
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REFLECT-THEN-PLAN: OFFLINE MODEL-BASED
PLANNING THROUGH A Doubly Bayesian LENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) is essential when online exploration is costly
or unsafe, but it often struggles with high epistemic uncertainty due to limited
data. Existing methods learn fixed conservative policies, which limit adaptivity and
generalization. To tackle these challenges, we propose Reflect-then-Plan (Ref-
Plan), a novel doubly Bayesian approach for offline model-based (MB) planning
that enhances offline-learned policies for improved adaptivity and generalization.
RefPlan integrates uncertainty modeling and MB planning in a unified probabilistic
framework, recasting planning as Bayesian posterior estimation. During deploy-
ment, it updates a belief distribution over environment dynamics based on real-time
observations. By incorporating this uncertainty into MB planning via marginaliza-
tion, RefPlan derives plans that account for unknowns beyond the agent’s limited
knowledge. Empirical results on standard benchmarks show that RefPlan signifi-
cantly improves the performance of conservative offline RL policies. In particular,
RefPlan maintains robust performance under high epistemic uncertainty and limited
data, while demonstrating resilience to changing environment dynamics, improving
the flexibility, generalizability, and robustness of offline-learned policies.

1 INTRODUCTION

Recent years have seen significant progress in offline reinforcement learning (RL), in which a learner
has to learn a performant policy from a static dataset of experiences (Levine et al., 2020; Kumar et al.,
2020; An et al., 2021; Kostrikov et al., 2022). This is particularly appealing in scenarios where online
exploration is costly or unsafe (Yu et al., 2018; Kalashnikov et al., 2018; Boute et al., 2022).

The agent’s inability to gather more experiences have severe implications. In particular, it becomes
practically impossible to precisely identify the true Markov decision process (MDP) with a limited
dataset, as it only covers a portion of the entire state-action space, leading to high epistemic uncertainty
for states and actions outside the data distribution. Most offline RL methods aim to learn a conservative
policy that stays close to the data distribution, thus steering away from high epistemic uncertainty.

While incorporating conservatism into offline learning has proven effective (Jin et al., 2021; Yu
et al., 2020; Kumar et al., 2020), it can result in overly restrictive policies that lack generalizability.
Most methods learn a Markovian policy that relies solely on the current state, leading the agent to
potentially take poor actions in unexpected states during evaluation. Model-based (MB) planning can
enhance the agent’s responsiveness during evaluation (Sikchi et al., 2021; Argenson & Dulac-Arnold,
2021; Zhan et al., 2022), but it still primarily addresses epistemic uncertainty through conservatism.

Noting this challenge, Chen et al. (2021) and Ghosh et al. (2022) propose to learn an adaptive policy
that can reason about the environment and accordingly react at evaluation. Essentially, they formulate
the offline RL problem as a partially observable MDP (POMDP)—where the partial observability
relates to the agent’s epistemic uncertainty, aka Epistemic POMDP (Ghosh et al., 2021). Thus,
learning an adaptive policy involves approximately inferring the belief state from the history of
transitions experienced by the agent and allowing the policy to condition on this belief state.

While learning an adaptive policy can help make the agent more flexible and generalizable, it still
heavily depends on the training phase. Our empirical evaluation demonstrates that a learned policy—
whether it be adaptive or fixed—can be significantly strengthened by incorporating MB planning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Reflect Plan

Encoder

· · · st�1

at�2

rt�2

st

at�1

rt�1

Updating posterior belief over the possible MDPs

𝑚!
"
"#$

%&

ŝt

at

Ot

✓

ŝt+1

at+1

Ot+1

ŝt+2

at+2

Ot+2

mt

· · · st�1

at�2

rt�2

st

at�1

rt�1

p(τ |O) =

∫

mt

p(τ |O, mt)p(mt)dmt

Figure 1: Schematic illustration of RefPlan. (Reflect) At time t, RefPlan utilizes real-time agent
experiences τ:t = (s0,a0, r0, . . . , st) to infer the posterior belief mt over environments using a
variational autoencoder. Unlike prior methods, RefPlan learns diverse dynamics models conditioned
on mt, capturing different transition and reward functions. (Plan) Offline planning is framed as
probabilistic inference, where the posterior over optimal plans p(τ |O) (with O denoting optimality
variables in the control-as-inference framework) is inferred. A prior p(τ) is incorporated by learning
πθ via offline policy learning. By marginalizing mt via Monte Carlo sampling, RefPlan addresses
epistemic uncertainty, enhancing πθ for better adaptivity and generalizability.

However, existing MB planning methods fall short in adequately addressing the agent’s epistemic
uncertainty, and it remains elusive how one can effectively incorporate the uncertainty into planning.

We propose Reflect-then-Plan (RefPlan), a novel doubly Bayesian approach for offline MB planning.
RefPlan combines epistemic uncertainty modeling with MB planning in a unified probabilistic
framework, inspired by the control-as-inference paradigm (Levine, 2018). RefPlan adapts Bayes-
adaptive deep RL techniques (Zintgraf et al., 2020; Dorfman et al., 2021) to infer a posterior belief
distribution from past experiences during test time (Reflect). To harness this uncertainty for planning,
we recast planning as Bayesian posterior estimation (Plan). By marginalizing over the agent’s
epistemic uncertainty, RefPlan effectively considers a range of possible scenarios beyond the agent’s
immediate knowledge, resulting in a posterior distribution over optimized plans under the learned
model (Figure 1).

In our experiments, we demonstrate that RefPlan can be integrated with various offline RL policy
learning algorithms to consistently boost their test-time performance in standard offline RL benchmark
domains (Fu et al., 2020). RefPlan not only maintains robust performance under high epistemic
uncertainty but also shows superior resilience when the environment dynamics change or when data
availability is limited, outperforming compared methods in these challenging scenarios.

2 RELATED WORK

Offline RL In offline RL, policy distribution shift is a major challenge, leading to instabilities
like extrapolation errors and value overestimation (Kumar et al., 2019; Fujimoto et al., 2019). To
address this, various approaches introduce conservatism. For instance, policy constraint methods
constrain the learned policy’s deviation from the behavior policy (Wu et al., 2019; Kumar et al., 2019;
Fujimoto & Gu, 2021). Value-based approaches penalize the values of out-of-distribution (OOD)
actions (Kumar et al., 2020; An et al., 2021). One can also avoid querying OOD actions by learning
the value function solely from in-dataset samples and distilling a policy (Kostrikov et al., 2022).

MB offline policy learning methods learn a dynamics model from batch data, then use the model to
generate imaginary rollouts to augment the offline dataset. To mitigate the risk of exploiting errors
in the model for policy optimization, model uncertainty—heuristically estimated from ensemble
dynamics models—can be penalized in rewards (Yu et al., 2020; Kidambi et al., 2021; Lu et al., 2021).
Alternatively, values of model-generated samples can be minimized (Yu et al., 2021). Adversarial
dynamics models can also discourage the learner from choosing OOD actions (Rigter et al., 2022).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Typically, these offline policies are fixed after training, but Ghosh et al. (2021; 2022) show that fixed
policies can fail under high epistemic uncertainty, highlighting the need for adaptive policies. APE-V
(Ghosh et al., 2022) addresses this by maintaining a value ensemble to approximate the distribution
over possible environments, adapting the policy based on this ensemble during evaluation. MAPLE
(Chen et al., 2021) uses an RNN to encode the agent’s history into a dense vector, allowing the policy
to adapt by conditioning on this history. MAPLE also utilizes an ensemble dynamics model to expose
the adaptive policy to diverse simulated environments, enhancing its robustness to uncertainty.

Model-based planning for offline RL MB planning can add responsiveness at test time. For
example, MBOP (Argenson & Dulac-Arnold, 2021) uses model predictive control (MPC) with MPPI
(Williams et al., 2015), a trajectory optimization (TrajOpt) method, modifying it for offline setups by
using a behavior-cloning (BC) policy for trajectory generation. Uncertain rollouts can be filtered out
based on the ensemble disagreement (Zhan et al., 2022).

LOOP (Sikchi et al., 2021) enhances offline-learned policies with MB planning, achieving superior
performance than MBOP. It approaches offline MB planning using KL-regularized optimization but
only addresses epistemic uncertainty by penalizing ensemble variance in rewards during TrajOpt. In
contrast, RefPlan is derived from a Bayesian perspective, which explicitly accounts for the agent’s
epistemic uncertainty, resulting in better generalization and stronger performance.

Probabilistic interpretation of MB planning The control-as-inference framework (Levine, 2018;
Abdolmaleki et al., 2018) offers a probabilistic perspective on control and RL problems. Within the
context of MB planning, this framework naturally leads to sampling-based solutions (Piché et al.,
2019; Okada & Taniguchi, 2020). For instance, Okada & Taniguchi (2020) demonstrated that various
sampling-based TrajOpt algorithms can be derived from this probabilistic view. Janner et al. (2022)
introduced a diffusion-based planner that utilizes the control-as-inference framework to derive a
perturbation distribution, embedding reward signals into the diffusion sampling process. However, to
the best of our knowledge, we are the first to propose an offline MB planning algorithm that integrates
an offline-learned policy as a prior within a Bayesian framework and explicitly accounts for the
epistemic uncertainty during planning, all within a unified probabilistic formulation.

Bayesian RL and epistemic POMDP Bayesian RL (Ghavamzadeh et al., 2015) and Bayes-adaptive
MDP (BAMDP) (Duff, 2002) tackle the problem of learning optimal policies in unknown MDPs. A
BAMDP can be reformulated as a belief-state MDP, where the belief state acts as a sufficient statistic
summarizing the agent’s history (Guez et al., 2012). This belief-state representation highlights
BAMDP as a specific instance of a POMDP (Kaelbling et al., 1998). Building on this, Zintgraf et al.
(2020) framed meta-RL as a BAMDP and proposed VariBAD, a variational inference-based method
for approximating the belief distribution over possible environments, enabling the optimization of
meta-policies.

Relatedly, Ghosh et al. (2021) introduced the concept of epistemic POMDP, where an agent’s epis-
temic uncertainty—stemming from factors such as incomplete exploration or ambiguity in task
specification—induces partial observability. Unlike BAMDPs, which primarily focus on online learn-
ing and asymptotic regrets, epistemic POMDPs emphasize the agent’s performance during a single
evaluation episode, making them especially relevant for test-time generalization. Notably, Ghosh
et al. (2022) observed that offline RL problems in a single-task setting can also be conceptualized as
epistemic POMDPs. This arises because static offline datasets typically cover only a subset of the
state-action space, introducing partial observability regarding true environment dynamics outside the
offline data distribution.

In this work, we similarly adopt the epistemic POMDP perspective for addressing single-task offline
RL. However, unlike prior approaches, our focus is on MB planning. Specifically, we aim to enhance
policies learned through offline RL by addressing the agent’s epistemic uncertainty, thereby enabling
more effective generalization during deployment.

3 PRELIMINARIES

We study RL in the framework of Markov decision processes (MDPs) that are characterized by a
tupleM = (S,A, T, r, d0, γ). The state and action spaces (S and A, respectively) are continuous,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

T (s′|s,a) is the transition probability distribution, r(s,a) is the reward function, d0 is the initial
state distribution, and γ ∈ [0, 1] is the discount factor. The model of the environment refers to the
transition and reward functions. The goal of RL is to find an optimal policy π∗ which maximizes the
expected discounted return, Es0∼d0,st∼T,at∼π∗ [

∑∞
t=0 γ

tr(st,at)].

Offline MB planning In offline RL, we have a dataset D = {(si,ai, ri, s′i)}Ni=1 collected by some
behavior policy β. MB methods learn a parameterized predictive model p̂ψ(s′, r|s,a), usually trained
via maximum likelihood estimation (MLE) to minimize L(ψ) = E(s,a,s′,r)∼D[− log p̂ψ(s

′, r|s,a)].
Imaginary data Dmodel sampled by p̂ψ can be used together with D for offline policy learning.

In this work, however, our focus is on using learned models for planning at test time. MB planning
methods commonly use MPC, where at each time step, a TrajOpt method re-plans and optimizes the
action sequence a∗t:t+H to maximize the expected H-step return under the learned model p̂ψ, while
incorporating a value function Vϕ to account for long-term rewards (Lowrey et al., 2018). I.e.,

a∗t:t+H = argmax
at:t+H

Ep̂ψ [RH(st,at:t+H)] , (1)

where RH(st,at:t+H) :=
∑H−1
h=0 γ

hr̂ψ(ŝt+h,at+h) + γHVϕ(ŝt+H) is the return of a candidate
action sequence at:t+H = (at, . . . ,at+H−1) under p̂ψ .

MPPI (Williams et al., 2015; Nagabandi et al., 2019) is a TrajOpt algorithm that samples N̄ plans,
{ant:t+H}N̄n=1, and weighs them by their MB returns using a softmax with inverse temperature κ, giv-

ing higher weights to higher-return trajectories. The optimized action is a∗t+h =
∑N̄
n=1 exp(κRnH)·ant+h∑N̄

n=1 exp(κRnH)
,

where RnH is the return of the nth trajectory. MBOP (Argenson & Dulac-Arnold, 2021; Zhan et al.,
2022) adapts MPPI for offline settings by sampling actions from a BC policy with smoothing.

The control-as-inference framework The control-as-inference framework reformulates RL as
a probabilistic inference problem (Levine, 2018). This is achieved by introducing auxiliary binary
optimality variablesOt, whereOt = 1 indicates that the state-action pair (st,at) is optimal. Formally,
we define the likelihood of optimality of a trajectory τt:t+H = (st,at, . . . , st+H) below.
Definition 1 (The optimality likelihood). For τt:t+H , let O = 1 if all time steps are optimal (i.e.,
Ot+h = 1 ∀h). The optimality likelihood of τ is given by:

p(O = 1|τ) ∝
∏

h

p(Ot+h = 1|st+h,at+h). (2)

To relate optimality to rewards, we can assume p(Ot+h|st+h,at+h) ∝ exp(κ · rt+h), where κ > 0
is an inverse temperature parameter, leading to p(O|τ) ∝ exp(κ ·∑h rh).

1 With this, the expected
return maximization is recast as inferring the posterior over trajectories under the given probabilistic
graphical model (PGM) (see Figure 2, left) given that all time steps are optimal:

p(τ |O) ∝ p(τ,O) = p(st)

H∏

h=1

p(Ot+h|st+h,at+h)p(st+h+1|st+h,at+h). (3)

Here, the prior over actions is often assumed to be implicitly captured by the reward function or treated
as a uniform improper prior (Levine, 2018; Piché et al., 2019). However, as we will demonstrate in
Section 4.1, we explicitly model the prior over actions to formalize an offline MB planning framework,
enabling the enhancement of an offline-learned policy through MB planning.

Epistemic POMDP, Bayes-adaptive MDP, and Offline RL A partially observable MDP (POMDP)
extends MDPs to scenarios with incomplete state information. POMDPs can be reformulated as
belief-state MDPs, where a belief —a probability distribution over states—represents the uncertainty
over states given the agent’s prior observations (Kaelbling et al., 1998).

Unlike an ordinary POMDP, epistemic POMDPs address generalization to unseen test conditions in
RL (Ghosh et al., 2021). In this scenario, the agent experiences partial observability entirely due to its

1We use an exponential function for the optimality likelihood but note that other monotonic functions are
also possible (Okada & Taniguchi, 2020). Also for brevity, we denote Ot = 1 as Ot and τt:t+H as τ .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

epistemic uncertainty about the identity of the true environmentM at test time. Specifically, at test
time, the agent’s goal is to maximize the expected return EM∼p(M|D)[

∑
t γ

trt] under the posterior
p(M|D) obtained after observing the train data D. Thus, an epistemic POMDP is an instance of a
Bayes-adaptive MDP (BAMDP) (Duff, 2002; Kaelbling et al., 1998). Unlike BAMDP, which tackles
learning to act optimally under the uncertainty over true MDPs, epistemic POMDP focuses on the
agent’s test time evaluation performance rather than online learning. For a thorough definition of
BAMDPs, please check Appendix A.1.

In this work, we view offline RL as epistemic POMDP, following Ghosh et al. (2022), drawing
connections to Bayesian approaches. That is, limited coverage of the state-action space in the
offline dataset induces epistemic uncertainty about dynamics beyond the data distribution. Failure
to manage this uncertainty can result in catastrophic outcomes, particularly when an offline-trained
agent encounters unseen states or slightly altered dynamics during deployment, leading to arbitrarily
poor performance.

To address these challenges, we can leverage the BAMDP reformulation of epistemic POMDPs.
This reformulation enables reasoning over the agent’s uncertainty through a prior belief b0 = p(M),
updated to a posterior bt = p(M|τ:t) as new experiences τ:t are gathered during deployment.
However, computing the exact posterior belief is generally intractable. Therefore, in Section 4, we
tackle this challenge by approximating the belief distribution through variational inference techniques
adapted from meta-RL approaches (Zintgraf et al., 2020; Dorfman et al., 2021).

4 REFPLAN: A PROBABILISTIC FRAMEWORK FOR OFFLINE PLANNING

In this section, we now seek to address the following question:

How can a learned model be utilized at test time to enhance the performance of
an offline-trained agent and enable it to account for its epistemic uncertainty?

To tackle this, we introduce RefPlan: a novel probabilistic framework for MB planning that leverages
learned models and allows the agent to reason with its uncertainty during deployment.

In Section 4.1, we derive a sampling-based offline MB planning algorithm rooted in a probabilistic
inference perspective, demonstrating how this approach can enhance the capabilities of any offline-
trained policy. Next, we delve into the epistemic POMDP formulation of the offline RL problem
in Section 4.2, outlining how the agent’s epistemic uncertainty can be effectively captured and
represented. We introduce variational learning techniques for estimating the agent’s uncertainty over
the environment dynamics. Finally, in Section 4.3, we unify these concepts, presenting how RefPlan
integrates epistemic uncertainty into the MB planning process, enabling the agent to plan under the
learned models and adapt in real-time while accounting for its uncertainty.

4.1 OFFLINE MODEL-BASED PLANNING AS PROBABILISTIC INFERENCE

We recast offline MB planning within the control-as-inference framework, allowing us to treat
planning as a posterior inference problem. This approach enables the agent to optimize its actions
by reasoning over the learned dynamics model and prior knowledge obtained from offline training.
Central to this formulation is the use of a prior policy, which guides the agent’s plans based on
knowledge learned during offline training.

We start by formalizing the concept of a prior policy, which lay the basis for the Bayesian formulation
of the offline MB planning process, together with the optimality likelihood defined in Definition 1.
Definition 2 (Prior policy). A prior policy πp : S → P(A) is a policy learned from an offline RL
algorithm L using the dataset D.

The prior policy, parameterized by θ, is provided by an offline learning algorithm L, such as CQL
(Kumar et al., 2020) or BC, and must be considered by the offline MB planner when optimizing the
planning objective in (1).

In the offline setting, we aim to enhance the prior policy πp via MB planning at test time by inferring
the posterior over at:t+H , conditioned on the optimality observations Ot+h predicted by the learned
model p̂ψ . At time t, we seek to compute p(at:t+H |O), as shown in Figure 2 (middle).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

st

at

Ot

st+1

at+1

Ot+1

st+2

at+2

Ot+2

st

at

Ot

θ

st+1

at+1

Ot+1

st+2

at+2

Ot+2

st

at

Ot

θ

st+1

at+1

Ot+1

st+2

at+2

Ot+2

mtτ:t

Figure 2: PGMs for the control-as-inference framework, offline MB planning, and RefPlan. (Left)
States evolve within the learned model, with actions and states influencing optimality. Optimality
variables act like observations in a hidden Markov model, framing planning as inferring the posterior
over actions given optimality. (Middle) In offline MB planning, actions follow the prior policy πp:
at ∼ πp(·|st; θ). (Right) RefPlan uses past experiences τ:t to infer mt, the agent’s belief about the
environment, and computes the expected optimal action sequence by marginalizing over mt.

The key distinction in this setup from the original control-as-inference framework is the inclusion of
the prior policy, which serves as a source for action sampling during planning. Given the prior policy
πp and the learned model p̂ψ , we can define the prior distribution over the trajectory τ as follows:

p(τ) =

H−1∏

h=0

πp(at+h|st+h)p̂ψ(st+h+1|st+h,at+h). (4)

Sampling trajectories from this prior, p(τ), is straightforward through forward sampling, where
actions are drawn from πp and state transitions are generated using p̂ψ .

Computing the exact posterior p(τ |O) is intractable due to the difficulty of calculating the marginal
p(O). However, importance sampling offers a practical method to estimate the posterior expectation
over at:t+H . To demonstrate, we first expand the posterior using Bayes’ rule:

p(τ |O) ∝ p(O|τ)p(τ) ∝ exp
(
κ

H−1∑

h=0

rt+h

)[H−1∏

h=0

p̂ψ(st+h+1|st+h,at+h)πp(at+h|st+h)
]
. (5)

Then, we can estimate the expected value of an arbitrary function f(at:t+H) under p(τ |O). That is,

Ep(τ |O)[f(at:t+H)] =

∫

τ

f(at:t+H) p(τ |O) dτ =

∫

τ

f(at:t+H)
p(O|τ) p(τ)

p(O) dτ

=

∫

τ

f(at:t+H)
p(O|τ)
p(O) p(τ) dτ =

∫

τ

f(at:t+H)
α · exp

(
κ
∑
h rt+h

)

p(O) p(τ) dτ

=
Ep(τ)

[
f(at:t+H) exp

(
κ
∑
h rt+h

)]

Ep(τ)
[
exp

(
κ
∑
h rt+h

)] . (6)

In the last step, we used p(O) =
∫
τ
p(O|τ)p(τ)dτ = α Ep(τ)

[
exp

(
κ
∑
h rt+h

)]
and the propor-

tionality coefficient α > 0 cancels out.

Thus, the posterior expectation over at:t+H can be obtained with f(at:t+H) = at:t+H as below.

Ep(τ |O)[at:t+H] =
Ep(τ)

[
at:t+H exp

(
κ
∑
h rt+h

)]

Ep(τ)
[
exp

(
κ
∑
h rt+h

)] (7)

≈
N̄∑

n=1

(
exp

(
κ
∑
h r

n
t+h

)
∑N̄
i=1 exp

(
κ
∑
h r

i
t+h

)
)
ant:t+H . (8)

That is, we estimate the posterior mean by sampling N̄ trajectories from p(τ) with πp and p̂ψ, then
computing the weighted sum of the actions. Each weight wn :=

exp(κ
∑
h rt+h)∑N̄

i=1 exp(κ
∑
h r

i
t+h)

is proportional

to the exponentiated MB return of the nth trajectory, assigning higher weights to plans with better
returns. This helps the agent select actions likely to improve on those from the prior policy.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

We note that (8) can also be derived from an optimization perspective. Specifically, LOOP (Sikchi
et al., 2021) constrains the distribution over plans by minimizing the KL divergence from the prior
policy. In LOOP, the variance of values generated by the model ensemble is penalized to mitigate
uncertainty; however, the agent’s epistemic uncertainty is not explicitly modeled and fully addressed.
By contrast, by viewing offline RL as an epistemic POMDP and formulating it as a probabilistic
inference problem, we can directly incorporate the agent’s epistemic uncertainty into MB planning
by approximately learning the belief distribution, which we delve into in the next part.

4.2 LEARNING EPISTEMIC UNCERTAINTY VIA VARIATIONAL INFERENCE

Although offline RL can be framed as a BAMDP, obtaining an exact posterior belief update is
impractical. Inspired by Zintgraf et al. (2020) and Dorfman et al. (2021), we introduce a latent
variable m to approximate the underlying MDP. We assume that knowing the posterior distribution
p(m|τ:t) is sufficient for planning under epistemic uncertainty. As a result, transitions and rewards
are assumed to depend on m, i.e., T (st+1|st,at,m) and r(st,at,m). When p(m|τ:t) is accurate and
τ:t is in-distribution, T and r will closely match the transitions in D. For OOD τ:t, the posterior over
m captures epistemic uncertainty, allowing T and r to model diverse possible scenarios.

Given a trajectory τ:t, consider the task of maximizing its likelihood, conditioned on the actions.
Conditioning on the actions is essential because they are generated by a policy—β during training
and πp at evaluation—and are not modeled by the environment. Although directly optimizing the
likelihood p(s0, r0, s1, r1, . . . , st+1|a0, . . . ,at) is intractable, we can maximize the ELBO as in
VariBAD by introducing an encoder qφ and a decoder p̂ψ:

log p(s0, r0, . . . , st+1|a0, . . . ,at) = log

∫

mt

p(s0, r0, . . . , st+1,mt | a0, . . . ,at) dmt (9)

= logEmt∼qφ(·|τ:t)
[
p(s0, r0, . . . , st+1,mt | a0, . . . ,at)

qφ(mt|τ:t)

]

≥ Emt∼qφ(·|τ:t)[log p̂ψ(s0, . . . , st+1|mt,a0, . . . ,at)]−KL(qφ(mt|τ:t)||p(mt)) = ELBOt(φ,ψ).

The encoder qφ is parameterized as an RNN followed by a fully connected layer that outputs
Gaussian parameters µ(τ:t) and log σ2(τ:t). Thus, mt ∼ qφ(·|τ:t) = N

(
µ(τ:t), σ

2(τ:t)
)
. The

KL term regularizes the posterior with the prior p(mt), which is a standard normal at t = 0 and
the previous posterior qφ(·|τ:t−1) for subsequent time steps. The decoder p̂ψ learns the transition
dynamics and reward function of the true MDP. This becomes clear when we observe that the first
term in ELBOt corresponds to the reconstruction loss, which can be decomposed as follows:

log p̂ψ(s0, r0, . . . , st+1|mt,a0, . . . ,at) = log p(s0|mt) (10)

+

t∑

h=0

[
log p̂ψ(sh+1|sh,ah,mt) + log p̂ψ(rh+1|sh,ah,mt)

]
.

Here, p̂ψ learns to predict future states and rewards conditioned on the latent variable mt. The
encoder captures the agent’s epistemic uncertainty, while the decoder provides predictions about the
environment under different latent variables mt. To sum up, we train a variational autoencoder (VAE)
via maxϕ,ψ ED

[∑T
t=0 ELBOt(ϕ, ψ)

]
using trajectories sampled from the offline dataset D.

Unlike VariBAD, where the decoder is only used to train the encoder, we also use p̂ψ for MB planning.
To improve p̂ψ’s accuracy, we employ a two-stage training procedure: first, the VAE is trained with
the ELBO objective; then, the encoder is frozen and p̂ψ is further finetuned using the MLE objective:

L(ψ) = Eτ∼D

[
H−1∑

h=0

Emh∼qφ(·|τ:h)[− log p̂ψ(sh+1, rh|sh,ah,mh)]

]
. (11)

Trajectory segments of length H are sampled from the offline dataset. At each step h ∈ [0, H), the
encoder qφ(·|τ:h) samples mh, enabling computation of the inner expectation in (11) and refining p̂ψ
for improved predictions.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 INTEGRATING EPISTEMIC UNCERTAINTY INTO MODEL-BASED PLANNING

Building on the probabilistic inference formulation of offline MB planning and the representation of
epistemic uncertainty via variational inference in the BAMDP framework, we introduce RefPlan. This
offline MB planning algorithm integrates epistemic uncertainty into the planning process, improving
decision-making and enhancing the performance of any offline-learned prior policy during test time.

Assume we have a posterior sample mt ∼ qφ(m|τ:t), representing the agent’s belief about the
environment at time t. Our goal is to use this posterior to enhance test-time planning. In Section
4.1, we have computed p(τ |O) using the learned models p̂ψ and the prior policy πp. By introducing
the latent variable m to capture epistemic uncertainty, we extend the transition and reward functions
to depend on m, giving the dynamics p̂ψ(st+1|st,at,mt) and rewards r(st,at,mt), resulting in the
following conditional trajectory distribution:

p(τ |O,mt) ∝ p(O|τ,mt)p(τ |mt)

∝ exp
(
κ

H−1∑

h=0

r(st+h,at+h,mt)
)[H−1∏

h=0

p̂ψ(st+h+1|st+h,at+h,mt)πp(at+h|st+h)
]
.

Thus, we can apply the sampling-based posterior estimation provided in (8) to approximate the
conditional expectation Ep(τ |O,mt)[at:t+H].

A practical approach to handle epistemic uncertainty is to marginalize over the latent variable mt,
effectively averaging over possible scenarios. This results in the marginal posterior distribution
p(τ |O). Although directly computing this marginal posterior is challenging, we can estimate the
expectation of optimal plans using the law of total expectation:

Ep(τ |O)[at:t+H] = Emt∼qφ(·|τ:t)
[
Ep(τ |O,mt)[at:t+H | mt]

]
. (12)

The inner expectation follows (8), with states and rewards sampled from p̂ψ , conditional on mt. The
outer expectation over mt is computed using Monte Carlo sampling with n̄ samples, giving us:

Ep(τ |O)[at:t+H] ≈ 1

n̄

n̄∑

j=1

[
N̄∑

n=1

(
exp

(
κ
∑
h r

n,j
t+h

)
∑N̄
i=1 exp

(
κ
∑
h r

i,j
t+h

)
)
ant:t+H

]
, (13)

where rn,jt+h = r(sn,jt+h,a
n
t+h,m

j
t) and sn,jt+h+1 ∼ p̂ψ(·|sn,jt+h,ant+h,m

j
t). Figure 2 (right) illustrates

how RefPlan leverages the agent’s past experiences τ:t to shape epistemic uncertainty through the
latent variable mt and enhances the prior policy πp through posterior inference. Algorithm 2 in the
appendix summarizes RefPlan.2 Additionally, following Sikchi et al. (2021), we apply an uncertainty
penalty based on the variance of the returns predicted by the learned model ensemble.

5 EXPERIMENTS

In this part, we answer the following research questions: (RQ1) How does RefPlan perform when
the agent is initialized in a way that induces high epistemic uncertainty due to OOD states? (RQ2)
Can RefPlan effectively improve policies learned from diverse offline policy learning algorithms?
(RQ3) How does RefPlan perform when trained on limited offline datasets that increase epistemic
uncertainty by restricting the datasets’ coverage of the state-action space? (RQ4) How robust is
RefPlan when faced with shifts in environment dynamics at test time?

We evaluate these RQs using the D4RL benchmark (Fu et al., 2020) and its variations, focusing on
locomotion tasks in HalfCheetah, Hopper, and Walker2d environments, each with five configurations:
random (R), medium (M), medium-replay (MR), medium-expert (ME), and full-replay (FR).

Baselines: RefPlan is designed to improve any offline learned policy through planning. We evaluate
prior policies using model-free methods (CQL, EDAC) and MB methods (MOPO, COMBO, MAPLE).
Among offline MB planning methods, we use LOOP, which is designed to enhance prior policies
and outperforms methods like MBOP. Therefore, for each prior policy, we compare its original
performance to its performance when augmented with LOOP or RefPlan for test-time planning.

2Direct planning with sampling methods like SIR (Skare et al., 2003) may be better for multi-modal problems.
However, our approach using (13) yields strong empirical results, so we leave direct sampling for future work.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

60

80

100

120 Hopper
CQL
+ LOOP
+ Ours

40

60

80

100

HalfCheetah

60

80

100

120 Walker2d

Figure 3: CQL’s performance when trained on ME and tested in OOD states from R. ‘+ LOOP’ and ‘+
Ours’ show improvements with LOOP and RefPlan, while dotted lines indicate original performance.

Table 1: Normalized scores of offline RL algorithms on D4RL MuJoCo Gym environments (3 seeds).
For each prior policy, we show its original performance and its performance augmented with LOOP or
RefPlan (Ours) for MB planning during testing. Bold indicates the best performance, while underline
denotes cases where confidence intervals significantly overlap between two methods.

CQL EDAC MOPO COMBO MAPLE

Orig LOOP Ours Orig LOOP Ours Orig LOOP Ours Orig LOOP Ours Orig LOOP Ours

H
op

pe
r

R 1.0 1.1 1.2 23.6 23.5 23.5 32.2 32.4 32.4 6.3 6.2 6.0 31.5 31.8 31.6
M 66.9 73.9 85.1 101.5 101.5 101.5 66.9 67.5 67.7 60.9 67.9 77.2 29.4 33.7 32.8
MR 94.6 97.5 98.1 100.4 101.0 101.1 90.3 93.6 94.5 101.1 101.4 101.8 61.0 77.7 82.6
ME 111.4 111.6 112.1 106.7 104.7 109.9 91.3 82.7 96.5 105.6 78.4 107.8 46.9 53.4 57.8
FR 104.2 106.2 107.6 106.6 107.0 107.2 73.2 55.6 77.2 89.9 54.9 84.1 79.1 77.0 91.7

H
al

fC
he

et
ah R 19.9 21.4 21.2 22.5 25.8 25.9 29.8 31.5 33.0 40.3 40.0 40.7 33.5 34.9 35.0

M 47.4 57.1 56.5 63.8 73.0 71.4 42.8 58.4 59.8 67.2 73.2 77.4 68.8 72.9 74.6
MR 47.0 52.1 54.1 61.8 66.9 66.5 70.6 71.8 73.8 73.0 71.2 75.0 71.5 74.7 76.3
ME 98.3 104.0 108.5 100.8 107.1 108.8 73.5 94.5 96.6 97.6 110.3 110.3 64.0 91.9 92.8
FR 77.5 81.8 86.7 81.7 87.5 88.5 81.7 88.2 90.8 71.8 82.6 86.3 66.8 87.8 90.2

W
al

ke
r2

d

R 0.1 0.1 0.3 17.5 13.4 21.7 13.3 12.4 13.1 4.1 3.0 4.3 21.8 21.8 21.9
M 77.1 84.4 86.2 77.6 91.7 93.2 82.0 79.1 85.9 71.2 81.1 87.4 88.3 89.7 91.6
MR 63.5 81.9 93.6 85.0 86.0 86.4 81.7 85.2 88.3 88.0 89.5 93.3 85.0 89.5 91.2
ME 108.9 111.4 111.8 98.5 97.4 116.0 51.9 49.0 68.1 108.3 111.1 112.7 111.8 112.9 114.0
FR 96.6 99.4 101.3 98.0 98.3 99.7 90.5 92.6 93.2 78.1 83.0 99.5 94.2 96.7 98.4

Metrics: For RQ1-RQ3, we compare normalized scores averaged over 3 seeds, with 100 for online
SAC and 0 for a random policy, scaled linearly in between. For RQ4, we report average returns.

5.1 REFPLAN HANDLES EPISTEMIC UNCERTAINTY FROM OOD STATES

To address RQ1, we assessed RefPlan’s robustness under high epistemic uncertainty caused by OOD
initialization. Prior policies were trained on the ME dataset and evaluated on the states from the R
dataset. We tested three prior policies: CQL (Figure 3), MAPLE (Figure 7), and COMBO (Figure 8).

Across all environments, RefPlan consistently mitigated performance degradation due to OOD
initialization, with particularly notable improvements in HalfCheetah and Walker2d. For instance,
when MAPLE was used as the prior policy in HalfCheetah, RefPlan outperformed the original policy
(dotted line in Figure 7). In Walker2d, RefPlan boosted performance by 16.4%, 31.4%, and 42.5% for
COMBO, MAPLE, and CQL, respectively. Although the gains were more modest in Hopper, RefPlan
still reduced performance drops. Overall, RefPlan showed strong resilience under high epistemic
uncertainty caused by OOD initialization.

5.2 REFPLAN ENHANCES ANY OFFLINE-LEARNED POLICIES

To address RQ2, we evaluated the normalized score metric across five offline policy learning algo-
rithms. Table 1 shows that RefPlan outperformed baselines in 10 (CQL), 7 (EDAC), 12 (MOPO), 9
(COMBO), and 12 (MAPLE) of 15 tasks, matching performance in the others. Both MB planning
methods, LOOP and RefPlan, improved performance, with RefPlan showing a more substantial
gain. On average, RefPlan enhanced prior policy performance by 11.6%, compared to LOOP’s
5.3%. Furthermore, Figure 6 in Appendix B shows that RefPlan consistently outperforms LOOP with
non-overlapping confidence intervals under the RLiable evaluation (Agarwal et al., 2022). These

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

50K 100K 250K 500K Full (1M)
Dataset Size

90

95

100

105

110 Hopper

CQL (Orig)
CQL + LOOP
CQL + Ours

50K 100K 250K 500K Full (1M)
Dataset Size

60

65

70

75

80

85

90 HalfCheetah

CQL (Orig)
CQL + LOOP
CQL + Ours

50K 100K 250K 500K Full (1M)
Dataset Size

70

75

80

85

90

95

100

105 Walker2d

CQL (Orig)
CQL + LOOP
CQL + Ours

Figure 4: Performance comparison of RefPlan and LOOP across different dataset sizes in Hopper,
HalfCheetah, and Walker2d environments using the FR dataset, which contains 1M samples. We use
CQL as the prior policy learning algorithm, and the results represent the average and standard error
calculated from three random seeds.

results demonstrate RefPlan’s superior ability to enhance various offline policy learning algorithms
by explicitly accounting for epistemic uncertainty during planning.

5.3 PERFORMANCE WITH LIMITED OFFLINE DATA WITH VARYING DATASET SIZES

With limited data, the agent faces increased epistemic uncertainty. A key question is whether
RefPlan can better handle these scenarios with constrained data (RQ3). To explore this, we randomly
subsample 50K, 100K, 250K, and 500K transition samples from the FR dataset for each environment.
We then train the prior policy using CQL and compare its performance with that achieved when
enhanced by either LOOP or RefPlan. As shown in Figure 4, RefPlan consistently demonstrates
greater resilience to limited data, outperforming the baselines across all three environments.

5.4 REFPLAN IS MORE ROBUST TO CHANGING DYNAMICS?

Figure 5: Average returns on
HalfCheetah with dynamics
changes.

Task Orig LOOP Ours

joint 5295 6088 6190
hill 327.1 949.7 1224
gentle 1087 2363 2435
steep 2123 3245 6238
field 1205 2774 3345

To address RQ4, we evaluated RefPlan in the HalfCheetah envi-
ronment under varying dynamics, including disabled joint, hill,
slopes (gentle and steep), and field, following the approach of
Clavera et al. (2019) (Appendix D). High epistemic uncertainty
arises when dynamics differ from those seen during prior policy
training. We trained the prior policy using the FR dataset, which
contains the most diverse trajectories, and used MAPLE for its
adaptive policy learning. Table 5 shows that while MAPLE strug-
gled with changed dynamics, MB planning methods improved
performance. RefPlan achieved the best results across all varia-
tions but still faced notable drops, especially in the hill and gentle
environments. Data augmentation for single-task offline RL could
enhance adaptability, a topic for future work.

6 CONCLUSION

In this paper, we introduced RefPlan (Reflect-then-Plan), a novel doubly Bayesian approach to offline
model-based planning that integrates epistemic uncertainty modeling with model-based planning
in a unified probabilistic framework. Our method enhances offline RL by explicitly accounting
for epistemic uncertainty, a common challenge in offline settings where data coverage is often
incomplete. Through extensive experiments on standard offline RL benchmarks, we demonstrated
that RefPlan consistently outperforms existing methods, particularly under challenging conditions
of OOD initialization, limited data availability, and changing environment dynamics, making it a
valuable tool for more reliable and adaptive offline RL. Future work could extend RefPlan to more
complex models and environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=S1ANxQW0b.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G. Bellemare.
Deep reinforcement learning at the edge of the statistical precipice, 2022. URL https://
arxiv.org/abs/2108.13264.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified q-ensemble. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=ZUvaSolQZh3.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
OMNB1G5xzd4.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Robert N. Boute, Joren Gijsbrechts, Willem van Jaarsveld, and Nathalie Vanvuchelen. Deep
reinforcement learning for inventory control: A roadmap. European Journal of Opera-
tional Research, 298(2):401–412, 2022. ISSN 0377-2217. doi: https://doi.org/10.1016/j.ejor.
2021.07.016. URL https://www.sciencedirect.com/science/article/pii/
S0377221721006111.

Xiong-Hui Chen, Yang Yu, Qingyang Li, Fan-Ming Luo, Zhiwei Tony Qin, Shang Wenjie, and Jieping
Ye. Offline model-based adaptable policy learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=lrdXc17jm6.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, volume 31, 2018. URL https://proceedings.neurips.
cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf.

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=HyztsoC5Y7.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning – identifiability
challenges and effective data collection strategies. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=IBdEfhLveS.

Michael O’Gordonz Duff. Optimal Learning: Computational Procedures for Bayes-Adaptive Markov
Decision Processes. PhD thesis, University of Massachusetts Amherst, Amherst, USA, 2002.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. CoRR, abs/2004.07219, 2020.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
Q32U7dzWXpc.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 2052–2062. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/fujimoto19a.html.

11

https://openreview.net/forum?id=S1ANxQW0b
https://arxiv.org/abs/2108.13264
https://arxiv.org/abs/2108.13264
https://openreview.net/forum?id=ZUvaSolQZh3
https://openreview.net/forum?id=OMNB1G5xzd4
https://openreview.net/forum?id=OMNB1G5xzd4
https://www.wandb.com/
https://www.wandb.com/
https://www.sciencedirect.com/science/article/pii/S0377221721006111
https://www.sciencedirect.com/science/article/pii/S0377221721006111
https://openreview.net/forum?id=lrdXc17jm6
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://openreview.net/forum?id=HyztsoC5Y7
https://openreview.net/forum?id=HyztsoC5Y7
https://openreview.net/forum?id=IBdEfhLveS
https://openreview.net/forum?id=Q32U7dzWXpc
https://openreview.net/forum?id=Q32U7dzWXpc
https://proceedings.mlr.press/v97/fujimoto19a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforcement
learning: A survey. Found. Trends Mach. Learn., 8(5–6):359–483, November 2015. ISSN
1935-8237.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine.
Why generalization in rl is difficult: Epistemic pomdps and implicit partial observability. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 25502–25515. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/d5ff135377d39f1de7372c95c74dd962-Paper.pdf.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline RL policies should be trained
to be adaptive. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 7513–7530. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/v162/ghosh22a.html.

Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement learn-
ing using sample-based search. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/
2012/file/35051070e572e47d2c26c241ab88307f-Paper.pdf.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems, 2019.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 9902–9915. PMLR,
17–23 Jul 2022.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 5084–5096. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/jin21e.html.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1–2):99–134, may 1998. ISSN 0004-
3702.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Scalable
deep reinforcement learning for vision-based robotic manipulation. In Proceedings of The
2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning Research,
pp. 651–673. PMLR, 29–31 Oct 2018. URL https://proceedings.mlr.press/v87/
kalashnikov18a.html.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel : Model-
based offline reinforcement learning. In Advances in Neural Information Processing Systems,
2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
q-learning. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s9ZJWF8.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, volume 32, 2019. URL https://proceedings.neurips.cc/paper/2019/
file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/d5ff135377d39f1de7372c95c74dd962-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d5ff135377d39f1de7372c95c74dd962-Paper.pdf
https://proceedings.mlr.press/v162/ghosh22a.html
https://proceedings.neurips.cc/paper_files/paper/2012/file/35051070e572e47d2c26c241ab88307f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/35051070e572e47d2c26c241ab88307f-Paper.pdf
https://proceedings.mlr.press/v139/jin21e.html
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://proceedings.neurips.cc/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review,
2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. CoRR, abs/2005.01643, 2020.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control, 2018. URL
https://arxiv.org/abs/1811.01848.

Cong Lu, Philip Ball, Jack Parker-Holder, Michael Osborne, and S Roberts. Revisiting design
choices in offline model based reinforcement learning, 2021. URL https://openreview.
net/forum?id=UfX6vkvhtl.

Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and Vikash Kumar. Deep dynamics models for
learning dexterous manipulation, 2019. URL https://arxiv.org/abs/1909.11652.

Masashi Okada and Tadahiro Taniguchi. Variational inference mpc for bayesian model-based
reinforcement learning. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.),
Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of Machine
Learning Research, pp. 258–272. PMLR, 30 Oct–01 Nov 2020. URL https://proceedings.
mlr.press/v100/okada20a.html.

Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Yoshua Bengio, and Chris Pal. Probabilistic
planning with sequential monte carlo methods. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/forum?id=ByetGn0cYX.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. arXiv preprint arXiv:2204.12581, 2022.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In 5th
Annual Conference on Robot Learning, 2021. URL https://openreview.net/forum?
id=1GNV9SW95eJ.

Øivind Skare, Erik Bølviken, and Lars Holden. Improved sampling-importance resampling and
reduced bias importance sampling. Scandinavian Journal of Statistics, 30(4):719–737, 2003. doi:
https://doi.org/10.1111/1467-9469.00360. URL https://onlinelibrary.wiley.com/
doi/abs/10.1111/1467-9469.00360.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling, 2015.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
CoRR, abs/1911.11361, 2019. URL http://arxiv.org/abs/1911.11361.

Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and Trevor
Darrell. BDD100K: A diverse driving video database with scalable annotation tooling. CoRR,
abs/1805.04687, 2018. URL http://arxiv.org/abs/1805.04687.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy optimization. In Advances in Neural Information
Processing Systems, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: conservative offline model-based policy optimization. CoRR, abs/2102.08363, 2021.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory pruning.
In Lud De Raedt (ed.), Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pp. 3716–3722. International Joint Conferences on Artificial Intelligence
Organization, 7 2022. doi: 10.24963/ijcai.2022/516. URL https://doi.org/10.24963/
ijcai.2022/516. Main Track.

13

https://arxiv.org/abs/1811.01848
https://openreview.net/forum?id=UfX6vkvhtl
https://openreview.net/forum?id=UfX6vkvhtl
https://arxiv.org/abs/1909.11652
https://proceedings.mlr.press/v100/okada20a.html
https://proceedings.mlr.press/v100/okada20a.html
https://openreview.net/forum?id=ByetGn0cYX
https://openreview.net/forum?id=1GNV9SW95eJ
https://openreview.net/forum?id=1GNV9SW95eJ
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9469.00360
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9469.00360
http://arxiv.org/abs/1911.11361
http://arxiv.org/abs/1805.04687
https://doi.org/10.24963/ijcai.2022/516
https://doi.org/10.24963/ijcai.2022/516

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning,
2020. URL https://arxiv.org/abs/1910.08348.

14

https://arxiv.org/abs/1910.08348

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A ADDITIONAL BACKGROUND

A.1 BAYES-ADAPTIVE MARKOV DECISION PROCESSES

Bayes-Adaptive Markov Decision Processes (BAMDPs) (Duff, 2002) extend the standard MDP
framework by explicitly incorporating uncertainty over the transition and reward functions. In a
BAMDP, instead of assuming that the transition dynamics T (s′|s,a) and reward function r(s,a) are
known and fixed, we assume that they are drawn from an unknown distribution. The agent maintains
a posterior belief over these functions and updates it as new data are collected through interaction
with the environment.

To illustrate, consider a simple case where we have finite and discrete state and action spaces with
|S| = ns and |A| = na; hence, a state can be represented with an integer, i.e., s = i for i = 1, . . . , ns,
and similarly for the actions. While the reward function r(s, a) is assumed to be known, we are
uncertain about the transition probabilities T (s′|s, a). We can model this uncertainty by placing a
prior distribution over the transition probabilities, typically using a Dirichlet prior, which is conjugate
to the multinomial likelihood of observing transitions between states.

For each state-action pair (s, a) ∈ S ×A, the transition probabilities T (s′|s, a) are parameterized by
a multinomial distribution:

T (s′|s, a) ∼ Multinomial(θs,a,s′), (14)

where θs,a = (θs,a,1, . . . ,θs,a,ns) represents the probabilities of transitioning from state s to any
state s′ ∈ S under action a. These parameters follow a Dirichlet distribution:

θs,a ∼ Dirichlet(αs,a), (15)

where αs,a = (αs,a,1, . . . , αs,a,ns) > 0 are the Dirichlet hyperparameters.

Initially, the agent holds a prior belief about the transition probabilities, represented by the Dirichlet
hyperparameters αs,a for all state-action pairs. As the agent interacts with the environment and
observes transitions of the form (s, a, s′), it updates its posterior belief by simply updating the
corresponding Dirichlet hyperparameters. Specifically, when the agent observes a transition from
state s to state s′ under action a, the corresponding Dirichlet hyperparameter is updated as:

αs,a,s′ ← αs,a,s′ + 1, (16)

while all other Dirichlet hyperparameters remain unchanged. This process of updating the Dirichlet
hyperparameters fully captures the agent’s experiences; hence, these hyperparameters act as sufficient
statistics for the agent’s belief about the environment.

By transforming the BAMDP into a belief-state MDP, where the belief state bt = p(θ|τ:t) is a distri-
bution over transition probabilities conditioned on the observed trajectory τ:t = (s0, a0, s1, . . . , st),
the agent can solve the problem using standard MDP solution methods. The augmented state space,
or hyper-state space, includes both the physical state s ∈ S and the belief state b ∈ B. In this simple
finite state-action example, the belief state corresponds to the Dirichlet hyperparameters α.

The transition dynamics of the resulting belief-state MDP are fully known and can be written as:

T (s̄′|s̄, a) = T (s′, α′|s, α, a) = T (s′|s, a, α)p(α′|s, α, a) (17)

=
αs,a,s′∑

s′′∈S αs,a,s′′
I
(
α′
s,a,s′ = αs,a,s′ + 1

)
, (18)

where I(·) is the indicator function. This transformation turns the BAMDP into a fully observable
MDP in the hyper-state space, which allows the use of standard, e.g., DP methods to compute an
optimal policy.

However, the computational complexity of solving the BAMDP grows quickly with the number of
states and actions. If the states are fully connected (i.e., p(s′|s, a) > 0, ∀s, a, s′), the number of
reachable belief states increases exponentially over time, making exact solutions intractable for even
moderately sized problems.

For a comprehensive overview of solution methods for BAMDPs, we refer readers to the survey by
Ghavamzadeh et al. (2015). In this work, we have utilized variational inference techniques from
Zintgraf et al. (2020) and Dorfman et al. (2021) to approximate the agent’s posterior belief over the
environment dynamics, p(b|τ:t), based on past experiences.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0.875 0.900 0.925
LOOP

RefPlan
Median

0.88 0.90 0.92 0.94

IQM

0.850 0.875 0.900

Mean

0.12 0.14 0.16 0.18

Optimality Gap

Human Normalized Score

Figure 6: RLiable (Agarwal et al., 2022) comparison of RefPlan and LOOP. Across all four metrics,
RefPlan demonstrates superior performance with non-overlapping confidence intervals, highlighting
statistically significant improvements over LOOP.

40

60

80

100 Hopper
MAPLE
+ LOOP
+ Ours

40

60

80

100

HalfCheetah

60

80

100

120 Walker2d

Figure 7: MAPLE’s performance when trained on ME and tested in OOD states from R. ‘+ LOOP’
and ‘+ Ours’ show improvements with LOOP and RefPlan, while dotted lines indicate original
performance.

60

80

100

120 Hopper
COMBO
+ LOOP
+ Ours

40

60

80

100

HalfCheetah

60

80

100

120 Walker2d

Figure 8: COMBO’s performance when trained on ME and tested in OOD states from R. ‘+ LOOP’
and ‘+ Ours’ show improvements with LOOP and RefPlan, while dotted lines indicate original
performance.

B ADDITIONAL RESULTS

B.1 PERFORMANCE COMPARISON OF REFPLAN VS. LOOP

In order to make a more statistically rigorous comparison between RefPlan and LOOP, we leverage
RLiable (Agarwal et al., 2022), a framework designed for robust evaluation of reinforcement learning
algorithms. RLiable focuses on statistically sound aggregate metrics, such as the median, interquar-
tile mean (IQM), mean, and optimality gap, which provide a comprehensive view of algorithm
performance across tasks. By using bootstrapping with stratified sampling, RLiable also estimates
confidence intervals, ensuring that comparisons are not skewed by outliers or noise.

We applied RLiable to compare RefPlan and LOOP across the tested environments and prior policy
setups (Figure 6). Across all metrics, RefPlan consistently outperformed LOOP, with non-overlapping
confidence intervals, indicating statistically significant improvements.

B.2 REFPLAN HANDLES EPISTEMIC UNCERTAINTY FROM OOD STATES

To address RQ1, we assessed the robustness of RefPlan under conditions of high epistemic uncertainty
arising from OOD initialization. Specifically, we began by training a prior policy on the ME dataset
and then tested it in states sampled from the R dataset, which are OOD. The evaluation included

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of RefPlan against baseline methods on Hopper, HalfCheetah,
and Walker2d tasks using MOPO and COMBO for offline policy optimization. The table evaluates
original policies (Orig), policies trained with Non-Markovian (NM) dynamics models (NM (Train)),
NM-trained policies combined with RefPlan for planning (NM (Train) + RefPlan), and RefPlan using
original policies as priors. Results demonstrate RefPlan’s ability to improve test-time performance
across different dynamics models and environments.

Orig NM
(Train)

NM (Train)
+RefPlan RefPlan

H
op

pe
r M 66.9 - - 67.7

MR 90.3 93.2 98.18 94.5
ME 91.3 - - 96.5

H
al

fC
he

et
ah

M 42.8 40.6 66.45 59.8
MR 70.6 53.2 72.46 73.8
ME 73.5 71.6 100.34 96.6

W
al

ke
r2

d M 82.0 60.6 72.73 85.9
MR 81.7 53.3 79.75 88.3
ME 51.9 42.4 64.59 68.1

Orig NM
(Train)

NM (Train)
+RefPlan RefPlan

H
op

pe
r M 60.9 52.2 62.30 77.2

MR 101.1 44.9 61.90 101.8
ME 105.6 27.3 39.23 107.8

H
al

fC
he

et
ah

M 67.2 30.3 41.61 77.4
MR 73.0 47.6 59.54 75.0
ME 97.6 93.5 109.25 110.3

W
al

ke
r2

d M 71.2 79.1 89.43 87.4
MR 88.0 80.4 91.01 93.3
ME 108.3 36.7 38.47 112.7

three prior policies: CQL (Figure 3), MAPLE (Figure 7), and COMBO (Figure 8). Across all
environments and prior policies, RefPlan consistently mitigated performance drops, with the benefits
being particularly notable in the HalfCheetah and Walker2d environments. For instance, when using
MAPLE as the prior policy in HalfCheetah, the agent enhanced with MB planning significantly
outperformed the original policy (represented by the dotted line in Figure 7). In the Walker2d
environment, RefPlan boosted the performance of the prior policies by 16.4%, 31.4%, and 42.5%
for COMBO, MAPLE, and CQL, respectively. Although the improvements in Hopper were more
modest, MB planning methods still reduced performance deterioration. Overall, agents trained on a
narrow data distribution experienced performance drops when exposed to unknown states, but MB
planning approaches, particularly RefPlan, demonstrated significant resilience under high epistemic
uncertainty.

B.3 PERFORMANCE COMPARISON: NON-MARKOVIAN DYNAMICS MODEL FOR TRAINING VS.
PLANNING

The experiments presented in Table 2 aims to evaluate the effectiveness of RefPlan in leveraging
the VAE dynamics—consisting of the variational encoder qϕ and the probabilistic ensemble decoder
p̂ψ (Figure 10)—for planning at test time. Specifically, these experiments compare the following
approaches:

• “Orig”: the original prior policy trained using MOPO or COMBO.
• “NM (Train)”: the policy trained using a non-Markovian (NM) VAE dynamics model during

offline policy optimization via MOPO or COMBO.
• “NM (Train) + RefPlan ”: the RefPlan agent that uses the policies trained using NM dynamics

models as priors.
• “RefPlan ”: the RefPlan agent that uses the original prior policies as priors.

The results demonstrate several key findings. First, RefPlan consistently outperforms NM (Train)
across all environments and datasets, confirming that the VAE dynamics models are significantly
more effective when used for planning at test time rather than during offline policy training. This
highlights RefPlan’s ability to explicitly handle epistemic uncertainty, leveraging the agent’s real-time
history to infer the underlying MDP dynamics.

Second, in MOPO results, NM (Train) diverged or underperformed in several cases. This suggests
that the heuristically estimated model uncertainty used in MOPO is not well-suited for integrating
with the VAE dynamics models during offline training. Even with large penalty parameters, the value
function diverged in the Hopper tasks, indicating a fundamental limitation in using NM models with
MOPO for policy optimization. By contrast, COMBO results did not exhibit these issues, suggesting
that COMBO’s framework is better equipped to incorporate such dynamics models during training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

20 21 22 23 24

Number of Latent Samples n

3.90

3.95

4.00

4.05

Sa
m

pl
e

Va
ria

nc
e

×10 4

96.9

97.2

97.5

97.8

98.1

No
rm

al
ize

d
Sc

or
e

(a) Hopper (MR)

20 21 22 23 24

Number of Latent Samples n

0.96

1.02

1.08

1.14

1.20

Sa
m

pl
e

Va
ria

nc
e

×10 2

92

96

100

104

108

No
rm

al
ize

d
Sc

or
e

(b) Hopper (FR)

20 21 22 23 24

Number of Latent Samples n
1.50

1.65

1.80

1.95

2.10

Sa
m

pl
e

Va
ria

nc
e

×10 2

53.8

53.9

54.0

54.1

No
rm

al
ize

d
Sc

or
e

(c) HalfCheetah (MR)

20 21 22 23 24

Number of Latent Samples n
1.12

1.20

1.28

1.36

1.44

Sa
m

pl
e

Va
ria

nc
e

×10 2

85.75

86.00

86.25

86.50

No
rm

al
ize

d
Sc

or
e

(d) HalfCheetah (FR)

20 21 22 23 24

Number of Latent Samples n

1.2

1.4

1.6

1.8

Sa
m

pl
e

Va
ria

nc
e

×10 2

85.0

87.5

90.0

92.5

No
rm

al
ize

d
Sc

or
e

(e) Walker2d (MR)

20 21 22 23 24

Number of Latent Samples n

1.2

1.5

1.8

2.1
Sa

m
pl

e
Va

ria
nc

e
×10 2

100.00

100.15

100.30

100.45

100.60

No
rm

al
ize

d
Sc

or
e

(f) Walker2d (FR)

Figure 9: The sample variance and the performance vs. the number of latent samples of RefPlan,
evaluated from three environments with the MR and FR datasets using CQL as the prior policy.

Finally, applying RefPlan to policies trained with NM dynamics models (NM (Train) + RefPlan)
further boosted test-time performance, often by substantial margins. This demonstrates that even
when NM dynamics models introduce suboptimality during offline training, RefPlan can recover and
enhance the policy’s performance through effective planning at test time. Across all environment-
dataset combinations, RefPlan provides robust improvements over both the original and NM (Train)-
optimized policies, further validating its capability to address epistemic uncertainty and improve the
generalization of offline-learned policies.

B.4 EVALUATING THE IMPACT OF THE NUMBER OF LATENT SAMPLES ON VARIANCES AND
PERFORMANCE

This experiment evaluates how the sample variance of the marginal action posterior mean from (13)
changes with the number of latent samples (n̄) used in the outer expectation. At each time step, we
compute the posterior mean K times, calculate its variance averaged across action dimensions, and
report the running average over a 1,000-step episode. Results are averaged over three random seeds,
with CQL as the prior policy, across three environments (Hopper, HalfCheetah, Walker2d) and two
dataset configurations (MR, FR).

The figures show that as n̄ increases, the average sample variance decreases, with n̄ = 1 consistently
yielding the highest variance. Performance, measured as normalized scores, generally improves with
increasing n̄, suggesting a positive correlation between reduced variance and higher performance.
However, while reduced variance likely contributes to this improvement, further investigation is
needed to confirm causality, as other factors may also play a role.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 RefPlan: Offline MB Planning as Probabilistic Inference

1: Input: τ:t = (s0,a0, r0, . . . , st), p̂ψ , qϕ, πp, Q̂, H , N̄ , n̄, κ
2: µt, σt ← qϕ(·|τ:t) ▷ Get the Gaussian parameters
3: {mj

t}n̄j=1 ∼ N (µt, σ
2
t) ▷ Sample n̄ latent vectors from the approximate posterior

4: for n = 1, . . . , N̄ do
5: for h = 0, . . . ,H − 1 do
6: ant+h ∼ πp(·|st+h) ▷ Sample prior action sequence
7: snt+h+1 ∼ p̂ψ(·|snt+h,ant+h, µt) ▷ Sample the next state from model using µt
8: end for
9: for j = 1, . . . , n̄ do

10: sn,jt ← st
11: for h = 0, . . . ,H − 1 do
12: sn,jt+h+1 ∼ p̂ψ(·|s

n,j
t+h,a

n
t+h,m

j
t) ▷ Sample next state from model using mj

t

13: rn,jt+h ← r(sn,jt+h,a
n
t+h,m

j
t) ▷ Compute the reward using mj

t
14: end for
15: end for
16: end for
17: Compute Ep(τ |O)[at:t+H] with (13)
18: return Ep(τ |O)[at:t+H] ▷ Return the plan to be used in line 7 of Algorithm 1

C ALGORITHM DETAILS

C.1 ALGORITHM SUMMARY

RefPlan is designed to enhance any offline RL policy by incorporating MB planning that accounts for
epistemic uncertainty. The algorithm operates in two primary stages: pretraining (Appendix C.3) and
test-time planning.

Pretraining stage The first step is to train a prior policy πp using any offline RL algorithm. In
parallel, a VAE is trained using the ELBO objective in (9), where the encoder captures the agent’s
epistemic uncertainty and the decoder learns the environment dynamics. See Appendix C.3 for more
details.

Algorithm 1 Offline MB Planning

1: Input: p̂ψ , Vϕ, D, πθ, L
2: Train p̂ψ with D via MLE
3: Train Vϕ and πθ with L and D
4: t← 1
5: repeat
6: Observe st
7: a∗t:t+H ←TrajOpt(st, p̂ψ, πθ, Vϕ)
8: Take a∗t , observe st+1, rt
9: t← t+ 1

10: until episode terminates

Test-time planning stage During evaluation, the agent
employs MPC (Algorithm 1), where RefPlan serves as
the trajectory optimization subroutine. At each time step
t, the agent gathers its history τ:t and encodes it into a
latent variable mt using the pretrained encoder (line 2 of
Algorithm 2). This latent variable encapsulates the agent’s
current belief about the environment, reflecting epistemic
uncertainty.

Then, we first generate N̄ prior plans with the prior policy
and the learned model (lines 5-8). Each plan has the
length of H , and we use µt to condition p̂ψ at this stage.
Optionally, we add a Gaussian noise to the actions sampled
by πp, following Argenson & Dulac-Arnold (2021); Sikchi et al. (2021).

Once the prior plans are prepared, we rollout the plans under the learned model to generate multiple
trajectories. That is, for each sampled mt, we obtain N̄ trajectories (lines 9-14). These trajectories
are then used to estimate the optimal plan, conditioned on mj

t . We marginalize out the latent variable
via Monte-Carlo expectation using the law of total expectation.

Finally, the first action from the optimized plan is selected and executed in the environment. This
process repeats at each subsequent time step, with the agent continuously updating its belief state and
re-optimizing its plan based on new observations.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameters for Model Architecture and Training

Architecture Hyperparameters Value
Task Embedding Dimension 16
State Embedding Dimension 16
Action Embedding Dimension 16
Reward Embedding Dimension 4
GRU Hidden Dimension 256
Decoder Network Architecture Fully connected, [200, 200, 200, 200] with skip connection
Decoder ensemble size 20
Decoder number of elite models 14

Training Hyperparameters Value
KL Weight Coefficient 0.1
Input Normalization True
Learning Rate 0.001
Weight Decay 0.01
Optimizer AdamW
Batch Size 64

C.2 ARCHITECTURE

Encoder

GRU

Decoder

Figure 10: A schematic illustration of the architecture of RefPlan. We use the same encoder
architecture as in VariBAD (Zintgraf et al., 2020), which consists of a GRU model and a fully
connected layer. Unlike VariBAD, which uses the decoder only for training the encoder, we employ a
two-stage training procedure (Appendix C.3) to learn a decoder that is directly used for planning at
test time. The decoder network reconstructs the past trajectory and predicts the next state but does
not attempt to predict the entire future trajectory as in the prior work (see also Eq.(10)).

Figure 10 illustrates the architecture of RefPlan. For the encoder, we adopt the architecture from
VariBAD (Zintgraf et al., 2020), with a few minor modifications to the hyperparameters. The encoder
utilizes a GRU network to encode the agent’s history and outputs the parameters of a Gaussian
distribution representing the latent variable mt.

At time t = 0, we initialize z−1 = 0 and a−1 = 0. The state st, the previous action at−1, and the
previous reward rt−1 are first embedded into their respective latent spaces using distinct linear layers,
each followed by ReLU activation. These embedded vectors, along with the hidden state from the
previous time step zt−1, are then processed by the GRU, which outputs the updated hidden state zt.
This hidden state is subsequently linearly projected onto the task embedding space to obtain the mean
(µt) and log variance (log σ2

t) of the Gaussian distribution for the latent variable at the current time
step.

Since the decoder plays a critical role in test-time planning, we follow established practices from
prior work and implement the decoder using a probabilistic ensemble network (Chua et al., 2018;
Janner et al., 2019; Yu et al., 2020; 2021; Chen et al., 2021). Specifically, the ensemble consists of
20 models, from which we select the 14 elite models that achieve the lowest validation loss during
training. The decoder network conditions on a latent sample mt ∼ N (µt, σ

2
t), along with st and at,

to predict the next state st+1 and reward rt+1. The hyperparameters associated with the architecture
are summarized in Table 3.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 4: Reproducing the reported performances of offline policy learning algorithms on the D4RL MuJoCo
tasks. ∗Numbers reported in An et al. (2021).

CQL EDAC MOPO COMBO MAPLE

Paper Rep. Paper Rep. Paper Rep. Paper Rep. Paper Rep.

H
op

pe
r

R 10.8 1.0 25.3 23.6 11.7 32.2 17.9 6.3 10.6 31.5
M 86.6 66.9 101.6 101.5 28.0 66.9 97.2 60.9 21.1 29.4
MR 48.6 94.6 101.0 100.4 67.5 90.3 89.5 101.1 87.5 61.0
ME 111.0 111.4 110.7 106.7 23.7 91.3 111.1 105.6 42.5 46.9
FR 101.9∗ 104.2 105.4 106.6 - 73.2 - 89.9 - 79.1

H
al

fC
he

et
ah R 35.4 19.9 28.4 22.5 35.4 29.8 38.8 40.3 38.4 33.5

M 44.4 47.4 65.9 63.8 42.3 42.8 54.2 67.2 50.4 68.8
MR 46.2 47.0 61.3 61.8 53.1 70.6 55.1 73.0 59.0 71.5
ME 62.4 98.3 106.3 100.8 63.3 73.5 90.0 97.6 63.5 64.0
FR 76.9∗ 77.5 84.6 81.7 - 81.7 - 71.8 - 66.8

W
al

ke
r2

d

R 7.0 0.1 16.6 17.5 13.6 13.3 7.0 4.1 21.7 21.8
M 74.5 77.1 92.5 77.6 17.8 82.0 81.9 71.2 56.3 88.3
MR 32.6 63.5 87.1 85.0 39.0 81.7 56.0 88.0 76.7 85.0
ME 98.7 108.9 114.7 98.5 44.6 51.9 103.3 108.3 73.8 111.8
FR 94.2∗ 96.6 99.8 98.0 - 90.5 - 78.1 - 94.2

C.3 PRETRAINING

RefPlan requires two stages of pretraining. First, we use an off-the-shelf offline RL algorithm to train
a prior policy πp. In our experiments, we evaluated several algorithms, including CQL (Kumar et al.,
2020), EDAC (An et al., 2021), MOPO (Yu et al., 2020), COMBO (Yu et al., 2021), and MAPLE
(Chen et al., 2021), though any offline RL policy learning algorithm could be utilized.

Second, we train the encoder qϕ and the decoder p̂ψ. The encoder qϕ is trained using the ELBO
loss as defined in (9). The decoder p̂ψ is trained to reconstruct the past and to predict the next state,
conditioned on the sample mt the current state st, and the action at. This training constitutes the first
phase of dynamics learning. During this step, the encoder learns a latent representation that captures
essential information for reconstructing the trajectory. Unlike VariBAD, where the decoder is trained
to reconstruct the entire trajectory including future states, we found that focusing on the past and the
next state improves the decoder’s performance.

After completing the first training phase, we freeze the encoder network parameters and proceed to
the second phase. In this phase, we fine-tune the decoder network p̂ψ to accurately predict the next
state given mt, st, and at. This is achieved using the loss function defined in (11), which we reiterate
here for clarity:

L(ψ) = Eτ∼D

[
H−1∑

h=0

Emh∼qϕ(·|τ:h)[− log p̂ψ(sh+1, rh|sh,ah,mh)]

]
. (19)

The second training phase ensures that the learned dynamics model, p̂ψ , accurately predicts the next
state. This two-stage approach allows RefPlan to maintain an effective dynamics moel for planning
at test time, unlike VariBAD, where the decoder is discarded after training the VAE.

D EXPERIMENTAL DETAILS

D.1 EXPERIMENTAL SETTINGS

D4RL MuJoCo environments & datasets We use the v2 version for each dataset as provided by
the D4RL library (Fu et al., 2020).

Evaluation under high epistemic uncertainty due to OOD initialization (RQ1) To address RQ1,
we assessed a policy trained on the ME dataset of each MuJoCo environment by initializing the agent
from a state randomly selected from the R dataset. The results, presented in Figure 3, 7, and 8 are
averaged over 3 seeds. For a fair comparison, the same initial state was used across all methods being
compared—the prior policy, LOOP, and RefPlan—under the same random seed.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Iteration

90

95

100

Be
st

 P
er

fo
rm

an
ce

CQL + RefPlan (BayesOpt)
CQL + Refplan (Grid)

(a) Hopper (MR)

0 5 10 15 20 25 30
Iteration

45

50

55

Be
st

 P
er

fo
rm

an
ce

CQL + RefPlan (BayesOpt)
CQL + Refplan (Grid)

(b) HalfCheetah (MR)

0 5 10 15 20 25 30
Iteration

85

90

95

Be
st

 P
er

fo
rm

an
ce

CQL + RefPlan (BayesOpt)
CQL + Refplan (Grid)

(c) Walker2d (MR)

Figure 11: Best performance vs. the number of BayesOpt iterations, using CQL as a prior policy on
the MR datasets across three environments.

Benchmarking on D4RL tasks (RQ2) To generate the benchmark results shown in Table 1, we
first trained the five baseline policies on each dataset across the three environments. The focus of
our analysis is on the performance improvements of these prior policies when augmented with either
LOOP or RefPlan as an MB planning algorithm during the evaluation phase. Thus, our approach
is designed to be complementary to any offline policy learning algorithms, making the relative
performance gains more relevant than the absolute performance of each algorithm. Nevertheless, we
aimed to closely replicate the original policy performance reported in prior studies. Table 4 compares
our reproduced results with those originally reported. Overall, our implementation closely matches
the original performances, often exceeding them significantly across various datasets. However, in
some cases, our reproduced policy checkpoints underperformed compared to the originally reported
results, such as CQL on the R datasets, EDAC on Walker2d M and ME datasets, COMBO on the
Hopper R and M datasets, and MAPLE on the Hopper MR dataset. We will make our code publicly
available upon acceptance.

Varying dataset sizes (RQ3) In Figure 4, we present the normalized average return scores for CQL
and its enhancements with either LOOP or RefPlan as we vary the dataset size from 50K to 500K.
We conducted these experiments using the FR dataset across three environments, which originally
contains 1M transition samples. To create the smaller datasets, we randomly subsampled trajectories.
If the subsampled data exceeded the desired dataset size, we trimmed the last trajectory accordingly.
For CQL training, we applied the same hyperparameters as those used for the full FR dataset.

Table 5: Environment configuration for the HalfCheetah
variations used in RQ4 experiments, showing the orig-
inal and modified height parameter values for each
task.

Task Original Modified

hill 0.6 0.2
gentle 1 0.2
steep 4 0.5
field Uniform(0.2, 1) Uniform(0.05, 0.4)

Changing dynamics (RQ4) To explore RQ4,
we adapted the HalfCheetah environment fol-
lowing the approach of Clavera et al. (2019),
introducing five variations: disabled joint, hill,
gentle slope, steep slope, and field. These
variations were implemented using the code
from https://github.com/iclavera/
learning_to_adapt. Unlike the original
work, which focuses on meta-RL, our study ad-
dresses an offline RL problem within a single
task framework. Hence, to make the tasks easier, we modified the height parameter for most
variations, excluding the disabled joint task. The specific adjustments to the height parameters
are detailed in Table 5. These changes were intended to create more manageable tasks while still
providing a meaningful challenge for the offline RL algorithms.

22

https://github.com/iclavera/learning_to_adapt
https://github.com/iclavera/learning_to_adapt

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters used for MAPLE + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2D

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 2 0.01 10.0 1 1.0 4 0.05 10.0 16 1.0 2 0.05 0.1 16 1.0
medium 2 0.01 0.1 8 0.1 4 0.01 5.0 16 0.5 2 0.05 10.0 1 0.1
med-replay 4 0.01 5.0 1 0.1 4 0.01 10.0 8 0.1 4 0.05 0.1 16 0.1
med-expert 2 0.01 0.1 1 1.0 4 0.01 10.0 4 0.1 2 0.01 10.0 8 0.5
full-replay 2 0.01 10.0 1 0.5 2 0.01 5.0 16 0.1 2 0.05 5.0 1 1.0

Table 7: Hyperparameters used for COMBO + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 2 0.05 0.1 16 0.1 2 0.05 0.1 4 0.1 4 0.01 0.5 16 1.0
medium 2 0.01 10.0 16 0.5 4 0.05 5.0 16 0.1 4 0.05 1.0 16 0.5
med-replay 4 0.01 0.5 8 1.0 2 0.01 5.0 4 0.1 4 0.01 5.0 16 0.1
med-expert 4 0.01 0.5 8 1.0 2 0.05 5.0 16 0.1 4 0.01 10.0 16 0.1
full-replay 4 0.01 0.1 8 0.5 4 0.01 10.0 4 0.1 4 0.05 1.0 8 0.5

Table 8: Hyperparameters used for MOPO + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 2 0.01 5.0 1 0.1 4 0.01 10.0 8 0.1 2 0.05 0.1 8 1.0
medium 2 0.05 5.0 1 0.1 4 0.05 10.0 4 0.1 2 0.05 5.0 4 1.0
med-replay 4 0.05 5.0 16 0.1 2 0.05 10.0 4 0.1 4 0.01 1.0 16 0.1
med-expert 4 0.05 1.0 8 0.1 4 0.01 10.0 16 0.1 4 0.01 10.0 16 1.0
full-replay 2 0.05 5.0 16 1.0 4 0.05 5.0 16 0.1 4 0.05 10.0 1 0.1

Table 9: Hyperparameters used for CQL + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 4 0.01 10.0 1 0.1 4 0.05 5.0 1 0.1 4 0.05 10.0 16 1.0
medium 2 0.01 5.0 16 0.5 2 0.01 5.0 1 0.5 2 0.05 10.0 16 1.0
med-replay 4 0.05 0.1 8 0.1 4 0.01 5.0 16 0.1 4 0.05 1.0 4 0.1
med-expert 4 0.01 1.0 1 0.5 2 0.01 5.0 8 0.1 2 0.01 5.0 8 0.1
full-replay 4 0.05 10.0 16 0.1 2 0.01 5.0 8 0.1 4 0.01 5.0 8 0.1

Table 10: Hyperparameters used for EDAC + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d

H σ κ n̄ p H σ κ n̄ p H σ κ n̄ p

random 4 0.05 10.0 16 0.5 4 0.05 5.0 8 0.1 2 0.05 10.0 4 0.1
medium 2 0.01 10.0 16 0.1 4 0.05 10.0 4 0.1 4 0.05 10.0 1 0.1
med-replay 2 0.05 10.0 1 0.1 4 0.05 10.0 8 0.1 4 0.05 5.0 16 0.1
med-expert 2 0.01 1.0 16 0.5 2 0.05 5.0 8 0.1 4 0.05 5.0 16 0.1
full-replay 4 0.05 10.0 4 0.1 2 0.05 10.0 8 0.1 2 0.05 10.0 1 0.1

D.2 HYPERPARAMETERS

Table 6-10 outline the hyperparameters used for RefPlan across the five prior policies discussed in
Section 5. We conducted a grid search over the following hyperparameters: the planning horizon
H ∈ {2, 4}, the standard deviation of the Gaussian noise σ ∈ {0.01, 0.05}, the inverse temperature
parameter κ ∈ {0.1, 0.5, 1.0, 5.0, 10.0}, the number of latent samples n̄ ∈ {1, 4, 8, 16}, and the value
uncertainty penalty p ∈ {0.1, 0.5, 1.0}. Our findings indicate that κ and n̄ are the most influential
hyperparameters, while the others have a comparatively minor effect on performance. For LOOP,
we conducted a similar grid search over the same hyperparameters, excluding n̄, which is specific to
RefPlan.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 11: Per-epoch runtimes for VAE pretraining on the ME dataset.

Hopper HalfCheetah Walker2d

qϕ p̂ψ qϕ p̂ψ qϕ p̂ψ

55.3s 39.8s 53.2s 40.7s 54.6s 40.7s

Table 12: Runtime per environment step for RefPlan during evaluation in the HalfCheetah environ-
ment.

H
n̄ 1 2 3 4

2 7.9× 10−3s 8.7× 10−3s 9.3× 10−3s 1.0× 10−2s
4 1.5× 10−2s 1.6× 10−2s 1.8× 10−2s 1.9× 10−2s

In addition, we used Bayesian optimization (BayesOpt, Snoek et al. (2012)), implemented in W&B
(Biewald, 2020), to explore the challenge of identifying optimal hyperparameters for RefPlan. Figure
11 compares the number of iterations required for BayesOpt to achieve or surpass the performance
of the best hyperparameter configuration found via grid search in each environment. Specifically,
we used CQL as the prior policy and the MR dataset from three environments. Notably, BayesOpt
required fewer than 20 iterations to exceed the performance reported in Table 1.

D.3 COMPUTATIONAL COSTS OF REFPLAN

In this section, we provide a detailed discussion of the computational costs associated with deploying
RefPlan. As outlined in Appendix C.3, RefPlan requires the following pretrained components: a prior
policy πp, an encoder qϕ, and a decoder p̂ψ. Since the prior policy is trained using standard offline
policy learning algorithms (e.g., CQL, EDAC, MOPO, COMBO, and MAPLE), which are not our
contributions, we focus on reporting the computational costs associated with training the VAE model
and executing the planning stage. All experiments were conducted on a single machine equipped
with an RTX 3090 GPU.

VAE Pretraining Table 11 presents the per-epoch runtimes for VAE pretraining in the three envi-
ronments. The reported runtimes correspond to datasets with 2M transition samples, the largest
dataset size used in our experiments. Both the VAE pretraining and decoder fine-tuning phases were
executed for up to 200 epochs or until the validation loss ceased to improve for 5 consecutive epochs,
whichever occurred first.

Test-Time Planning At test time, planning with RefPlan involves selecting hyperparameters as
detailed in Appendix D.2. Among these, the planning horizon H and the number of latent samples n̄
influence runtime. Specifically, the computational cost scales linearly with H , which is an inherent
property of planning algorithms. However, the cost increases sub-linearly with n̄, as shown in Table
12. For example, with H = 4 and n̄ = 4, the agent achieves approximately 53 environment steps per
second. We hypothesize that further optimization of PyTorch tensor operations to fully exploit GPU
parallelism could yield even better computational performance, particularly with respect to n̄.

24

	Introduction
	Related Work
	Preliminaries
	RefPlan: a Probabilistic Framework for Offline Planning
	Offline Model-Based Planning as Probabilistic Inference
	Learning Epistemic Uncertainty via Variational Inference
	Integrating Epistemic Uncertainty into Model-Based Planning

	Experiments
	RefPlan handles epistemic uncertainty from OOD states
	RefPlan enhances any offline-learned policies
	Performance with limited offline data with varying dataset sizes
	RefPlan is more robust to changing dynamics?

	Conclusion
	Additional Background
	Bayes-Adaptive Markov Decision Processes

	Additional Results
	Performance comparison of RefPlan vs. LOOP
	RefPlan handles epistemic uncertainty from OOD states
	Performance comparison: non-Markovian dynamics model for training vs. planning
	Evaluating the impact of the number of latent samples on variances and performance

	Algorithm Details
	Algorithm Summary
	Architecture
	Pretraining

	Experimental Details
	Experimental settings
	Hyperparameters
	Computational Costs of RefPlan

