32.81 58.64 5139 3596 46.13 10.52
0.9 4495 47.00 38.08 46.10 29.78 61.50 58.00 57.50 39.20 32.34 5848 5136 36.09 46.18 10.64
1.0 4533 46.83 3830 46.04 29.68 61.56 5831 57.75 39.69 32.83 5825 52.05 36.73 4641 10.58

Table 11: Ablation study on contrastive learning temperature in case 1,2,3.
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Figure 4: t-SNE (perplexity=2) visualization using 10 eng-ori pairs and 10 eng-khm pairs. Panels (a) and (c)
represent the results before IPA contrastive learning, while panels (b) and (d) show the results after learning. Dots
of the same color indicate pairs of english and target language words with the same meaning.

English Grapheme Oriya Grapheme English TPA Oriya TPA
London meleq. tandan london
Paris G\QI@Q] ‘pelrs pjariso
Mumbai a9 mom 'bar mumba:i
Chicago el tfi1'’kagou fika go
Oscar 8@l sk oskaro
Sophia caIFal ‘souvfia sophia
Emma gqagl ‘ema emma:
Facebook P99 ‘tfers buk ptesbuk
Tesla ceaml ‘testa tesola
Intel PEET'm Tn tel intel

Figure 5: Ten eng-ori pairs with similar pronunciations
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English Grapheme | Khmer Grapheme English IPA Khmer IPA
Michael 2 lss i faf 30 ‘markat maaykael
David fithy ‘dervid deeviit
William ?Iﬂj:]Ei ‘'witjom vi?liom
New York m”lﬁﬁ ‘nmu_ joik nuuyaak
Tokyo fjﬁJ ‘touvkiou toukyou
Washington 'ﬁﬁ‘j:SIﬁ“IS ‘wafigton vaasintaon
Paris Hilton ﬁﬁﬁjtﬁ:ﬂjﬁs ‘perrs_'hitton | paariih_hiiltaan
Twitter gﬁ[ﬁ twrts tviitthoo
UNESCO li;mﬂﬁ,jf juneskowv yuuneehkou
Google gulru ‘gugot kuukool
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Figure 6: Ten eng-khm pairs with similar pronunciations
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