Under review as a conference paper at ICLR 2025

REFLECT-THEN-PLAN: OFFLINE MODEL-BASED
PLANNING THROUGH A Doubly Bayesian LENS

Anonymous authors
Paper under double-blind review

ABSTRACT

Offline reinforcement learning (RL) is essential when online exploration is costly
or unsafe, but it often struggles with high epistemic uncertainty due to limited
data. Existing methods learn fixed conservative policies, which limit adaptivity and
generalization. To tackle these challenges, we propose Reflect-then-Plan (Ref-
Plan), a novel doubly Bayesian approach for offline model-based (MB) planning
that enhances offline-learned policies for improved adaptivity and generalization.
RefPlan integrates uncertainty modeling and MB planning in a unified probabilistic
framework, recasting planning as Bayesian posterior estimation. During deploy-
ment, it updates a belief distribution over environment dynamics based on real-time
observations. By incorporating this uncertainty into MB planning via marginaliza-
tion, RefPlan derives plans that account for unknowns beyond the agent’s limited
knowledge. Empirical results on standard benchmarks show that RefPlan signifi-
cantly improves the performance of conservative offline RL policies. In particular,
RefPlan maintains robust performance under high epistemic uncertainty and limited
data, while demonstrating resilience to changing environment dynamics, improving
the flexibility, generalizability, and robustness of offline-learned policies.

1 INTRODUCTION

Recent years have seen significant progress in offline reinforcement learning (RL), in which a learner
has to learn a performant policy from a static dataset of experiences (Levine et al., 2020; Kumar et al.,
2020; An et al., 2021; Kostrikov et al., 2022). This is particularly appealing in scenarios where online
exploration is costly or unsafe (Yu et al., 2018; Kalashnikov et al., 2018; Boute et al., 2022).

The agent’s inability to gather more experiences have severe implications. In particular, it becomes
practically impossible to precisely identify the true Markov decision process (MDP) with a limited
dataset, as it only covers a portion of the entire state-action space, leading to high epistemic uncertainty
for states and actions outside the data distribution. Most offline RL methods aim to learn a conservative
policy that stays close to the data distribution, thus steering away from high epistemic uncertainty.

While incorporating conservatism into offline learning has proven effective (Jin et al., 2021; Yu
et al., 2020; Kumar et al., 2020), it can result in overly restrictive policies that lack generalizability.
Most methods learn a Markovian policy that relies solely on the current state, leading the agent to
potentially take poor actions in unexpected states during evaluation. Model-based (MB) planning can
enhance the agent’s responsiveness during evaluation (Sikchi et al., 2021; Argenson & Dulac-Arnold,
2021; Zhan et al., 2022), but it still primarily addresses epistemic uncertainty through conservatism.

Noting this challenge, Chen et al. (2021) and Ghosh et al. (2022) propose to learn an adaptive policy
that can reason about the environment and accordingly react at evaluation. Essentially, they formulate
the offline RL problem as a partially observable MDP (POMDP)—where the partial observability
relates to the agent’s epistemic uncertainty, aka Epistemic POMDP (Ghosh et al., 2021). Thus,
learning an adaptive policy involves approximately inferring the belief state from the history of
transitions experienced by the agent and allowing the policy to condition on this belief state.

While learning an adaptive policy can help make the agent more flexible and generalizable, it still
heavily depends on the training phase. Our empirical evaluation demonstrates that a learned policy—
whether it be adaptive or fixed—can be significantly strengthened by incorporating MB planning.

Under review as a conference paper at ICLR 2025

I
I
I
|
|
I
I
1
|
I
I
I
I
\

: e halie il]
\\ Updating posterior belief over the possible MDPS// \\ p(]0) = / (7|0, my)p(my)dmy)
~ ~

- —— N e e - ——————————

Figure 1: Schematic illustration of RefPlan. (Reflect) At time ¢, RefPlan utilizes real-time agent
experiences 7. = (Sp,a0,70,--.,St) to infer the posterior belief m; over environments using a
variational autoencoder. Unlike prior methods, RefPlan learns diverse dynamics models conditioned
on my, capturing different transition and reward functions. (Plan) Offline planning is framed as
probabilistic inference, where the posterior over optimal plans p(7|O) (with O denoting optimality
variables in the control-as-inference framework) is inferred. A prior p(7) is incorporated by learning
my via offline policy learning. By marginalizing m; via Monte Carlo sampling, RefPlan addresses
epistemic uncertainty, enhancing 7y for better adaptivity and generalizability.

However, existing MB planning methods fall short in adequately addressing the agent’s epistemic
uncertainty, and it remains elusive how one can effectively incorporate the uncertainty into planning.

We propose Reflect-then-Plan (RefPlan), a novel doubly Bayesian approach for offline MB planning.
RefPlan combines epistemic uncertainty modeling with MB planning in a unified probabilistic
framework, inspired by the control-as-inference paradigm (Levine, 2018). RefPlan adapts Bayes-
adaptive deep RL techniques (Zintgraf et al., 2020; Dorfman et al., 2021) to infer a posterior belief
distribution from past experiences during test time (Reflect). To harness this uncertainty for planning,
we recast planning as Bayesian posterior estimation (Plan). By marginalizing over the agent’s
epistemic uncertainty, RefPlan effectively considers a range of possible scenarios beyond the agent’s
immediate knowledge, resulting in a posterior distribution over optimized plans under the learned
model (Figure 1).

In our experiments, we demonstrate that RefPlan can be integrated with various offline RL policy
learning algorithms to consistently boost their test-time performance in standard offline RL benchmark
domains (Fu et al., 2020). RefPlan not only maintains robust performance under high epistemic
uncertainty but also shows superior resilience when the environment dynamics change or when data
availability is limited, outperforming compared methods in these challenging scenarios.

2 RELATED WORK

Offline RL. In offline RL, policy distribution shift is a major challenge, leading to instabilities
like extrapolation errors and value overestimation (Kumar et al., 2019; Fujimoto et al., 2019). To
address this, various approaches introduce conservatism. For instance, policy constraint methods
constrain the learned policy’s deviation from the behavior policy (Wu et al., 2019; Kumar et al., 2019;
Fujimoto & Gu, 2021). Value-based approaches penalize the values of out-of-distribution (OOD)
actions (Kumar et al., 2020; An et al., 2021). One can also avoid querying OOD actions by learning
the value function solely from in-dataset samples and distilling a policy (Kostrikov et al., 2022).

MB offline policy learning methods learn a dynamics model from batch data, then use the model to
generate imaginary rollouts to augment the offline dataset. To mitigate the risk of exploiting errors
in the model for policy optimization, model uncertainty—heuristically estimated from ensemble
dynamics models—can be penalized in rewards (Yu et al., 2020; Kidambi et al., 2021; Lu et al., 2021).
Alternatively, values of model-generated samples can be minimized (Yu et al., 2021). Adversarial
dynamics models can also discourage the learner from choosing OOD actions (Rigter et al., 2022).

Under review as a conference paper at ICLR 2025

Typically, these offline policies are fixed after training, but Ghosh et al. (2021; 2022) show that fixed
policies can fail under high epistemic uncertainty, highlighting the need for adaptive policies. APE-V
(Ghosh et al., 2022) addresses this by maintaining a value ensemble to approximate the distribution
over possible environments, adapting the policy based on this ensemble during evaluation. MAPLE
(Chen et al., 2021) uses an RNN to encode the agent’s history into a dense vector, allowing the policy
to adapt by conditioning on this history. MAPLE also utilizes an ensemble dynamics model to expose
the adaptive policy to diverse simulated environments, enhancing its robustness to uncertainty.

Model-based planning for offline RI. MB planning can add responsiveness at test time. For
example, MBOP (Argenson & Dulac-Arnold, 2021) uses model predictive control (MPC) with MPPI
(Williams et al., 2015), a trajectory optimization (TrajOpt) method, modifying it for offline setups by
using a behavior-cloning (BC) policy for trajectory generation. Uncertain rollouts can be filtered out
based on the ensemble disagreement (Zhan et al., 2022).

LOOP (Sikchi et al., 2021) enhances offline-learned policies with MB planning, achieving superior
performance than MBOP. It approaches offline MB planning using KL-regularized optimization but
only addresses epistemic uncertainty by penalizing ensemble variance in rewards during TrajOpt. In
contrast, RefPlan is derived from a Bayesian perspective, which explicitly accounts for the agent’s
epistemic uncertainty, resulting in better generalization and stronger performance.

Probabilistic interpretation of MB planning The control-as-inference framework (Levine, 2018;
Abdolmaleki et al., 2018) offers a probabilistic perspective on control and RL problems. Within the
context of MB planning, this framework naturally leads to sampling-based solutions (Piché et al.,
2019; Okada & Taniguchi, 2020). For instance, Okada & Taniguchi (2020) demonstrated that various
sampling-based TrajOpt algorithms can be derived from this probabilistic view. Janner et al. (2022)
introduced a diffusion-based planner that utilizes the control-as-inference framework to derive a
perturbation distribution, embedding reward signals into the diffusion sampling process. However, to
the best of our knowledge, we are the first to propose an offline MB planning algorithm that integrates
an offline-learned policy as a prior within a Bayesian framework and explicitly accounts for the
epistemic uncertainty during planning, all within a unified probabilistic formulation.

Bayesian RL and epistemic POMDP Bayesian RL (Ghavamzadeh et al., 2015) and Bayes-adaptive
MDP (BAMDP) (Duff, 2002) tackle the problem of learning optimal policies in unknown MDPs. A
BAMDP can be reformulated as a belief-state MDP, where the belief state acts as a sufficient statistic
summarizing the agent’s history (Guez et al., 2012). This belief-state representation highlights
BAMDP as a specific instance of a POMDP (Kaelbling et al., 1998). Building on this, Zintgraf et al.
(2020) framed meta-RL as a BAMDP and proposed VariBAD, a variational inference-based method
for approximating the belief distribution over possible environments, enabling the optimization of
meta-policies.

Relatedly, Ghosh et al. (2021) introduced the concept of epistemic POMDP, where an agent’s epis-
temic uncertainty—stemming from factors such as incomplete exploration or ambiguity in task
specification—induces partial observability. Unlike BAMDPs, which primarily focus on online learn-
ing and asymptotic regrets, epistemic POMDPs emphasize the agent’s performance during a single
evaluation episode, making them especially relevant for test-time generalization. Notably, Ghosh
et al. (2022) observed that offline RL problems in a single-task setting can also be conceptualized as
epistemic POMDPs. This arises because static offline datasets typically cover only a subset of the
state-action space, introducing partial observability regarding true environment dynamics outside the
offline data distribution.

In this work, we similarly adopt the epistemic POMDP perspective for addressing single-task offline
RL. However, unlike prior approaches, our focus is on MB planning. Specifically, we aim to enhance
policies learned through offline RL by addressing the agent’s epistemic uncertainty, thereby enabling
more effective generalization during deployment.

3 PRELIMINARIES

We study RL in the framework of Markov decision processes (MDPs) that are characterized by a
tuple M = (S, A, T, r,do,7). The state and action spaces (S and .4, respectively) are continuous,

Under review as a conference paper at ICLR 2025

T (s'|s, a) is the transition probability distribution, (s, a) is the reward function, dj is the initial

state distribution, and y € [0, 1] is the discount factor. The model of the environment refers to the

transition and reward functions. The goal of RL is to find an optimal policy 7* which maximizes the
- oot

expected discounted return, Egdq,s,~T,a;~m+ [P0 YT (St, ar)].

Offline MB planning In offline RL, we have a dataset D = {(s;, a;,7;,s})}; collected by some
behavior policy 5. MB methods learn a parameterized predictive model py, (s, r|s, a), usually trained
via maximum likelihood estimation (MLE) to minimize L(¢)) = E(s a ¢/ ,r)~p[—log py (s, 7s, a)].

Imaginary data Di,04.1 Sampled by p,; can be used together with D for offline policy learning.

In this work, however, our focus is on using learned models for planning at test time. MB planning
methods commonly use MPC, where at each time step, a TrajOpt method re-plans and optimizes the
action sequence a;; , ;; to maximize the expected H-step return under the learned model p,;, while
incorporating a value function V4 to account for long-term rewards (Lowrey et al., 2018). I.e.,

aj, g =argmax E; [Ry(s¢,aniin)], (1)
at:t+H
where Ry (St, apirm) = ZhH:_ol VP (8t arn) + Y V(844 1r) is the return of a candidate
action sequence a4 g = (A, . .., a4 m—1) under py.

MPPI (Williams et al., 2015; Nagabandi et al., 2019) is a TrajOpt algorithm that samples N plans,
{at n }N_ ., and weighs them by their MB returns using a softmax with inverse temperature #, giv-
Zg:lieXp(’{Rzl)'a:”-l—h
S exp(rRY)
where R is the return of the nth trajectory. MBOP (Argenson & Dulac-Arnold, 2021; Zhan et al.,
2022) adapts MPPI for offline settings by sampling actions from a BC policy with smoothing.

ing higher weights to higher-return trajectories. The optimized action is aj ;, =

The control-as-inference framework The control-as-inference framework reformulates RL as
a probabilistic inference problem (Levine, 2018). This is achieved by introducing auxiliary binary
optimality variables Oy, where O; = 1 indicates that the state-action pair (s;, a;) is optimal. Formally,
we define the likelihood of optimality of a trajectory 7¢..+ 5 = (St, a¢, . - ., St 1) below.

Definition 1 (The optimality likelihood). For 7y.¢4 g, let O = 1 if all time steps are optimal (i.e.,
Oy4p, = 1 Yh). The optimality likelihood of T is given by:

p(O =1|1) x HP(OH-h = 1|st+n,ai4n)-)
h

To relate optimality to rewards, we can assume p(Osqp|St4h, at+r) X exp(k - r44p), Where k > 0
is an inverse temperature parameter, leading to p(O|7) o exp(k - Y, r,)." With this, the expected
return maximization is recast as inferring the posterior over trajectories under the given probabilistic
graphical model (PGM) (see Figure 2, left) given that all time steps are optimal:

H

p(7|0) o< p(7,0) = p(s:) [[p(Ovsnlsivn arrn)p(sesnirlsesn, aipn). 3)
h=1

Here, the prior over actions is often assumed to be implicitly captured by the reward function or treated
as a uniform improper prior (Levine, 2018; Piché et al., 2019). However, as we will demonstrate in
Section 4.1, we explicitly model the prior over actions to formalize an offline MB planning framework,
enabling the enhancement of an offline-learned policy through MB planning.

Epistemic POMDP, Bayes-adaptive MDP, and Offline RL A partially observable MDP (POMDP)
extends MDPs to scenarios with incomplete state information. POMDPs can be reformulated as
belief-state MDPs, where a belief—a probability distribution over states—represents the uncertainty
over states given the agent’s prior observations (Kaelbling et al., 1998).

Unlike an ordinary POMDP, epistemic POMDPs address generalization to unseen test conditions in
RL (Ghosh et al., 2021). In this scenario, the agent experiences partial observability entirely due to its

'We use an exponential function for the optimality likelihood but note that other monotonic functions are
also possible (Okada & Taniguchi, 2020). Also for brevity, we denote O; = 1 as O and ¢4+ as T.

Under review as a conference paper at ICLR 2025

epistemic uncertainty about the identity of the true environment M at test time. Specifically, at test
time, the agent’s goal is to maximize the expected return E (., 10y [4 ~+*r;] under the posterior
p(M|D) obtained after observing the train data D. Thus, an epistemic POMDP is an instance of a
Bayes-adaptive MDP (BAMDP) (Duff, 2002; Kaelbling et al., 1998). Unlike BAMDP, which tackles
learning to act optimally under the uncertainty over true MDPs, epistemic POMDP focuses on the
agent’s test time evaluation performance rather than online learning. For a thorough definition of
BAMDPs, please check Appendix A.1.

In this work, we view offline RL as epistemic POMDP, following Ghosh et al. (2022), drawing
connections to Bayesian approaches. That is, limited coverage of the state-action space in the
offline dataset induces epistemic uncertainty about dynamics beyond the data distribution. Failure
to manage this uncertainty can result in catastrophic outcomes, particularly when an offline-trained
agent encounters unseen states or slightly altered dynamics during deployment, leading to arbitrarily
poor performance.

To address these challenges, we can leverage the BAMDP reformulation of epistemic POMDPs.
This reformulation enables reasoning over the agent’s uncertainty through a prior belief by = p(M),
updated to a posterior by = p(M|r.;) as new experiences 7.; are gathered during deployment.
However, computing the exact posterior belief is generally intractable. Therefore, in Section 4, we
tackle this challenge by approximating the belief distribution through variational inference techniques
adapted from meta-RL approaches (Zintgraf et al., 2020; Dorfman et al., 2021).

4 REFPLAN: A PROBABILISTIC FRAMEWORK FOR OFFLINE PLANNING

In this section, we now seek to address the following question:

How can a learned model be utilized at test time to enhance the performance of
an offline-trained agent and enable it to account for its epistemic uncertainty?

To tackle this, we introduce RefPlan: a novel probabilistic framework for MB planning that leverages
learned models and allows the agent to reason with its uncertainty during deployment.

In Section 4.1, we derive a sampling-based offline MB planning algorithm rooted in a probabilistic
inference perspective, demonstrating how this approach can enhance the capabilities of any offline-
trained policy. Next, we delve into the epistemic POMDP formulation of the offline RL problem
in Section 4.2, outlining how the agent’s epistemic uncertainty can be effectively captured and
represented. We introduce variational learning techniques for estimating the agent’s uncertainty over
the environment dynamics. Finally, in Section 4.3, we unify these concepts, presenting how RefPlan
integrates epistemic uncertainty into the MB planning process, enabling the agent to plan under the
learned models and adapt in real-time while accounting for its uncertainty.

4.1 OFFLINE MODEL-BASED PLANNING AS PROBABILISTIC INFERENCE

We recast offline MB planning within the control-as-inference framework, allowing us to treat
planning as a posterior inference problem. This approach enables the agent to optimize its actions
by reasoning over the learned dynamics model and prior knowledge obtained from offline training.
Central to this formulation is the use of a prior policy, which guides the agent’s plans based on
knowledge learned during offline training.

We start by formalizing the concept of a prior policy, which lay the basis for the Bayesian formulation
of the offline MB planning process, together with the optimality likelihood defined in Definition 1.
Definition 2 (Prior policy). A prior policy m, : S — P(A) is a policy learned from an offline RL
algorithm £ using the dataset D.

The prior policy, parameterized by 6, is provided by an offline learning algorithm £, such as CQL
(Kumar et al., 2020) or BC, and must be considered by the offline MB planner when optimizing the
planning objective in (1).

In the offline setting, we aim to enhance the prior policy 7, via MB planning at test time by inferring
the posterior over a;..+ 7, conditioned on the optimality observations Oy, predicted by the learned
model p;. At time ¢, we seek to compute p(ay.¢+|O), as shown in Figure 2 (middle).

Under review as a conference paper at ICLR 2025

Figure 2: PGMs for the control-as-inference framework, offline MB planning, and RefPlan. (Left)
States evolve within the learned model, with actions and states influencing optimality. Optimality
variables act like observations in a hidden Markov model, framing planning as inferring the posterior
over actions given optimality. (Middle) In offline MB planning, actions follow the prior policy p:
a; ~ mp(+|s¢;). (Right) RefPlan uses past experiences 7., to infer m,, the agent’s belief about the
environment, and computes the expected optimal action sequence by marginalizing over m;.

The key distinction in this setup from the original control-as-inference framework is the inclusion of
the prior policy, which serves as a source for action sampling during planning. Given the prior policy
mp and the learned model p,;,, we can define the prior distribution over the trajectory 7 as follows:

H-1

p(T) = H Wp(at+h|st+h)ﬁw(st+h+1|St+h7at+h)~ 4
h=0

Sampling trajectories from this prior, p(7), is straightforward through forward sampling, where
actions are drawn from 7, and state transitions are generated using p..

Computing the exact posterior p(7|Q) is intractable due to the difficulty of calculating the marginal
p(O). However, importance sampling offers a practical method to estimate the posterior expectation
over ay.;4z- To demonstrate, we first expand the posterior using Bayes’ rule:

H-1 H-1

p(7]0) o p(O|7)p(T) o exp ("6 Z Tt+h) { H Py (Stant1lSt4n, arrn)mp(atinlsein) |- (5)
h=0 h=0

Then, we can estimate the expected value of an arbitrary function f(a;.¢+) under p(7|O). That is,

Epirio)[f(ase+n)] = / f(avim) p(t]0) dr = /f(at:t+H) W dr

— / fagiem) ngf)(;)—) p(T) dr = / fagism) R fjg):h risn) p(T) dr

_ Ep [f(at t+H) €xp (KD g TH—hﬂ
By o0 (o250 i)

In the last step, we used p(O) = [p(O|7)p(T)dr = o Ep(r)[exp (kY Te+1)] and the propor-
tionality coefficient « > 0 cancels out.

6)

Thus, the posterior expectation over a.¢1 py can be obtained with f(as.+1) = agtym as below.

Epry [at t+H €XpP (doh Tt+h)]
Ep(r) [exp (532, 7e+)]

N n
- Z (eXp Zh Tt+h) > a?:wH' (8)

l 1 €XPp (Zh TI’EL-Q—h)

(N

IIEﬂp(7‘|(9) [at:t+H] =

That is, we estimate the posterior mean by sampling N trajectories from p(7) with 7, and Dy, then
exp(K 3o Teth)
§\1=1 exp(k Eh Tfi,+h)
to the exponentiated MB return of the nth trajectory, assigning higher weights to plans with better
returns. This helps the agent select actions likely to improve on those from the prior policy.

computing the weighted sum of the actions. Each weight w™ :=

is proportional

Under review as a conference paper at ICLR 2025

We note that (8) can also be derived from an optimization perspective. Specifically, LOOP (Sikchi
et al., 2021) constrains the distribution over plans by minimizing the KL divergence from the prior
policy. In LOOP, the variance of values generated by the model ensemble is penalized to mitigate
uncertainty; however, the agent’s epistemic uncertainty is not explicitly modeled and fully addressed.
By contrast, by viewing offline RL as an epistemic POMDP and formulating it as a probabilistic
inference problem, we can directly incorporate the agent’s epistemic uncertainty into MB planning
by approximately learning the belief distribution, which we delve into in the next part.

4.2 LEARNING EPISTEMIC UNCERTAINTY VIA VARIATIONAL INFERENCE

Although offline RL can be framed as a BAMDP, obtaining an exact posterior belief update is
impractical. Inspired by Zintgraf et al. (2020) and Dorfman et al. (2021), we introduce a latent
variable m to approximate the underlying MDP. We assume that knowing the posterior distribution
p(m|7.¢) is sufficient for planning under epistemic uncertainty. As a result, transitions and rewards
are assumed to depend on m, i.e., T'(S¢+1|S¢, a;, m) and r (s, ag, m). When p(m|r.;) is accurate and
T.¢ is in-distribution, 7" and r will closely match the transitions in D. For OOD 7., the posterior over
m captures epistemic uncertainty, allowing 7" and r to model diverse possible scenarios.

Given a trajectory 7.4, consider the task of maximizing its likelihood, conditioned on the actions.
Conditioning on the actions is essential because they are generated by a policy—0 during training
and 7, at evaluation—and are not modeled by the environment. Although directly optimizing the
likelihood p(sg, 70, S1,71, - - -, St+1|0, - - -, &;) is intractable, we can maximize the ELBO as in
VariBAD by introducing an encoder ¢, and a decoder p:

logp(S07r07"'7St+1|a07"'7at) :1Og/ p(SO7T07"'7St+lamt a07"'7at) dmt (9)
me
p(SOar07"'7St+l7mt | aO;"'aat)
= logE,,.~q (.
E Bomy~gy (-|70) qw(mt|7':t)

> Evrzt~q¢(~\7';t)[logﬁdz(sfb oy Stp1lmy,ag, ... ap)] — KL(%(mt|T:t)HP(mt)) = ELBO(p,).

The encoder g, is parameterized as an RNN followed by a fully connected layer that outputs
Gaussian parameters p(7.¢) and logo?(7.). Thus, m¢ ~ qu(-|t4) = N (u(m), o? (T:t)). The
KL term regularizes the posterior with the prior p(m;), which is a standard normal at ¢ = 0 and
the previous posterior g, (-|7.;—1) for subsequent time steps. The decoder py, learns the transition
dynamics and reward function of the true MDP. This becomes clear when we observe that the first
term in £ L BO; corresponds to the reconstruction loss, which can be decomposed as follows:

log By (80,70, - - - » Set1|mu, g, . .., &) = log p(so|my) (10)
t

+ Y [10g Py (Shi1[sn an, me) + 10 Py (rs1|sn, an, my)].
h=0

Here, py learns to predict future states and rewards conditioned on the latent variable m;. The
encoder captures the agent’s epistemic uncertainty, while the decoder provides predictions about the
environment under different latent variables m;. To sum up, we train a variational autoencoder (VAE)

via maxg » Ep [ZtT:o ELBO(¢, z/))} using trajectories sampled from the offline dataset D.

Unlike VariBAD, where the decoder is only used to train the encoder, we also use p,, for MB planning.
To improve p,,’s accuracy, we employ a two-stage training procedure: first, the VAE is trained with
the ELBO objective; then, the encoder is frozen and p.; is further finetuned using the MLE objective:

H-1

Z Eonp gy (7o) [108 Py (Sha1, ThISH, @n, mn)] | - (11)
h=0

LW) = ETND

Trajectory segments of length H are sampled from the offline dataset. At each step h € [0, H), the
encoder g, (-|7.,) samples mp,, enabling computation of the inner expectation in (11) and refining p,,
for improved predictions.

Under review as a conference paper at ICLR 2025

4.3 INTEGRATING EPISTEMIC UNCERTAINTY INTO MODEL-BASED PLANNING

Building on the probabilistic inference formulation of offline MB planning and the representation of
epistemic uncertainty via variational inference in the BAMDP framework, we introduce RefPlan. This
offline MB planning algorithm integrates epistemic uncertainty into the planning process, improving
decision-making and enhancing the performance of any offline-learned prior policy during test time.

Assume we have a posterior sample m; ~ ¢, (m|7.), representing the agent’s belief about the
environment at time ¢. Our goal is to use this posterior to enhance test-time planning. In Section
4.1, we have computed p(7|O) using the learned models p,;, and the prior policy 7. By introducing
the latent variable m to capture epistemic uncertainty, we extend the transition and reward functions
to depend on m, giving the dynamics py (Si+1|s¢, ar, my) and rewards r(s;, a;, m;), resulting in the
following conditional trajectory distribution:

(710, my) o< p(O|7,m¢)p(T|my)

H-1 H-1
X €xp (f‘f Z r(st-',-hyat-i-hvmt)) [H ﬁw(st+h+1|st+h7 at-i—hamt)wp(at-‘rh‘st-&-h) .
h=0 h=0

Thus, we can apply the sampling-based posterior estimation provided in (8) to approximate the
conditional expectation Ep, (-0, m,)[at:t+#].

A practical approach to handle epistemic uncertainty is to marginalize over the latent variable my,
effectively averaging over possible scenarios. This results in the marginal posterior distribution
p(7|O). Although directly computing this marginal posterior is challenging, we can estimate the
expectation of optimal plans using the law of total expectation:

Ep(rioyastr i) = B, g, (fr) [Bp(r0.m) [@eear | me]] - (12)

The inner expectation follows (8), with states and rewards sampled from p.,, conditional on 77;. The
outer expectation over m, is computed using Monte Carlo sampling with n samples, giving us:

1 7 N n,j
Eyrionfacer ~ & 5 [Z (Zexp(Ky Teh)) a?zt+H]’ (13)

j=1 Ln=1 i 1eXP(Zhrt+h)

where th = r(sHh, al, m?) and St+h+1 ~ Py (- |st+h, ay, m?). Figure 2 (right) illustrates
how RefPlan leverages the agent’s past experiences 7.; to shape epistemic uncertainty through the
latent variable 7 and enhances the prior policy 7, through posterior inference. Algorithm 2 in the
appendix summarizes RefPlan.? Additionally, following Sikchi et al. (2021), we apply an uncertainty
penalty based on the variance of the returns predicted by the learned model ensemble.

5 EXPERIMENTS

In this part, we answer the following research questions: (RQ1) How does RefPlan perform when
the agent is initialized in a way that induces high epistemic uncertainty due to OOD states? (RQ2)
Can RefPlan effectively improve policies learned from diverse offline policy learning algorithms?
(RQ3) How does RefPlan perform when trained on limited offline datasets that increase epistemic
uncertainty by restricting the datasets’ coverage of the state-action space? (RQ4) How robust is
RefPlan when faced with shifts in environment dynamics at test time?

We evaluate these RQs using the D4RL benchmark (Fu et al., 2020) and its variations, focusing on
locomotion tasks in HalfCheetah, Hopper, and Walker2d environments, each with five configurations:
random (R), medium (M), medium-replay (MR), medium-expert (ME), and full-replay (FR).

Baselines: RefPlan is designed to improve any offline learned policy through planning. We evaluate
prior policies using model-free methods (CQL, EDAC) and MB methods (MOPO, COMBO, MAPLE).
Among offline MB planning methods, we use LOOP, which is designed to enhance prior policies
and outperforms methods like MBOP. Therefore, for each prior policy, we compare its original
performance to its performance when augmented with LOOP or RefPlan for test-time planning.

“Direct planning with sampling methods like SIR (Skare et al., 2003) may be better for multi-modal problems.
However, our approach using (13) yields strong empirical results, so we leave direct sampling for future work.

Under review as a conference paper at ICLR 2025

120 Hopper HalfCheetah 120 Walker2d

HE CQL - -oeeoeeo 100

100 Hm + LOOP 100
Emm + Ours 80

80
60

60
40

Figure 3: CQL’s performance when trained on ME and tested in OOD states from R. ‘+ LOOP’ and “+
Ours’ show improvements with LOOP and RefPlan, while dotted lines indicate original performance.

Table 1: Normalized scores of offline RL algorithms on D4RL MuJoCo Gym environments (3 seeds).
For each prior policy, we show its original performance and its performance augmented with LOOP or
RefPlan (Ours) for MB planning during testing. Bold indicates the best performance, while underline
denotes cases where confidence intervals significantly overlap between two methods.

CcQL EDAC MOPO COMBO MAPLE
Orig LOOP Ours Orig LOOP Ours Orig LOOP Ours Orig LOOP Ours Orig LOOP Ours
R 1.0 1.1 1.2 236 235 235 322 324 324 6.3 6.2 6.0 315 318 316

M 669 739 851 101.5 1015 1015 669 675 67.7 609 679 772 294 337 328
946 975 981 1004 101.0 101.1 903 93.6 945 101.1 1014 101.8 61.0 777 82.6
ME 1114 111.6 1121 106.7 1047 1099 913 827 96.5 1056 784 1078 469 534 578
FR 1042 1062 107.6 1066 107.0 1072 732 556 772 899 549 841 79.1 77.0 917

R 199 214 212 225 258 259 298 315 33.0 403 400 407 335 349 350
M 474 571 565 638 730 714 428 584 598 672 732 774 688 729 746
MR 470 521 541 618 669 665 706 718 738 730 712 750 715 747 763
ME 983 1040 1085 1008 107.1 1088 735 945 966 97.6 1103 1103 640 919 928
FR 775 818 867 817 875 885 817 882 908 718 826 863 668 878 902

R 0.1 0.1 0.3 17.5 134 217 133 124 13.1 4.1 3.0 43 21.8 21.8 219
M 77.1 844 8.2 776 917 932 8.0 79.1 859 712 811 874 883 897 916
. 819 936 8.0 8.0 8.4 817 82 8.3 8.0 8.5 933 8.0 8.5 912
ME 1089 1114 111.8 985 974 1160 519 490 68.1 1083 I11.1 1127 111.8 1129 114.0
FR 96.6 994 101.3 98.0 983 997 905 926 932 781 83.0 995 942 967 984

Hopper
<
=

HalfCheetah

Walker2d
=
=
)
wn

Metrics: For RQ1-RQ3, we compare normalized scores averaged over 3 seeds, with 100 for online
SAC and O for a random policy, scaled linearly in between. For RQ4, we report average returns.

5.1 REFPLAN HANDLES EPISTEMIC UNCERTAINTY FROM OOD STATES

To address RQ1, we assessed RefPlan’s robustness under high epistemic uncertainty caused by OOD
initialization. Prior policies were trained on the ME dataset and evaluated on the states from the R
dataset. We tested three prior policies: CQL (Figure 3), MAPLE (Figure 7), and COMBO (Figure 8).

Across all environments, RefPlan consistently mitigated performance degradation due to OOD
initialization, with particularly notable improvements in HalfCheetah and Walker2d. For instance,
when MAPLE was used as the prior policy in HalfCheetah, RefPlan outperformed the original policy
(dotted line in Figure 7). In Walker2d, RefPlan boosted performance by 16.4%, 31.4%, and 42.5% for
COMBO, MAPLE, and CQL, respectively. Although the gains were more modest in Hopper, RefPlan
still reduced performance drops. Overall, RefPlan showed strong resilience under high epistemic
uncertainty caused by OOD initialization.

5.2 REFPLAN ENHANCES ANY OFFLINE-LEARNED POLICIES

To address RQ2, we evaluated the normalized score metric across five offline policy learning algo-
rithms. Table 1 shows that RefPlan outperformed baselines in 10 (CQL), 7 (EDAC), 12 (MOPO), 9
(COMBO), and 12 (MAPLE) of 15 tasks, matching performance in the others. Both MB planning
methods, LOOP and RefPlan, improved performance, with RefPlan showing a more substantial
gain. On average, RefPlan enhanced prior policy performance by 11.6%, compared to LOOP’s
5.3%. Furthermore, Figure 6 in Appendix B shows that RefPlan consistently outperforms LOOP with
non-overlapping confidence intervals under the RLiable evaluation (Agarwal et al., 2022). These

Under review as a conference paper at ICLR 2025

110 Hopper 90 HalfCheetah 105 Walker2d
———3
— 85 100
105 i
1 L 95
80
90
100 75
85
—1 70 80
95 — caL (orig) —4— caL (orig) —4— caL (Orig)
—4— CQL + LOOP 65 —4— CQL + LOOP 75 | —4— CQL + LOOP
—4— CQL + Ours —4— CQL + Ours —4— CQL + Ours
9050K 100K 250K 500K Full (1M) 60 50K 100K 250K 500K Full (1M) 70 50K 100K 250K 500K Full (1M)
Dataset Size Dataset Size Dataset Size

Figure 4: Performance comparison of RefPlan and LOOP across different dataset sizes in Hopper,
HalfCheetah, and Walker2d environments using the FR dataset, which contains 1M samples. We use
CQL as the prior policy learning algorithm, and the results represent the average and standard error
calculated from three random seeds.

results demonstrate RefPlan’s superior ability to enhance various offline policy learning algorithms
by explicitly accounting for epistemic uncertainty during planning.

5.3 PERFORMANCE WITH LIMITED OFFLINE DATA WITH VARYING DATASET SIZES

With limited data, the agent faces increased epistemic uncertainty. A key question is whether
RefPlan can better handle these scenarios with constrained data (RQ3). To explore this, we randomly
subsample 50K, 100K, 250K, and 500K transition samples from the FR dataset for each environment.
We then train the prior policy using CQL and compare its performance with that achieved when
enhanced by either LOOP or RefPlan. As shown in Figure 4, RefPlan consistently demonstrates
greater resilience to limited data, outperforming the baselines across all three environments.

5.4 REFPLAN IS MORE ROBUST TO CHANGING DYNAMICS?

To address RQ4, we evaluated RefPlan in the HalfCheetah envi- Figure 5: Average returns on
ronment under varying dynamics, including disabled joint, hill, HalfCheetah — with dynamics
slopes (gentle and steep), and field, following the approach of ~changes.

Clavera et al. (2019) (Appendix D). High epistemic uncertainty
arises when dynamics differ from those seen during prior policy =~ Task | Orig LOOP Ours
training. We trained the prior policy using the FR dataset, which .

contains the most diverse trajectories, and used MAPLE for its Jh(z;?t 3?2279 51 gfg 87 (li;gg
adaptive policy learning. Table 5 shows that while MAPLE strug- gentle 108'7 236.3 2435
gled with changed dynamics, MB planning methods improved steep | 2123 3245 6238
performance. RefPlan achieved the best results across all varia- field | 1205 2774 3345
tions but still faced notable drops, especially in the hill and gentle
environments. Data augmentation for single-task offline RL could
enhance adaptability, a topic for future work.

6 CONCLUSION

In this paper, we introduced RefPlan (Reflect-then-Plan), a novel doubly Bayesian approach to offline
model-based planning that integrates epistemic uncertainty modeling with model-based planning
in a unified probabilistic framework. Our method enhances offline RL by explicitly accounting
for epistemic uncertainty, a common challenge in offline settings where data coverage is often
incomplete. Through extensive experiments on standard offline RL benchmarks, we demonstrated
that RefPlan consistently outperforms existing methods, particularly under challenging conditions
of OOD initialization, limited data availability, and changing environment dynamics, making it a
valuable tool for more reliable and adaptive offline RL. Future work could extend RefPlan to more
complex models and environments.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=S1ANxQWODb.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G. Bellemare.
Deep reinforcement learning at the edge of the statistical precipice, 2022. URL https://
arxiv.org/abs/2108.13264.

Gaon An, Seungyong Moon, Jang-Hyun Kim, and Hyun Oh Song. Uncertainty-based offline
reinforcement learning with diversified g-ensemble. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=2UvaSolQZzh3.

Arthur Argenson and Gabriel Dulac-Arnold. Model-based offline planning. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
OMNB1G5xzd4.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Robert N. Boute, Joren Gijsbrechts, Willem van Jaarsveld, and Nathalie Vanvuchelen. Deep
reinforcement learning for inventory control: A roadmap. European Journal of Opera-
tional Research, 298(2):401-412, 2022. ISSN 0377-2217. doi: https://doi.org/10.1016/j.¢jor.
2021.07.016. URL https://www.sciencedirect.com/science/article/pii/
S0377221721006111.

Xiong-Hui Chen, Yang Yu, Qingyang Li, Fan-Ming Luo, Zhiwei Tony Qin, Shang Wenjie, and Jieping
Ye. Offline model-based adaptable policy learning. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=1rdXcl7jmé6.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement
learning in a handful of trials using probabilistic dynamics models. In Advances in Neural
Information Processing Systems, volume 31, 2018. URL https://proceedings.neurips.
cc/paper/2018/£file/3de568£8597b94bda53149c7d7£5958c-Paper.pdf.

Ignasi Clavera, Anusha Nagabandi, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and
Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement
learning. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=HyztsoC5Y7.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning — identifiability
challenges and effective data collection strategies. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=IBdEfhLveS.

Michael O’Gordonz Duff. Optimal Learning: Computational Procedures for Bayes-Adaptive Markov
Decision Processes. PhD thesis, University of Massachusetts Amherst, Amherst, USA, 2002.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4RL: datasets for deep
data-driven reinforcement learning. CoRR, abs/2004.07219, 2020.

Scott Fujimoto and Shixiang Gu. A minimalist approach to offline reinforcement learning. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
Q32U7dzWXpc.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In Proceedings of the 36th International Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pp. 2052-2062. PMLR, 09-15 Jun 2019. URL
https://proceedings.mlr.press/v97/fujimotol9a.html.

11

https://openreview.net/forum?id=S1ANxQW0b
https://arxiv.org/abs/2108.13264
https://arxiv.org/abs/2108.13264
https://openreview.net/forum?id=ZUvaSolQZh3
https://openreview.net/forum?id=OMNB1G5xzd4
https://openreview.net/forum?id=OMNB1G5xzd4
https://www.wandb.com/
https://www.wandb.com/
https://www.sciencedirect.com/science/article/pii/S0377221721006111
https://www.sciencedirect.com/science/article/pii/S0377221721006111
https://openreview.net/forum?id=lrdXc17jm6
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3de568f8597b94bda53149c7d7f5958c-Paper.pdf
https://openreview.net/forum?id=HyztsoC5Y7
https://openreview.net/forum?id=HyztsoC5Y7
https://openreview.net/forum?id=IBdEfhLveS
https://openreview.net/forum?id=Q32U7dzWXpc
https://openreview.net/forum?id=Q32U7dzWXpc
https://proceedings.mlr.press/v97/fujimoto19a.html

Under review as a conference paper at ICLR 2025

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforcement
learning: A survey. Found. Trends Mach. Learn., 8(5-6):359—-483, November 2015. ISSN
1935-8237.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine.
Why generalization in 1l is difficult: Epistemic pomdps and implicit partial observability. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 25502-25515. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/£file/d5f£135377d39f1de7372c95¢c74dd962-Paper.pdf.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline RL policies should be trained
to be adaptive. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 7513-7530. PMLR, 17-23 Jul
2022. URL https://proceedings.mlr.press/v162/ghosh22a.html.

Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive reinforcement learn-
ing using sample-based search. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/paper/
2012/£fi1e/35051070e572e47d2c26c241ab88307f-Paper.pdf.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. In Advances in Neural Information Processing Systems, 2019.

Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari,
Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine
Learning, volume 162 of Proceedings of Machine Learning Research, pp. 9902-9915. PMLR,
17-23 Jul 2022.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline r1? In Marina
Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 5084-5096. PMLR,
18-24 Jul 2021. URL https://proceedings.mlr.press/v139/jin2le.html.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1-2):99—-134, may 1998. ISSN 0004-
3702.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Scalable
deep reinforcement learning for vision-based robotic manipulation. In Proceedings of The
2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning Research,
pp. 651-673. PMLR, 29-31 Oct 2018. URL https://proceedings.mlr.press/v87/
kalashnikovl8a.html.

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel : Model-
based offline reinforcement learning. In Advances in Neural Information Processing Systems,
2021.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit
g-learning. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=68n2s972JWF 8.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
g-learning via bootstrapping error reduction. In Advances in Neural Information Processing
Systems, volume 32, 2019. URL https://proceedings.neurips.cc/paper/2019/
file/c2073f£fa7705357a498057413bb09d3a-Paper.pdf.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

12

https://proceedings.neurips.cc/paper_files/paper/2021/file/d5ff135377d39f1de7372c95c74dd962-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/d5ff135377d39f1de7372c95c74dd962-Paper.pdf
https://proceedings.mlr.press/v162/ghosh22a.html
https://proceedings.neurips.cc/paper_files/paper/2012/file/35051070e572e47d2c26c241ab88307f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/35051070e572e47d2c26c241ab88307f-Paper.pdf
https://proceedings.mlr.press/v139/jin21e.html
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://proceedings.mlr.press/v87/kalashnikov18a.html
https://openreview.net/forum?id=68n2s9ZJWF8
https://openreview.net/forum?id=68n2s9ZJWF8
https://proceedings.neurips.cc/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/c2073ffa77b5357a498057413bb09d3a-Paper.pdf

Under review as a conference paper at ICLR 2025

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review,
2018.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. CoRR, abs/2005.01643, 2020.

Kendall Lowrey, Aravind Rajeswaran, Sham Kakade, Emanuel Todorov, and Igor Mordatch. Plan
online, learn offline: Efficient learning and exploration via model-based control, 2018. URL
https://arxiv.org/abs/1811.01848.

Cong Lu, Philip Ball, Jack Parker-Holder, Michael Osborne, and S Roberts. Revisiting design
choices in offline model based reinforcement learning, 2021. URL https://openreview.
net/forum?id=UfX6vkvhtl.

Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and Vikash Kumar. Deep dynamics models for
learning dexterous manipulation, 2019. URL https://arxiv.org/abs/1909.11652.

Masashi Okada and Tadahiro Taniguchi. Variational inference mpc for bayesian model-based
reinforcement learning. In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.),
Proceedings of the Conference on Robot Learning, volume 100 of Proceedings of Machine
Learning Research, pp. 258-272. PMLR, 30 Oct-01 Nov 2020. URL https://proceedings.
mlr.press/v100/okada20a.html.

Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Yoshua Bengio, and Chris Pal. Probabilistic
planning with sequential monte carlo methods. In International Conference on Learning Represen-
tations, 2019. URL https://openreview.net/forum?id=ByetGn0OcYX.

Marc Rigter, Bruno Lacerda, and Nick Hawes. Rambo-rl: Robust adversarial model-based offline
reinforcement learning. arXiv preprint arXiv:2204.12581, 2022.

Harshit Sikchi, Wenxuan Zhou, and David Held. Learning off-policy with online planning. In 5th
Annual Conference on Robot Learning, 2021. URL https://openreview.net/forum?
1d=1GNVI9SW95ed.

@ivind Skare, Erik Bglviken, and Lars Holden. Improved sampling-importance resampling and
reduced bias importance sampling. Scandinavian Journal of Statistics, 30(4):719-737, 2003. doi:
https://doi.org/10.1111/1467-9469.00360. URL https://onlinelibrary.wiley.com/
doi/abs/10.1111/1467-9469.00360.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Grady Williams, Andrew Aldrich, and Evangelos Theodorou. Model predictive path integral control
using covariance variable importance sampling, 2015.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
CoRR, abs/1911.11361, 2019. URL http://arxiv.org/abs/1911.11361.

Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and Trevor
Darrell. BDD100K: A diverse driving video database with scalable annotation tooling. CoRR,
abs/1805.04687, 2018. URL http://arxiv.org/abs/1805.04687.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine, Chelsea Finn, and
Tengyu Ma. Mopo: Model-based offline policy optimization. In Advances in Neural Information
Processing Systems, 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
COMBO: conservative offline model-based policy optimization. CoRR, abs/2102.08363, 2021.

Xianyuan Zhan, Xiangyu Zhu, and Haoran Xu. Model-based offline planning with trajectory pruning.
In Lud De Raedt (ed.), Proceedings of the Thirty-First International Joint Conference on Artificial
Intelligence, IJCAI-22, pp. 3716-3722. International Joint Conferences on Artificial Intelligence
Organization, 7 2022. doi: 10.24963/ijcai.2022/516. URL https://doi.org/10.24963/
ijcai.2022/516. Main Track.

13

https://arxiv.org/abs/1811.01848
https://openreview.net/forum?id=UfX6vkvhtl
https://openreview.net/forum?id=UfX6vkvhtl
https://arxiv.org/abs/1909.11652
https://proceedings.mlr.press/v100/okada20a.html
https://proceedings.mlr.press/v100/okada20a.html
https://openreview.net/forum?id=ByetGn0cYX
https://openreview.net/forum?id=1GNV9SW95eJ
https://openreview.net/forum?id=1GNV9SW95eJ
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9469.00360
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9469.00360
http://arxiv.org/abs/1911.11361
http://arxiv.org/abs/1805.04687
https://doi.org/10.24963/ijcai.2022/516
https://doi.org/10.24963/ijcai.2022/516

Under review as a conference paper at ICLR 2025

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning,
2020. URL https://arxiv.org/abs/1910.08348.

14

https://arxiv.org/abs/1910.08348

Under review as a conference paper at ICLR 2025

A ADDITIONAL BACKGROUND

A.1 BAYES-ADAPTIVE MARKOV DECISION PROCESSES

Bayes-Adaptive Markov Decision Processes (BAMDPs) (Duff, 2002) extend the standard MDP
framework by explicitly incorporating uncertainty over the transition and reward functions. In a
BAMDP, instead of assuming that the transition dynamics 7'(s’|s, a) and reward function r(s, a) are
known and fixed, we assume that they are drawn from an unknown distribution. The agent maintains
a posterior belief over these functions and updates it as new data are collected through interaction
with the environment.

To illustrate, consider a simple case where we have finite and discrete state and action spaces with
|S| = ns and | A| = ng; hence, a state can be represented with an integer, i.e., s = i fori = 1,. .., ns,
and similarly for the actions. While the reward function r(s, a) is assumed to be known, we are
uncertain about the transition probabilities T'(s'|s, a). We can model this uncertainty by placing a
prior distribution over the transition probabilities, typically using a Dirichlet prior, which is conjugate
to the multinomial likelihood of observing transitions between states.

For each state-action pair (s, a) € S x A, the transition probabilities 7'(s’|s, a) are parameterized by
a multinomial distribution:

T(s's,a) ~ Multinomial(6, ,), (14)
where 0, , = (057,171, ..., 05.4.n,) represents the probabilities of transitioning from state s to any
state s’ € S under action a. These parameters follow a Dirichlet distribution:

0, ., ~ Dirichlet(as), (15)
where a5 o = (®s,a,1,- - - Qs,a,n,) > 0 are the Dirichlet hyperparameters.

Initially, the agent holds a prior belief about the transition probabilities, represented by the Dirichlet
hyperparameters o , for all state-action pairs. As the agent interacts with the environment and
observes transitions of the form (s, a, s’), it updates its posterior belief by simply updating the
corresponding Dirichlet hyperparameters. Specifically, when the agent observes a transition from
state s to state s’ under action a, the corresponding Dirichlet hyperparameter is updated as:

Qs a,s’ — Qs q,s’ +]-7 (16)

while all other Dirichlet hyperparameters remain unchanged. This process of updating the Dirichlet
hyperparameters fully captures the agent’s experiences; hence, these hyperparameters act as sufficient
statistics for the agent’s belief about the environment.

By transforming the BAMDP into a belief-state MDP, where the belief state b; = p(0|7.;) is a distri-
bution over transition probabilities conditioned on the observed trajectory 7., = (so, ag, S1, - - - , 5t),
the agent can solve the problem using standard MDP solution methods. The augmented state space,
or hyper-state space, includes both the physical state s € S and the belief state b € B. In this simple
finite state-action example, the belief state corresponds to the Dirichlet hyperparameters .

The transition dynamics of the resulting belief-state MDP are fully known and can be written as:
T(5'5,a) =T(s',d'|s,a,a) = T(s'|s,a,a)p(|s, o, a) (17

Ag s’ /
===—""—1I)= v+ 1 18
anes Us,a,s'" (O‘s,a,s Xs,a,s +) ’ ()
where I(+) is the indicator function. This transformation turns the BAMDP into a fully observable
MDP in the hyper-state space, which allows the use of standard, e.g., DP methods to compute an
optimal policy.

However, the computational complexity of solving the BAMDP grows quickly with the number of
states and actions. If the states are fully connected (i.e., p(s’|s,a) > 0, Vs, a,s"), the number of
reachable belief states increases exponentially over time, making exact solutions intractable for even
moderately sized problems.

For a comprehensive overview of solution methods for BAMDPs, we refer readers to the survey by
Ghavamzadeh et al. (2015). In this work, we have utilized variational inference techniques from
Zintgraf et al. (2020) and Dorfman et al. (2021) to approximate the agent’s posterior belief over the
environment dynamics, p(b|7.;), based on past experiences.

15

Under review as a conference paper at ICLR 2025

Median QM Mean Optimality Gap
RefPlan | | | |
LOOP Himmmam T [[
0.875 0.900 0.925 0.88 0.90 0.92 0.94 0.850 0.875 0.900 0.12 0.14 0.16 0.18

Human Normalized Score

Figure 6: RLiable (Agarwal et al., 2022) comparison of RefPlan and LOOP. Across all four metrics,
RefPlan demonstrates superior performance with non-overlapping confidence intervals, highlighting
statistically significant improvements over LOOP.

100 Hopper HalfCheetah 120 Walker2d
B MAPLE | 100
80 I + LOOP 1001
I + Ours 80
60 80+
60
60+

40

Figure 7: MAPLE’s performance when trained on ME and tested in OOD states from R. ‘+ LOOP’
and ‘+ Ours’ show improvements with LOOP and RefPlan, while dotted lines indicate original
performance.

120 Hopper HalfCheetah 120 Walker2d
I COMBO 100
0] = -+ LOOP 7} 1001
Il + Ours 80
80 801
60
40

Figure 8: COMBO’s performance when trained on ME and tested in OOD states from R. ‘+ LOOP’
and ‘+ Ours’ show improvements with LOOP and RefPlan, while dotted lines indicate original
performance.

B ADDITIONAL RESULTS

B.1 PERFORMANCE COMPARISON OF REFPLAN vs. LOOP

In order to make a more statistically rigorous comparison between RefPlan and LOOP, we leverage
RLiable (Agarwal et al., 2022), a framework designed for robust evaluation of reinforcement learning
algorithms. RLiable focuses on statistically sound aggregate metrics, such as the median, interquar-
tile mean (IQM), mean, and optimality gap, which provide a comprehensive view of algorithm
performance across tasks. By using bootstrapping with stratified sampling, RLiable also estimates
confidence intervals, ensuring that comparisons are not skewed by outliers or noise.

We applied RLiable to compare RefPlan and LOOP across the tested environments and prior policy
setups (Figure 6). Across all metrics, RefPlan consistently outperformed LOOP, with non-overlapping
confidence intervals, indicating statistically significant improvements.

B.2 REFPLAN HANDLES EPISTEMIC UNCERTAINTY FROM OOD STATES
To address RQ1, we assessed the robustness of RefPlan under conditions of high epistemic uncertainty

arising from OOD initialization. Specifically, we began by training a prior policy on the ME dataset
and then tested it in states sampled from the R dataset, which are OOD. The evaluation included

16

Under review as a conference paper at ICLR 2025

Table 2: Performance comparison of RefPlan against baseline methods on Hopper, HalfCheetah,
and Walker2d tasks using MOPO and COMBO for offline policy optimization. The table evaluates
original policies (Orig), policies trained with Non-Markovian (NM) dynamics models (NM (Train)),
NM-trained policies combined with RefPlan for planning (NM (Train) + RefPlan), and RefPlan using
original policies as priors. Results demonstrate RefPlan’s ability to improve test-time performance
across different dynamics models and environments.

NM NM (Train) NM NM (Train)

Orig Trgin) +RefPlan RefPlan Orig (Train) +RefPlan RefPIan
5 M 669 ; ; 617 5 M 609 522 6230 772
£ MR 903 932 98.18 945 E MR 1011 449 61.90 101.8
€ ME 913 ; - 96.5 £ ME 1056 273 3923 1078
5 =
S M 428 406 66.45 598 S M &2 303 4161 774
£ MR 06 532 72.46 738 E MR O 416 59.54 75.0
E ME 75 716 100.34 96.6 E ME 976 935 109.25 1103
= =
T M 820 606 7273 85.9 T M 72 79 89.43 87.4
5 MR 817 533 79.75 88.3 5 MR 880 804 91.01 933
3 OME sl 424 64.59 68.1 S OME 1083 367 38.47 1127

three prior policies: CQL (Figure 3), MAPLE (Figure 7), and COMBO (Figure 8). Across all
environments and prior policies, RefPlan consistently mitigated performance drops, with the benefits
being particularly notable in the HalfCheetah and Walker2d environments. For instance, when using
MAPLE as the prior policy in HalfCheetah, the agent enhanced with MB planning significantly
outperformed the original policy (represented by the dotted line in Figure 7). In the Walker2d
environment, RefPlan boosted the performance of the prior policies by 16.4%, 31.4%, and 42.5%
for COMBO, MAPLE, and CQL, respectively. Although the improvements in Hopper were more
modest, MB planning methods still reduced performance deterioration. Overall, agents trained on a
narrow data distribution experienced performance drops when exposed to unknown states, but MB
planning approaches, particularly RefPlan, demonstrated significant resilience under high epistemic
uncertainty.

B.3 PERFORMANCE COMPARISON: NON-MARKOVIAN DYNAMICS MODEL FOR TRAINING VS.
PLANNING

The experiments presented in Table 2 aims to evaluate the effectiveness of RefPlan in leveraging
the VAE dynamics—consisting of the variational encoder ¢4 and the probabilistic ensemble decoder
Dy (Figure 10)—for planning at test time. Specifically, these experiments compare the following
approaches:

* “Orig”: the original prior policy trained using MOPO or COMBO.

* “NM (Train)”: the policy trained using a non-Markovian (NM) VAE dynamics model during
offline policy optimization via MOPO or COMBO.

“NM (Train) + RefPlan ”: the RefPlan agent that uses the policies trained using NM dynamics
models as priors.

» “RefPlan : the RefPlan agent that uses the original prior policies as priors.

The results demonstrate several key findings. First, RefPlan consistently outperforms NM (Train)
across all environments and datasets, confirming that the VAE dynamics models are significantly
more effective when used for planning at test time rather than during offline policy training. This
highlights RefPlan’s ability to explicitly handle epistemic uncertainty, leveraging the agent’s real-time
history to infer the underlying MDP dynamics.

Second, in MOPO results, NM (Train) diverged or underperformed in several cases. This suggests
that the heuristically estimated model uncertainty used in MOPO is not well-suited for integrating
with the VAE dynamics models during offline training. Even with large penalty parameters, the value
function diverged in the Hopper tasks, indicating a fundamental limitation in using NM models with
MOPO for policy optimization. By contrast, COMBO results did not exhibit these issues, suggesting
that COMBO’s framework is better equipped to incorporate such dynamics models during training.

17

Under review as a conference paper at ICLR 2025

x10~4 x10-2

S <

20 2! 22 23 24 20 2! 22 23 24
Number of Latent Samples n Number of Latent Samples n

»
o
a
=
N]
o

w »

© o

w o
Sample Variance

=oe e

o o =

N [+3) =

Sample Variance
w
©
o

<
©
=)

(a) Hopper (MR) (b) Hopper (FR)

x1072 x1072

N
=
o

1.44

-
©
v

1.36

1.28

-
o
o

1.20

Sample Variance
=
; oo !
o
Sample Variance

=
U
o

1.12
20 2! 22 23 24 20 2! 22 23 24
Number of Latent Samples n Number of Latent Samples n

(c) HalfCheetah (MR) (d) HalfCheetah (FR)

x10~2 x1072

-
2]
N
-

Sample Variance
= =
r 2on
Sample Variance
-
o]

=
[N]

i
(3]

.
[N]

\\—<

20 2! 22 23 24 20 2! 22 23 24
Number of Latent Samples n Number of Latent Samples n

(e) Walker2d (MR) (f) Walker2d (FR)

Figure 9: The sample variance and the performance vs. the number of latent samples of RefPlan,
evaluated from three environments with the MR and FR datasets using CQL as the prior policy.

Finally, applying RefPlan to policies trained with NM dynamics models (NM (Train) + RefPlan)
further boosted test-time performance, often by substantial margins. This demonstrates that even
when NM dynamics models introduce suboptimality during offline training, RefPlan can recover and
enhance the policy’s performance through effective planning at test time. Across all environment-
dataset combinations, RefPlan provides robust improvements over both the original and NM (Train)-
optimized policies, further validating its capability to address epistemic uncertainty and improve the
generalization of offline-learned policies.

B.4 EVALUATING THE IMPACT OF THE NUMBER OF LATENT SAMPLES ON VARIANCES AND
PERFORMANCE

This experiment evaluates how the sample variance of the marginal action posterior mean from (13)
changes with the number of latent samples () used in the outer expectation. At each time step, we
compute the posterior mean K times, calculate its variance averaged across action dimensions, and
report the running average over a 1,000-step episode. Results are averaged over three random seeds,
with CQL as the prior policy, across three environments (Hopper, HalfCheetah, Walker2d) and two
dataset configurations (MR, FR).

The figures show that as 7 increases, the average sample variance decreases, with 7 = 1 consistently
yielding the highest variance. Performance, measured as normalized scores, generally improves with
increasing 7, suggesting a positive correlation between reduced variance and higher performance.
However, while reduced variance likely contributes to this improvement, further investigation is
needed to confirm causality, as other factors may also play a role.

18

Under review as a conference paper at ICLR 2025

Algorithm 2 RefPlan: Offline MB Planning as Probabilistic Inference

1: Input: 7, = (S0,20,70;---,St)s Dyps 9> Tps Q, H,N,n, k
20 e, 0 < qo(-|Te) > Get the Gaussian parameters
3 {mi}j_y ~ N, 07) > Sample 72 latent vectors from the approximate posterior
4: forn=1,...,N do
5: forh=0,...,H—1do
6: ay , ~ mp(-[St4n) > Sample prior action sequence
7: Syt ~ Dy (ISP @l 1) > Sample the next state from model using /1
8: end for
9: forj=1,...,ndo
10: sy sy
11: forh=0,...,H—1do
12: Sy hi1 ~ Py (Clsy s ar,, mi) > Sample next state from model using ;]
13: T (s, Al s mi) > Compute the reward using m;]
14: end for
15: end for
16: end for
17: Compute Ep,(-|0)[as.¢ 4] with (13)
18: return E,(;0)[as¢1 1] > Return the plan to be used in line 7 of Algorithm 1

C ALGORITHM DETAILS

C.1 ALGORITHM SUMMARY

RefPlan is designed to enhance any offline RL policy by incorporating MB planning that accounts for
epistemic uncertainty. The algorithm operates in two primary stages: pretraining (Appendix C.3) and
test-time planning.

Pretraining stage The first step is to train a prior policy 7, using any offline RL algorithm. In
parallel, a VAE is trained using the ELBO objective in (9), where the encoder captures the agent’s
epistemic uncertainty and the decoder learns the environment dynamics. See Appendix C.3 for more
details.

Test-time planning stage During evaluation, the agent - - -
employs NII)PC (Alggoritim 1), Wh%:re RefPlan serve% as Algorithm 1 Offline MB Planning
the trajectory optimization subroutine. At each time step 1
t, the agent gathers its history 7.; and encodes it into a 2
latent variable m; using the pretrained encoder (line 2 of 3
Algorithm 2). This latent variable encapsulates the agent’s ~ 4: t <1
current belief about the environment, reflecting epistemic ~ 5: repeat
uncertainty. 6: Observe s,

7.

8

9

10

: Input: py, Vs, D, 7o, £
: Train p,, with D via MLE
: Train V4 and g with £ and D

aj, g < TrajOpt(st, py, mo, V)
Take a}, observe s;y1, 1
t—t+1

. until episode terminates

Then, we first generate N prior plans with the prior policy
and the learned model (lines 5-8). Each plan has the
length of H, and we use y; to condition p,;, at this stage.
Optionally, we add a Gaussian noise to the actions sampled
by 7, following Argenson & Dulac-Arnold (2021); Sikchi et al. (2021).

Once the prior plans are prepared, we rollout the plans under the learned model to generate multiple
trajectories. That is, for each sampled m;, we obtain N trajectories (lines 9-14). These trajectories
are then used to estimate the optimal plan, conditioned on m?. We marginalize out the latent variable
via Monte-Carlo expectation using the law of total expectation.

Finally, the first action from the optimized plan is selected and executed in the environment. This
process repeats at each subsequent time step, with the agent continuously updating its belief state and
re-optimizing its plan based on new observations.

19

Under review as a conference paper at ICLR 2025

Table 3: Hyperparameters for Model Architecture and Training

Architecture Hyperparameters Value

Task Embedding Dimension 16
State Embedding Dimension 16
Action Embedding Dimension 16
Reward Embedding Dimension 4
GRU Hidden Dimension 256

Decoder Network Architecture Fully connected, [200, 200, 200, 200] with skip connection
Decoder ensemble size 20
Decoder number of elite models 14

Training Hyperparameters Value
KL Weight Coefficient 0.1
Input Normalization True
Learning Rate 0.001
Weight Decay 0.01
Optimizer AdamW
Batch Size 64

C.2 ARCHITECTURE

Encoder Decoder

2t-1

/\ <q¢> St —>

st—»[l—»

. St+1
e at — Dy {
a1 — [] > | GRU | > z— —<I) >—>N(p,t,crf) ~ mg —> Tti1

log o}

Tio1 —> |:| —

Figure 10: A schematic illustration of the architecture of RefPlan. We use the same encoder
architecture as in VariBAD (Zintgraf et al., 2020), which consists of a GRU model and a fully
connected layer. Unlike VariBAD, which uses the decoder only for training the encoder, we employ a
two-stage training procedure (Appendix C.3) to learn a decoder that is directly used for planning at
test time. The decoder network reconstructs the past trajectory and predicts the next state but does
not attempt to predict the entire future trajectory as in the prior work (see also Eq.(10)).

Figure 10 illustrates the architecture of RefPlan. For the encoder, we adopt the architecture from
VariBAD (Zintgraf et al., 2020), with a few minor modifications to the hyperparameters. The encoder
utilizes a GRU network to encode the agent’s history and outputs the parameters of a Gaussian
distribution representing the latent variable m;.

At time t = 0, we initialize z_; = 0 and a_; = 0. The state s;, the previous action a;_1, and the
previous reward 7;_ are first embedded into their respective latent spaces using distinct linear layers,
each followed by ReL.U activation. These embedded vectors, along with the hidden state from the
previous time step z;_1, are then processed by the GRU, which outputs the updated hidden state z;.
This hidden state is subsequently linearly projected onto the task embedding space to obtain the mean
(u¢) and log variance (log Jf) of the Gaussian distribution for the latent variable at the current time
step.

Since the decoder plays a critical role in test-time planning, we follow established practices from
prior work and implement the decoder using a probabilistic ensemble network (Chua et al., 2018;
Janner et al., 2019; Yu et al., 2020; 2021; Chen et al., 2021). Specifically, the ensemble consists of
20 models, from which we select the 14 elite models that achieve the lowest validation loss during
training. The decoder network conditions on a latent sample m; ~ N (pis, 02), along with s; and a;,
to predict the next state s,y and reward ;1. The hyperparameters associated with the architecture
are summarized in Table 3.

20

Under review as a conference paper at ICLR 2025

Table 4: Reproducing the reported performances of offline policy learning algorithms on the D4RL MuJoCo
tasks. *Numbers reported in An et al. (2021).

CQL EDAC MOPO COMBO MAPLE

Paper Rep. Paper Rep. Paper Rep. Paper Rep. Paper Rep.

R 10.8 1.0 25.3 23.6 11.7 322 17.9 6.3 10.6 315

5 M 86.6 66.9 101.6 101.5 28.0 66.9 97.2 60.9 21.1 29.4
g MR 48.6 94.6 101.0 100.4 67.5 90.3 89.5 101.1 87.5 61.0
= ME 111.0 111.4 110.7 106.7 23.7 91.3 111.1 105.6 425 46.9
FR 101.9 104.2 105.4 106.6 - 732 89.9 79.1

= R 35.4 19.9 28.4 225 354 29.8 38.8 40.3 38.4 335
3 M 444 474 65.9 63.8 423 42.8 54.2 67.2 50.4 68.8
5 MR 46.2 47.0 61.3 61.8 53.1 70.6 55.1 73.0 59.0 71.5
= ME 62.4 98.3 106.3 100.8 63.3 735 90.0 97.6 63.5 64.0
o) FR 76.9% 715 84.6 81.7 - 81.7 71.8 66.8
R 7.0 0.1 16.6 175 13.6 133 7.0 4.1 21.7 21.8

g M 74.5 77.1 92.5 77.6 17.8 82.0 81.9 71.2 56.3 88.3
g MR 32.6 63.5 87.1 85.0 39.0 81.7 56.0 88.0 76.7 85.0
g ME 98.7 108.9 114.7 98.5 44.6 51.9 103.3 108.3 73.8 111.8
FR 94.2* 96.6 99.8 98.0 - 90.5 78.1 94.2

C.3 PRETRAINING

RefPlan requires two stages of pretraining. First, we use an off-the-shelf offline RL algorithm to train
a prior policy 7,. In our experiments, we evaluated several algorithms, including CQL (Kumar et al.,
2020), EDAC (An et al., 2021), MOPO (Yu et al., 2020), COMBO (Yu et al., 2021), and MAPLE
(Chen et al., 2021), though any offline RL policy learning algorithm could be utilized.

Second, we train the encoder g4 and the decoder p,;,. The encoder g is trained using the ELBO
loss as defined in (9). The decoder py, is trained to reconstruct the past and to predict the next state,
conditioned on the sample m; the current state s;, and the action a;. This training constitutes the first
phase of dynamics learning. During this step, the encoder learns a latent representation that captures
essential information for reconstructing the trajectory. Unlike VariBAD, where the decoder is trained
to reconstruct the entire trajectory including future states, we found that focusing on the past and the
next state improves the decoder’s performance.

After completing the first training phase, we freeze the encoder network parameters and proceed to
the second phase. In this phase, we fine-tune the decoder network p.;, to accurately predict the next
state given my, s, and a;. This is achieved using the loss function defined in (11), which we reiterate
here for clarity:

H—-1
L(w):ETND Z E7nh,\,q¢)(.‘7—:h)[*1Og}3w(sh+1,Th‘sh,ah,mh)] . (19)
h=0

The second training phase ensures that the learned dynamics model, p,,, accurately predicts the next
state. This two-stage approach allows RefPlan to maintain an effective dynamics moel for planning
at test time, unlike VariBAD, where the decoder is discarded after training the VAE.

D EXPERIMENTAL DETAILS

D.1 EXPERIMENTAL SETTINGS

D4RL MuJoCo environments & datasets We use the v2 version for each dataset as provided by
the D4RL library (Fu et al., 2020).

Evaluation under high epistemic uncertainty due to OOD initialization (RQ1) To address RQI,
we assessed a policy trained on the ME dataset of each MuJoCo environment by initializing the agent
from a state randomly selected from the R dataset. The results, presented in Figure 3, 7, and 8 are
averaged over 3 seeds. For a fair comparison, the same initial state was used across all methods being
compared—the prior policy, LOOP, and RefPlan—under the same random seed.

21

Under review as a conference paper at ICLR 2025

CQL + RefPlan (BayesOpt) — CQt + ie:Pllan (Ba.);esOpt) — COt + ie:Pllan (Ba}:jesOpt)

=« CQL + Refplan (Grid) CQL + Refplan (Grid) CQL + Refplan (Grid)
g 2
<€ 100 G 237 ©
g c - ——— c
_ - -
5 [— o) o
‘£ t &
[0} v [}
& o o
% o % 501 %
& m m

90 45 85
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Iteration Iteration Iteration
(a) Hopper (MR) (b) HalfCheetah (MR) (c) Walker2d (MR)

Figure 11: Best performance vs. the number of BayesOpt iterations, using CQL as a prior policy on
the MR datasets across three environments.

Benchmarking on D4RL tasks (RQ2) To generate the benchmark results shown in Table 1, we
first trained the five baseline policies on each dataset across the three environments. The focus of
our analysis is on the performance improvements of these prior policies when augmented with either
LOOP or RefPlan as an MB planning algorithm during the evaluation phase. Thus, our approach
is designed to be complementary to any offline policy learning algorithms, making the relative
performance gains more relevant than the absolute performance of each algorithm. Nevertheless, we
aimed to closely replicate the original policy performance reported in prior studies. Table 4 compares
our reproduced results with those originally reported. Overall, our implementation closely matches
the original performances, often exceeding them significantly across various datasets. However, in
some cases, our reproduced policy checkpoints underperformed compared to the originally reported
results, such as CQL on the R datasets, EDAC on Walker2d M and ME datasets, COMBO on the
Hopper R and M datasets, and MAPLE on the Hopper MR dataset. We will make our code publicly
available upon acceptance.

Varying dataset sizes (RQ3) In Figure 4, we present the normalized average return scores for CQL
and its enhancements with either LOOP or RefPlan as we vary the dataset size from 50K to 500K.
We conducted these experiments using the FR dataset across three environments, which originally
contains 1M transition samples. To create the smaller datasets, we randomly subsampled trajectories.
If the subsampled data exceeded the desired dataset size, we trimmed the last trajectory accordingly.
For CQL training, we applied the same hyperparameters as those used for the full FR dataset.

Changing dynamics (RQ4) To explore RQ4, Table 5: Environment configuration for the HalfCheetah
we adapted the HalfCheetah environment fol- variations used in RQ4 experiments, showing the orig-
lowing the approach of Clavera et al. (2019), inal and modified height parameter values for each
introducing five variations: disabled joint, hill, task.
gentle slope, steep slope, and field. These Task Original Modified
variations were implemented using the code will 0.6 02

from https://github.com/iclavera/ genile] 0:2
learning_to_adapt. Unlike the original steep 4 05

work, which focuses on meta-RL, our study ad- fi,14 Uniform(0.2,1) Uniform(0.05,0.4)
dresses an offline RL problem within a single
task framework. Hence, to make the tasks easier, we modified the height parameter for most
variations, excluding the disabled joint task. The specific adjustments to the height parameters
are detailed in Table 5. These changes were intended to create more manageable tasks while still
providing a meaningful challenge for the offline RL algorithms.

22

https://github.com/iclavera/learning_to_adapt
https://github.com/iclavera/learning_to_adapt

Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters used for MAPLE + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2D
H o K n P H o K n P H o K n P
random 2 0.01 10.0 1 1.0 4 0.05 10.0 16 1.0 2 0.05 0.1 16 1.0
medium 2 0.01 0.1 8 0.1 4 0.01 5.0 16 0.5 2 0.05 10.0 1 0.1
med-replay 4 0.01 5.0 1 0.1 4 0.01 10.0 8 0.1 4 0.05 0.1 16 0.1
med-expert 2 0.01 0.1 1 1.0 4 0.01 10.0 4 0.1 2 0.01 10.0 8 0.5
full-replay 2 0.01 10.0 1 0.5 2 0.01 5.0 16 0.1 2 0.05 5.0 1 1.0

Table 7: Hyperparameters used for COMBO + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d
H o K n p H o K n P H o K n p
random 2 0.05 0.1 16 0.1 2 0.05 0.1 4 0.1 4 0.01 0.5 16 1.0
medium 2 0.01 10.0 16 0.5 4 0.05 5.0 16 0.1 4 0.05 1.0 16 0.5
med-replay 4 0.01 0.5 8 1.0 2 0.01 5.0 4 0.1 4 0.01 5.0 16 0.1
med-expert 4 0.01 0.5 8 1.0 2 0.05 5.0 16 0.1 4 0.01 10.0 16 0.1
full-replay 4 0.01 0.1 8 0.5 4 0.01 10.0 4 0.1 4 0.05 1.0 8 0.5

Table 8: Hyperparameters used for MOPO + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d
H o K n p H o K n P H o K n P
random 2 0.01 5.0 1 0.1 4 0.01 10.0 8 0.1 2 0.05 0.1 8 1.0
medium 2 0.05 5.0 1 0.1 4 0.05 10.0 4 0.1 2 0.05 5.0 4 1.0
med-replay 4 0.05 5.0 16 0.1 2 0.05 10.0 4 0.1 4 0.01 1.0 16 0.1
med-expert 4 0.05 1.0 8 0.1 4 0.01 10.0 16 0.1 4 0.01 10.0 16 1.0
full-replay 2 0.05 5.0 16 1.0 4 0.05 5.0 16 0.1 4 0.05 10.0 1 0.1

Table 9: Hyperparameters used for CQL + RefPlan used on D4RL MuJoCo Gym environments

Hopper HalfCheetah Walker2d
H o K n P H o K n P H o K n D
random 4 0.01 10.0 1 0.1 4 0.05 5.0 1 0.1 4 0.05 10.0 16 1.0
medium 2 0.01 5.0 16 0.5 2 0.01 5.0 1 0.5 2 0.05 10.0 16 1.0
med-replay 4 0.05 0.1 8 0.1 4 0.01 5.0 16 0.1 4 0.05 1.0 4 0.1
med-expert 4 0.01 1.0 1 0.5 2 0.01 5.0 8 0.1 2 0.01 5.0 8 0.1
full-replay 4 0.05 10.0 16 0.1 2 0.01 5.0 8 0.1 4 0.01 5.0 8 0.1
Table 10: Hyperparameters used for EDAC + RefPlan used on DARL MuJoCo Gym environments
Hopper HalfCheetah Walker2d
H o K n p H o K n P H o K n p
random 4 0.05 10.0 16 0.5 4 0.05 5.0 8 0.1 2 0.05 10.0 4 0.1
medium 2 0.01 10.0 16 0.1 4 0.05 10.0 4 0.1 4 0.05 10.0 1 0.1
med-replay 2 0.05 10.0 1 0.1 4 0.05 10.0 8 0.1 4 0.05 5.0 16 0.1
med-expert 2 0.01 1.0 16 0.5 2 0.05 5.0 8 0.1 4 0.05 5.0 16 0.1
full-replay 4 0.05 10.0 4 0.1 2 0.05 10.0 8 0.1 2 0.05 10.0 1 0.1

D.2 HYPERPARAMETERS

Table 6-10 outline the hyperparameters used for RefPlan across the five prior policies discussed in
Section 5. We conducted a grid search over the following hyperparameters: the planning horizon
H € {2, 4}, the standard deviation of the Gaussian noise ¢ € {0.01,0.05}, the inverse temperature
parameter < € {0.1,0.5,1.0, 5.0, 10.0}, the number of latent samples 72 € {1, 4, 8,16}, and the value
uncertainty penalty p € {0.1,0.5,1.0}. Our findings indicate that x and 7 are the most influential
hyperparameters, while the others have a comparatively minor effect on performance. For LOOP,
we conducted a similar grid search over the same hyperparameters, excluding 72, which is specific to
RefPlan.

23

Under review as a conference paper at ICLR 2025

Table 11: Per-epoch runtimes for VAE pretraining on the ME dataset.

Hopper HalfCheetah Walker2d

q¢ Dy qs 2 q¢ Dy
553s 39.8s 532s 40.7s 54.6s 40.7s

Table 12: Runtime per environment step for RefPlan during evaluation in the HalfCheetah environ-

ment.
n
N 1 2 3 4
2
4

79x1073% 87x107%s 93x1073% 1.0x 1073
1.5x107%s 1.6x1072%s 1.8x1072s 1.9x 107 %

In addition, we used Bayesian optimization (BayesOpt, Snoek et al. (2012)), implemented in W&B
(Biewald, 2020), to explore the challenge of identifying optimal hyperparameters for RefPlan. Figure
11 compares the number of iterations required for BayesOpt to achieve or surpass the performance
of the best hyperparameter configuration found via grid search in each environment. Specifically,
we used CQL as the prior policy and the MR dataset from three environments. Notably, BayesOpt
required fewer than 20 iterations to exceed the performance reported in Table 1.

D.3 COMPUTATIONAL COSTS OF REFPLAN

In this section, we provide a detailed discussion of the computational costs associated with deploying
RefPlan. As outlined in Appendix C.3, RefPlan requires the following pretrained components: a prior
policy 7y, an encoder ¢y, and a decoder p.;. Since the prior policy is trained using standard offline
policy learning algorithms (e.g., CQL, EDAC, MOPO, COMBO, and MAPLE), which are not our
contributions, we focus on reporting the computational costs associated with training the VAE model
and executing the planning stage. All experiments were conducted on a single machine equipped
with an RTX 3090 GPU.

VAE Pretraining Table 11 presents the per-epoch runtimes for VAE pretraining in the three envi-
ronments. The reported runtimes correspond to datasets with 2M transition samples, the largest
dataset size used in our experiments. Both the VAE pretraining and decoder fine-tuning phases were
executed for up to 200 epochs or until the validation loss ceased to improve for 5 consecutive epochs,
whichever occurred first.

Test-Time Planning At test time, planning with RefPlan involves selecting hyperparameters as
detailed in Appendix D.2. Among these, the planning horizon H and the number of latent samples n
influence runtime. Specifically, the computational cost scales linearly with H, which is an inherent
property of planning algorithms. However, the cost increases sub-linearly with 71, as shown in Table
12. For example, with H = 4 and n = 4, the agent achieves approximately 53 environment steps per
second. We hypothesize that further optimization of PyTorch tensor operations to fully exploit GPU
parallelism could yield even better computational performance, particularly with respect to 7.

24

	Introduction
	Related Work
	Preliminaries
	RefPlan: a Probabilistic Framework for Offline Planning
	Offline Model-Based Planning as Probabilistic Inference
	Learning Epistemic Uncertainty via Variational Inference
	Integrating Epistemic Uncertainty into Model-Based Planning

	Experiments
	RefPlan handles epistemic uncertainty from OOD states
	RefPlan enhances any offline-learned policies
	Performance with limited offline data with varying dataset sizes
	RefPlan is more robust to changing dynamics?

	Conclusion
	Additional Background
	Bayes-Adaptive Markov Decision Processes

	Additional Results
	Performance comparison of RefPlan vs. LOOP
	RefPlan handles epistemic uncertainty from OOD states
	Performance comparison: non-Markovian dynamics model for training vs. planning
	Evaluating the impact of the number of latent samples on variances and performance

	Algorithm Details
	Algorithm Summary
	Architecture
	Pretraining

	Experimental Details
	Experimental settings
	Hyperparameters
	Computational Costs of RefPlan

