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Figure 1: We propose GroundingBooth, a framework for grounded text-to-image customization.
GroundingBooth supports: (a) grounded single-subject customization, and (b) joint grounded cus-
tomization for multi-subjects and text entities. In general, it achieves a joint grounding on the
generation of both the subject-driven foreground and the text-driven background, while preserving
the identity of subjects and text-image alignment.

ABSTRACT

Recent studies in text-to-image customization show great success in generating
personalized object variants given several images of a subject. While existing
methods focus more on preserving the identity of the subject, they often fall
short of controlling the spatial relationship between objects. In this work, we
introduce GroundingBooth, a framework that achieves zero-shot instance-level
spatial grounding on both foreground subjects and background objects in the
text-to-image customization task. Our proposed text-image grounding module
and masked cross-attention layer allow us to generate personalized images with
both accurate layout alignment and identity preservation while maintaining text-
image coherence. With such layout control, our model inherently enables the
customization of multiple subjects at once. Our model is evaluated on both layout-
guided image synthesis and reference-based customization tasks, showing strong
results compared to existing methods. Our work achieves a joint grounding on both
subject-driven foreground generation and text-driven background generation. Our
code will be publicly available.

1 INTRODUCTION

Text-to-image customization, also known as subject-driven image generation or personalized text-to-
image synthesis, is a task that requires a model to generate diverse variants of a subject given a set of
images of the target subject. Text-to-image customization has achieved significant progress during the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

past few years, allowing for more advanced image manipulation. For example, the test-time-finetuning
based methods like Dreambooth (Ruiz et al., 2023), Textual Inversion (Gal et al., 2022), and Custom
Diffusion (Kumari et al., 2023) use a few images of the same object to finetune a pretrained diffusion
model and generate variants of the object from input prompts. The encoder-based methods such as
ELITE (Wei et al., 2023) and InstantBooth (Shi et al., 2023) eliminate test-time-finetuning by learning
a generalizable image encoder and attention modules. Despite their success, existing personalization
methods mainly focus on generating identity-preserved images from the input prompt and fail to
accurately describe the spatial relationship of objects and backgrounds. In real-world scenarios of
image customization, it is a crucial user need to achieve fine-grained and accurate layout control on
each of the generated objects for more flexible image manipulation.

To tackle this issue, we propose to deal with a more challenging task, grounded text-to-image
customization, which extends the existing text-to-image customization task by enabling grounding
controllability over both the foreground subjects and background objects. Specifically, under this new
setting, the inputs usually include a prompt, images of subjects, and optional bounding boxes of the
subjects and background text entities. The model aims to generate text-aligned background objects
and identity-preserved foreground subjects, while the spatial location of all the grounded objects and
subjects are exactly aligned with the input bounding boxes. It is non-trivial to achieve all these effects
simultaneously, as we are indeed handling multiple tasks together and it is challenging for the model
to be generalizable to all sub-tasks.

There are a few related works to handle our new task, which, however, show significant limitations.
On the one hand, although existing grounded text-to-image diffusion models such as LayoutDiffu-
sion (Zheng et al., 2023) and GLIGEN (Li et al., 2023) have made attempts at spatial controllability,
they cannot achieve identity preservation of the subjects. On the other hand, subject-driven image
generation methods mainly focus on the identity preservation of the reference objects, while lim-
ited attempts have been made on layout control of either subjects or background objects. There is
another line of related works (Chen et al., 2023b; Song et al., 2022; 2024) that achieve customized
image composition. They can control the location of the input subject under the image composition
setting but are neither able to achieve text-to-image synthesis nor control the spatial location of the
background contents.

To fully address our new task, we propose GroundingBooth, a general framework for grounded
text-to-image customization. Specifically, based on a pretrained text-to-image model, we build a new
joint text-image grounding module that encourages both the foreground subjects and background
objects to accurately follow the locations indicated by the input bounding boxes. To further enhance
the identity preservation of the subjects, we propose a masked cross-attention layer in the transformer
blocks of the diffusion U-Net, which helps to disentangle the subject-driven foreground generation
and text-driven background generation in each block, effectively preventing the false blending of
multiple visual concepts in the same location and enforcing the generation of clear subjects. As
shown in Fig. 1, with such dedicated designs of the model structures, our framework not only achieves
grounded text-to-image customization with a single subject (Fig. 1 (a)), but also supports multi-subject
customization (Fig. 1 (b)), where users can input multiple subjects along with their bounding boxes,
and our model can generate each subject in the exact target region with identity preservation and
scene harmonization. Meanwhile, our model also allows for the grounding of multiple background
objects (Fig. 1 (b)).

The key contributions of this work can be summarized as follows.

• We propose a general framework, GroundingBooth, that achieves grounded text-to-image
customization. Specifically, our model achieves joint layout grounding of both the fore-
ground subjects and the text-guided background, while maintaining accurate identity of the
subjects. Furthermore, our model enables the customization of multiple subjects.

• We propose a novel layout-guided masked cross-attention module, which disentangles the
foreground subject generation and text-driven background generation through cross-attention
manipulation thus avoiding false context blending.

• Experiment results show the effectiveness of our model in text-image alignment, identity
preservation, and layout alignment.
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2 RELATED WORK

Subject-driven Image Generation Subject-driven image generation, also known as personalized
text-to-image generation or image customization, aims to generate target images based on customized
objects and a text prompt that describes the target context (Chen et al., 2023a; Pan et al., 2024; Xiao
et al., 2023; Wang et al., 2024a; Avrahami et al., 2023). In this task, the specific identity of the input
reference images is defined as a subject or a concept. So far, existing image customization works can
be categorized into three major types. The first type is test-time-finetuning methods (Ruiz et al., 2023;
Gal et al., 2022; Kumari et al., 2023). These methods first finetune a pretrained diffusion model on a
few subject images so that the model is adapted to a new identifier token representing the new concept.
Then they generate new images from prompts containing the identifier. Such test-time finetuning is
computationally intensive. The second type of method is encoder-based customization methods (Arar
et al., 2023; Wei et al., 2023; Shi et al., 2023; Zhang et al., 2024), which eliminates the test-time
finetuning by learning a generalizable diffusion model that can adapt to new subjects on a large-scale
training data. The generalizable model usually contains image encoders that map the subject images
into dense tokens and attention modules that integrate vision tokens with text tokens. These methods
can achieve much faster image customization during inference, while rely heavily on large-scale
multi-view training data, and identity preservation may not be perfect in out-of-distribution cases.
The third type of methods (Roich et al., 2021; Gal et al., 2023) is a combination of the first two
methods, which first learn an image encoder to extract identity tokens of the input subject and then
finetune the model on the subject images for a few steps.

Note that most existing subject-driven image generation methods focus on synthesizing personalized
image variants from prompts. They show quite limited performance in controlling the layout of the
generated scenes and modeling the spatial relationship between objects. On the contrary, our model
performs well not only in generating identity-preserved, text-aligned images but also in controlling
the layout of both the subjects and background. A previous work, Break-A-Scene (Avrahami et al.,
2023), employs textual scene decomposition to extract multiple text tokens from a single scene image,
enabling the generation of novel images based on text prompts that feature individual concepts or
combinations of multiple concepts. Both this method and our method achieve foreground-subject
grounded generation. However, this method relies on test-time fine-tuning, making inference slow
and computationally intensive. Additionally, there is no clear evidence in their paper that they can
perform background text-entity grounding for the text-driven background objects, while our work
achieves layout-guided generation of both subject-driven foreground and the text-driven background.

Grounded Text-to-Image Generation Given a layout containing bounding boxes labeled with
object categories, grounded text-to-image generation aims to generate the corresponding image,
which is the reverse object detection process. Traditional grounded text-to-image generation such
as LostGAN (Sun & Wu, 2019), LAMA (Li et al., 2021) and PLGAN (Wang et al., 2022) are
based on generative adversarial networks(GANs). Recently, diffusion-based methods (Rombach
et al., 2022; Zheng et al., 2023; Li et al., 2023; Zhang et al., 2023; Wang et al., 2024b) have made
attempts to add layout control for image generation. For example, LayoutDiffusion (Zheng et al.,
2023) uses a patch-based fusion method. GLIGEN (Li et al., 2023) injects grounded embeddings
into gated Transformer layers. ControlNet (Zhang et al., 2023) uses copied encoders and zero
convolutions. InstanceDiffusion (Wang et al., 2024b) allows for multiple formats of location control.
LayoutGPT (Feng et al., 2024) and LayoutLLM-T2I (Qu et al., 2023) use LLM as guidance. However,
all these methods can only perform text-to-image generation, while object-guided generation and
identity preservation cannot be achieved. In contrast, our model achieves satisfactory identity
preservation on reference-guided image generation.

3 OUR APPROACH

Our model is built upon Stable Diffusion v1.4 Rombach et al. (2022). Given one or a few background-
free1 reference images X = {x1, x2, · · · , xm} where xm ∈ Rh×w×3 with their target bounding box
locations LX = {l1X , l2X , · · · , lmX}, text entities2 T = {t1, t2, · · · , tn} with their target locations

1Background-free images refer to images with background removed. They can be easily obtained by
segmentation methods such as SAM (Kirillov et al., 2023) or SAM2 (Ravi et al., 2024)

2Here each text entity is referred to a text tag, such as “chair" and “hat".
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Figure 2: An overview of our GroundingBooth model. The whole pipeline contains two steps:
(1) Feature extraction. We use the CLIP encoder and DINOv2 encoder to extract text and image
embeddings, respectively. We use our proposed grounding module to extract the grounding tokens.
(2) Foreground-background cross-attention control in each transformer block of U-Net. During
training, we use datasets with a single subject as the reference image and only trains a single masked
cross-attention layer per transformer block. During inference, our model supports the generation of
multiple subjects in their corresponding locations by reusing the same masked cross-attention layer
for each subject. This figure shows the inference pipeline of our model. We show the details of the
grounding module and masked cross-attention layer in Fig. 3.

LT = {l1T , l2T , · · · , lnT }, and the overall prompt P , we aim to generate a customized image x̂, where
both the reference objects can be seamlessly placed inside the desired bounding box with natural
poses and accurate identity and the background objects generated from text-box pairs are positioned
at the correct location. Here lmX or lnT refers to the bounding box coordinates of a reference object or
a text entity, which can be represented as l = [xmin, ymin, xmax, ymax]. The reference object should
be generated harmoniously with the background. The customized image x̂ can be calculated as:

x̂ = GroundingBooth(X , T ,P,LX ,LT ). (1)

The pipeline of our proposed GroundingBooth model is shown in Fig. 2. Our work is the first attempt
that enables precise spatial grounding in the customized image synthesis task, which jointly controls
the size and location for both the reference-guided foreground objects and text-driven background
regions. Moreover, our work adaptively harmonizes the poses of the reference objects and faithfully
preserves their identity. In this section, we first introduce our feature extraction pipeline in Sec. 3.1,
then introduce the foreground-background masked cross-attention control in Sec. 3.2. Finally, we
introduce the training and inference pipeline in Sec. 3.3 and Sec. 3.4, respectively.

3.1 FEATURE EXTRACTION

Feature Extraction of Text and Reference Images We first extract text tokens from the in-
put prompt using the CLIP text encoder and identity tokens from the reference images using DI-
NOv2 (Oquab et al., 2023). For each reference image, we extract 257 identity tokens which are
composed of a global image class token and 256 local patch tokens. We reshape the feature dimension
of each image token to 768 through a linear projection layer.

Grounding Module To control the layout of the foreground and background objects, we propose
a grounding module, which jointly ground text and image features through positional encoding.
Fig. 3(a) shows the overall structure of our grounding module. We extract grounding information
based on the joint guidance of the tagged text-box pair and the object-layout pair. Specifically, it
contains two branches: 1) In the text entity branch, the bounding boxes of the background objects LT

are passed through a Fourier encoder to obtain the text Fourier embeddings for the text entities, which
are then concatenated with the text tokens in the feature space to obtain the grounded text embeddings.
2) In the reference image branch, the bounding boxes of the reference objects LX (in the target image)
are also passed through a Fourier encoder to extract the object Fourier embeddings, which are then
concatenated with the reference image tokens to obtain the grounded reference image embeddings.
For all training images, we set a max number of boxes and the text entities and drop the rest ones. For
the cases where there is no reference image or text entities, we set the input reference object layout
to zero and reference object token to zero embeddings, or set the grounded text embeddings to zero

4
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Figure 3: Modules of our proposed framework: (a) Grounding Module: Our grounding module
takes both the prompt-layout pairs and reference object-layout pairs as input. For the foreground
reference object, both CLIP text token and the DINOv2 image class token are utilized. (b) Masked
Cross-Attention: Q, K, and V are visual query, key, and value respectively, and A is the affinity
matrix.

embeddings, respectively. At the end of the following two branches, the grounded text embeddings
and reference image embeddings are reshaped back into the original feature dimension through linear
layers and then concatenated in the token space to form the final grounding tokens. Given the text
entities T and reference images X , the calculation of the grounding tokens is formulated as:

h(T ,X ) = [MLP (ψtext (T ),Fourier(LT )) ,MLP (ψobj (X ),Fourier(LX))] , (2)

where Fourier represents the Fourier embedding (Tancik et al., 2020), MLP (., .) is a multi-layer
perceptron, [., .] is concatenation operation, and h(T ,X ) is the grounding token. ψtext and ψobj denote
to the text encoder and image encoder, respectively. The generated grounding token h(T ,X ) contains
the location features of both the reference objects and the text entities. It is then injected into the
U-Net layers of the diffusion models. Specifically, inspired by GLIGEN (Li et al., 2023), we inject
the grounding token through a gated self-attention layer located between the self-attention layer and
cross-attention layer in each Transformer block of the U-Net, represented as:

v = v + tanh(γ) ·
(
SelfAttn

([
v, h(T ,X )

]))
, (3)

where γ is a learnable scalar initialized as 0, h(T ,X ) is the grounding token and v is the output of
the self-attention layer. During training, the model adaptively learns to adjust the weight γ of the
grounding module, which ensures stable training and balances the weight between the grounding
token and the visual features.

3.2 FOREGROUND-BACKGROUND CROSS-ATTENTION CONTROL

Previous text-to-image generation methods usually directly concatenate the text and image tokens in
the cross-attention layers, leading to two drawbacks. First, the reference objects and the text-driven
background objects can be blended unnaturally. Second, for the circumstances where bounding boxes
belong to the same class, the model cannot distinguish whether a bounding box belongs to a reference
object or text entity, resulting in the misplacement of the reference object. To solve these issues,
we propose a novel masked-cross attention module to separately generate the foreground objects
and background contents. Moreover, when there are multiple reference objects, our module can
clearly maintain the independence of generating each foreground object. The details of our module is
illustrated in Fig. 3(b).

The original cross-attention layer can be formulated as:

f = softmax

(
QKT

√
d

)
V, (4)

Q = ϕQ(f),K = ϕK (fc) , V = ϕV (fc) , (5)

where
√
d is the scaling factor that is set as the dimension of the queries and keys, f denotes to the

vision feature in the layer, fc refers to the embedding of the input condition. ϕQ, ϕK , ϕV are the
linear layers to project the features into queries, keys and values, respectively.

5
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Figure 4: When the reference objects and the
text entity belongs to the same class, our model
can effectively prevent misplacement.

In our masked cross-attention layer, both the DI-
NOv2 image tokens and the layout of the refer-
ence object are taken as input. The queries K and
values Q are calculated from the image tokens.
We first compute the affinity matrix A through
A = Q ·K and get A ∈ Rhw×hw, where h × w
indicates the resolution of the feature map in the at-
tention layer. As we have the object layout lobj , it
is straightforward to restrict the injection of image
tokens only inside the region of the target bound-
ing box. Therefore, we reshape the layout lobj to h× w and generate the cross attention mask, which
is formulated as:

MLayout[i,j] =

{
0, [i, j] ∈ lobj ,
−∞, [i, j] /∈ lobj

, (6)

where MLayout[i,j] represents the pixel of position [i, j] in rectified attention score maps, lobj repre-
sents the layout region of the reference object in the feature map.

The mask contains the location information for restricting the reference object placement and avoiding
information leakage. After acquiring the mask, we apply dot product operation between the feature
maps and the layout to constrain the object generation and obtain the mask-rectified affinity matrix
A′ through A′ = A +MLayout. Then we multiply the masked affine matrix A′ with V to obtain
the layout-guided masked cross-attention output fobj . The whole masked cross-attention module is
formulated as:

fobj = softmax

(
QKT +MLayout√

d

)
V. (7)

For the scenarios where there is a lack of reference objects, MLayout is set to all 0, the masked-cross
attention degrade into normal cross attention. Through masked cross-attention control, the injection
of each reference object feature is restricted to be within the corresponding bounding box area. This
ensures not only the independence between the generation of foreground and background, but also the
independence of multiple reference objects. Our module prevents information leakage and ensures an
accurate layout-guided subject generation. Also, as shown in Fig. 4, when both the reference subject
and the text entity belongs to the same class(cat, dog), the model can distinguish the reference object
and the text entity, and effectively avoids the misplacement of the generated objects.

3.3 MODEL TRAINING

During training, for each image, we input only one subject image and its bounding box to the model,
along with several text entities with their corresponding bounding boxes. The number of entities per
training image is limited to 10 and we drop the rest ones. For a portion of training cases, the input
may not contain subject image or text entities. We keep the text encoder and DINOv2 image encoder
frozen and merely fine-tune the gated self-attention layers, the masked cross-attention layers, and the
multi-layer perceptron after the DINOv2 image encoder.

3.4 MODEL INFERENCE

Although our model is trained on single-subject data, it can be seamlessly extended to achieve
multi-subject customization without retraining. As shown in Fig. 2, in the inference stage, assume
we have n reference objects, the reference object and paired layout information are concatenated as
the grounded reference image embeddings. In each transformer block, the masked cross-attention
layer will be reused for n times, and each ID token and its paired layout information are injected
into each masked cross-attention layer respectively. As we analyzed in section 3.2, our masked
cross-attention ensures the independence of the generation of each subject, preventing potential false
blending of visual concepts, e.g., the unnatural blending of two objects in the overlapping regions. It
also guarantees an accurate layout control on all the subjects.

4 EXPERIMENT

Dataset The training data of our experiments are from both multi-view datasets and single-image
datasets. For multi-view data, we use MVImgNet (Yu et al., 2023), which contains 6.5 million frames

6
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Figure 5: Visual comparison with existing methods on DreamBench objects for the single-subject
customization task. Please zoom in to see the details.

from 219,188 videos across 238 object categories, with fine-grained annotations of object masks. In
the data processing stage of MVImgNet, following AnyDoor (Chen et al., 2023b), for each object, we
randomly selected two different frames from the same video clip to form a training pair. We apply the
object mask on one frame to obtain the background-free object as the input reference object. For the
other frame, we use the bounding box of the object as the grounding information and use this frame
as the training ground truth. For single-image data, we use LVIS (Gupta et al., 2019), a well-known
dataset for fine-grained large vocabulary instance segmentation, including 118,287 images from 1,203
categories. For each sample, we select only the object instances with top-10 largest bounding box
area as training data.

Evaluation Metrics We calculate the CLIP-I (Radford et al., 2021) score and DINO (Caron et al.,
2021) score to evaluate the identity preservation performance of the subjects and use CLIP-T (Radford
et al., 2021) score to evaluate the text alignment performance of the generated image. For evaluation
of the model’s grounding ability, we use AP50 based on a pretrained YOLOv8 (Jocher et al., 2023)
object detection model.

4.1 SINGLE SUBJECT CUSTOMIZATION

We compare our work with existing state-of-the-art works on DreamBench (Ruiz et al., 2023) for
the customization of a single subject. In this experiment, we use the bounding box of the subject
in the ground-truth image as the input layout. The qualitative and quantitative results are shown
in Fig. 5 and Table 1, respectively. Overall, our method shows significantly better performance in
layout alignment, reference object identity preservation, and background text alignment. Existing
encoder-based subject-driven text-to-image customization methods BLIP-Diffusion (Li et al., 2024),
ELITE (Wei et al., 2023), λ-eclipse (Patel et al., 2024) and MLLM-based method Kosmos-G (Pan
et al., 2023) fail to maintain accurate identity of the reference objects lack the ability for precise layout

7
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Figure 6: Multi-concept customization on DreamBench objects. Please zoom in to see the details.

control. AnyDoor (Chen et al., 2023b) is designed for image composition on a given background and
lacks the ability of text-to-image generation. Although previous grounded text-to-image generation
methods like GLIGEN (Li et al., 2023) are able to achieve layout control, it cannot preserve the
identity of the subjects. CustomNet (Yuan et al., 2023) achieves flexible pose control. However,
it highly relies on the pretrained model Zero123 (Liu et al., 2023a), limiting the resolution of its
generated image to be 256× 256. Moreover, there can be obvious artifacts around the boundary of
the generated subject.

Table 1: Comparison with existing methods on Dreambench.

CLIP-T ↑ CLIP-I ↑ DINO-I ↑

SD V1.4 [(Rombach et al., 2022)] 0.3122 0.8413 0.6587
BLIP-Diffusion [(Li et al., 2024)] 0.2824 0.8894 0.7625
ELITE [(Wei et al., 2023)] 0.2461 0.8936 0.7557
Kosmos-G [(Pan et al., 2023)] 0.2864 0.8452 0.6933
lambda-eclipse [(Patel et al., 2024)] 0.2767 0.8973 0.7934
AnyDoor [(Chen et al., 2023b)] 0.2430 0.9062 0.7928
GLIGEN [(Li et al., 2023)] 0.2898 0.8520 0.6890
CustomNet [(Yuan et al., 2023)] 0.2815 0.9090 0.7526
Ours 0.2881 0.9146 0.7884

As an interesting observation, we find
that previous non-grounding based
customization methods are inclined
to generate objects that are very large
and in the center of the image, which
gains benefit in CLIP-I score and
DINO score during evaluation. How-
ever, in real-world scenarios, users
may expect to flexibly control the size
of the subject in the generated im-
ages. They may choose to generate
larger background with broader tex-
tual information, where, in such cases,
non-grounding customization meth-
ods cannot generate the desired result. The visual results in Fig. 5 demonstrate that our results
achieves better identity preservation performance with accurate layout-alignment. We encourage the
readers to view more visualizations in the Appendix.

4.2 MULTI-SUBJECT CUSTOMIZATION AND MULTI-ENTITY BACKGROUND GENERATION

With our proposed masked cross-attention module, our model seamlessly supports the customization
of multiple subjects. Fig. 6 shows the qualitative results of the task where we customize multiple
subjects and generate the image by grounding multiple text entities in the background. It can be
observed that when inputting multiple subjects such as a bag and a boot, along with the layout of
the background text entities such as the mountain and the lake, our model successfully generates the
subjects and background with an accurate layout-alignment of each visual concept. The generated
subjects preserve the their identity well. The overall generated image is well text-aligned and artifact
free. Moreover, in several cases, even when the bounding boxes of the foreground objects have a
large overlap with the background text entities, the model can distinguish subject-driven foreground
generation from text-driven background generation, effectively avoiding the context blending.
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Reference object
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"The red, double
decker bus is 
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other buses" 
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"These platters
display healthy
food choices of

two entrees with
a side vegetable

and fruit"

"A kitchen filled
with a stove 

top oven and a
refrigerator"

"Three zebras 
in a field 

near bushes" 

"Two brown teddy
bears sitting 
side by side"

bowl

refrigerator

zebra

teddy bear

bus

GLIGENLayoutDiffusionLayout 

Not
Available

Not
Available

Reference Object

"6 open umbrellas
of various colors
hanging on a line"

umbrella

"A cat in front of
a wooden bench in

a garden"

Not
Available

bench

InstanceDiffusion

Figure 7: Visual results of reference-guided image generation with complex layout and text entities as
conditions on COCO validation set. Note that LayoutDiffusion (Zheng et al., 2023) is only conducted
on COCO dataset with filtered annotations, so some of its results are not available.

4.3 CUSTOMIZATION WITH COMPLEX LAYOUT AND TEXT ENTITIES

We evaluate our model’s performance the COCO validation set for the task of generating customized
images with complex layout and text entities as guidance. Quantitative and qualitative results are
shown in Table 2 and Fig. 7, respectively. For each testing image, we use the largest object as the
reference object (i.e., the subject), and the remaining text entities as background entities. To quantify
the model’s grounding ability, we adopt YOLOv8 (Jocher et al., 2023) as the object detection method.
Results show that even if we input complex layouts and text entities to the model, our model can still
generate high-quality scenes with precise layout alignment of all the objects and regions, and accurate
identity preservation of the reference object, while preserving the text-alignment. Compared with
previous layout-to-image generation methods, our model has a competitive accuracy in grounding the
visual concepts and remarkable improvement on identity preservation.

As in the training stage of our model, we set the length of the max number of text tokens and the max
number of image tokens to be 10 respectively, so currently the maximum number of reference subjects
are set to be 10. Increasing the number of reference image tokens and text tokens will improve the
maximum number of objects that the model supports, but will also increase the computation resource
memory consumption and slow down the training process.

4.4 ABLATION STUDY

We conduct the ablation study to validate the effectiveness of our proposed components: the masked
cross-attention module and the grounding module. Table 3 and Table 4 present the quantitative
results on DreamBench and COCO, respectively. We observe that both the grounding module and
the masked cross-attention module play a vital role in the model’s grounding ability and prevent the

9
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Table 2: Quantitative results on MS-COCO validation set for the task of customized image generation
with complex layout as guidance. In this setting, we finetune our model on COCO training set, and
compare with previous methods that only train on COCO.

CLIP-T ↑ CLIP-I ↑ DINO-I ↑ AP50 ↑

LAMA[ (Li et al., 2021)] 0.2507 0.8441 0.7330 18.20
LayoutDiffusion[ (Zheng et al., 2023)] 0.2738 0.8655 0.8033 27.40
UniControl[ (Qin et al., 2023)] 0.3143 0.8425 0.7598 4.53
GLIGEN[ (Li et al., 2023)] 0.2899 0.8688 0.7792 27.50
Ours 0.2946 0.9078 0.8560 31.10

Table 3: Ablation Study for modules on Dream-
bench.

CLIP-T ↑ CLIP-I ↑ DINO-I ↑

w/o Grounding Module 0.2762 0.8578 0.7049
w/o Masked Cross-Attention 0.2878 0.8616 0.7065
Full 0.2881 0.9146 0.7884

Table 4: Ablation Study for modules on MS-
COCO Validation Set.

CLIP-T ↑ CLIP-I ↑ DINO-I ↑ AP50↑

w/o Grounding Module 0.2796 0.8605 0.7740 22.00
w/o Masked Cross-Attention 0.2884 0.8707 0.7970 28.50
Full 0.2946 0.9078 0.8560 31.10

information leakage of the reference object. Benefiting from these two modules, the model shows
stronger ability of identity preservation, text alignment and grounded generation.

4.5 USER STUDY

Table 5: User Study based on DreamBench: In the ques-
tions, the user is presented side-by-side comparisons
of our generated image and another image randomly
chosen from one of the baselines. The results in the
table show user preference percentage.

Ours CustomNet Ours AnyDoor Ours GLIGEN

Identity 60.78 39.22 59.31 40.69 72.81 27.19
Grounding 56.86 43.14 64.21 35.79 58.25 41.75
Text Alignment 51.96 48.03 73.52 26.47 55.34 44.66
Overall Quality 54.41 45.58 62.25 37.74 58.74 41.26

In Table 5, we show the user study results
comparing our model with existing mod-
els (Chen et al., 2023b; Yuan et al., 2023; Li
et al., 2023) on DreamBench. Specifically,
given the same input, we generate results
with each model. Then we ask the users
to make side-by-side comparison of our
result and a randomly chosen result from
the baselines regarding identity preserva-
tion, text alignment, grounding ability, and
overall image quality. We collect the user
responses using Amazon Mechanical Turk.
Results show that participants have signifi-
cantly higher preference on our method. We show details about user study in the Appendix Sec. D.

5 CONCLUSION AND FUTURE WORK

We presented GroundingBooth, a general framework for the grounded text-to-image customization
task. Our model has achieved a joint grounding for both reference images and prompts with precise
object location and size control while preserving the identity and text-image alignment. Our strong
results suggest that the proposed text-image feature grounding module and the masked cross-attention
module are effective in reducing the context blending between foreground and background. We hope
our research can motivate the exploration of a more identity-preserving and controllable foundation
generative model, enabling more advanced visual editing.

Although our model successfully generates customized images with layout control, there are still
several limitations. First, the model’s performance can be limited by the base model. We can address
this by using a stronger base model. Second, the design of reusing the masked cross-attention layer
for each subject could still be time-consuming during inference. This can be addressed by developing
a parallel generation structure for multiple subjects. We leave this direction in future work.
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APPENDIX

A PRELIMINARY

Our model is based on Stable Diffusion v1.4 Rombach et al. (2022), a Latent Diffusion model (LDM)
that applies the diffusion process in a latent space. Specifically, an input image x is encoded into the
latent space using a pretrained autoencoder z = E(x), x̂ = D(z) (with an encoder E and a decoder
D). Then the denoising process is achieved by training a denoiser ϵθ (zt, t, fc) that predicts the added
noise following:

min
θ
Ez0,ϵ∼N (0,1),t∼U(1,T ) ∥ϵ− εθ (zt, t, fc)∥22 , (8)

where fc is the embedding of the condition (such as a prompt) and zt is the latent noise at timestamp
t.

B TRAINING/INFERENCE DETAILS

Our model is trained on 4 NVIDIA A100 GPUs for 100k steps with a batch size of 14 and a learning
rate of 5× 10−5. During training, we randomly drop reference image embedding and text embedding
both at the rate of 10%. We decently rank the area of the boxes per images, and set the max
number of grounding boxes to be 10 with the largest areas. During inference, we set classifier-free
guidance(CFG) (Ho & Salimans, 2022) as 3.

C DETAILS ABOUT DATA COLLECTION

For each reference image, we use the segmentation mask to mask out the background and get the
background-free reference object. In inference stage, we use SAM (Kirillov et al., 2023) to get the
mask of the reference object, and get the background-free reference object.

D DETAILS ABOUT USER STUDY

Our user study is based on DreamBench, with full 30 objects and 25 prompts. We randomly generated
layouts, and use them in the generation. In the user study, given the layout, the reference object, the
text prompt, the result of our method and a random-selected baseline method, we request the user to
answer the following four questions:

(1) Which generated image do you think that its object is more similar to the input object? Choose
between Option A and B.

(2) Which generated image do you think that its object is most likely to be at the right position as the
input layout? Choose between Option A and B.

(3) Which generated image do you think is most likely to match the text description? Choose between
Option A and B.

(4) Which image do you think has better image quality? Choose between Option A and B.

We received more than 1200 votes from over 530 users. In the experiment, we randomly shuffle the
order of baselines to improve the confidence of the user study.

E ADDITIONAL QUALITATIVE RESULTS ON POSE CHANGE

In Fig. 8 we show results about changing the shape of the bounding box. For grounded text-to-
image customization, different from traditional text-to-image customization, the pose of the object is
jointly influenced by the shape of the bounding box and the model’s ability to adapt the object to be
harmonious with the background. The model tend to first adapt the object to the bounding box, then
make pose adjustments to make object to be harmonious with the background. For instance, in the
1st and 4th row of Fig. 8, given a bounding box with a large or small width/height ratio, the grounded
customized generation will generate objects with large pose change to adapt to the bounding box,
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Figure 8: More visual results of our model about layout and pose change: in our model, the pose of
the object is influenced by both the shape of the bounding box and the model’s ability to adapt to the
background. The model tends to first adapt the object into the layout, then adapt the pose to maintain
harmonization with the background.

then make pose refinement inside the bounding box. Users can easily conduct the initial manipulation
of the object by specifying the desired layout, then the model will automatically adjust the pose of the
object to be harmonious with the background. Our model shows both the ability to generate objects
with accurate location and the ability to make pose changes to the objects.

F ANALYSIS ON GROUNDING CIRCUMSTANCE

We also show qualitative results under the consumption that no layout is provided by the users. From
the results, we can see that: Our model also supports text-to-image generation, layout-to-image
generation, and personalized text-to-image generation tasks.

• As shown in Fig. 9, if the bounding box is set to be [x1, y1, x2, y2] = [0, 0, 0, 0], the model
will degrade into simpler text-to-image generation task, since the corresponding grounding
tokens are set to be all-zero, and the model also loses the grounding ability.

• As shown in Fig. 10, if no reference object as input, and all the layouts rely on the input text
entity to generate, then the model will degrade into layout-guided text-to-image generation
task.

• If randomly assigned the bounding box of the reference object, our model is equal to the
text-to-image personalization task, like previous non-grounding text-to-image customization
works.
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Layout Input [0,0,0,0]

"a backpack
floating on top of

water"

"a backpack on a
cobblestone

street"

"a backpack with
Effiel Tower in the

background"

"a backpack with a
tree and autumn

leaves in the
background"

"a backpack on top
of a dirty road"

"a dog in the
jungle"

"a dog wearing a
rainbow scarf"

"a dog wearing a
santa hat"

"a dog with a blue
house in the
background"

"a dog in a purple
wizard outfit"

Figure 9: Our model can also deal with pure text-to-image generation task. When we set the layout
[x1, y1, x2, y2] = [0.0, 0.0, 0.0, 0.0], the model will degrade into a simpler text-to-image generation
task, since the corresponding grounding tokens are set to be all-zero, and the model also loses the
grounding ability.

"a toy on top of green
grass with sunflowers

around it"

"a toy on top of the
sidewalk in a crowded

street"
"with a wheat field in

the background"
"on a wooden floor"Layout

Figure 10: Our model can also deal with layout-guided text-to-image generation task: when there is
no reference image input, the model will degrade into a layout-guided text-to-image generation task.

"a teddybear wearing a
hat in the snow"

Figure 11: More results about live animals wearing clothes.

G MORE RESULTS ABOUT OBJECT INTERACTION

As shown in Fig. 11, taking a toy object and a hat as input, our model is able to put the hat on the
teddy bear, which shows the model’s ability to composite reference objects.

H MORE RESULTS ABOUT POSE CHANGE UNDER THE GUIDANCE OF PROMPT

We further show comparison results about pose change under the guidance of prompts in Fig. 12.
We select prompts that is relevant to actions and pose change. Previous text-to-image customization
models cannot maintain the identity of the reference object(row 2, row 4 and row 5), fail to achieve
the prompt action-guided pose change(row 3 and row 4) and maintain text-alignment in certain
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"a dog riding 
a scooter 

through the park"

"a cartoon dancing in a
recital in front of a

crowd"

"a dog jumping
downstairs"

"a toy sleeping 
on the bed"

OursLayout  - EclipseBLIP-Diffusion
Reference 

Object

"a dog swimming
in the water"

Figure 12: More results about pose change under the guidance of prompt.

Table 6: Comparison with existing methods on Dreambench under layout scale normalization.

CLIP-T ↑ CLIP-I ↑ DINO-I ↑

SD V1.4 [(Rombach et al., 2022)] 0.3122 0.8413 0.6587
BLIP-Diffusion [(Li et al., 2024)] 0.2824 0.8894 0.7625
ELITE [(Wei et al., 2023)] 0.2461 0.8936 0.7557
Kosmos-G [(Pan et al., 2023)] 0.2864 0.8452 0.6933
lambda-eclipse [(Patel et al., 2024)] 0.2767 0.8973 0.7934
AnyDoor [(Chen et al., 2023b)] 0.2430 0.9062 0.7928
GLIGEN [(Li et al., 2023)] 0.2898 0.8520 0.6890
CustomNet [(Yuan et al., 2023)] 0.2821 0.9103 0.7587
Ours 0.2911 0.9169 0.7950

cases(row 1 and row 3). Our method not only achieve grounded text-to-image customization, but
also able to maintain a good balance between identity preservation and text alignment, and can also
generate objects with variations in pose.

I COMPARISON UNDER LAYOUT SCALE NORMALIZATION

We further conducted experiments to normalize our bounding box scales based on the average size of
objects generated by other personalized text-to-image generation methods. We update the comparison
results in the Table 6. For non-grounding-based text-to-image customization methods, we used
Grounding DINO (Liu et al., 2023b) to detect the bounding box of the target subject by identifying
the object name. We then computed the average bounding box area and applied a ±20% variation
as the normalized bounding box size. This normalized bounding box size scale was subsequently
employed for the grounded text-to-image customization methods(CustomNet (Yuan et al., 2023) and
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Ours). The results demonstrate that our method achieves improved CLIP-T, CLIP-I and DINO-I
scores, outperforming all baseline personalized text-to-image generation methods and layout-guided
text-to-image generation methods in this case.

J ADDITIONAL QUALITATIVE RESULTS

Here we show more qualitative results. In Fig. 13 we show results on DreamBench and in Fig. 14 and
Fig. 15 we show more results about complex background background evaluation on coco validation
set.

K SOCIAL IMPACT

GroundingBooth provides a flexible method for users to precisely customize the layout of both
foreground and background objects based on user-provided reference subjects and text descriptions
without any test-time finetuning. The support for the generation of multi-subjects provides a useful
tool for users to generate images using their desired layout. Users can optionally choose reference
objects or simple text inputs to generate their desired image, which significantly expands the flexibility
in controllable and customized text-to-image generation.
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" a wet dog " " in the jungle "
" with mountain in the

background "

" floating on top
of water "

" with a tree and
autumn leaves in
the background "

" on the beach "

" on a cobblestone
street "

" with a tree and autumn
leaves in the background "

" with Eiffel Tower
in the background "

" with a wheat field 
in the background "

" with a mountain in 
the background "

" with a blue house in 
the background "

" with a blue house in 
the background "

" on top of green
grass with sunflowers

around it "
" on the beach "

" with Eiffel Tower
in the background "

" on top of a dirty
road "

" with a mountain in 
the background "

Figure 13: More visual results of our model.
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"A cat in between
two cars in a
parking lot"

"A man leaning
over the back of a
truck in front of

buildings"

"a blue bike
parked on a side

walk "

"A living room
with a seat and

chairs
surrounding a

table"

"a fire hyrdant
sitting on the

sidewalk next to
the road "

"People laying in
chairs, walking,

and playing in the
water on the

beach"

"Three brown
bears looking out

a cage at the
ground below"

"A bedroom with
a large bed sitting

next to a black
dresser"

"A transporting
cart parked in a

street while
passengers board"

"An outdoor with
a patio with
chairs and a

wooden deck"

Not
Available

Not
Available

Not
Available

Not
Available

Not
Available

Caption-Tag Layout of
Reference object Ours Ground TruthGLIGENLayoutDiffusionLayout Reference Object

car

truck

bicycle

couch

fire hyrdant

umbrella

bear

bed

train

umbrella

Figure 14: More results on complex scene generation on COCO validation set.
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"A cat sitting on
the floor
watching

television"

"Several
motorcycles that
are parked on the

side of the
street"

Not
Available

"Two computers
sitting on top of 

a desk"
laptop

Not
Available

"The picture of
three buses 

on a lot"

bus

truck

motocycle 

Caption-Tag Layout of
Reference object Ours Ground TruthGLIGENLayoutDiffusionLayout Reference Object

Figure 15: More results on complex scene generation on COCO validation set.
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