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BENIGN OVERFITTING IN OUT-OF-DISTRIBUTION
GENERALIZATION OF LINEAR MODELS

Shange Tang∗† Jiayun Wu∗‡ Jianqing Fan† Chi Jin§

ABSTRACT

Benign overfitting refers to the phenomenon where an over-parameterized model
fits the training data perfectly, including noise in the data, but still generalizes well
to the unseen test data. While prior work provides some theoretical understanding
of this phenomenon under the in-distribution setup, modern machine learning of-
ten operates in a more challenging Out-of-Distribution (OOD) regime, where the
target (test) distribution can be rather different from the source (training) distribu-
tion. In this work, we take an initial step towards understanding benign overfitting
in the OOD regime by focusing on the basic setup of over-parameterized linear
models under covariate shift. We provide non-asymptotic guarantees proving that
benign overfitting occurs in standard ridge regression, even under the OOD regime
when the target covariance satisfies certain structural conditions. We identify sev-
eral vital quantities relating to source and target covariance, which govern the
performance of OOD generalization. Our result is sharp, which provably recov-
ers prior in-distribution benign overfitting guarantee (Tsigler & Bartlett, 2023), as
well as under-parameterized OOD guarantee (Ge et al., 2024) when specializing
to each setup. Moreover, we also present theoretical results for a more general
family of target covariance matrix, where standard ridge regression only achieves
a slow statistical rate of O(1/

√
n) for the excess risk, while Principal Component

Regression (PCR) is guaranteed to achieve the fast rate O(1/n), where n is the
number of samples.

1 INTRODUCTION

In modern machine learning, distribution shift has become a ubiquitous challenge where models
trained on a source data distribution are tested on a different target distribution (Zou et al., 2018;
Hendrycks & Dietterich, 2019; Guan & Liu, 2021; Koh et al., 2021). Generalization under distribu-
tion shift, known as Out-of-Distribution (OOD) generalization, remains a fundamental issue in the
practical application of machine learning (Recht et al., 2019; Hendrycks et al., 2021; Miller et al.,
2021; Wenzel et al., 2022). While there has been extensive work on the theoretical understanding
of OOD generalization, most of it has focused on under-parameterized models (Shimodaira, 2000;
Lei et al., 2021; Ge et al., 2024; Zhang et al., 2022). However, over-parameterized models, such as
deep neural networks and large language models (LLMs) in the fine-tuning stage, which have more
parameters than training samples, are widely used in modern machine learning. Surprisingly, despite
the classic bias-variance tradeoff for under-parameterized models, over-parameterized models tend
to overfit the data while still achieving strong in-distribution generalization, a phenomenon known
as benign overfitting (Hastie et al., 2022; Shamir, 2023) or harmless interpolation (Muthukumar
et al., 2020). Therefore, it is crucial to theoretically understand how benign overfitting shapes OOD
generalization in over-parameterized models.

It is established in over-parameterized models that “benign overfitting” occurs when the data essen-
tially resides on a low-dimensional manifold. The manifold assumption (Belkin & Niyogi, 2003) is
widely applicable across image, speech, and language data, where although features are embedded
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in a high-dimensional ambient space, their generation is governed by a few degrees of freedom im-
posed by physical constraints (Niyogi, 2013). Specifically, the covariance matrix of the data should
be characterized by several major directions corresponding to large eigenvalues, while the remaining
directions are high-dimensional but associated with small eigenvalues. In this setting, even though
the estimator may overfit the noise in the low-variance directions, it can still capture the signal along
the major directions while the noise is dampened in the minor directions. Recent non-asymptotic
analyses have provided upper bounds on the excess risk for the minimum-norm interpolant and over-
parameterized ridge estimator under this framework (Bartlett et al., 2020; Hastie et al., 2022; Tsigler
& Bartlett, 2023).

However, a theoretical understanding of OOD generalization in over-parameterized models remains
elusive. In this paper, we take an initial step towards characterizing OOD generalization in over-
parameterized models under general covariate shift, a standard assumption in the OOD regime (Ben-
David et al., 2006), where the conditional distribution of the outcome given the covariates remains
invariant. We derive the first vanishing, non-asymptotic excess risk bound for ridge regression and
minimum-norm interpolation, assuming that the source covariance is dominated by a few major
eigenvalues, which satisfies the in-distribution benign overfitting condition. Notably, we allow the
target covariance to be arbitrary. This result stands in contrast to recent work that either addresses
only a restrictive type of target covariance matrices (Hao et al., 2024; Mallinar et al., 2024) or
provides excess risk bounds that are non-vanishing (Tripuraneni et al., 2021a; Hao et al., 2024).

In summary, our excess risk bound identifies several key quantities that relate to the source and
target covariance. We show that “benign overfitting” occurs in case 1 where the target distribution
data lies on the low-dimensional manifold of the source distribution, so that these key quantities are
well controlled. In the opposite case 2, where the target distribution data falls outside of the low-
dimensional manifold of the source, ridge regression may incur large excess risk, lower bounded by
the slow statistical rate of O(1/

√
n). In contrast, we show that Principal Component Regression

(PCR) achieves the fast rate of O(1/n) in case 2. The non-asymptotic rates of both ridge regression
and PCR are validated through simulation experiments on multivariate Gaussian data in Appendix A.

Our contributions.

1. We provide a sharp, instance-dependent excess risk bound for over-parameterized ridge regres-
sion under covariate shift (Theorem 2). Our result applies to any target distribution, requiring
only that the source covariance be dominated by a few major eigenvectors and that the minor
components are high-dimensional. Our results shows that when certain key quantities relating to
the source and target distributions are bounded (case 1), ridge regression exhibits “benign over-
fitting”, achieving excess risk comparable to the in-distribution case. Importantly, this condition
requires that the overall magnitude of the target covariance along the minor directions scales
similarly to, or smaller than, that of the source, but it does not depend on the spectral structure of
the target covariance on the minor directions. Our results recover the in-distribution bound from
Tsigler & Bartlett (2023) when the source and target match and also recover the sharp bound
from Ge et al. (2024) for under-parameterized linear regression under covariate shift when the
minor components vanish.

2. For case 2 where the “benign-overfitting” of ridge regression is not guaranteed (when target
distribution exhibits significant variance in the minor directions), we further show that ridge
regression incurs a higher error rate compared to the in-distribution case, lower bounded by the
slow statistical rate of O(1/

√
n) in certain instances (Theorem 4). However, we demonstrate

that Principal Component Regression ensures a fast rate of O(1/n) in these cases, provided that
the true signal primarily lies in the major directions of the source (Theorem 5). Additionally,
PCR does not rely on the minor directions of the source distribution being high-dimensional,
highlighting its advantage over ridge regression in such settings.

1.1 RELATED WORK

Over-parameterization. The success of over-parameterized models in machine learning has
sparked significant research on their theoretical foundations. Harmless interpolation (Muthukumar
et al., 2020) or benign overfitting (Shamir, 2023) describes cases where linear models interpolate
noise yet still generalize well. Double descent in prediction error is also observed as the ambient
dimension surpasses the number of training samples (Nakkiran, 2019; Xu & Hsu, 2019).
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Research in this field can be divided into two categories based on assumptions about the spectral
structure of the sample covariance. The first category assumes an almost isotropic sample covari-
ance matrix with a bounded condition number or an isotropic prior distribution of parameters (Belkin
et al., 2020), allowing for asymptotic risk bounds (Dobriban & Wager, 2018; Richards et al., 2021).
However, ridgeless regression is sub-optimal in this setting unless the signal-to-noise ratio is in-
finite (Wu & Xu, 2020), and non-asymptotic error bounds are lacking. Our work falls into the
second category, focusing on the covariance model where a small number of eigenvalues dominate
the sample covariance, and the signal is concentrated in the subspace spanned by the leading eigen-
vectors (Bibas et al., 2019; Chinot & Lerasle, 2022; Hastie et al., 2022; Silin & Fan, 2022). Linear
regression can be optimal without regularization under this covariance structure (Kobak et al., 2020),
which is of practical interest because ridgeless regression is equivalent as gradient descent from zero
initialization (Zhou et al., 2020). Sharp non-asymptotic bounds for variance and bias in ridge and
ridgeless regression have been derived (Bartlett et al., 2020; Tsigler & Bartlett, 2023).

Extending the analysis of ridgeless estimators (i.e., minimum norm interpolants), uniform conver-
gence bounds for generalization error have been studied for all interpolants with arbitrary norms.
However, uniformly bounding the difference between population and empirical errors generally
fails to ensure a consistent predictor (Zhou et al., 2020), necessitating strong assumptions on dis-
tributions (Koehler et al., 2021) or hypothesis classes (Negrea et al., 2020). Over-parameterization
theory for linear models has also been applied to two-layer neural networks approximated via kernel
ridge regression (Liang et al., 2020; Ghorbani et al., 2020; 2021; Bartlett et al., 2021; Mei & Monta-
nari, 2022; Mei et al., 2022; Montanari & Zhong, 2022; Simon et al., 2023), though this lies beyond
the scope of the present work.

Out-of-Distribution generalization. Out-of-distribution generalization is well studied for under-
parameterized models, especially under the setup of covariate shift. Shimodaira (2000) pointed
out that vanilla MLE (Empirical Risk Minimization, ERM) is asymptotically optimal among all the
weighted likelihood estimators when the model is well-specified. For non-asymptotic results, Cortes
et al. (2010); Agapiou et al. (2017), provide risk bounds for importance weighting. Another line of
work provides non-asymptotic analyses for covariate shift, focusing on linear regression or a few
specific models such as one-hidden layer neural network (Mousavi Kalan et al., 2020; Lei et al.,
2021; Zhang et al., 2022). Most recently Ge et al. (2024) provides tight non-asymptotic analysis
for general well-specified parametric models, showing that even without target data, vanilla MLE
(Empirical Risk Minimization, ERM) is minimax optimal with a sharp 1/n excess risk bound based
on Fisher information.

Research on over-parameterized models under distribution shift has largely focused on covariate
shifts in linear regression. Importance weighting for over-parameterized models (Chen et al., 2024)
and general sample reweighting offer no advantage over ERM since both converge to the same esti-
mator via gradient descent (Zhai et al., 2022). Consequently, much literature focuses on minimum-
norm interpolation as the natural ERM solution. For isotropic covariance structure, Tripuraneni et al.
(2021a) derive an asymptotic generalization bound decreasing with d/n where d represents the data
dimension. Most related to our work, a line of work also consider the covariance model dominated
by several major eigenvectors, however, they only address a restrictive form of covariate shift or
obtaining a non-vanishing bound: Kausik et al. (2024) study a linear model with additive noise on
covariates when data strictly lies in a low-dimensional subspace, showing a non-vanishing bound.
Hao et al. (2024) give a non-vanishing bound for the case where features are translated by a con-
stant and the covariance matrix is preserved. Mallinar et al. (2024) investigate the special case with
independent covariates and simultaneously diagonal source and target covariance matrices, under
which the in-distribution analysis of Bartlett et al. (2020); Tsigler & Bartlett (2023) can be directly
extended. Still, their estimation bias bound is looser than ours, as it exhibits a gap compared to
Tsigler & Bartlett (2023)’s sharp bound even when the source and target distributions are aligned.
In contrast, our work achieves the first vanishing non-asymptotic error bound for general covariate
shift, assuming only finite second moments for the target covariance matrix.

Another line of research considers non-parametric models under covariate shift (Kpotufe & Mar-
tinet, 2018; Hanneke & Kpotufe, 2019; Pathak et al., 2022; Ma et al., 2023), presenting minimax
results governed by a transfer-exponent that measures the similarity between source and target dis-
tributions. However, this falls outside the scope of our work.
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Principal Component Regression. Principal Component Regression (PCR) has been designed to
treat multicollinearity in high-dimensional linear regression, where the covariates possess a latent,
low-dimensional representation (Massy, 1965; Jeffers, 1967; Jolliffe, 1982; Jeffers, 1981). PCR has
been widely used in statistics (Liu et al., 2003; Fan et al., 2021; Fan & Gu, 2023), econometrics
(Stock & Watson, 2002; Bai & Ng, 2002; Fan et al., 2020), chemometrics (Næs & Martens, 1988;
Sun, 1995; Vigneau et al., 1997; Depczynski et al., 2000; Keithley et al., 2009), construction man-
agement (Chan & Park, 2005), environmental science (Kumar & Goyal, 2011; Hidalgo et al., 2000),
signal processing (Huang & Yang, 2012) and etc.

Regarding the theory of PCR, Hadi & Ling (1998) identify conditions under which PCR will fail.
Bair et al. (2006) suggest selecting principal components based on their association with the outcome
and provide corresponding asymptotic consistency results. Xu & Hsu (2019) establish asymptotic
risk bounds for PCR with varying numbers of selected components k. They show that the “double
descent” behavior also happens in PCR as k/d increases. Most relevant to our work, Agarwal
et al. (2019) derive non-asymptotic error bounds for PCR, and show that the error decays at a rate
of O(1/

√
n) (n is the sample size), assuming all singular values of the data matrix are of similar

magnitude. Agarwal et al. (2020) further improves this rate to O(1/n). However, both results
consider a fixed design with strict low-rank assumptions, making them inapplicable to our setting of
OOD generalization.

2 COVARIATE SHIFT SETUP UNDER OVER-PARAMETERIZATION

2.1 DATA WITH COVARIATE SHIFT

We address the out-of-distribution (OOD) generalization of over-parameterized models under co-
variate shift, where the covariates, denoted by a random vector x ∈ Rd, follow different distribu-
tions during training and evaluation. Specifically, we assume that the training data is sampled from
a source distribution PS , and the learned model is subsequently applied to data from an unknown
target distribution PT . Let the covariates be zero-mean on the source distribution, and define the
covariance matrix as ΣS := Ex∼PS

[
xxT

]
. Since we can always choose an orthonormal basis such

that ΣS becomes diagonal, we express ΣS = diag(λ1, · · · , λd) without loss of generality, where
the eigenvalues are arranged in non-increasing order: λ1 ≥ · · · ≥ λd ≥ 0. Moreover, we assume
sub-gaussianity of the source covariates, i.e., Σ−1/2

S x is σ-sub-gaussian where the precise definition
of the sub-Gaussian norm is given in section B. We consider a general covariate distribution for the
target, assuming only that it has a finite second moment, denoted by ΣT := Ex∼PT

[
xxT

]
, which is

not necessarily diagonal.

We consider a linear response model that remains consistent across the source and target distribu-
tions. The outcome follows y = xTβ∗ + ϵ, where β∗ ∈ Rd represents the true parameter, and ϵ is
an independent noise with zero-mean and variance v2.

2.2 LEARNING PROCEDURE AND EVALUATION

The learning procedure involves training a linear model with n i.i.d. samples {(xi, yi)}ni=1 drawn
from the source distribution. Define X := (x1, ..., xn)

T ∈ Rn×d, Y := (y1, ..., yn)
T and ϵ :=

(ϵ1, ..., ϵn)
T . We focus on models β̂(Y ) that are linear in Y , allowing us to write β̂(Y ) = β̂(Xβ⋆)+

β̂(ϵ). We consider ridge regression and Principal Component Regression to be two examples of such
algorithms. With a regularization coefficient λ ≥ 0, the ridge estimator is defined as

β̂(Y ) = XT (XXT + λIn)
−1Y.

The estimator is assessed on the target distribution by its excess risk relative to the true model,
expressed as the following equation:

R
(
β̂(Y )

)
:= E(x,y)∼PT

[(
y − xT β̂(Y )

)2 − (y − xTβ∗)2] = ∥∥β̂(Y )− β∗∥∥2
ΣT

,

where we define ∥x∥A :=
√
xTAx for any positive semi-definite matrix A. The metric of interest is

the expected excess risk with respect to the noise, given by Eϵ

[
R
(
β̂(Y )

)]
. Following from the lin-
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earity of the model, the expected excess risk can be decomposed into bias and variance components:

Eϵ

[
R
(
β̂(Y )

)]
= Eϵ

∥∥β̂(ϵ)∥∥2
ΣT

+
∥∥β̂(Xβ⋆)− β⋆

∥∥2
ΣT

,

where we define the variance as V := Eϵ

∥∥β̂(ϵ)∥∥2
ΣT

and the bias as B :=
∥∥β̂(Xβ⋆)−β⋆

∥∥2
ΣT

. Here,
we assume the shifts only in the distribution of covariates; the regression coefficients remain the
same.

2.3 THE STRUCTURE OF COVARIANCE IN BENIGN OVERFITTING

Throughout this paper, we follow the convention of Tsigler & Bartlett (2023) and consider the
source covariance matrix ΣS as characterized by a few numbers of high-variance directions and a
large number of low-variance directions of similar magnitude. We refer to the high-variance direc-
tions as “major directions” and the low-variance directions as “minor directions”. We denote the
number of major directions as k. For the remaining d − k minor directions, we use the following
notions of effective rank to approximate the number of directions with a similar scale. For the ridge
regularization coefficient λ ≥ 0, we define:

rk :=
λ+

∑
j>k λj

λk+1
, Rk :=

(
λ+

∑
j>k λj

)2∑
j>k λ

2
j

.

We have 1 ≤ rk ≤ Rk. When λ = 0, it further holds that Rk ≤ d − k. We denote the first k
columns of X as Xk and the remaining d−k columns as X−k. Correspondingly, we partion β⋆ into
β⋆k and β⋆−k. The covariance matrix blocks along the diagonals are denoted by ΣS,k, ΣS,−k, ΣT,k
and ΣT,−k. We define the following quantities to facilitate our presentation, which are crucial in our
analysis.

T = Σ
− 1

2

S,kΣT,kΣ
− 1

2

S,k , U = ΣS,−kΣT,−k, V = Σ2
S,−k. (1)

3 OVER-PARAMETERIZED RIDGE REGRESSION

In the context of in-distribution generalization, where ΣS = ΣT , for over-parameterized linear
models, Bartlett et al. (2020) and Tsigler & Bartlett (2023) demonstrate that the ridge estimator
(with the minimum-norm interpolant as a special case) can effectively learn the signal from the
subspace of data spanned by the major eigenvectors, while benignly overfitting the noise in the
minor directions under certain scenarios. They argue that benign overfitting occurs when the true
signal predominantly lies in the major directions, and the minor directions have a small scale but
highly effective rank. This section explores whether this mechanism still holds under covariate
shift. We derive upper bounds (Theorem 2) for the excess risk of the over-parameterized ridge
estimator in the context of OOD generalization, demonstrating that “benign overfitting” also happens
under covariate shift, given that the target distribution’s covariance remains dominated by the first
k dimensions. Specifically, we show that T characterizes the shift in the major directions, while
the overall magnitude of ΣT,−k, which captures the shift in the minor directions, is crucial for
benign overfitting. When the overall magnitude of ΣT,−k scales similarly to or smaller than those
of the source, ridge regression achieves the same non-asymptotic error rate under covariate shift as
in the in-distribution setting. Surprisingly, although a high effective rank in the minor directions
of the source is essential for benign overfitting, only the overall magnitude matters for the target
distribution.

3.1 WARM-UP: IN-DISTRIBUTION BENIGN OVERFITTING

As a warm-up, we introduce Tsigler & Bartlett (2023)’s in-distribution result on benign overfitting
in ridge regression. When the data dimension d exceeds the sample size n, the ridgeless estimator
interpolates the training data, fitting the noise. In this case, the estimator β̂ lies within the subspace
spanned by the covariates of the n samples. If d is much larger than n, a new test point is highly
likely to be orthogonal to this subspace, ameliorating noise from affecting the prediction. Therefore,
the minor components of the covariance matrix actually provide implicit regularization. Tsigler
& Bartlett (2023) assume that the data lies in a space with k major directions and d − k weak
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but essentially high-dimensional minor directions, allowing for benign overfitting. This intuition is
formalized through an assumption that controls the condition number of the Gram matrix for the
remaining d− k dimensions.
Assumption 1 (CondNum(k, δ, L) (Tsigler & Bartlett, 2023)). Define a matrix Ak = λIn +
X−kX

T
−k. With probability at least 1 − δ, Ak is positive definite and has a condition number no

greater than L, i.e.,
µ1(Ak)
µn(Ak)

≤ L,

where the i-th largest eigenvalue of a matrix is denoted by µi(·).
Remark 1. This assumption essentially posits that the minor directions of the source covariance
have an effective rank significantly greater than n. As evidence, Tsigler & Bartlett (2023) prove that
if CondNum holds, the effective rank rk is lower bounded by n/L, up to a constant. Conversely, a
lower bound on the effective rank rk also implies an upper bound of the condition number of Ak.
For more details, refer to Tsigler & Bartlett (2023, Lemma 3).

Assuming CondNum, Tsigler & Bartlett (2023) obtain sharp upper bounds for both the variance and
bias of the ridge estimator, with matching lower bounds (see their Theorem 2). To facilitate the
presentation, we define λ̃ := λ+

∑
j>k λj to represent the combined regularization term from both

ridge and implicit regularization.
Theorem 1 (Tsigler & Bartlett (2023)). There exists a constant c that only depends on σ, L, such
that for any n > ck, if the assumption condNum(k, δ, L) (Assumption 1) is satisfied, then it holds
that n < crk, and with probability at least 1− δ − ce−n/c,

V
cv2 ≤ k

n + n
Rk

, B
c ≤ BID := ∥β⋆k∥

2
Σ−1

S,k

(
λ̃
n

)2
+
∥∥β⋆−k∥∥2ΣS,−k

,

where v denotes the standard deviation of the noise ϵ.

The first variance term arises from estimating the k major signal dimensions, corresponding to the
classic variance in k-dimensional ordinary least squares. The second variance term, n/Rk, vanishes
when the minor directions are sufficiently high-dimensional, i.e., when Rk ≫ n. However, the
signal in the minor directions,

∥∥β⋆−k∥∥2ΣS,−k
, is nearly lost when projected from the high-dimensional

ambient space onto the low-dimensional sample space, contributing to the second bias term. Finally,
the first bias term relates to the signal estimation in the first k dimensions and is introduced by the
overall regularization from both ridge and implicit regularization imposed by the minor components.

3.2 OUT-OF-DISTRIBUTION BENIGN OVERFITTING

We now investigate the out-of-distribution performance of the ridge estimator. Intuitively, when the
minor components vanish for both the source and target distributions, over-parameterized ridge re-
gression essentially reduces to under-parameterized ridge regression in the major directions, achiev-
ing a rate of Õ(tr[T ]/n), as demonstrated by Ge et al. (2024). When the minor components do
not vanish, a high effective rank of the minor components in the source distribution is essential for
“benign overfitting”, as shown by Tsigler & Bartlett (2023). However, we argue that for the target
distribution, only the overall magnitude of the minor components is critical for benign overfitting.
This is because when the source’s minor directions have an effective rank much larger than n, the
n-dimensional subspace spanned by the training samples is already almost orthogonal to any test
point with high probability. As a result, the spectral structure of the target becomes irrelevant–only
a small overall magnitude of the target’s minor components is required.

We formalize those intuitive claims by deriving upper bounds for both the variance and bias of ridge
regression under covariate shift, assuming a source distribution similar to the in-distribution case.
Our upper bound is sharp and can be applied to any target distributions, reducing to Tsigler & Bartlett
(2023)’s bound (Theorem 1) when the target and source distributions are aligned. Additionally, we
recover Ge et al. (2024)’s sharp bound for under-parameterized linear regression under a covariate
shift when the high-dimensional minor components vanish.
Theorem 2. There exists a constant c > 2 depending only on σ, L, such that for any cN < n < rk,
if the assumption condNum(k, δ, L) (Assumption 1) is satisfied, then with probability at least 1−3δ,

V

cv2
≤ k

n
· tr[T ]

k
+

n

Rk
· tr[U ]
tr[V]

.
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B

c
≤ BID ·

(
∥T ∥+ n

rk

∥ΣT,−k∥
∥ΣS,−k∥

)
.

where T ,U ,V are defined in Equation (1), N = Poly(k+ ln(1/δ), λ1λ
−1
k , 1 + λ̃λ−1

k ), and Poly(·)
denotes a polynomial function.

Recall that BID is the bias upper bound from Theorem 1. Theorem 2 establishes an upper bound
for the excess risk of ridge regression under general covariate shift, expressed in a multiplicative
form based on Theorem 1. This formulation enables a straightforward comparison of the impact
of covariate shifts on the bias and variance of ridge estimators relative to the in-distribution case.
The first conclusion is that Theorem 2 well reduces to the corresponding result in Theorem 1 when
no distribution shift occurs–i.e., ΣS = ΣT . This connection follows directly from the condition
n < rk.

The second conclusion is that covariate shift in the first k dimensions and last d − k dimensions
introduce multiplicative factors of tr[T ]

k , ∥T ∥ and tr[U ]
tr[V] , nr

−1
k

∥ΣT,−k∥
∥ΣS,−k∥ , respectively, on the excess

risk. Therefore, as long as these factors are bounded by constants, over-parameterized ridge regres-
sion achieves the same non-asymptotic rate of excess risk under covariate shift as the in-distribution
setting. This scenario, well addressed by ridge regression, occurs when the target distribution’s co-
variance structure remains dominated by the first k dimensions. In the following, we analyze the
impact of the factors introduced by covariate shifts on both the major and minor directions.

1. T characterizes the shift in the major directions. Under covariate shift within the first k di-
mensions, we obtain the same non-asymptotic error rate as in Theorem 1, only if ∥T ∥ is bounded
by a constant, as tr[T ]/k ≤ ∥T ∥. The matrix T plays a central role in Theorem 2 to quan-
tify covariate shift within the first k dimensions, matching our intuition. This echoes with Ge
et al. (2024)’s finding that tr[T ] captures the difficulty of covariate shift for under-parameterized
ridgeless regression (MLE). They establish a sharp upper bound on excess risk using Fisher in-
formation (see their Theorem 3.1), which simplifies to a rate of Õ(tr[T ]/n) for linear models.
Theorem 2 recovers this result when applied to a k-dimensional under-parameterized setting
where all high-dimensional minor components vanish, specifically when ΣS,−k = ΣT,−k = 0.
Under the same condition as Theorem 2, for a constant c depending only on σ, L, with high
probability, the variance and bias terms are bounded by:

V

cv2
≤ tr[T ]

n
,

B

c
≤ ∥β⋆k∥

2
Σ−1

S,k

(λ
n

)2
∥T ∥.

The variance bound aligns with Ge et al. (2024)’s result while the bias vanishes as λ → 0.

2. The overall magnitude of ΣT,−k is crucial for benign overfitting. Under covariate shift within
the last d − k dimensions, when both tr[U ]

tr[V] and nr−1
k

∥ΣT,−k∥
∥ΣS,−k∥ are bounded by constants, we

achieve the same non-asymptotic error rate as in Theorem 1. Note that tr[U ]
tr[V] ≤ ∥ΣT,−k∥F

∥ΣS,−k∥F
. In

other words, matching our intuition, if the overall magnitude of the minor components of tar-
get covariance scales similarly to or smaller than those of the source, in terms of the covariance
norms, “benign overfitting” also happens under covariate shift. Importantly, this condition does
not impose constraints on the internal spectral structure of the minor components of the target
covariance. For example, we do not force each eigenvalue of ΣT,−k to scale with its correspond-
ing eigenvalue of ΣS,−k in decreasing order, as assumed in prior work (Mallinar et al., 2024).
Surprisingly, for benign overfitting to happen, the source distribution must have a high effective
rank in the minor directions. However, for the target distribution, only the overall magnitude of
the minor components is relevant.

Another observation is that the bias scales with nr−1
k

∥ΣT,−k∥
∥ΣS,−k∥ , meaning that we only re-

quire ∥ΣT,−k∥
∥ΣS,−k∥ = O(rk/n), which is a less restrictive condition for larger rk. Thus, over-

parameterization improves the robustness of the estimation bias against covariate shift in the
minor direction.

Remark 2 (Sample complexity). We have assumed n > cN in Theorem 2. The explicit formula for
N is deferred to Theorem 25 and Remark 8. Here we summarize the sample complexity required
for the bound to hold. The dependence on k varies between Ω(k) and Ω(k3), depending on the
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degree of covariate shift. The optimal case, aligning with the sample complexity of classic linear
regression, occurs when ΣS,k ≈ ΣT,k. The worst case arises when there is a significant covariate
shift in the first k dimensions, such as when the test data lies predominantly in the subspace of
the first dimension. This variation in sample complexity under covariate shift parallels the analysis
of Ge et al. (2024) (see their Theorem 4.2) for the under-parameterized setting. Additionally, we
require n ≫ λ +

∑
j>k λj , ensuring that the regularization is not too strong to introduce a bias

exceeding a constant (as reflected in the first term of BID). On the other hand, we assume n < rk in
the theorem, consistent with the over-parameterized regime and Assumption 1, where the last d− k
components are considered to be essentially high-dimensional.

Remark 3 (Dependence on L). Theorem 2 does not explicitly show how the excess risk depends
on the condition number L of Ak. However, we demonstrate in Theorem 25 that the upper bounds
scale at most as L2. Notably, we maintain the same order of dependence on L in each term of the
upper bounds as in the analysis by Tsigler & Bartlett (2023) (see their Theorem 5).

Finally, Theorem 2 suggests an O(1/n) vanishing error under several conditions that naturally fol-
low from the previous discussions, which we now state rigorously. First, the covariate space decom-
poses into subspaces spanned by low-dimensional major directions and high-dimensional minor
directions, with k = O(1) and Rk = Ω(n2). Second, the low-rank covariance structure is preserved
after covariate shift, such that ∥T ∥, tr[U ]

tr[V] , nr
−1
k

∥ΣT,−k∥
∥ΣS,−k∥ = O(1). Third, the signal lies predomi-

nantly in the major directions, with ∥β⋆k∥Σ−1
S,k

= O(1) and
∥∥β⋆−k∥∥ΣS,−k

= O(1/
√
n). Lastly, the

regularization is not excessively strong to introduce a significant bias, with λ̃ = λ +
∑
j>k λj =

O(
√
n).

4 LARGE SHIFT IN MINOR DIRECTIONS

In the previous section, we established an upper bound for over-parameterized ridge regression under
covariate shift. We showed that when the shift in the minor directions is controlled—specifically,
when the overall magnitude of ΣT,−k is small—“benign overfitting” also occurs under covariate
shift. However, when the shift in minor directions is significant, meaning the target covariance ma-
trix has many large eigenvalues with corresponding eigenvectors outside the major directions, the
excess risk for ridge regression deteriorates. In this section, we further illustrate the limitations of
ridge regression in such cases by providing a lower bound for its performance for large distribu-
tion shifts in the minor directions. We show that, in certain instances, ridge regression can only
achieve the slow statistical rate of O(1/

√
n) for the excess risk. On the other hand, it is natural

to consider alternative algorithms to ridge regression. We demonstrate that even with a large shift
in the minor directions, Principal Component Regression (PCR) is guaranteed to achieve the fast
statistical rate O(1/n) in the same instances, provided that the signal β⋆ lies primarily within the
subspace spanned by the major directions. Moreover, PCR does not require the minor directions to
have a high effective rank in the source distribution, highlighting its advantage over ridge regres-
sion in such cases. Throughout this section, we maintain the setup and source covariance structure
described in Section 2. However, Assumption 1 is no longer required.

4.1 SLOW RATE FOR RIDGE REGRESSION

In this subsection, we demonstrate the limitations of ridge regression when the overall magnitude of
ΣT,−k is large. Consider an instance where ΣS has its first k components as Θ(1), while the minor
directions have eigenvalues of o(1). If we set ΣT = Id, in contrast to the “benign overfitting” regime
described in Theorem 2, ridge regression will have a large excess risk for this instance. Although
the signal from the major directions is effectively captured, the signal in the minor directions is
nearly lost. Unlike the case in Section 3, here, the estimation error in the minor directions is crucial
because the target distribution has significant components in these directions. We formalize this
intuitive example through the following theorems:

Corollary 3. For some absolute constants C1, C2, consider the following instance of ΣS :

λ1 = · · · = λk = 1, λk+1 = · · · = λ
k+⌊

√
n

C2
⌋ =

C1√
n
, λ

k+⌊
√

n
C2

⌋+1
= · · · = λd = 0.

8
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Assume ΣT,−k = 0,ΣT,k = Ik, and β⋆−k = 0. By choosing λ =
√
n, under the same conditions of

Theorem 2, we can bound the excess risk of the ridge estimator with probability at least 1− 3δ:

Eϵ

[
R
(
β̂(Y )

)]
≤ O

(v2k + ∥β⋆∥2

n

)
.

Remark 4. Corollary 3 is a direct application of Theorem 2.
Theorem 4. Consider the same instance of ΣS as in Corollary 3. Assume ΣT = Id and λ =

√
n.

There exists an absolute constant C > 0, such that for some 0 < δ < 1, N2 > 0 and for any
n > N2, with probability at least 1− δ, we have V ≥ Cv2.

For any λ > 0, with probability at least 1− δ, the excess risk of the ridge estimator satisfies:

Eϵ

[
R
(
β̂(Y )

)]
≥ C ∥β⋆∥2∧v2√

n
.

From Theorem 4, we observe that when ΣT = Id, the performance of ridge regression deteriorates
compared to the case where ΣT,−k = 0. If we set λ =

√
n as in Corollary 3, ridge regression incurs

a constant excess risk under covariate shift while achieving an in-distribution error rate of O(1/n).
Furthermore, Theorem 4 shows no matter how we choose the regularization parameter λ, the excess
risk is always lower bounded by the slow statistical rate O(1/

√
n), which is worse than the fast

rate of O(1/n). However, as we will prove in the next subsection, Principal Component Regression
(PCR) can achieve an excess risk of O(1/n) under this instance, even with ΣT = Id.

4.2 FAST RATE FOR PRINCIPAL COMPONENT REGRESSION

Ridge regression faces significant limitations when there is a large shift in the minor directions. In
Section 3.1, it was shown that the signal in the minor directions, β⋆−k, is nearly lost when projected
from the high-dimensional ambient space onto the low-dimensional sample space. In other words,
learning the true signal from the minor directions is essentially impossible. Therefore, in this sub-
section, we continue to focus on the scenario where the true signal β⋆ primarily resides in the major
directions. In this case, Principal Component Regression (PCR) emerges as a natural algorithm that
estimates the space spanned by the major directions and performs regression on that subspace.

Principal Component Regression (PCR).

• Step 1: Obtain an estimator Û of the top-k subspace of ΣS . For simplicity, we assume a sample
size of 2n and use the first half of the data to compute Û by principal component analysis (PCA)
on the sample covariance matrix Σ̂S := 1

nX
TX . Specifically, Û = (û1, · · · , ûk) where ûi is the

i-th eigenvector of Σ̂S .

• Step 2: Use the data projected on Û to conduct linear regression. With a little abuse of
notation, we use X ∈ Rn×d to denote the data matrix (xn+1, · · · , x2n)

T , and Y ∈ Rn to denote
(yn+1, · · · , y2n)T . If we let Z := XÛ ∈ Rn×k be the projected data matrix, the estimator β̂ we
obtained is given by

β̂ = Û(ZTZ)−1ZTY = Û(ÛTXTXÛ)−1ÛTXTY.

Consider the scenario where the last d − k components of the true signal β∗ is exactly zero, i.e.,
β⋆−k = 0. In this case, if the subspace represented by Û perfectly matches the subspace represented

by U =

(
Ik
0

)
∈ Rd×k, corresponding to the first k components, then PCR performs linear regres-

sion using only the first k components of the covariates. As a result, the excess risk would just be the
usual variance of linear regression in the major directions. In this scenario, regardless of the norm
∥ΣT,−k∥, the PCR estimator assigns coefficients of zero to the last d− k components, thus avoiding
any large excess risk. Furthermore, if the distance between Û and U is nonzero, an additional term
in the excess risk will arise due to the estimation error of Û . We formalize this intuition with the
following upper bound for the excess risk of PCR. To facilitate the presentation, we introduce a
measure of the estimation accuracy of Û . We define ∆ = dist(Û , U) := ∥UUT − Û ÛT ∥, which
represents the distance between the subspaces spanned by the columns of Û and U . Then we present
the following theorem.

9
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Theorem 5. Assume β⋆−k = 0. If ∆ ≤ Θ, for any 0 < δ < 1 and any n ≥ N1, we can bound the
excess risk of PCR estimator β̂ with probability 1− δ:

Eϵ

[
R
(
β̂(Y )

)]
≤ O

(
v2

tr(T )

n
+ ∥β⋆∥2

(λ1

λk

)2
∥ΣT ∥∆2

)
,

where Θ−1 = Poly(λ1λ
−1
k , ∥ΣT ∥λ−1

k , k tr(T )−1) and
N1 = Poly(σ, λ1λ

−1
k , ∥ΣT ∥λ−1

k , k ln(1/δ), k tr(T )−1).
Remark 5. Theorem 5 is a special case of Lemma 31. For explicit formulas of Θ and N1, as well
as an upper bound for cases where β⋆−k ̸= 0, refer to Lemma 31 for details.

The excess risk upper bound provided by Theorem 5 consists of two terms. The variance term
tr(T )/n is incurred by the nature of linear regression on the major directions and remains unavoid-
able even when the subspace estimation is exact (i.e., ∆ = 0). This term also appears as the first vari-
ance term in Theorem 2, and exactly matches the sharp rate tr[Σ−1

S ΣT ]/n for under-parameterized
linear regression under covariate shift (Ge et al., 2024). The second term ∥β⋆∥2( λ1

λk
)2∥ΣT ∥∆2

represents the bias induced by the subspace estimation error in Step 1, which exhibits a quadratic
dependence on ∆. By combining Theorem 5 with a bound on ∆, we can derive an end-to-end excess
risk upper bound of PCR. We present the following lemma to control ∆.
Lemma 6. With probability at least 1− δ, if n ≥ r + ln(1/δ), we have

∆ ≤ O
(
σ4 λ1

λk−λk+1

√
r+ln 1

δ

n

)
,

where r = λ−1
1

∑d
i=1 λi is the effective rank of the entire covariance matrix ΣS .

Remark 6. Lemma 6 shows that ∆ depends on several quantities: the eigenvalue gap between the
major and minor directions, i.e., λk − λk+1, and the effective rank r. We observe that ∆ will be
small if the major and minor directions are well separated, meaning λk − λk+1 is large, and the
minor directions are relatively small compared to λ1.

Combining Theorem 5 with Lemma 6, an end-to-end error bound for PCR directly follows (see The-
orem 29 for a detailed statement), suggesting that PCR will achieve a small excess risk as long as the
major and minor directions are well separated, and the effective rank of the entire source covariance
matrix is small. In contrast to ridge regression, PCR does not rely on the minor components having a
high effective rank. This highlights the superiority of PCR over ridge regression in certain scenarios.

As an example, consider the instance in Theorem 4, where k, ∥ΣT ∥, λ1, λk are all Θ(1). In this
case, the variance term scales as 1/n, and the bias term scales as O(∆2). Since r = Θ(1) in this
instance, we have ∆ ≤ O(1/

√
n). Consequently, PCR achieves a O(1/n) rate in this instance, even

when ΣT = Id. Compared with the excess risk for ridge regression, which is at least 1/
√
n, PCR

shows its superiority against ridge regression when there is a large shift in the minor directions.

5 CONCLUSION AND DISCUSSION

In conclusion, we provide an instance-dependent upper bound on the excess risk for ridge regression
under general covariate shift. Our findings demonstrate that “benign overfitting” also occurs in OOD
generalization when the shift in the minor directions is well controlled. We also investigate the
regime with a large shift in the minor directions, where ridge regression may incur a large excess
risk, whereas Principal Component Regression (PCR) exhibits superior performance.

Our work opens several directions for future research. First, while we have established a lower bound
for ridge regression in certain instances, a key challenge remains in deriving a general lower bound
that matches our upper bounds, offering a more precise characterization of the excess risk under
covariate shift. Second, our analysis has focused on linear models as an initial step in understand-
ing over-parameterized OOD problems. Extending this investigation to more complex, non-linear
models would be a intriguing direction for future exploration.
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Figure 1: Simulation results for excess risks across varying training sample sizes. The shaded
regions represent standard errors of 10 runs, using different samples of training and test sets. The
slope of the fitted OLS model is marked along each curve. (a)(b) Minimum norm interpolation under
distinct target covariance matrices with small shifts in minor directions. The source covariance
matrix remains constant. (a) Various magnitudes of shifts in minor directions, with ∥T ∥ = 1. (b)
Various magnitudes of shifts in major directions, with tr[U ] / tr[V] = 1. (c) Ridge and PCR under
large shifts in minor directions, following the setting of Theorem 4.

A.1 BENIGN-OVERFITTING: SMALL SHIFT IN MINOR DIRECTIONS

We simulate the covariate shift discussed in section 3, where the overall magnitude of the target
covariance matrix’s minor directions is comparable to that of the source. Theorem 2 establishes an
O(1/n) excess risk rate for ridge regression under certain benign-overfitting conditions. Specifi-
cally, for the training data, we assume k = O(1), Rk = Ω(n2), ∥β⋆k∥Σ−1

S,k
= O(1),

∥∥β⋆−k∥∥ΣS,−k
=

O(1/
√
n), and λ̃ = O(

√
n). For the test data, we assume ∥T ∥, tr[U ]

tr[V] , nr
−1
k

∥ΣT,−k∥
∥ΣS,−k∥ = O(1). In the

experiment, data is generated according to these conditions.

y = xTβ⋆ + ϵ,

where β⋆ ∈ Rk+n2

, with β⋆k = ( 1√
k
, ..., 1√

k
)T , β⋆−k = 0 and k = 10. The noise ϵ follows a centered

gaussian distribution with variance 0.1, and x is drawn from a multivariate normal distribution with
zero mean and a source covariance matrix ΣS = diag(Ik, n

−1.5In2). The target covariance matrix
is ΣT = diag(ΣT,k,ΣT,−k) where ΣT,k and ΣT,−k are randomly generated and scaled to achieve
specific values for ∥T ∥ and tr[U ]

tr[V] , respectively. At the same time, we do not explicitly control

nr−1
k

∥ΣT,−k∥
∥ΣS,−k∥ , because it equals 1

n
∥ΣT,−k∥
∥ΣS,−k∥ in this setting and is typically bounded for a randomly

generated ΣT,−k. We run minimum norm interpolation (ridgeless regression) with λ = 0.

The source covariance matrix ΣS is fixed for all experiments while we vary the target covariance
matrices. To study covariate shifts in major directions, we vary ∥T ∥ among 5, 25, 100 and keep
tr[U ]
tr[V] = 1. To study covariate shifts in minor directions, we vary tr[U ]

tr[V] = 1 among 5, 25, 100 and

keep ∥T ∥ = 1. For each pair of ∥T ∥ and tr[U ]
tr[V] , we generate training samples of various sizes n and
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1000 test samples. For each n, a target covariance matrix ΣT is randomly generated to satisfy the
specified ∥T ∥ and tr[U ]

tr[V] . We run 10 experiments for each set of (ΣS ,ΣT , n), using independently
sampled training sets and test sets, and the mean and standard error of the excess risks are reported.

The results are shown in Figure 1a, 1b. The fast rate O(1) of minimum norm interpolation is
confirmed, as the log-log plot of excess risk versus n has a slope near -1 across all combinations
of ∥T ∥ and tr[U ]

tr[V] . The excess risk increases with larger tr[U ]
tr[V] , indicating a greater shift in minor

directions. Similarly, the excess risk increases with larger ∥T ∥, indicating a greater shift in major
directions.

A.2 RIDGE V.S. PCR: LARGE SHIFT IN MINOR DIRECTIONS

Theorem 4 identifies a setting where large covariate shifts occur in minor directions of the covariance
matrix, leading to a lower bound of O(1/

√
n) on the excess risk for ridge regression, while Principal

Component Regression (PCR) achieves the fast rate of O(1). We design a simulation experiment
under the same instance of the source and target covariance matrices. Specifically, data is generated
as:

y = xTβ⋆ + ϵ,

where β⋆ ∈ Rk+⌊
√
n⌋, with β⋆k = ( 1√

k
, ..., 1√

k
)T , β⋆−k = 0, and k = 10. The noise ϵ is drawn

from a centered gaussian distribution with variance 0.1, and x follows a multivariate normal distri-
bution with zero mean. The source covariance matrix is ΣS = diag(Ik, n

−0.5I⌊
√
n⌋), and the target

covariance matrix is ΣT = Ik+⌊
√
n⌋.

We evaluate ridge regression with various regularization strengths: λ = 10−8, n0.5, n0.75, n. Here,
we use λ = 10−8 to approximate ridgeless regression, which has a singular solution under this setup.
We compare PCR to ridge regression for different training sample sizes n. The test set contains 1000
samples. For each n, 10 experiments are conducted with independently sampled training and test
sets. We report the mean and standard error of the excess risks.

Figure 1c present the results. As expected, PCR nearly achieves the fast rate of O(1/n), with the
log-log slope of excess risk versus n being -0.99. In contrast, the optimal rate of ridge regression
is O(n−0.48), achieved with λ = n0.75. This aligns with the lower bound of O(1/

√
n) from The-

orem 4, and its proof also suggests λ = n0.75 as the optimal regularization strength. Additionally,
ridge regression exhibits excess risks above a constant for certain choices of λ.

B RIDGE REGRESSION

Let X = (x1, ..., xn)
T ∈ Rn×d, Y = (y1, ..., yn)

T ∈ Rn and ϵ = (ϵ1, ..., ϵn)
T ∈ Rn. We denote

the first k columns of X as Xk and the remaining d − k columns as X−k. Similarly, β⋆k and β⋆−k
represent the corresponding components of β⋆. ΣS,k, ΣS,−k are the corresponding blocks on the
diagonal of ΣS . The i-th eigenvalue of a matrix is denoted by µi(·). Define Z = XΣ

−1/2
S , where

the rows of Z are i.i.d. centered isotropic random vectors. Additionally, we assume the rows of Z
are σ-sub-gaussian, where the sub-gaussian norm is defined as follows.

For a random variable s, the sub-gaussian norm ∥s∥ψ2
is given by:

∥s∥ψ2
= inf

{
t > 0 : E

[
exp

s2

t2

]
≤ 2

}
.

For a random vector S, the sub-gaussian norm ∥S∥ψ2 is given by:

∥S∥ψ2
= sup

v ̸=0

∥⟨S, v⟩∥ψ2

∥v∥
.

For λ ≥ 0, consider the ridge estimator:

β̂(Y ) = XT (XXT + λIn)
−1Y
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= XT (XXT + λIn)
−1Xβ⋆ +XT (XXT + λIn)

−1ϵ

= β̂(Xβ⋆) + β̂(ϵ),

where we define β̂(Xβ⋆) = XT (XXT+λIn)
−1Xβ⋆ and β̂(ϵ) = XT (XXT+λIn)

−1ϵ. Addition-
ally, we define Σ̃S = ΣS+

λ
nId. The effective rank of Σ̃S,k is defined as rk = λ−1

k+1(λ+
∑
j>k λj).

Assumption 2 (CondNum(k, δ, L)). Define a matrix Ak = λIn + X−kX
T
−k. With probability at

least 1− δ, Ak is positive definite and has a condition number no greater than L, i.e.,

µ1(Ak)

µn(Ak)
≤ L.

B.1 CONCENTRATION INEQUALITIES

Denote the element of a matrix X in the i-th row and the j-th column as X[i, j], and the i-th row of
the matrix X as X[i, ∗].
Lemma 7 (Lemma 20 of Tsigler & Bartlett (2023)). Let z be a sub-gaussian vector in Rp with
∥z∥ψ2 ≤ σ, and consider Σ = diag(λ1, . . . , λp) where the sequence {λj}pj=1 is positive and non-
increasing. Then there exists some absolute constant c, for any t > 0, with probability at least
1− 2e−t/c:

∥Σ1/2z∥2 ≤ cσ2

tλ1 +

p∑
j=1

λj

 .

Lemma 8 (Lemma 23 of Tsigler & Bartlett (2023)). Let Åk represent the matrix X−kX
T
−k with its

diagonal elements set to zero:

Åk[i, j] = (1− δi,j)(X−kX
T
−k)[i, j].

Then there exists some absolute constant c, for any t > 0, with probability at least 1− 4e−t/c:

∥Åk∥ ≤ cσ2

√√√√√(t+ n)

λ2
k+1(t+ n) +

∑
j>k

λ2
j

.

Lemma 9 (Lemma 21 of Tsigler & Bartlett (2023)). Suppose {zi}ni=1 is a sequence of independent
isotropic sub-gaussian random vectors, where ∥zi∥ψ2

≤ σ. Let Σ = diag(λ1, . . . , λp) represent a
diagonal matrix with a positive, non-increasing sequence {λi}pi=1. Then there exists some absolute
constant c, for any t ∈ (0, n), with probability at least 1− 2e−ct:

(n−
√
ntσ2)

p∑
j=1

λj ≤
n∑
i=1

∥Σ1/2zi∥2 ≤ (n+
√
ntσ2)

p∑
j=1

λj .

Lemma 10. There exists a constant cx, depending only on σ, such that for any n satisfying nλk+1 ≤(
λ+

∑
j>k λj

)
, under the assumption CondNum(k, δ, L) (Assumption 2), with probability at least

1− δ − cxe
−n/cx :

1

cxL

λ+
∑
j>k

λj

 ≤ µn(Ak) ≤ µ1(Ak) ≤ cx

λ+
∑
j>k

λj

 .

µ1(X−kX
T
−k) ≤ cx

nλk+1 +
∑
j>k

λj

 .

Proof. This result follows from the proof of Lemma 3 in Tsigler & Bartlett (2023), which estab-
lishes both upper and lower bounds of µ1(Ak). By combining the lower bound with the assumption
CondNum, we derive a lower bound of µn(Ak). For completeness, we restate the entire proof here.

According to lemma 7 and lemma 8, there exists an absolute constant c, such that for any t > 0:
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1. for all 1 ≤ i ≤ n, with probability at least 1− 2e−t/c:

∥X−k[i, ∗]∥2 ≤ cσ2

tλk+1 +
∑
j>k

λj

 .

2. with probability at least 1− 4e−t/c:

∥Åk∥ ≤ cσ2

√√√√√(t+ n)

λ2
k+1(t+ n) +

∑
j>k

λ2
j

.

Since µ1(Ak) ≤ λ+ ∥Åk∥+maxi ∥X−k[i, ∗]∥2, by setting t = n, we have with probability at least
1− (2n+ 4)e−n/c:

µ1(Ak) ≤ λ+ cσ2

nλk+1 +
∑
j>k

λj +

√
(2nλk+1)2 + 2n

∑
j>k

λ2
j


≤ λ+ cσ2

nλk+1 +
∑
j>k

λj + 2nλk+1 +

√
2n
∑
j>k

λ2
j


≤ λ+ cσ2

nλk+1 +
∑
j>k

λj + 2nλk+1 +

√
2nλk+1

∑
j>k

λj


≤ λ+ cσ2

nλk+1 +
∑
j>k

λj + 2nλk+1 + nλk+1 +
1

2

∑
j>k

λj


≤ λ+ 4cσ2

nλk+1 +
∑
j>k

λj


≤ max

{
1, 4cσ2

}λ+
∑
j>k

λj + nλk+1


≤ 2max

{
1, 4cσ2

}λ+
∑
j>k

λj

 . (2)

The last inequality follows from nλk+1 ≤
(
λ+

∑
j>k λj

)
. Similarly,

µ1(X−kX
T
−k) ≤ 4cσ2

nλk+1 +
∑
j>k

λj

 . (3)

On the other hand, by applying Lemma 9 with t = n
4σ4 , there exists an absolute constant c′, such

that with probability at least 1− 2 exp
{
− c′

4σ4n
}

:

n∑
i=1

∥X−k[i, ∗]∥2 ≥ 1

2
n
∑
j>k

λj .

On this event,

µ1(Ak) ≥ λ+
1

n
tr(X−kX

T
−k)

= λ+
1

n

n∑
i=1

∥X−k[i, ∗]∥2
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≥ λ+
1

2

∑
j>k

λj

≥ 1

2

λ+
∑
j>k

λj

 .

By the assumption CondNum(k, δ, L), with probability at least 1− δ − 2 exp
{
− c′

4σ4n
}

:

µn(Ak) ≥
1

L
µ1(Ak) ≥

1

2L

λ+
∑
j>k

λj

 . (4)

Combining Equation 2, 3 and 4, there exists a constant cx depending only on σ, such that with
probability at least 1− δ − cxe

−n/cx :

1

cxL

λ+
∑
j>k

λj

 ≤ µn(Ak) ≤ µ1(Ak) ≤ cx

λ+
∑
j>k

λj

 .

µ1(X−kX
T
−k) ≤ cx

nλk+1 +
∑
j>k

λj

 .

Lemma 11. There exists a constant cx depending only on σ, such that with probability at least 1−δ,
if n > k + ln(1/δ), ∥∥∥∥ 1nXT

k Xk − ΣS,k

∥∥∥∥ ≤ cxλ1

√
k + ln 1

δ

n
.

Proof. This follows directly from Theorem 5.39 and Remark 5.40 of Vershynin (2010), which shows
there exists a constant c′x depending only on σ, such that for any t ≥ 0, with probability at least
1− 2 exp{−t2/c′x}:∥∥∥∥ 1nXT

k Xk − ΣS,k

∥∥∥∥ ≤ λ1 max

c′x

√
k

n
+

t√
n
,

(
c′x

√
k

n
+

t√
n

)2
 .

Taking t =
√
c′x ln(2/δ) completes the proof.

Corollary 12. Under the same conditions as in Lemma 11, and on the same event, the following
holds: ∥∥∥(XT

k Xk

) 1
2 −

√
nΣ

1
2

S,k

∥∥∥ ≤ cx

√
k + ln

1

δ
λ1λ

− 1
2

k .

Proof. According to Proposition 3.2 of van Hemmen & Ando (1980), for any positive semi-definite
matrix A,B ∈ Rk, we have

∥A−B∥ ≥
(
µk

(
A

1
2

)
+ µk

(
B

1
2

))∥∥∥A 1
2 −B

1
2

∥∥∥ .
Therefore, ∥∥∥(XT

k Xk

) 1
2 −

√
nΣ

1
2

S,k

∥∥∥ ≤ 1

µk

(√
nΣ

1
2

S,k

) ∥∥XT
k Xk − nΣS,k

∥∥
=

√
nλ

− 1
2

k

∥∥∥∥ 1nXT
k Xk − ΣS,k

∥∥∥∥ .
By applying Lemma 11, the proof is complete.
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Lemma 13. There exists a constant cx depending only on σ, such that for any n > cxk, with
probability at least 1− 2e−n/cx :

1

cx
n ≤ µk

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≤ µ1

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≤ cxn.

Proof. According to Theorem 5.39 of Vershynin (2010), there exists a constant c′x depending only
on σ, such that for any t ≥ 0, with probability at least 1− 2 exp{−t2/c′x}:

µk

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≥
(√

n− c′x
√
k − t

)2
.

µ1

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≤
(√

n+ c′x
√
k + t

)2
.

Let t = 1
2

√
n. For n > 16(c′x)

2k, with probability at least 1− 2 exp {−n/(4c′x)}:

µk

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≥
(√

n− 1

4

√
n− 1

2

√
n

)2

=
1

16
n.

µ1

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≤
(√

n+
1

4

√
n+

1

2

√
n

)2

=
49

16
n.

By taking cx = max
{
16(c′x)

2, 4c′x, 16
}

, the proof is complete.

Remark 7. On the same event, the following inequalities also hold:

µ1(X
T
k Xk) ≤ ∥ΣS,k∥

∥∥∥Σ− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

∥∥∥ ≤ cxλ1n.

µk(X
T
k Xk) ≥ µk(ΣS,k)µk

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≥ 1

cx
λkn.

Lemma 14. There exists a constant cx depending only on σ, with probability at least 1− 2e−n/cx :

tr
(
X−kΣT,−kX

T
−k
)
≤ cxn tr

(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)
.

Proof. According to Hanson-Wright Inequality (Vershynin, 2018), there exists an absolute constant
c, such that for any 1 ≤ i ≤ n,∥∥∥Z−k[i, ∗]Σ

1
2

S,−kΣT,−kΣ
1
2

S,−kZ−k[i, ∗]T
∥∥∥
ψ1

≤ cσ2
∥∥∥Σ 1

2

S,−kΣT,−kΣ
1
2

S,−k

∥∥∥
F

≤ cσ2 tr
(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)
.

By Bernstein Inequality (Proposition 5.16 of Vershynin (2010)), there exists an absolute constant c′,
for any t ≥ 0,

P

{
1

n

∣∣∣∣∣
n∑
i=1

[
Z−k[i, ∗]Σ

1
2

S,−kΣT,−kΣ
1
2

S,−kZ−k[i, ∗]T − tr
(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)]∣∣∣∣∣ ≥ t

}

≤ 2 exp

{
−c′nmin

{
t2

K2
,
t

K

}}
,

where K = maxi

∥∥∥Z−k[i, ∗]Σ
1
2

S,−kΣT,−kΣ
1
2

S,−kZ−k[i, ∗]T
∥∥∥
ψ1

.

Let t = cσ2 tr
(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)
. Then, with probability at least 1− 2e−c

′n:

tr
(
X−kΣT,−kX

T
−k
)
=

n∑
i=1

Z−k[i, ∗]Σ
1
2

S,−kΣT,−kΣ
1
2

S,−kZ−k[i, ∗]T

≤ (1 + cσ2)n tr
(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)
.

By taking cx = max
{
1 + cσ2, 1

c′

}
, the proof is complete.
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Lemma 15. There exists a constant cx depending only on σ, with probablity at least 1− 2e−n/cx :

(β⋆−k)
TXT

−kX−kβ
⋆
−k ≤ cxn(β

⋆
−k)

TΣS,−kβ
⋆
−k.

Proof. The result follows from the proof of Lemma 3 in Tsigler & Bartlett (2023), which we restate
here for completeness. Consider the isotropic vector

[
(β⋆−k)

TΣS,−kβ
⋆
−k
]−1/2

X−kβ
⋆
−k. For the

i-th component,∥∥∥[(β⋆−k)TΣS,−kβ⋆−k]− 1
2 X−k[i, ∗]β⋆−k

∥∥∥
ψ2

=
[
(β⋆−k)

TΣS,−kβ
⋆
−k
]− 1

2

∥∥∥Z−k[i, ∗]Σ
1
2

S,−kβ
⋆
−k

∥∥∥
ψ2

≤
[
(β⋆−k)

TΣS,−kβ
⋆
−k
]− 1

2 σ
∥∥∥Σ 1

2

S,−kβ
⋆
−k

∥∥∥
= σ.

By applying Lemma 9 for the sequence
{[

(β⋆−k)
TΣS,−kβ

⋆
−k
]−1/2

X−k[i, ∗]β⋆−k
}n
i=1

, there exists

an absolute constant c, for any t ∈ (0, n), with probability at least 1− 2e−ct:

(β⋆−k)
TXT

−kX−kβ
⋆
−k

(β⋆−k)
TΣS,−kβ⋆−k

≤ n+
√
ntσ2.

Let t = n/4, with probability at least 1− 2e−cn/4:

(β⋆−k)
TXT

−kX−kβ
⋆
−k ≤ (1 +

1

2
σ2)n · (β⋆−k)TΣS,−kβ⋆−k.

By taking cx = max
{
1 + 1

2σ
2, 4
c

}
, the proof is complete.

B.2 BLOCK DECOMPOSITION OF X−kX
T
−k

Let Xk = UM̃
1
2V , where U ∈ Rn×n and V ∈ Rd×d are orthogonal matrices representing the left

and right singular vectors, respectively. The matrix M̃
1
2 is defined as:

M̃
1
2 =


m

1
2
1

. . .

m
1
2

k

0(n−k)×k

 ∈ Rn×k.

Therefore, we have XkX
T
k = UMUT , where M = diag(m1, ...,mk, 0, ..., 0) ∈ Rn×n. Similarly,

XT
k Xk = V TMkV , where Mk = diag(m1, ...,mk) ∈ Rk×k.

Let ∆ = UTX−kX
T
−kU , and write ∆ in block matrix form as:

∆ =

(
∆11 ∆12

∆T
12 ∆22

)
,

where ∆11 ∈ Rk×k, ∆12 ∈ Rk×(n−k), and ∆22 ∈ R(n−k)×(n−k).

We will repeatedly use the first k rows of (M + λIn + ∆)−1, which we compute here. Because
M +λIn+∆ and λIn−k+∆22 are invertible when Ak is positive definite, by block matrix inverse,

(M + λIn +∆)−1[k, ∗]

=
(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1 (
Ik,−∆12(λIn−k +∆22)

−1
)
.

(5)

Corollary 16 (Corollary of Lemma 10). There exists a constant depending only on σ, such that
for any n < λ−1

k+1

(
λ +

∑
j>k λj

)
, if the assumption condNum(k, δ, L) is satisfied, the following

inequalities hold with probability at least 1− δ − cxe
−n/cx , on the same event as in Lemma 10.

∥∆11∥, ∥∆12∥ ≤ ∥∆∥ ≤ cx

λ+
∑
j>k

λj

 .
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∥(λIn−k +∆22)
−1∥ ≤ ∥∆−1∥ ≤ cxL

λ+
∑
j>k

λj

−1

.

∥∥∆12(λIn−k +∆22)
−2∆T

12

∥∥ ≤ c4xL
2.

∥∥∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ c3xL

λ+
∑
j>k

λj

 .

∥∥∆11 −∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ cx

λ+
∑
j>k

λj

 .

Proof. 1. The first inequality.

∥∆11∥, ∥∆12∥ ≤ ∥∆∥ = ∥X−kX
T
−k∥ ≤ ∥Ak∥ ≤ cx

λ+
∑
j>k

λj

 .

2. The second inequality.

∥(λIn−k +∆22)
−1∥ ≤ ∥(λIn +∆)−1∥ = ∥A−1

k ∥ ≤ cxL

λ+
∑
j>k

λj

−1

,

where the first inequality holds because λIn +∆ is positive definite.

3. The third inequality.∥∥∆12(λIn−k +∆22)
−2∆T

12

∥∥ ≤ ∥∆12∥2∥(λIn−k +∆22)
−1∥2 ≤ c4xL

2.

4. The fourth inequality.

∥∥∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ ∥∆12∥2∥(λIn−k +∆22)
−1∥ ≤ c3xL

λ+
∑
j>k

λj

 .

5. The last inequality. ∥∥∆11 −∆12(λIn−k +∆22)
−1∆T

12

∥∥
=
∥∥∆11 + λIk −∆12(λIn−k +∆22)

−1∆T
12

∥∥− λ

≤ ∥∆11 + λIk∥ − λ

= ∥∆11∥

≤ cx

λ+
∑
j>k

λj

 .

The first inequality holds because ∆11 + λIk − ∆12(λIn−k + ∆22)
−1∆T

12 is the Schur
complement of the block ∆11 + λIk of the matrix ∆ + λIn, which is positive definite.
Therefore, we have

∆11 + λIk ≽ ∆11 + λIk −∆12(λIn−k +∆22)
−1∆T

12.

Lemma 17. There exists a constant cx > 2 depending only on σ, such that for any N1 < n <
N2, if the assumption condNum(k, δ, L) is satisfied, the following holds with probability at least
1− 2δ − cxe

−n/cx , on both events from Lemma 10 and Lemma 11,∥∥∥∥[XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1 −

(
nΣ̃S,k

)−1
∥∥∥∥
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≤
c2x

(√
n(k + ln 1

δ )λ1 + c2xL
(
λ+

∑
j>k λj

))
(λ+ nλk)2

.

where

N1 = max

4c4x(k + ln(1/δ))
λ2
1

λ2
k

, 2c4xLλ
−1
k

λ+
∑
j>k

λj

 .

N2 =
1

λk+1

λ+
∑
j>k

λj

 .

Proof. ∥∥∥∥[XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1 −

(
nΣ̃S,k

)−1
∥∥∥∥

≤
∥∥∥[XT

k Xk + λIk + V T
(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1
∥∥∥

·
∥∥∥[XT

k Xk + λIk + V T
(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]
−
(
nΣ̃S,k

)∥∥∥
·
∥∥∥∥(nΣ̃S,k)−1

∥∥∥∥
=

1

λ+ nλk

∥∥∥[XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1
∥∥∥

·
∥∥XT

k Xk − nΣS,k + V T
(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
∥∥ .

According to Lemma 11, Corollary 16, there exists a constant cx > 2 depending only on σ, such
that for any k + ln(1/δ) < N1 < n < N2 = λ−1

k+1

(
λ +

∑
j>k λj

)
, with probability at least

1− 2δ − cxe
−n/cx , on both events in Lemma 10 and Lemma 11,∥∥∥∥ 1nXT

k Xk − ΣS,k

∥∥∥∥ ≤ cxλ1

√
k + ln 1

δ

n
.

∥∥∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ c3xL

λ+
∑
j>k

λj

 .

1.
∥∥XT

k Xk − nΣS,k + V T
(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
∥∥.∥∥XT

k Xk − nΣS,k + V T
(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
∥∥

≤
∥∥XT

k Xk − nΣS,k
∥∥+ ∥∥(∆11 −∆12(λIn−k +∆22)

−1∆T
12

)∥∥
≤ cx

√
n(k + ln

1

δ
)λ1 + c3xL

λ+
∑
j>k

λj

 .

2.
∥∥∥[XT

k Xk + λIk + V T
(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1
∥∥∥

1

λ+ nλk

∥∥XT
k Xk − nΣS,k + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
∥∥

≤ 1

λ+ nλk

cx

√
n(k + ln

1

δ
)λ1 + c3xL

λ+
∑
j>k

λj

 .

Since n > 4c4x(k + ln(1/δ))
λ2
1

λ2
k

,

1

λ+ nλk
cx

√
n(k + ln

1

δ
)λ1 ≤

cx

√
n(k + ln 1

δ )λ1

nλk
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=
cx

√
(k + ln 1

δ )λ1
√
nλk

<
1

2cx
.

Since n > 2c4xLλ
−1
k

(
λ+

∑
j>k λj

)
,

1

λ+ nλk
c3xL

λ+
∑
j>k

λj

 ≤
c3xL

(
λ+

∑
j>k λj

)
nλk

<
1

2cx
.

Therefore, we have

1

λ+ nλk

∥∥XT
k Xk − nΣS,k + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
∥∥ <

1

cx
.

Now we derive the upper bound for our target.∥∥∥[XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1
∥∥∥

=

∥∥∥∥[nΣ̃S,k +XT
k Xk − nΣS,k + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1
∥∥∥∥

≤
∥∥∥∥(nΣ̃S,k)−1

∥∥∥∥ [1− ∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥

·
∥∥∥[XT

k Xk + λIk + V T
(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1
∥∥∥]−1

≤ 1

λ+ nλk

(
1− 1

cx

)−1

≤ cx
λ+ nλk

.

The first inequality follows from the result ∥(A + T )−1∥ ≤ ∥A−1∥
(
1− ∥A−1∥∥T∥

)−1
,

provided that both A and A + T are invertible and ∥A−1∥∥T∥ < 1 (see Lemma 3.1 in
Wedin (1973)).

Combining the above two inequalities,∥∥∥∥[XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1 −

(
nΣ̃S,k

)−1
∥∥∥∥

≤ 1

λ+ nλk

cx
λ+ nλk

cx

√
n(k + ln

1

δ
)λ1 + c3xL

λ+
∑
j>k

λj


=

c2x

(√
n(k + ln 1

δ )λ1 + c2xL
(
λ+

∑
j>k λj

))
(λ+ nλk)2

.

B.3 BIAS VARIANCE DECOMPOSITION

We consider the expection of the excess risk R
(
β̂(Y )

)
= R

(
β̂(Xβ⋆) + β̂(ϵ)

)
with respect to the

distribution of the noise ϵ.

Eϵ

[
R
(
β̂(Y )

)]
= Eϵ

[(
β̂(Y )− β⋆

)T
ΣT

(
β̂(Y )− β⋆

)]
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= Eϵ

[
β̂(ϵ)TΣT β̂(ϵ)

]
+
(
β̂(Xβ⋆)− β⋆

)T
ΣT

(
β̂(Xβ⋆)− β⋆

)
.

We decompose the expected excess risk into variance and bias terms.

V = Eϵ

[
β̂(ϵ)TΣT β̂(ϵ)

]
≤ 2Eϵ

[
β̂(ϵ)TkΣT,kβ̂(ϵ)k

]
+ 2Eϵ

[
β̂(ϵ)T−kΣT,−kβ̂(ϵ)−k

]
.

B =
(
β̂(Xβ⋆)− β⋆

)T
ΣT

(
β̂(Xβ⋆)− β⋆

)
≤ 2

(
β̂(Xβ⋆)k − β⋆k

)T
ΣT,k

(
β̂(Xβ⋆)k − β⋆k

)
+ 2

(
β̂(Xβ⋆)−k − β⋆−k

)T
ΣT,−k

(
β̂(Xβ⋆)−k − β⋆−k

)
.

The inequalities follow from the result for a positive definite block quadratic form:

(xT1 , x
T
2 )

(
A B
BT D

)(
x1

x2

)
= xT1 Ax1 + 2xT1 Bx2 + xT1 Dx1,

where the positive definiteness implies xT1 Ax1 + xT1 Dx1 ≥ 2xT1 Bx2.
Lemma 18. There exists a constant cx > 2 depending only on σ, such that for any N1 < n <
N2, if the assumption condNum(k, δ, L) (Assumption 2) is satisfied, then with probability at least
1− 2δ − cxe

−n/cx , the following inequalities hold simultaneously:

µn(Ak) ≥
1

cxL

λ+
∑
j>k

λj

 .

µ1(Ak) ≤ cx

λ+
∑
j>k

λj

 .

µ1(X−kX
T
−k) ≤ cx

nλk+1 +
∑
j>k

λj

 .

∥∥∥∥ 1nXT
k Xk − ΣS,k

∥∥∥∥ ≤ cxλ1

√
k + ln 1

δ

n
.∥∥∥(XT

k Xk

) 1
2 −

√
nΣ

1
2

S,k

∥∥∥ ≤ cx

√
k + ln

1

δ
λ1λ

− 1
2

k .

µk

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≥ 1

cx
n.

µ1

(
Σ

− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)
≤ cxn.

µ1(X
T
k Xk) ≤ cxλ1n.

µk(X
T
k Xk) ≥

1

cx
λkn.

tr
(
X−kΣT,−kX

T
−k
)
≤ cxn tr

(
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

)
.

(β⋆−k)
TXT

−kX−kβ
⋆
−k ≤ cxn(β

⋆
−k)

TΣS,−kβ
⋆
−k.

∥∆11∥, ∥∆12, ∥∆∥∥ ≤ cx

λ+
∑
j>k

λj

 .

∥(λIn−k +∆22)
−1∥, ∥∆−1∥ ≤ cxL

λ+
∑
j>k

λj

−1

.
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∥∥∆12(λIn−k +∆22)
−2∆T

12

∥∥ ≤ c4xL
2.

∥∥∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ c3xL

λ+
∑
j>k

λj

 .

∥∥∆11 −∆12(λIn−k +∆22)
−1∆T

12

∥∥ ≤ cx

λ+
∑
j>k

λj

 .

And, ∥∥∥∥[XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1 −

(
nΣ̃S,k

)−1
∥∥∥∥

≤
c2x

(√
n(k + ln 1

δ )λ1 + c2xL
(
λ+

∑
j>k λj

))
(λ+ nλk)2

.

N1 and N2 are defined as follows:

N1 = max

4c4x(k + ln(1/δ))
λ2
1

λ2
k

, 2c4xLλ
−1
k

λ+
∑
j>k

λj

 .

N2 =
1

λk+1

λ+
∑
j>k

λj

 .

Proof. The lemma is a direct corollary from Lemma 10, Lemma 11, Corollary 12, Lemma 13,
Lemma 14, Lemma 15, Corollary 16, Lemma 17.

B.3.1 VARIANCE IN THE FIRST k DIMENSIONS

Lemma 19. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <
N2,

Eϵ

[
β̂(ϵ)TkΣT,kβ̂(ϵ)k

]
≤ 16v2(1 + c4xL

2)
1

n
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
,

where

N1 = max

{
4c4x

(
k + ln

1

δ

)
λ4
1λ

−4
k ,

2c4xLλ1λ
−2
k

λ+
∑
j>k

λj

 ,

4c4x

(
k + ln

1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2k2

(
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

])−2

,

2c4xLλ
2
1λ

−4
k

λ+
∑
j>k

λj

 ∥ΣT,k∥k
(
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

])−1
}
,

N2 =
1

λk+1

λ+
∑
j>k

λj

 .

Proof.

Eϵ

[
β̂(ϵ)TkΣT,kβ̂(ϵ)k

]
= Eϵ tr

[
ϵϵT (XXT + λIn)

−1XkΣT,kX
T
k (XXT + λIn)

−1
]
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= v2 tr
[
(XXT + λIn)

−1XkΣT,kX
T
k (XXT + λIn)

−1
]

= v2 tr
[
(UMUT + U∆UT + λIn)

−1UM̃
1
2V ΣT,k

·V T
(
M̃

1
2

)T
UT (UMUT + U∆UT + λIn)

−1

]
= v2 tr

[
U(M +∆+ λIn)

−1M̃
1
2V ΣT,kV

T
(
M̃

1
2

)T
(M +∆+ λIn)

−1UT

]
= v2 tr

[(
M̃

1
2

)T
(M +∆+ λIn)

−1(M +∆+ λIn)
−1M̃

1
2V ΣT,kV

T

]
= v2 tr

[
M

1
2

k

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1 (
Ik,−∆12(λIn−k +∆22)

−1
)

·
(
Ik,−∆12(λIn−k +∆22)

−1
)T (

Mk + λIk +∆11 −∆12(λIn−k +∆22)
−1∆T

12

)−1
M

1
2

k

·V ΣT,kV
T
]

= v2 tr
[
M

1
2

k

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1

·
(
Ik +∆12(λIn−k +∆22)

−2∆T
12

) (
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1
M

1
2

k

·V ΣT,kV
T
]

= v2 tr
[(
Ik +∆12(λIn−k +∆22)

−2∆T
12

) (
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1

·M
1
2

k V ΣT,kV
TM

1
2

k

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1
]

≤ v2
∥∥Ik +∆12(λIn−k +∆22)

−2∆T
12

∥∥ tr [(Mk + λIk +∆11 −∆12(λIn−k +∆22)
−1∆T

12

)−1

·M
1
2

k V ΣT,kV
TM

1
2

k

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1
]

≤ v2(1 + c4xL
2) tr

[(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1

·M
1
2

k V ΣT,kV
TM

1
2

k

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1
]

= v2(1 + c4xL
2) tr

[(
V T

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
)−1

·V TM
1
2

k V · ΣT,k · V TM
1
2

k V ·
(
V T

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
)−1
]

= v2(1 + c4xL
2) tr

[(
XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
)−1

·
(
XT
k Xk

) 1
2 ΣT,k

(
XT
k Xk

) 1
2

·
(
XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
)−1
]
.

The sixth equation follows from Equation 5. The first inequality follows from the result tr[AB] ≤
∥A∥ tr[B] where the matrix B is positive semi-definite.

We define two quantities that represent concentration error terms:

E1 =

∥∥∥∥[XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1 −

(
nΣ̃S,k

)−1
∥∥∥∥ .

E2 =
(
XT
k Xk

) 1
2 − (nΣS,k)

1
2 .

Since n > 4c4x
(
k + ln 1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2k2

(
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

])−2

,

and n > 2c4xL
(
λ+

∑
j>k λj

)
λ2
1λ

−4
k ∥ΣT,k∥k

(
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

])−1

,

∥E1∥
∥∥∥nΣ̃S,k∥∥∥∥∥∥∥(nΣ̃S,k)−1

∥∥∥∥∥∥∥(nΣS,k) 1
2

∥∥∥ ∥ΣT,k∥ ∥∥∥(nΣS,k) 1
2

∥∥∥ ∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥
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≤
c2x

(√
n(k + ln 1

δ )λ1 + c2xL
(
λ+

∑
j>k λj

))
(λ+ nλk)2

(λ+ nλ1)
nλ1

(λ+ nλk)2
∥ΣT,k∥

≤
c2x

(√
n(k + ln 1

δ )λ1 + c2xL
(
λ+

∑
j>k λj

))
n2

λ2
1

λ4
k

∥ΣT,k∥

=
c2x

√
(k + ln 1

δ )

n
√
n

λ3
1

λ4
k

∥ΣT,k∥+
c4xL

(
λ+

∑
j>k λj

)
n2

λ2
1

λ4
k

∥ΣT,k∥

<
1

2nk
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
+

1

2nk
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
=

1

nk
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
.

Since n > 4c4x
(
k + ln 1

δ

)
λ4
1λ

−4
k and n > 2c4xL

(
λ+

∑
j>k λj

)
λ1λ

−2
k ,

∥E1∥
∥∥∥nΣ̃S,k∥∥∥

≤
c2x

(√
n(k + ln 1

δ )λ1 + c2xL
(
λ+

∑
j>k λj

))
(λ+ nλk)2

(λ+ nλ1)

≤
c2x

(√
n(k + ln 1

δ )λ1 + c2xL
(
λ+

∑
j>k λj

))
n

λ1

λ2
k

=
c2x

√
(k + ln 1

δ )√
n

λ2
1

λ2
k

+
c4xL

(
λ+

∑
j>k λj

)
n

λ1

λ2
k

<
1

2
+

1

2
= 1.

(6)

Since n > c2x
(
k + ln 1

δ

)
λ4
1λ

−6
k ∥ΣT,k∥2k2

(
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

])−2

,

∥E2∥
∥∥∥∥(nΣ̃S,k)− 1

2

∥∥∥∥∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥∥∥∥(nΣS,k) 1

2

∥∥∥ ∥ΣT,k∥ ∥∥∥(nΣS,k) 1
2

∥∥∥ ∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥

≤ cx

√
k + ln

1

δ
λ1λ

− 1
2

k (nλk)
− 1

2
nλ1

(λ+ nλk)2
∥ΣT,k∥

≤
cx

√
k + ln 1

δ

n
√
n

λ2
1

λ3
k

∥ΣT,k∥

≤ 1

nk
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
.

Since n > c2x
(
k + ln 1

δ

)
λ2
1λ

−2
k ,

∥E2∥
∥∥∥∥(nΣ̃S,k)− 1

2

∥∥∥∥
≤ cx

√
k + ln

1

δ
λ1λ

− 1
2

k (nλk)
− 1

2

=
cx

√
k + ln 1

δ√
n

λ1

λk

< 1.

(7)

Combing the above four inequalities, we have

tr
[(
XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
)−1
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·
(
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k Xk

) 1
2 ΣT,k

(
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k Xk

) 1
2

·
(
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k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
)−1
]

= tr

[(
nΣ̃S,k

)−1

(nΣS,k)
1
2 ΣT,k (nΣS,k)

1
2

(
nΣ̃S,k

)−1
]

+ 2 tr

[
E1 (nΣS,k)

1
2 ΣT,k (nΣS,k)

1
2

(
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)−1
]

+ 2 tr

[(
nΣ̃S,k

)−1

E2ΣT,k (nΣS,k)
1
2

(
nΣ̃S,k

)−1
]

+ tr
[
E1 (nΣS,k)

1
2 ΣT,k (nΣS,k)

1
2 E1

]
+ tr
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)−1

E2ΣT,kE2

(
nΣ̃S,k

)−1
]

+ 2 tr

[
E1 (nΣS,k)

1
2 ΣT,kE2

(
nΣ̃S,k

)−1
]

+ 2 tr

[
E1E2ΣT,k (nΣS,k)

1
2

(
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]

+ 2 tr
[
E1E2ΣT,k (nΣS,k)

1
2 E1

]
+ 2 tr

[
E1E2ΣT,kE2

(
nΣ̃S,k

)−1
]

+ tr [E1E2ΣT,kE2E1] .

In particular,

tr

[(
nΣ̃S,k

)−1

(nΣS,k)
1
2 ΣT,k (nΣS,k)

1
2

(
nΣ̃S,k

)−1
]

=
1

n
tr
[
Σ̃−1
S,kΣ

1
2

S,kΣT,kΣ
1
2

S,kΣ̃
−1
S,k

]
≤ 1

n
tr
[
Σ−1
S,kΣ

1
2

S,kΣT,kΣ
1
2

S,kΣ
−1
S,k

]
=

1

n
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
.

The inequality follows from the fact that tr[BAB] = tr[A
1
2BA

1
2 ] ≤ tr[A

1
2CA

1
2 ] = tr[CAC],

where A,B,C are positive semi-definite matrices, and C ≽ B, which implies that A
1
2CA

1
2 ≽

A
1
2BA

1
2 .

tr [E1E2ΣT,kE2E1]

= tr

[
E1nΣ̃S,k

(
nΣ̃S,k

)−1

E2

(
nΣ̃S,k

)− 1
2
(
nΣ̃S,k

) 1
2

·ΣT,kE2

(
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2
(
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) 1
2

E1nΣ̃S,k

(
nΣ̃S,k

)−1
]

≤ k
(
∥E1∥

∥∥∥nΣ̃S,k∥∥∥)2(∥E2∥
∥∥∥∥(nΣ̃S,k)− 1

2

∥∥∥∥)
· ∥E2∥

∥∥∥∥(nΣ̃S,k)− 1
2

∥∥∥∥ ∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥∥∥∥(nΣS,k) 1

2

∥∥∥ ∥ΣT,k∥ ∥∥∥(nΣS,k) 1
2

∥∥∥∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥

≤ 1

n
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
.

The other terms can be similarly bounded. Therefore,

tr
[(
XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
)−1
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·
(
XT
k Xk

) 1
2 ΣT,k

(
XT
k Xk
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2

·
(
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k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)
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12

)
V
)−1
]

≤ 16

n
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[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
.

The proof is complete by combing all the inequalities above.

B.3.2 VARIANCE IN THE LAST d− k DIMENSIONS

Lemma 20. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <
N2,

Eϵ

[
β̂(ϵ)T−kΣT,−kβ̂(ϵ)−k

]
≤ v2c3xL
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2

S,−kΣT,−kΣ
1
2
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.

where N1, N2 are defined as in Lemma 18.

Proof.

Eϵ
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]
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]
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∥∥ tr [X−kΣT,−kX
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1
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.

The first inequality follows from the result tr[ABA] = tr[A2B] ≤ ∥A2∥ tr[B] where the matrix B
is positive semi-definite. The second inequality follows from XXT + λIn ≽ X−kX

T
−k + λIn.

B.3.3 BIAS IN THE FIRST k DIMENSIONS

The bias in the first k dimensions can be decomposed into two terms.(
β̂(Xβ⋆)k − β⋆k

)T
ΣT,k

(
β̂(Xβ⋆)k − β⋆k

)
=
(
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ΣT,k
(
XT
k (XXT + λIn)

−1Xβ⋆ − β⋆k
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⋆
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)
.

The inequality follows from the result xT1 Ax1 + xT2 Ax2 ≥ 2xT1 Ax2 where A is positive semi-
definite.
Lemma 21. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <
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where

N1 = max
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The second equation follows from Equation 5.

We will derive upper bounds for both terms in the last equation above.

1. The first term.∥∥∥Σ 1
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−1∆T
12

)
M

− 1
2

k V Σ
1
2

S,k

∥∥∥
≤
∥∥λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

∥∥ ∥∥∥Σ 1
2

S,kV
TM−1

k V Σ
1
2

S,k

∥∥∥
=
∥∥λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

∥∥ ∥∥∥∥(Σ− 1
2

S,k

(
XT
k Xk

)−1
Σ

− 1
2

S,k

)−1
∥∥∥∥

≤

λ+ cx

λ+
∑
j>k

λj

 cx
n

≤ 2c2x
n

λ+
∑
j>k

λj

 .

The inequality follows from cx > 2.

2. The second term.
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The second inequality follows from ∥(A + T )−1∥ ≤ ∥A−1∥
(
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, where

both A and A+ T are invertible and ∥A−1∥∥T∥ < 1. Note that cx > 2.

Since n > 2c3x(λ+
∑
j>k λj)λ1λ

−2
k ,∥∥∥Σ 1

2

S,kV
TM

− 1
2

k

(
λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
M

− 1
2

k V
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·
[(

Ik + V TM
− 1

2

k

(
λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
M

− 1
2

k V
)−1

− Ik

]
Σ

1
2

S,k

∥∥∥∥
≤ ∥ΣS,k∥

∥∥M−1
k

∥∥∥∥λIk +∆11 −∆12(λIn−k +∆22)
−1∆T

12

∥∥
·
∥∥∥∥(Ik + V TM

− 1
2

k

(
λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
M

− 1
2

k V
)−1

− Ik

∥∥∥∥
≤ λ1 ·

cx
nλk

· 2cx

λ+
∑
j>k

λj

 · 2c
3
x

n

λ+
∑
j>k λj

λk

=
1

n
· 4c

5
x

n
λ1λ

−2
k

λ+
∑
j>k

λj

2

<
2c2x
n

λ+
∑
j>k

λj

 .

Combining both terms above, we have∥∥∥Σ 1
2

S,kX
T
k (XXT + λIn)

−1XkΣ
1
2

S,k − ΣS,k

∥∥∥ ≤ 4c2x
n

λ+
∑
j>k

λj

 .

Therefore, (
XT
k (XXT + λIn)

−1Xkβ
⋆
k − β⋆k

)T
ΣT,k

(
XT
k (XXT + λIn)

−1Xkβ
⋆
k − β⋆k

)
≤ (β⋆k)

TΣ−1
S,kβ

⋆
k ·
∥∥∥Σ− 1

2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥
·
∥∥∥Σ 1

2

S,kX
T
k (XXT + λIn)

−1XkΣ
1
2

S,k − ΣS,k

∥∥∥2
≤ 16c4x

n2

λ+
∑
j>k

λj

2

(β⋆k)
TΣ−1

S,kβ
⋆
k

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ .
Lemma 22. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <
N2, (

XT
k (XXT + λIn)

−1X−kβ
⋆
−k
)T

ΣT,k
(
XT
k (XXT + λIn)

−1X−kβ
⋆
−k
)

≤ 16cx(1 + c4xL
2)
∥∥∥Σ− 1

2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ (β⋆−k)TΣS,−kβ⋆−k.
where

N1 = max

{
4c4x

(
k + ln

1

δ

)
λ4
1λ

−4
k ,

2c4xLλ1λ
−2
k

λ+
∑
j>k

λj

 ,

4c4x

(
k + ln

1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥−2

,

2c4xL

λ+
∑
j>k

λj

λ2
1λ

−4
k ∥ΣT,k∥

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥−1
}
,

N2 =
1

λk+1

λ+
∑
j>k

λj

 .
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Proof. (
XT
k (XXT + λIn)

−1X−kβ
⋆
−k
)T

ΣT,k
(
XT
k (XXT + λIn)

−1X−kβ
⋆
−k
)

≤
∥∥(XXT + λIn)

−1XkΣT,kX
T
k (XXT + λIn)

−1
∥∥ · (β⋆−k)TXT

−kX−kβ
⋆
−k.

From Lemma 18,

(β⋆−k)
TXT

−kX−kβ
⋆
−k ≤ cxn(β

⋆
−k)

TΣS,−kβ
⋆
−k.

In the following, we derive an upper bound for the other term.∥∥(XXT + λIn)
−1XkΣT,kX

T
k (XXT + λIn)

−1
∥∥

=

∥∥∥∥(M + λIn +∆)−1M̃
1
2V ΣT,kV

T
(
M̃

1
2

)T
(M + λIn +∆)−1

∥∥∥∥
=

∥∥∥∥Σ 1
2

T,kV
T
(
M̃

1
2

)T
(M + λIn +∆)−2M̃

1
2V Σ

1
2

T,k

∥∥∥∥
=
∥∥∥Σ 1

2

T,kV
TM

1
2

k

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1

·
(
Ik +∆12(λIn−k +∆22)

−2∆T
12

) (
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1

·M
1
2

k V Σ
1
2

T,k

∥∥∥
≤
∥∥Ik +∆12(λIn−k +∆22)

−2∆T
12

∥∥
·
∥∥∥(Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1
M

1
2

k V ΣT,k

·V TM
1
2

k

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1
∥∥∥

≤ (1 + c4xL
2)
∥∥∥(Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1
M

1
2

k V ΣT,k

·V TM
1
2

k

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)−1
∥∥∥

= (1 + c4xL
2)
∥∥∥(V T

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
)−1

·V TM
1
2

k V ΣT,kV
TM

1
2

k V

·
(
V T

(
Mk + λIk +∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
)−1
∥∥∥

= (1 + c4xL
2)
∥∥∥(XT

k Xk + λIk + V T (∆11 −∆12(λIn−k +∆22)
−1∆T

12)V
)−1

·
(
XT
k Xk

) 1
2 ΣT,k

(
XT
k Xk

) 1
2

·
(
XT
k Xk + λIk + V T (∆11 −∆12(λIn−k +∆22)

−1∆T
12)V

)−1
∥∥∥ .

The third equation follows from Equation 5.

We define two quantities that represent concentration error terms:

E1 =

∥∥∥∥[XT
k Xk + λIk + V T

(
∆11 −∆12(λIn−k +∆22)

−1∆T
12

)
V
]−1 −

(
nΣ̃S,k

)−1
∥∥∥∥ .

E2 =
(
XT
k Xk

) 1
2 − (nΣS,k)

1
2 .

Since n > 4c4x
(
k + ln 1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥−2

,

and n > 2c4xL
(
λ+

∑
j>k λj

)
λ2
1λ

−4
k ∥ΣT,k∥

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥−1

,

∥E1∥
∥∥∥nΣ̃S,k∥∥∥∥∥∥∥(nΣ̃S,k)−1

∥∥∥∥∥∥∥(nΣS,k) 1
2

∥∥∥ ∥ΣT,k∥ ∥∥∥(nΣS,k) 1
2

∥∥∥ ∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥

≤
c2x

(√
n(k + ln 1

δ )λ1 + c2xL
(
λ+

∑
j>k λj

))
(λ+ nλk)2

(λ+ nλ1)
nλ1

(λ+ nλk)2
∥ΣT,k∥
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≤
c2x

(√
n(k + ln 1

δ )λ1 + c2xL
(
λ+

∑
j>k λj

))
n2

λ2
1

λ4
k

∥ΣT,k∥

=
c2x

√
(k + ln 1

δ )

n
√
n

λ3
1

λ4
k

∥ΣT,k∥+
c4xL

(
λ+

∑
j>k λj

)
n2

λ2
1

λ4
k

∥ΣT,k∥

<
1

2n

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥+ 1

2n

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥
=

1

n

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ .
Similar to Equation 6, since n > 4c4x

(
k + ln 1

δ

)
λ4
1λ

−4
k and n > 2c4xL

(
λ+

∑
j>k λj

)
λ1λ

−2
k ,

∥E1∥
∥∥∥nΣ̃S,k∥∥∥ < 1.

Since n > c2x
(
k + ln 1

δ

)
λ4
1λ

−6
k ∥ΣT,k∥2

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥−2

,

∥E2∥
∥∥∥∥(nΣ̃S,k)− 1

2

∥∥∥∥∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥∥∥∥(nΣS,k) 1

2

∥∥∥ ∥ΣT,k∥ ∥∥∥(nΣS,k) 1
2

∥∥∥ ∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥

≤ cx

√
k + ln

1

δ
λ1λ

− 1
2

k (nλk)
− 1

2
nλ1

(λ+ nλk)2
∥ΣT,k∥

≤
cx

√
k + ln 1

δ

n
√
n

λ2
1

λ3
k

∥ΣT,k∥

≤ 1

n

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ .
Similar to Equation 7, since n > c2x

(
k + ln 1

δ

)
λ2
1λ

−2
k ,

∥E2∥
∥∥∥∥(nΣ̃S,k)− 1

2

∥∥∥∥ < 1.

Combining the four inequalities above,∥∥∥(XT
k Xk + λIk + V T (∆11 −∆12(λIn−k +∆22)

−1∆T
12)V

)−1

·
(
XT
k Xk

) 1
2 ΣT,k

(
XT
k Xk

) 1
2

·
(
XT
k Xk + λIk + V T (∆11 −∆12(λIn−k +∆22)

−1∆T
12)V

)−1
∥∥∥

≤
∥∥∥∥(nΣ̃S,k)−1

(nΣS,k)
1
2 ΣT,k (nΣS,k)

1
2

(
nΣ̃S,k

)−1
∥∥∥∥

+ 2

∥∥∥∥E1 (nΣS,k)
1
2 ΣT,k (nΣS,k)

1
2

(
nΣ̃S,k

)−1
∥∥∥∥

+ 2

∥∥∥∥(nΣ̃S,k)−1

E2ΣT,k (nΣS,k)
1
2

(
nΣ̃S,k

)−1
∥∥∥∥

+
∥∥∥E1 (nΣS,k)

1
2 ΣT,k (nΣS,k)

1
2 E1

∥∥∥
+

∥∥∥∥(nΣ̃S,k)−1

E2ΣT,kE2

(
nΣ̃S,k

)−1
∥∥∥∥

+ 2

∥∥∥∥E1 (nΣS,k)
1
2 ΣT,kE2

(
nΣ̃S,k

)−1
∥∥∥∥

+ 2

∥∥∥∥E1E2ΣT,k (nΣS,k)
1
2

(
nΣ̃S,k

)−1
∥∥∥∥

+ 2
∥∥∥E1E2ΣT,k (nΣS,k)

1
2 E1

∥∥∥
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+ 2

∥∥∥∥E1E2ΣT,kE2

(
nΣ̃S,k

)−1
∥∥∥∥

+ ∥E1E2ΣT,kE2E1∥ .

In particular, ∥∥∥∥(nΣ̃S,k)−1

(nΣS,k)
1
2 ΣT,k (nΣS,k)

1
2

(
nΣ̃S,k

)−1
∥∥∥∥

=
1

n

∥∥∥Σ̃−1
S,kΣ

1
2

S,kΣT,kΣ
1
2

S,kΣ̃
−1
S,k

∥∥∥
≤ 1

n

∥∥∥Σ−1
S,kΣ

1
2

S,kΣT,kΣ
1
2

S,kΣ
−1
S,k

∥∥∥
=

1

n

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ .
The inequality follows from the fact that ∥BAB∥ = ∥A 1

2BA
1
2 ∥ ≤ ∥A 1

2CA
1
2 ∥ = ∥CAC∥, where

A,B,C are positive semi-definite matrices, and C ≽ B, which implies that A
1
2CA

1
2 ≽ A

1
2BA

1
2 .

∥E1E2ΣT,kE2E1∥

=

∥∥∥∥E1nΣ̃S,k

(
nΣ̃S,k

)−1

E2

(
nΣ̃S,k

)− 1
2
(
nΣ̃S,k

) 1
2

·ΣT,kE2

(
nΣ̃S,k

)− 1
2
(
nΣ̃S,k

) 1
2

E1nΣ̃S,k

(
nΣ̃S,k

)−1
∥∥∥∥

≤
(
∥E1∥

∥∥∥nΣ̃S,k∥∥∥)2(∥E2∥
∥∥∥∥(nΣ̃S,k)− 1

2

∥∥∥∥)
· ∥E2∥

∥∥∥∥(nΣ̃S,k)− 1
2

∥∥∥∥ ∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥∥∥∥(nΣS,k) 1

2

∥∥∥ ∥ΣT,k∥ ∥∥∥(nΣS,k) 1
2

∥∥∥∥∥∥∥(nΣ̃S,k)−1
∥∥∥∥

≤ 1

n

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ .
The other terms can be similarly bounded. Therefore,∥∥∥(XT

k Xk + λIk + V T (∆11 −∆12(λIn−k +∆22)
−1∆T

12)V
)−1

·
(
XT
k Xk

) 1
2 ΣT,k

(
XT
k Xk

) 1
2

·
(
XT
k Xk + λIk + V T (∆11 −∆12(λIn−k +∆22)

−1∆T
12)V

)−1
∥∥∥

≤ 16

n

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ .

B.3.4 BIAS IN THE LAST d− k DIMENSIONS

The upper bound for the bias in the last d−k dimensions is extended from Tsigler & Bartlett (2023)’s
Lemma 28. The bias can be decomposed into three terms.(

β̂(Xβ⋆)−k − β⋆−k

)T
ΣT,−k

(
β̂(Xβ⋆)−k − β⋆−k

)
≤ 3(β⋆−k)

TΣT,−kβ
⋆
−k

+ 3(β⋆−k)
TXT

−k(XXT + λIn)
−1X−kΣT,−kX

T
−k(XXT + λIn)

−1X−kβ
⋆
−k

+ 3(β⋆k)
TXT

k (XXT + λIn)
−1X−kΣT,−kX

T
−k(XXT + λIn)

−1Xkβ
⋆
k .

Lemma 23. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <
N2,

(β⋆−k)
TXT

−k(XXT + λIn)
−1X−kΣT,−kX

T
−k(XXT + λIn)

−1X−kβ
⋆
−k
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≤ c2xL

λ+
∑
j

λj

−1

n∥ΣT,−k∥(β⋆−k)TΣS,−kβ⋆−k.

where N1, N2 are defined as in Lemma 18.

Proof.

(β⋆−k)
TXT

−k(XXT + λIn)
−1X−kΣT,−kX

T
−k(XXT + λIn)

−1X−kβ
⋆
−k

≤ ∥ΣT,−k∥(β⋆−k)TXT
−k(XXT + λIn)

−1X−kX
T
−k(XXT + λIn)

−1X−kβ
⋆
−k

≤ ∥ΣT,−k∥(β⋆−k)TXT
−k(XXT + λIn)

−1(XXT + λIn)(XXT + λIn)
−1X−kβ

⋆
−k

≤ ∥ΣT,−k∥
∥∥(XXT + λIn)

−1
∥∥ (β⋆−k)TXT

−kX−kβ
⋆
−k

≤ ∥ΣT,−k∥
∥∥(X−kX

T
−k + λIn)

−1
∥∥ (β⋆−k)TXT

−kX−kβ
⋆
−k

≤ ∥ΣT,−k∥

 1

cxL

λ+
∑
j

λj

−1

cxn(β
⋆
−k)

TΣS,−kβ
⋆
−k

= c2xL

λ+
∑
j

λj

−1

n∥ΣT,−k∥(β⋆−k)TΣS,−kβ⋆−k.

The fourth inequality follows from XXT + λIn ≽ X−kX
T
−k + λIn.

Lemma 24. Under the same conditions as in Lemma 18, and on the same event, for any N1 < n <
N2,

(β⋆k)
TXT

k (XXT + λIn)
−1X−kΣT,−kX

T
−k(XXT + λIn)

−1Xkβ
⋆
k

≤ c6x
n
L

λ+
∑
j>k

λj

 ∥ΣT,−k∥(β⋆k)TΣ−1
S,kβ

⋆
k .

where N1, N2 are defined as in Lemma 18.

Proof. It can be verified by Woodbury matrix identity that:

(XXT + λIn)
−1Xk = (X−kX

T
−k + λIn)

−1Xk

(
Ik +XT

k (X−kX
T
−k + λIn)

−1Xk

)−1
.

Therefore,

(β⋆k)
TXT

k (XXT + λIn)
−1X−kΣT,−kX

T
−k(XXT + λIn)

−1Xkβ
⋆
k

=
∥∥∥Σ 1

2

T,−kX
T
−k(X−kX

T
−k + λIn)

−1Xk

(
Ik +XT

k (X−kX
T
−k + λIn)

−1Xk

)−1
β⋆k

∥∥∥2
≤ ∥ΣT,−k∥

∥∥(X−kX
T
−k + λIn)

−1X−kX
T
−k(X−kX

T
−k + λIn)

−1
∥∥

·
∥∥∥Xk

(
Ik +XT

k (X−kX
T
−k + λIn)

−1Xk

)−1
β⋆k

∥∥∥2
= ∥ΣT,−k∥

∥∥(X−kX
T
−k + λIn)

−1X−kX
T
−k(X−kX

T
−k + λIn)

−1
∥∥

·
∥∥∥∥XkΣ

− 1
2

S,k

(
Σ−1
S,k +Σ

− 1
2

S,kX
T
k (X−kX

T
−k + λIn)

−1XkΣ
− 1

2

S,k

)−1

Σ
− 1

2

S,kβ
⋆
k

∥∥∥∥2
≤ ∥ΣT,−k∥

∥∥(X−kX
T
−k + λIn)

−1
∥∥∥∥∥Σ− 1

2

S,kX
T
k XkΣ

− 1
2

S,k

∥∥∥
·
∥∥∥∥(Σ−1

S,k +Σ
− 1

2

S,kX
T
k (X−kX

T
−k + λIn)

−1XkΣ
− 1

2

S,k

)−2
∥∥∥∥ (β⋆k)TΣ−1

S,kβ
⋆
k .

In particular, ∥∥∥∥(Σ−1
S,k +Σ

− 1
2

S,kX
T
k (X−kX

T
−k + λIn)

−1XkΣ
− 1

2

S,k

)−1
∥∥∥∥
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≤
∥∥∥∥(Σ− 1

2

S,kX
T
k (X−kX

T
−k + λIn)

−1XkΣ
− 1

2

S,k

)−1
∥∥∥∥

≤
∥∥X−kX

T
−k + λIn

∥∥∥∥∥∥(Σ− 1
2

S,kX
T
k XkΣ

− 1
2

S,k

)−1
∥∥∥∥

≤ cx

λ+
∑
j>k

λj

 cx
n

=
c2x
n

λ+
∑
j>k

λj

 .

The second inequality follows from µmin(ABAT ) ≥ µmin(B)µmin(AAT ) where the matrix B is
positive definite.

Therefore,

(β⋆k)
TXT

k (XXT + λIn)
−1X−kΣT,−kX

T
−k(XXT + λIn)

−1Xkβ
⋆
k

≤ ∥ΣT,−k∥
∥∥(X−kX

T
−k + λIn)

−1
∥∥∥∥∥Σ− 1

2

S,kX
T
k XkΣ

− 1
2

S,k

∥∥∥
·
∥∥∥∥(Σ−1

S,k +Σ
− 1

2

S,kX
T
k (X−kX

T
−k + λIn)

−1XkΣ
− 1

2

S,k

)−2
∥∥∥∥ (β⋆k)TΣ−1

S,kβ
⋆
k

≤ ∥ΣT,−k∥ ·

 1

cxL

λ+
∑
j>k

λj

−1

· cxn · c
4
x

n2

λ+
∑
j>k

λj

2

· (β⋆k)TΣ−1
S,kβ

⋆
k

=
c6x
n
L

λ+
∑
j>k

λj

 ∥ΣT,−k∥(β⋆k)TΣ−1
S,kβ

⋆
k .

B.4 MAIN RESULTS

Theorem 25. Let T = Σ
− 1

2

S,kΣT,kΣ
− 1

2

S,k and U = Σ
1
2

S,−kΣT,−kΣ
1
2

S,−k. There exists a constant c > 2

depending only on σ, such that for any cN < n < rk, if the assumption condNum(k, δ, L) (As-
sumption 2) is satisfied, then with probability at least 1− 2δ − ce−n/c,

V

cv2
≤ L2 tr [T ]

n
+ L2 n tr [U ](

λ+
∑
j>k λj

)2 .
B

c
≤ ∥β⋆k∥

2
Σ−1

S,k

(λ+
∑
j>k λj

n

)2[
∥T ∥+ L

n∥ΣT,−k∥
λ+

∑
j>k λj

]
+
∥∥β⋆−k∥∥2ΣS,−k

[
L2 ∥T ∥+ L

n∥ΣT,−k∥
λ+

∑
j>k λj

]
.

N is defined as follows:

N = max

{(
k + ln

1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2k2 (tr [T ])

−2
,

Lλ2
1λ

−4
k

(
λ+

∑
j>k

λj
)
∥ΣT,k∥k (tr [T ])

−1

}
.

Remark 8 (Sample complexity). We have assumed n > cN in the theorem. The first condition
on N indicates n ≫ k. From the inequality λ2

k ≤ ∥ΣT,k∥2k2 (tr [T ])
−2 ≤ k2λ2

1, it follows that
n = Ω(k) in the best case, consistent with the sample complexity of classic linear regression.
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This optimal case occurs when ΣS,k ≈ ΣT,k. In the worst case, n = Ω(k3) where covariate shift is
significant in the first k dimensions–e.g., when the test data lies predominantly in the subspace of the
first dimension. This shift in sample complexity under varying degrees of covariate shift parallels the
analysis of Ge et al. (2024) (see theire Theorem 4.2) for the under-parameterized setting. The second
condition implies n ≫ λ +

∑
j>k λj , such that the regularization is not too strong to introduce a

bias greater than a constant (as shown in the first bias term). On the other hand, we assume n < rk
in the theorem, which is consistent with the over-parameterized regime and Assumption 1, where
the last d− k components are considered to be essentially high-dimensional.

Proof. The theorem follows from Lemma 18, Lemma 19, Lemma 20, Lemma 21, Lemma 22,
Lemma 23 and Lemma 24. For a constant c′x > 2 depending only on σ, these lemmas hold for
values of n that satisfy the following inequalities:

n > 4c′4x (k + ln(1/δ))λ2
1λ

−2
k ,

n > 2c′4x Lλ
−1
k

λ+
∑
j>k

λj

 ,

n > 4c′4x

(
k + ln

1

δ

)
λ4
1λ

−4
k ,

n > 2c′4x Lλ1λ
−2
k

λ+
∑
j>k

λj

 ,

n > 4c′4x

(
k + ln

1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2k2

(
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

])−2

,

n > 2c′4x Lλ
2
1λ

−4
k

λ+
∑
j>k

λj

 ∥ΣT,k∥k
(
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

])−1

,

n > 2c′3x (λ+
∑
j>k

λj)λ1λ
−2
k ,

n > 4c′4x

(
k + ln

1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥−2

,

n > 2c′4x L

λ+
∑
j>k

λj

λ2
1λ

−4
k ∥ΣT,k∥

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥−1

,

n < λ−1
k+1

λ+
∑
j>k

λj

 .

A sufficient condition for all the inequalities above is given by 4c′4xN1 < n < rk. This follows from
the following facts:

λ1λ
−1
k ≥ 1,

c′x > 2,

L ≥ 1,

k
(
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

])−1

≥
∥∥∥Σ− 1

2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥−1

,

k∥ΣT,k∥
(
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

])−1

≥ λk.

Then, with probability at least 1− 2δ − c′xe
−n/c′x :

V/2 ≤ 16v2(1 + c′4x L
2)

1

n
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
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+ v2c′3x L
2n

λ+
∑
j>k

λj

−2

tr
[
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

]
≤ 32v2c′4x L

2 1

n
tr
[
Σ

− 1
2

S,kΣT,kΣ
− 1

2

S,k

]
+ v2c′3x L

2n

λ+
∑
j>k

λj

−2

tr
[
Σ

1
2

S,−kΣT,−kΣ
1
2

S,−k

]
,

B/2 ≤ 16c′4x
n2

λ+
∑
j>k

λj

2

(β⋆k)
TΣ−1

S,kβ
⋆
k

∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥
+ 32c′x(1 + c′4x L

2)
∥∥∥Σ− 1

2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ (β⋆−k)TΣS,−kβ⋆−k
+ 3c′2x L

λ+
∑
j

λj

−1

n∥ΣT,−k∥(β⋆−k)TΣS,−kβ⋆−k

+ 3
c′6x
n
L

λ+
∑
j>k

λj

 ∥ΣT,−k∥(β⋆k)TΣ−1
S,kβ

⋆
k

+ 3(β⋆−k)
TΣT,−kβ

⋆
−k

≤ 16c′4x
1

n2

λ+
∑
j>k

λj

2 ∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ (β⋆k)TΣ−1
S,kβ

⋆
k

+ 64c′5x L
2
∥∥∥Σ− 1

2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ (β⋆−k)TΣS,−kβ⋆−k
+ 3c′2x Ln

λ+
∑
j

λj

−1

∥ΣT,−k∥(β⋆−k)TΣS,−kβ⋆−k

+ 3c′6x L
1

n

λ+
∑
j>k

λj

 ∥ΣT,−k∥(β⋆k)TΣ−1
S,kβ

⋆
k

+ 3(β⋆−k)
TΣT,−kβ

⋆
−k

≤ 16c′4x
1

n2

λ+
∑
j>k

λj

2 ∥∥∥Σ− 1
2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ (β⋆k)TΣ−1
S,kβ

⋆
k

+ 64c′5x L
2
∥∥∥Σ− 1

2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ (β⋆−k)TΣS,−kβ⋆−k
+ 3c′2x Ln

λ+
∑
j>k

λj

−1

∥ΣT,−k∥(β⋆−k)TΣS,−kβ⋆−k

+ 3c′6x L
1

n

λ+
∑
j>k

λj

 ∥ΣT,−k∥(β⋆k)TΣ−1
S,kβ

⋆
k

+ 3c′5x L
2
∥∥∥Σ− 1

2

S,kΣT,kΣ
− 1

2

S,k

∥∥∥ (β⋆−k)TΣS,−kβ⋆−k.
The last inequality follows from:

(β⋆−k)
TΣT,−kβ

⋆
−k = (β⋆−k)

TΣ
1
2

S,−kΣ
− 1

2

S,−kΣT,−kΣ
− 1

2

S,−kΣ
1
2

S,−kβ
⋆
−k

≤
∥∥∥Σ− 1

2

S,−kΣT,−kΣ
− 1

2

S,−k

∥∥∥ (β⋆−k)TΣS,−kβ⋆−k.
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By taking c = 134c′6x , the proof is complete.

Corollary 26 (Restatement of Theorem 2). Let T = Σ
− 1

2

S,kΣT,kΣ
− 1

2

S,k , U = ΣS,−kΣT,−k and V =

Σ2
S,−k. There exists a constant c > 2 depending only on σ, L, such that for any cN < n < rk, if the

assumption condNum(k, δ, L) (Assumption 2) is satisfied, then with probability at least 1− 3δ,

V

cv2
≤ k

n

tr[T ]

k
+

n

Rk

tr[U ]
tr[V]

.

B

c
≤
(
∥β⋆k∥

2
Σ−1

S,k

(λ+
∑
j>k λj

n

)2
+
∥∥β⋆−k∥∥2ΣS,−k

)[
∥T ∥+ n

rk

∥ΣT,−k∥
∥ΣS,−k∥

]
.

N is a polynomial function of k + ln(1/δ), λ1λ
−1
k , 1 +

(
λ+

∑
j>k λj

)
λ−1
k .

Proof. The first variance term follows directly from Theorem 25.

For the second variance term, by plugging in the definition of Rk,

L2 n tr [U ](
λ+

∑
j>k λj

)2 = L2 n

Rk

tr [ΣS,−kΣT,−k]∑
j>k λ

2
j

= L2 n

Rk

tr[U ]
tr[V]

.

For the first bias term, by plugging in the definition of rk,

∥β⋆k∥
2
Σ−1

S,k

(λ+
∑
j>k λj

n

)2[
∥T ∥+ L

n∥ΣT,−k∥
λ+

∑
j>k λj

]
= ∥β⋆k∥

2
Σ−1

S,k

(λ+
∑
j>k λj

n

)2[
∥T ∥+ L

n

rk

∥ΣT,−k∥
λk+1

]
.

Similarly, the second bias term can be transformed into:∥∥β⋆−k∥∥2ΣS,−k

[
L2 ∥T ∥+ L

n∥ΣT,−k∥
λ+

∑
j>k λj

]
=
∥∥β⋆−k∥∥2ΣS,−k

[
L2 ∥T ∥+ L

n

rk

∥ΣT,−k∥
λk+1

]
.

Since the statement of Theorem 25 holds with probability at least 1− 2δ − ce−n/c, we only require
ce−n/c < δ, which is equivalent as n > c ln c + c ln(1/δ). Combining the lower bounds of n in
Theorem 25, we should have:

n > max

{
c ln c+ c ln

1

δ
,

c
(
k + ln

1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2k2 (tr [T ])

−2
,

cLλ2
1λ

−4
k

(
λ+

∑
j>k

λj
)
∥ΣT,k∥k (tr [T ])

−1

}
.

For the first term in the maximum argument,

c ln c+ c ln
1

δ
≤ c2 + c ln

1

δ

≤ c2
(
k + ln

1

δ

)
.

The second term:

c
(
k + ln

1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2k2 (tr [T ])

−2

≤ c
(
k + ln

1

δ

)
λ6
1λ

−8
k ∥ΣT,k∥2k2

(
µk(Σ

−1
S,k) tr[ΣT,k]

)−2
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≤ c
(
k + ln

1

δ

)
λ8
1λ

−8
k ∥ΣT,k∥2k2∥ΣT,k∥−2

= c
(
k + ln

1

δ

)3
λ8
1λ

−8
k .

The first inequality follows from tr[MN ] ≥ µmin(M) tr[N ] for postive semi-definite matrices
M,N .

Similar, for the third term:

cLλ2
1λ

−4
k

(
λ+

∑
j>k

λj
)
∥ΣT,k∥k (tr [T ])

−1

≤ cLλ2
1λ

−4
k

(
λ+

∑
j>k

λj
)
∥ΣT,k∥kλ1∥ΣT,k∥−1

≤ cL
(
k + ln

1

δ

)
λ3
1λ

−4
k

(
λ+

∑
j>k

λj
)
.

The proof is complete by taking c as c2L2 and N =
(
k+ln 1

δ

)3(
λ1λ

−1
k

)8[
1+
(
λ+
∑
j>k λj

)
λ−1
k

]
.

C LARGE SHIFT IN MINOR DIRECTIONS

In this section, we consider the scenario where the signal β⋆ mainly concentrate on the first k
components (here we choose the basis to be the eigenvectors of ΣS), but the target covariance ΣT
may not be small on the last d− k components.

C.1 LOWER BOUND FOR RIDGE REGRESSION

In this subsection, we will show that the original ridge regression algorithm will not work under this
scenario.

Recall our model:

y = β⋆Tx+ ϵ, (8)

We can write our data as

Y = Xβ⋆ + ϵ, (9)

where Y = (y1, · · · , yn)T ∈ Rn×1, X = (x1, · · · , xn)T ∈ Rn×d, ϵ = (ϵ1, · · · , ϵn)T ∈ Rn×1. We
denote by Σ̂S := 1

nX
TX the sample covariance matrix.

Assume the same assumptions as in our previous section still holds. We let ΣS = E[xixTi ] be the
following: its eigenvalues λ1, · · · , λd satisfies λ1 = · · · = λk = 1, λk+1 = · · · = λk+⌊

√
n/C2⌋ =

C1/
√
n for sufficiently large constants C1, C2, and the remaining eigenvalues are all set to zero. We

let ΣT = Id. Then the excess risk is Eϵ[(β̂− β⋆)TΣT (β̂− β⋆)] = Eϵ∥β̂− β⋆∥2. We will show that
under this scenario, ridge regression can not obtain an error rate of O( 1n ). To see this, we explicitly
write out the ridge solution:

β̂ = (XTX + λId)
−1XTY

= (Σ̂S +
λ

n
Id)

−1(
1

n
XTY )

= (Σ̂S +
λ

n
Id)

−1(
1

n
XT (Xβ⋆ + ϵ))

= (Σ̂S +
λ

n
Id)

−1(
1

n
XTXβ⋆ +

1

n
XT ϵ)

= (Σ̂S +
λ

n
Id)

−1(Σ̂Sβ
⋆ +

1

n
XT ϵ)
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= (Σ̂S +
λ

n
Id)

−1Σ̂Sβ
⋆ + (Σ̂S +

λ

n
Id)

−1 1

n
XT ϵ. (10)

Therefore

β̂ − β⋆ = (Σ̂S +
λ

n
Id)

−1Σ̂Sβ
⋆ − β⋆ + (Σ̂S +

λ

n
Id)

−1 1

n
XT ϵ

= (Σ̂S +
λ

n
Id)

−1Σ̂Sβ
⋆ − (Σ̂S +

λ

n
Id)

−1(Σ̂S +
λ

n
Id)β

⋆ + (Σ̂S +
λ

n
Id)

−1 1

n
XT ϵ

= −λ

n
(Σ̂S +

λ

n
Id)

−1β⋆ + (Σ̂S +
λ

n
Id)

−1 1

n
XT ϵ

Taking expectation with respect to ϵ,

Eϵ∥β̂ − β⋆∥2 =
λ2

n2
∥(Σ̂S +

λ

n
Id)

−1β⋆∥2 + 1

n2
tr(ϵTX(Σ̂S +

λ

n
Id)

−2XT ϵ)

=
λ2

n2
∥(Σ̂S +

λ

n
Id)

−1β⋆∥2 + v2
1

n
tr((Σ̂S +

λ

n
Id)

−2Σ̂S)

:= B + V (11)

where B = λ2

n2 ∥(Σ̂S + λ
nId)

−1β⋆∥2 is the bias, V = v2

n tr((Σ̂S + λ
nId)

−2Σ̂S) is the variance. We
state the formal version of Theorem 4 in the following:
Theorem 27. Under the instance we consider, namely λ1, · · · , λd satisfies λ1 = · · · = λk = 1,
λk+1 = · · · = λk+⌊

√
n/C2⌋ = C1/

√
n, λk+⌊

√
n/C2⌋+1 = · · · = λd = 0. WLOG assume σ = 1,

C2 ≥ C1((
C1

4C )
2 − k − log 1

δ )
−1 for some absolute constant C, and n ≥ ( 3C1

2 )4. With probability
1− δ, when λ = c

√
n, we have V

v2 ≥ C ′, where C ′ > 0 is some absolute constant. When λ ≤ n3/4,

we have V
v2 ≥ C ′ 1√

n
. When λ ≥ n3/4, B ≥ ∥β⋆∥2

9
√
n

.

Proof. We will use the following concentration lemma modified from (Vershynin, 2018, Exercise
9.2.5):

Lemma 28. Let {xi}ni=1 be i.i.d. d−dimensional random vectors, satisfying: xi is mean zero,
E[xxT ] = Σ and is σ2Σ-sub-gaussian, in the sense that

E[exp(vTxi)] ≤ exp

(
∥σΣ1/2v∥2

2

)
.

X = (x1, · · · , xn)T ∈ Rn×d. Then with probability 1− δ,

∥Σ̂− Σ∥ ≤ Cσ4

√r + log 1
δ

n
+

r + log 1
δ

n

 ∥Σ∥

where r := tr(Σ)/∥Σ∥ is the stable rank of Σ, C is an absolute constant.

Applying Lemma 28, we have

∥Σ̂S − ΣS∥ ≤ C

√r + log 1
δ

n
+

r + log 1
δ

n


where r =

∑d
i=1 λi = k + ⌊

√
n/C2⌋ C1√

n
≤ k + C1/C2. When n ≥ C1/C2 + k + log 1

δ , we have

∥Σ̂S − ΣS∥ ≤ 2C

√
C1/C2 + k + log 1

δ

n
.

We denote by λ̂1 ≥ · · · ≥ λ̂d the eigenvalues of Σ̂S . Then by Weyl’s inequality (Chen et al.,
2021, Lemma 2.2), ∥λ̂i − λi∥ ≤ ∥Σ̂S − ΣS∥. Combining with previous inequalities, we have 1 −
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2C
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n/C2⌋. If we take C2 ≥ C1((

C1

4C )
2 − k−

log 1
δ )

−1 then 2C

√
C1/C2+k+log 1

δ

n ≤ C1

2
√
n

. Therefore we have C1

2
√
n
≤ λ̂i ≤ 3C1

2
√
n

for k + 1 ≤ i ≤
k + ⌊

√
n/C2⌋. When λ = c

√
n, we have

V

v2
=

1

n
tr((Σ̂S +

λ

n
Id)

−2Σ̂S)

=
1

n

d∑
i=1

(λ̂i +
λ

n
)−2λ̂i

≥ 1

n

k+⌊
√
n/C2⌋∑

i=k+1

(λ̂i +
λ

n
)−2λ̂i

=
1

n

k+⌊
√
n/C2⌋∑

i=k+1

(λ̂i +
c√
n
)−2λ̂i

≥ 1

n

k+⌊
√
n/C2⌋∑

i=k+1

(
3C1

2
√
n
+

c√
n
)−2 C1

2
√
n

=
1

n
⌊
√
n/C2⌋

C1

2
(
3C1

2
+ c)−2

√
n

≥ C1

4C2
(
3C1

2
+ c)−2. (12)

Similarly, if λ ≤ n3/4,

V

v2
≥ 1

n

k+⌊
√
n/C2⌋∑

i=k+1

(λ̂i +
λ

n
)−2λ̂i

≥ 1

n

k+⌊
√
n/C2⌋∑

i=k+1

(λ̂i + n−1/4)−2λ̂i

≥ 1

n

k+⌊
√
n/C2⌋∑

i=k+1

(
3C1

2
√
n
+ n−1/4)−2 C1

2
√
n

=
1

n
⌊
√
n/C2⌋

C1

2
(
3C1

2
+ n1/4)−2

√
n

≥ C1

16C2
n−1/2, (13)

when n ≥ ( 3C1

2 )4.

As for the bias term, assume λ ≥ n3/4. Using the same concentration argument, we have 2 > λ̂i >

1/2, for 1 ≤ i ≤ k. When λ ≤ n, λmax(Σ̂S + λ
nId) ≤ 2 + λ/n ≤ 3, therefore λmin((Σ̂S +

λ
nId)

−1) ≥ 1
3 . This implies

B =
λ2

n2
∥(Σ̂S +

λ

n
Id)

−1β⋆∥2

≥ n3/2

n2
∥(Σ̂S +

λ

n
Id)

−1β⋆∥2

≥ 1√
n
λ2
min((Σ̂S +

λ

n
Id)

−1)∥β⋆∥2

≥ ∥β⋆∥2

9
√
n

.
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When λ > n, λmax(Σ̂S + λ
nId) ≤ 2 + λ/n ≤ 3λ

n , which means λmin((Σ̂S + λ
nId)

−1) ≥ n
3λ This

implies

B =
λ2

n2
∥(Σ̂S +

λ

n
Id)

−1β⋆∥2

≥ λ2

n2
λ2
min((Σ̂S +

λ

n
Id)

−1)∥β⋆∥2

≥ λ2

n2

n2

9λ2
∥β⋆∥2

≥ ∥β⋆∥2

9
.

C.2 UPPER BOUND FOR PCR

In this subsection, we will give the following upper bound for Principal Component Regression.

Theorem 29. When n ≳ σ8(r + log 1
δ )(

λ1

λk−λk+1
)2

λ2
1k

2∥ΣT ∥2

λ4
k tr((ΣS,k)−1ΣT,k)2

,

Eϵ∥β̂ − β⋆∥2ΣT
≤ O(σ8(

λ1

λk − λk+1
)2(

λ1

λk
)2∥ΣT ∥(

r + log 1
δ

n
)∥β⋆k∥2 +

1

n
v2 tr((ΣS,k)

−1ΣT,k)

+
∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥

λk
+ β⋆T−kΣT,−kβ

⋆
−k)

where r =
∑d

i=1 λi

λ1
.

Proof. For simplicity, we assume we have a sample size of 2n, and in the first step we obtain an

estimator Û ∈ Rd×k of the top-k subspace U =

(
Ik
0

)
∈ Rd×k, by using principal component anal-

ysis on the sample covariance matrix Σ̂S := 1
nX

TX = 1
n

∑n
i=1 xix

T
i , namely Û = (û1, · · · , ûk)

where ûi is the i-th eigenvector of Σ̂S . We denote the distance between the estimated subspace and
the original one by ∆ := dist(U, Û) = ∥UUT − Û ÛT ∥. For controlling ∆, we have the following
lemma (Lemma 6):

Lemma 30. With probability at least 1− δ,

∆ ≤ Cσ4

√r + log 1
δ

n
+

r + log 1
δ

n

 λ1

λk − λk+1

where r =
∑n

i=1 λi

λ1
.

In the second step, we do linear regression on the projected (second half) data. With a little abuse of
notation, we still use X ∈ Rn×d to denote the data matrix indexed from n+ 1 to 2n. The data here
is independent from the data in step 1, and therefore independent of ∆. If we let Z := XÛ ∈ Rn×k
be the projected data matrix, the estimator β̂ we obtained is given by

β̂ = Û(ZTZ)−1ZTY

= Û(ÛTXTXÛ)−1ÛTXTY. (14)

We aim to bound the excess risk on target, which is given by ∥β̂ − β⋆∥2ΣT
:= ∥Σ

1
2

T (β̂ −
β⋆)∥2. We introduce the following notations: suppose β⋆ = (β∗

1 , · · · , β∗
d)
T . We let β⋆U :=

(β∗
1 , · · · , β⋆k , 0, · · · , 0)T , β⋆⊥ := (0, · · · , 0, β∗

k+1, · · · , β⋆d)T = β⋆ − β⋆U . Here we present an in-
termediate result for bounding the excess risk:
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Lemma 31. Assume ∆ ≤ λ2
k tr((ΣS,k)

−1ΣT,k)
4λ1k∥ΣT ∥ . When n ≳ σ4λ2

1∥ΣT ∥2k3 log(1/δ)

λ4
k tr((ΣS,k)−1ΣT,k)2

, then with probabil-
ity 1− δ,

Eϵ∥β̂ − β⋆∥2ΣT
≤ O(∥β⋆U∥2∆2(

λ1

λk
)2∥ΣT ∥+

1

n
v2 tr((ΣS,k)

−1ΣT,k)

+
∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥

λk
+ β⋆T−kΣT,−kβ

⋆
−k)

If further n ≳ σ4∆−2k log(1/δ),

Eϵ∥β̂ − β⋆∥2ΣT
≤ O(∥β⋆U∥2(∆4(

λ1

λk
)2∥ΣT ∥+∆2∥ΣT,−k∥+∆3∥ΣT ∥)

+
1

n
v2 tr((ΣS,k)

−1ΣT,k) +
∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥

λk
+ β⋆T−kΣT,−kβ

⋆
−k)

From Lemma 30, when n ≥ r + log 1
δ =

∑n
i=1 λi

λ1
+ log 1

δ , we have

∆ ≤ 2C
λ1

λk − λk+1
σ4

√
r + log 1

δ

n

Therefore when n ≳ (r + log 1
δ )σ

8( λ1

λk−λk+1
)2

λ2
1k

2∥ΣT ∥2

λ4
k tr((ΣS,k)−1ΣT,k)2

, the assumption for ∆ and n in
Lemma 31 will be both satisfied. We can thus apply Lemma 31 to get

Eϵ∥β̂ − β⋆∥2ΣT
≤ O(σ8(

λ1

λk − λk+1
)2(

λ1

λk
)2∥ΣT ∥

r + log 1
δ

n
∥β⋆U∥2 +

1

n
v2 tr((ΣS,k)

−1ΣT,k)

+
∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥

λk
+ β⋆T−kΣT,−kβ

⋆
−k)

where r =
∑d

i=1 λi

λ1
.

C.3 PROOFS FOR LEMMA 31

In the following we will prove Lemma 31.

Proof for Lemma 31. The proof idea is similar to (Ge et al., 2023, Theorem 4.4) and (Tripuraneni
et al., 2021b, Theorem 4).

We can decompose β̂ − β⋆ as

β̂ − β⋆ = Û(ÛTXTXÛ)−1ÛTXTY − β⋆

= Û(ÛTXTXÛ)−1ÛTXT (Xβ⋆ + ϵ)− β⋆

= Û(ÛTXTXÛ)−1ÛTXT (Xβ⋆U +Xβ⋆⊥ + ϵ)− (β⋆U + β⋆⊥)

= A1 +A2 +A3 − β⋆⊥,

where A1 := Û(ÛTXTXÛ)−1ÛTXTXβ⋆U − β⋆U , A2 := Û(ÛTXTXÛ)−1ÛTXTXβ⋆⊥, A3 :=

Û(ÛTXTXÛ)−1ÛTXT ϵ. Therefore

∥β̂ − β⋆∥2ΣT
≤ ∥A1∥2ΣT

+ ∥A2∥2ΣT
+ ∥A3∥2ΣT

+ ∥β⋆⊥∥2ΣT
(15)

We give three lemmas for bounding the related terms. The first lemma considers the bias term A1:

Lemma 32. If ∆ ≤ λk

4λ1
and n ≳ max{σ4( λ1

λk
)2k log(1/δ), σ4k log(1/δ)}, then with probability at

least 1− δ,
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∥A1∥2ΣT
≤ O(∥β⋆U∥2∆2(

λ1

λk
)2∥ΣT ∥)

If we further have n ≳ σ4∆−2k log(1/δ), then with probability at least 1− δ,

∥A1∥2ΣT
≤ O(∥β⋆U∥2(∆4(

λ1

λk
)2∥ΣT ∥+∆2∥ΣT,−k∥+∆3∥ΣT ∥)) ≤ O(∥β⋆U∥2∆2∥ΣT ∥)

The second lemma considers the variance term A3:

Lemma 33. If ∆ ≤ λ2
k tr((ΣS,k)

−1ΣT,k)
4λ1k∥ΣT ∥ and n ≳ σ4∥ΣS∥2∥ΣT ∥2k3 log(1/δ)

λ4
k tr((ΣS,k)−1ΣT,k)2

, then with probability at
least 1− δ,

Eϵ[∥A3∥2ΣT
] ≤ O(

1

n
v2 tr((ΣS,k)

−1ΣT,k)).

For bounding A2, we actually have a similar result to bounding A3:

Lemma 34. If n ≳ σ4( λ1

λk
)2k log(1/δ) and ∆ ≤ min{∥ΣT,k∥

2∥ΣT ∥ ,
λk

4λ1
}, then with probability at least

1− δ

∥A2∥2ΣT
≤ O(

∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥
λk

) (16)

By Lemma 32, 33, 34, together with the decomposition (15), we have with probability 1− δ, when
n ≳ N1,

Eϵ∥β̂ − β⋆∥2ΣT
≤ O(∥β⋆U∥2∆2(

λ1

λk
)2∥ΣT ∥+

1

n
v2 tr((ΣS,k)

−1ΣT,k) (17)

+
∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥

λk
+ β⋆T−kΣT,−kβ

⋆
−k) (18)

If further n ≳ σ4∆−2k log(1/δ),

Eϵ∥β̂ − β⋆∥2ΣT
≤ O(∥β⋆U∥2(∆4(

λ1

λk
)2∥ΣT ∥+∆2∥ΣT,−k∥+∆3∥ΣT ∥) (19)

+
1

n
v2 tr((ΣS,k)

−1ΣT,k) +
∥ΣT,k∥∥β⋆−k∥2∥ΣS,−k∥

λk
+ β⋆T−kΣT,−kβ

⋆
−k) (20)

C.4 TECHNICAL PROOFS

In the sequel, we give the proofs of Lemma 32, 33, 34 and 30. We first prove some additional
technical lemmas. The following lemma, which is a simple corollary of (Tripuraneni et al., 2021b,
Lemma 20), shows the concentration property of empirical covariance matrix.

Lemma 35. Let {xi}ni=1 be i.i.d. d−dimensional random vectors, satisfying: xi is mean zero,
E[xxT ] = Σ such that σmax(Σ) ≤ Cmax and is σ2Σ-sub-gaussian, in the sense that

E[exp(vTxi)] ≤ exp

(
∥σΣ1/2v∥2

2

)
.

X = (x1, · · · , xn)T ∈ Rn×d. Then for any A,B ∈ Rd×k, we have with probability at least 1− δ

∥AT (X
TX

n
)B −ATΣB∥2 ≤ O(σ2∥A∥∥B∥∥Σ∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
). (21)
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Proof. We write the SVD of A and B: A = U1Λ1V
T
1 , B = U2Λ2V

T
2 , where U1, U2 ∈ Rd×k,

Λ1,Λ2, V1, V2 ∈ Rk×k. Then

∥AT (X
TX

n
)B −ATΣB∥2 = ∥V1Λ1U

T
1 (

XTX

n
)U2Λ2V

T
2 − V1Λ1U

T
1 ΣU2Λ2V

T
2 ∥2

≤ ∥V1Λ1∥∥UT
1 (

XTX

n
)U2 − UT

1 ΣU2∥∥Λ2V
T
2 ∥

≤ ∥A∥∥B∥∥UT
1 (

XTX

n
)U2 − UT

1 ΣU2∥. (22)

Now since U1, U2 ∈ Rd×k are projection matrices, we can apply Tripuraneni et al. (2021b) Lemma
20, therefore

∥UT
1 (

XTX

n
)U2 − UT

1 ΣU2∥ ≤ O(σ2∥Σ∥(
√

k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)) (23)

which gives what we want.

The following lemma is a basic matrix perturbation result (see Tripuraneni et al. (2021b) Lemma
25).

Lemma 36. Let A be a positive definite matrix and E another matrix which satisfies ∥EA−1∥ ≤ 1
4 ,

then F := (A+ E)−1 −A−1 satisfies ∥F∥ ≤ 4
3∥A

−1∥∥EA−1∥.

With these two technical lemmas, we are able to prove Lemma 32, 33.

Proof of Lemma 32. Notice that by the definition of U and β⋆U , we have UUTβ⋆U = β⋆U . We denote
α⋆ := UTβ⋆U , then we also have β⋆U = Uα⋆. Therefore

A1 = Û(ÛTXTXÛ)−1ÛTXTXβ⋆U − β⋆U

= Û(ÛTXTXÛ)−1ÛTXTXUα⋆ − Uα⋆

= (Û(ÛTXTXÛ)−1ÛTXTXU − U)α⋆

We consider Û ∈ Rd×k and ÛT
⊥ ∈ Rd×(d−k) be orthonormal projection matrices spanning orthogo-

nal subspaces which are rank k and rank d− k respectively, so that range(Û)⊕ range(Û⊥) = Rd.
Then ∆ = dist(Û , U⋆) = ∥ÛT

⊥U⋆∥2. Notice that Id = Û ÛT + Û⊥Û
T
⊥ , we have

Û(ÛTXTXÛ)−1ÛTXTXU⋆ − U⋆

= Û(ÛTXTXÛ)−1ÛTXTX(Û ÛT + Û⊥Û
T
⊥)U⋆ − U⋆

= Û(ÛTXTXÛ)−1ÛTXTXÛÛTU⋆ + Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − U⋆

= Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ + Û ÛTU⋆ − U⋆

= Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − Û⊥Û

T
⊥U⋆ (24)

Thus

∥A1∥2ΣT
= AT1 ΣTA1

= α⋆T (Û(ÛTXTXÛ)−1ÛTXTXU − U)TΣT (Û(ÛTXTXÛ)−1ÛTXTXU − U)α⋆

= α⋆T (Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − Û⊥Û

T
⊥U⋆)TΣT

(Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − Û⊥Û

T
⊥U⋆)α⋆

≤ ∥α⋆∥2∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆ − Û⊥Û

T
⊥U⋆∥2ΣT

≤ ∥α⋆∥2(∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆∥2ΣT

+ ∥Û⊥Û
T
⊥U⋆∥2ΣT

). (25)

Here we use the notation ∥M∥ΣT
:=
√

∥MTΣTM∥ for matrix M .
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For the second term,

∥Û⊥Û
T
⊥U⋆∥2ΣT

≤ ∥ÛT
⊥ΣT Û⊥∥∥ÛT

⊥U⋆∥2 ≤ ∆2∥ÛT
⊥ΣT Û⊥∥. (26)

For the first term,

∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆∥2ΣT

= ∥Û(ÛT X
TX

n
Û)−1ÛT X

TX

n
Û⊥Û

T
⊥U⋆∥2ΣT

= ∥Û((ÛTΣSÛ)−1 + F )(ÛTΣSÛ⊥Û
T
⊥U⋆ + E1)∥2ΣT

= ∥(ÛTΣSÛ⊥Û
T
⊥U⋆ + E1)

T ((ÛTΣSÛ)−1 + F )T ÛTΣT Û((ÛTΣSÛ)−1 + F )(ÛTΣSÛ⊥Û
T
⊥U⋆ + E1)∥

≤ ∥ÛTΣSÛ⊥Û
T
⊥U⋆ + E1∥2∥(ÛTΣSÛ)−1 + F∥2∥ÛTΣT Û∥

≤ (∥ÛTΣSÛ⊥Û
T
⊥U⋆∥+ ∥E1∥)2(∥(ÛTΣSÛ)−1∥+ ∥F∥)2∥ÛTΣT Û∥ (27)

where E1 = ÛT XTX
n Û⊥Û

T
⊥U⋆ − ÛTΣSÛ⊥Û

T
⊥U⋆, F = (ÛT XTX

n Û)−1 − (ÛTΣSÛ)−1. We
aim to show that ∥E1∥ ≤ ∥ÛTΣSÛ⊥Û

T
⊥U⋆∥ and ∥F∥ ≤ ∥(ÛTΣSÛ)−1∥ = C−1

min for suffi-
ciently large n, therefore the term in (27) can be bounded well. First we need a careful analysis
of ∥ÛTΣSÛ⊥Û

T
⊥U⋆∥. It is obvious that

∥ÛTΣSÛ⊥Û
T
⊥U⋆∥ ≤ ∥ÛTΣSÛ⊥∥∥ÛT

⊥U⋆∥ ≤ ∆∥ÛTΣSÛ⊥∥. (28)

As for ∥ÛTΣSÛ⊥∥, notice that if without the ”hat”, we have UTΣSU⊥ = 0 by the definition of U
and ΣS is diagonal. By definition of distance between two subspaces, there exist R ∈ Ok×k and
Q ∈ O(d−k)×(d−k), such that ∥ÛR− U∥ = ∆ = ∥Û⊥Q− U⊥∥. Then we have

∥ÛTΣSÛ⊥∥ = ∥RT ÛTΣSÛ⊥Q∥
= ∥UTΣSU⊥ +RT ÛTΣSÛ⊥Q− UTΣSU⊥∥
= ∥RT ÛTΣSÛ⊥Q− UTΣSU⊥∥
= ∥RT ÛTΣSÛ⊥Q− UTΣSÛ⊥Q+ UTΣSÛ⊥Q− UTΣSU⊥∥
≤ ∥RT ÛTΣSÛ⊥Q− UTΣSÛ⊥Q∥+ ∥UTΣSÛ⊥Q− UTΣSU⊥∥
≤ ∥RT ÛT − UT ∥∥ΣSÛ⊥Q∥+ ∥UTΣS∥∥Û⊥Q− U⊥∥
≤ 2∆∥ΣS∥. (29)

Combine (28) and (29), we have

∥ÛTΣSÛ⊥Û
T
⊥U⋆∥ ≤ O(∆2∥ΣS∥) (30)

In order to bound ∥F∥, let E = ÛT XTX
n Û − ÛTΣSÛ , then by Lemma 35, with probability at least

1− δ,

∥E∥ ≤ O(σ2∥ΣS∥(
√

k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)). (31)

Therefore,

∥E(ÛTΣSÛ)−1∥ ≤ ∥E∥∥(ÛTΣSÛ)−1∥
≤ ∥E∥C−1

min

≤ O(σ2C−1
min∥ΣS∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)), (32)

where Cmin := λmin(Û
TΣSÛ). Notice that n ≳ σ4C−2

min∥ΣS∥2k log(1/δ) implies
√

k
n + k

n +√
log(1/δ)

n + log(1/δ)
n ≲ σ−2Cmin∥ΣS∥−1. Thus, we show that when n is large enough, we have

∥E(ÛTΣSÛ)−1∥ ≤ 1
4 . Therefore we can apply Lemma 36, which gives

∥F∥ ≤ 4

3
∥E(ÛTΣSÛ)−1∥∥(ÛTΣSÛ)−1∥
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≤ 4

3
× 1

4
∥(ÛTΣSÛ)−1∥

≤ 1

3
C−1

min. (33)

As for ∥E1∥, directly applying Lemma 35, when n ≳ σ4∆−2k log(1/δ) we get

∥E1∥ ≤ O(σ2∥ΣS∥∥Û⊥Û
T
⊥U⋆∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
))

≤ O(σ2∥ΣS∥∆(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)) (34)

when n ≳ σ4k log(1/δ) we have

∥E1∥ ≤ O(∆∥ΣS∥) (35)

, if further we have n ≳ σ4∆−2k log(1/δ), then

∥E1∥ ≤ O(∆2∥ΣS∥). (36)

Combining (27), (30), (33) and (36), we have

∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û
T
⊥U⋆∥2ΣT

≤ (∥ÛTΣSÛ⊥Û
T
⊥U⋆∥+ ∥E1∥)2(∥(ÛTΣSÛ)−1∥+ ∥F∥)2∥ÛTΣT Û∥

≤ O(∆4∥ΣS∥2C−2
min∥Û

TΣT Û∥)
≤ O(∆4∥ΣS∥2C−2

min∥ΣT ∥) (37)

Combining (25),(26) and (37), we get

∥A1∥2ΣT
≤ ∥α⋆∥2(∥Û(ÛTXTXÛ)−1ÛTXTXÛ⊥Û

T
⊥U⋆∥2ΣT

+ ∥Û⊥Û
T
⊥U⋆∥2ΣT

)

≤ O(∥α⋆∥2(∆4∥ΣS∥2C−2
min∥ΣT ∥+∆2∥ÛT

⊥ΣT Û⊥∥)) (38)

with probability at least 1− δ. Also, similar to (29), we have

∥ÛT
⊥ΣT Û⊥∥ = ∥QT ÛT

⊥ΣT Û⊥Q∥
≤ ∥UT

⊥ΣTU⊥∥+ ∥QT ÛT
⊥ΣT Û⊥Q− UT

⊥ΣTU⊥∥
≤ ∥UT

⊥ΣTU⊥∥+ 2∆∥ΣT ∥ (39)

Similarly, we can further know that Cmin is close to λk:

Cmin = λk(Û
TΣSÛ)

= λk(R
T ÛTΣSÛR)

= λk(U
TΣSU +RT ÛTΣSÛR− UTΣSU)

≥ λk(U
TΣSU)− ∥RT ÛTΣSÛR− UTΣSU∥

≥ λk(U
TΣSU)2∆∥ΣS∥

≥ λk − 2λ1∆

≥ 1

2
λk, (40)

where the last inequality holds when ∆ ≤ λk

4λ1
. Finally, combining (38), (39), (40), we have

∥A1∥2ΣT
≤ O(∥α⋆∥2(∆4(

λ1

λk
)2∥ΣT ∥+∆2∥UT

⊥ΣTU⊥∥+∆3∥ΣT ∥))

≤ O(∥β⋆U∥2(∆4(
λ1

λk
)2∥ΣT ∥+∆2∥UT

⊥ΣTU⊥∥+∆3∥ΣT ∥)) (41)
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when ∆ ≤ λk

4λ1
and n ≳ max{σ4( λ1

λk
)2k log(1/δ), σ4∆−2k log(1/δ)}. If in the previous proofs we

replace (36) by (35), we have

∥A1∥2ΣT
≤ O(∥β⋆U∥2(∆2(

λ1

λk
)2∥ΣT ∥+∆2∥UT

⊥ΣTU⊥∥+∆3∥ΣT ∥)) (42)

≤ O(∥β⋆U∥2∆2(
λ1

λk
)2∥ΣT ∥) (43)

when ∆ ≤ λk

4λ1
and n ≳ max{σ4( λ1

λk
)2k log(1/δ), σ4k log(1/δ)}. Notice that by definition of U ,

UT
⊥ΣTU⊥ = ΣT,−k, therefore the result is exactly what we want.

Proof of Lemma 33. Recall A3 := Û(ÛTXTXÛ)−1ÛTXT ϵ. Therefore

∥A3∥2ΣT
= ϵTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT ϵ

= tr(ϵTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT ϵ)

= tr(ϵϵTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT )

Taking expectation with respect to ϵ, using E[ϵϵT ] = v2In, we have

Eϵ[∥A3∥2ΣT
] = E[tr(ϵϵTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT )]

= v2 tr(XÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXT )

= v2 tr((ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXTXÛ)

= v2 tr((ÛTXTXÛ)−1ÛTΣT Û)

=
1

n
v2 tr(((ÛTΣSÛ)−1 + F )ÛTΣT Û) (44)

Here we actually need a bound stronger than (33) for ∥F∥: recall (32), we have with probability
1− δ

∥E(ÛTΣSÛ)−1∥ ≤ O(σ2C−1
min∥ΣS∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
)). (45)

Applying Lemma 36, which gives

∥F∥ ≤ 4

3
∥E(ÛTΣSÛ)−1∥∥(ÛTΣSÛ)−1∥

≤ O(σ2C−2
min∥ΣS∥(

√
k

n
+

k

n
+

√
log(1/δ)

n
+

log(1/δ)

n
))

≤ O(
1

k∥ΣT ∥
tr((UTΣSU)−1UTΣTU)) (46)

when n ≳ σ4C−4
min∥ΣS∥2∥ΣT ∥2 tr((UTΣSU)−1UTΣTU)−2k3 log(1/δ). Therefore we have

Eϵ[∥A3∥2ΣT
] =

1

n
v2 tr(((ÛTΣSÛ)−1 + F )ÛTΣT Û)

=
1

n
v2(tr((ÛTΣSÛ)−1ÛTΣT Û) + tr(FÛTΣT Û))

≤ 1

n
v2(tr((ÛTΣSÛ)−1ÛTΣT Û)) +

1

n
v2∥F∥ tr(ÛTΣT Û)

≤ 1

n
v2(tr((ÛTΣSÛ)−1ÛTΣT Û)) +

1

n
v2k∥F∥∥ΣT ∥

≤ 1

n
v2(tr((ÛTΣSÛ)−1ÛTΣT Û)) +

1

n
v2O(tr((UTΣSU)−1UTΣTU)) (47)

The remaining thing is to show that indeed tr((ÛTΣSÛ)−1ÛTΣT Û) is
close to tr((UTΣSU)−1UTΣTU). In fact, tr((ÛTΣSÛ)−1ÛTΣT Û) =

tr((RT ÛTΣSÛR)−1RT ÛTΣTRÛ). Notice that
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∥RT ÛTΣT ÛR− UTΣTU∥ ≤ 2∥∆∥∥ΣT ∥,

we have

tr((RT ÛTΣSÛR)−1RT ÛTΣT ÛR) (48)

≤ tr((RT ÛTΣSÛR)−1UTΣTU) + ∥RT ÛTΣT ÛR− UTΣTU∥ tr((ÛTΣSÛ)−1)

≤ tr((RT ÛTΣSÛR)−1UTΣTU) + 2∥∆∥∥ΣT ∥ tr((ÛTΣSÛ)−1)

≤ tr((RT ÛTΣSÛR)−1UTΣTU) + 2∥∆∥∥ΣT ∥kC−1
min

≤ tr((RT ÛTΣSÛR)−1UTΣTU) + tr((UTΣSU)−1UTΣTU) (49)

when ∆ ≤ λk tr((UTΣSU)−1UTΣTU)
4k∥ΣT ∥ . Also, we have

∥(RT ÛTΣSÛR)−1 − (UTΣSU)−1∥ ≤ ∥(RT ÛTΣSÛR)−1∥∥(UTΣSU)−1∥∥RT ÛTΣSÛR− UTΣSU∥
≤ 4λ−2

k λ1∆,

therefore

tr((RT ÛTΣSÛR)−1UTΣTU) ≤ tr((UTΣSU)−1UTΣTU) + ∥(RT ÛTΣSÛR)−1 − (UTΣSU)−1∥ tr(UTΣTU)

≤ tr((UTΣSU)−1UTΣTU) + 4λ−2
k λ1∆tr(UTΣTU)

≤ 2 tr((UTΣSU)−1UTΣTU), (50)

if ∆ ≤ λ2
k tr((UTΣSU)−1UTΣTU)

4λ1 tr(UTΣTU)
. Combining (47), (48) and (50) we have

Eϵ[∥A3∥2ΣT
] ≤ O(

1

n
v2 tr((UTΣSU)−1UTΣTU)),

whenever ∆ ≤ λ2
k tr((UTΣSU)−1UTΣTU)

4λ1k∥ΣT ∥ ≤ min{λ
2
k tr((UTΣSU)−1UTΣTU)

4λ1 tr(UTΣTU)
, λk tr((UTΣSU)−1UTΣTU)

4k∥ΣT ∥ }
and n ≳ σ4C−4

min∥ΣS∥2∥ΣT ∥2 tr((UTΣSU)−1UTΣTU)−2k3 log(1/δ), with probability at least
1 − δ. Notice that UTΣSU = ΣS,k and UTΣTU = ΣT,k, therefore the result is exactly what we
want.

Proof of Lemma 34. Recall A2 := Û(ÛTXTXÛ)−1ÛTXTXβ⋆⊥. Also we have

∥ÛTΣT Û∥ = ∥RT ÛTΣT ÛR∥
≤ ∥UTΣTU∥+ ∥RT ÛTΣT ÛR− UTΣTU∥
≤ ∥UTΣTU∥+ 2∆∥ΣT ∥ (51)

Therefore

∥A2∥2ΣT
= ∥β⋆T⊥ XTXÛ(ÛTXTXÛ)−1ÛTΣT Û(ÛTXTXÛ)−1ÛTXTXβ⋆⊥∥

≤ ∥XÛ(ÛTXTXÛ)−1(ÛTXTXÛ)−1ÛTXT ∥∥ÛTΣT Û∥∥Xβ⋆⊥∥2

≤ ∥A∥(∥UTΣTU∥+ 2∆∥ΣT ∥)∥Xβ⋆⊥∥2

≤ 2∥A∥∥UTΣTU∥∥Xβ⋆⊥∥2 (52)

when ∆ ≤ ∥UTΣTU∥
2∥ΣT ∥ , where we let A = 1

n
XÛ√
n
(ÛT XTX

n Û)−2 ÛTXT
√
n

. If we define B = XÛ√
n

∈
Rn×r, then A = 1

nB(BTB)−2BT . Let the SVD of B be B = PMOT , where P ∈ Rn×k,
M,O ∈ Rk×k, then

∥A∥2 =
1

n
∥B(BTB)−2BT ∥2

=
1

n
∥PMOT (OM2OT )−2OMPT ∥2

=
1

n
∥PM−2PT ∥2
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≤ 1

n
∥M−2∥2

=
1

n
∥(BTB)−1∥2 (53)

Let F = (ÛT XTX
n Û)−1−(ÛTΣÛ)−1. Recall (33), which states that with probability at least 1−δ,

we have ∥F∥ ≤ 1
3C

−1
min ≤ 2

3λ
−1
k when n ≳ σ4C−2

min∥ΣS∥2k log(1/δ) and ∆ ≤ λk

4λ1
. Therefore

∥A∥ ≤ 1

n
∥(ÛT X

TX

n
Û)−1∥

= ∥(ÛTΣSÛ)−1 + F∥

≤ 1

n
∥(ÛTΣSÛ)−1∥+ ∥F∥

≤ O(
1

n
λ−1
k ). (54)

Thus ∥A∥ ≤ O(λ−1
k ). As for ∥Xβ⋆⊥∥2, notice that the first-k entries of β⋆⊥ are zero, therefore

Xβ⋆⊥ = X−kβ
⋆
−k. by Lemma 35,

∥β⋆T−k(
XT

−kX−k

n
)β⋆−k − β⋆T−kΣS,−kβ

⋆
−k∥ ≤ O(σ2∥β⋆−k∥2∥ΣS,−k∥(

√
1

n
+

1

n
+

√
log(1/δ)

n
+

log(1/δ)

n
).

(55)

Therefore we have

∥Xβ⋆⊥∥2 = nβ⋆T−k(
XT

−kX−k

n
)β⋆−k

≤ n(β⋆T−kΣS,−kβ
⋆
−k + ∥β⋆T−k(

XT
−kX−k

n
)β⋆−k − β⋆T−kΣS,−kβ

⋆
−k∥)

≤ O(n∥β⋆−k∥2∥ΣS,−k∥). (56)

Combining (52)(54) and (56), we have

∥A2∥2ΣT
≤ O(

∥UTΣTU∥∥β⋆−k∥2∥ΣS,−k∥
λk

) (57)

when n ≳ σ4C−2
min∥ΣS∥2k log(1/δ) and ∆ ≤ min{∥UTΣTU∥

2∥ΣT ∥ , λk

4λ1
}.

Finally we prove Lemma 30 in the following.

Proof of Lemma 30. In the first step, we obtain Û ∈ Rd×k by selecting the top−k eigenvectors of
the sample covariance matrix Σ̂S := 1

nXXT = 1
n

∑n
i=1 xix

T
i using PCA. Then by Davis-Kahan

theorem (Chen et al., 2021, Corollary 2.8),

∆ ≤ 2∥Σ̂S − ΣS∥
λk − λk+1

. (58)

Therefore it remains to bound ∥Σ̂S − ΣS∥. Applying Lemma 28, we immediately have

∥Σ̂S − ΣS∥ ≤ Cσ4

√r + log 1
δ

n
+

r + log 1
δ

n

λ1

where r =
∑n

i=1 λi

λ1
. Together with (58), we have with probability at least 1− δ,

∆ ≤ Cσ4

√r + log 1
δ

n
+

r + log 1
δ

n

 λ1

λk − λk+1
.
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