
Reinforce LLM Reasoning through Multi-Agent Reflection

Yurun Yuan 1 Tengyang Xie 1

Abstract
Leveraging more test-time computation has
proven to be an effective way to boost the rea-
soning capabilities of large language models
(LLMs). Among various methods, the verify-
and-improve paradigm stands out for enabling
dynamic solution exploration and feedback in-
corporation. However, existing approaches of-
ten suffer from restricted feedback spaces and
lack of coordinated training of different parties,
leading to suboptimal performance. To address
this, we model this multi-turn refinement pro-
cess as a Markov Decision Process and intro-
duce DPSDP (Direct Policy Search by Dynamic
Programming), a reinforcement learning algo-
rithm that trains an actor-critic LLM system to
iteratively refine answers via direct preference
learning on self-generated data. Theoretically,
DPSDP can match the performance of any pol-
icy within the training distribution. Empirically,
we instantiate DPSDP with various base models
and show improvements on both in- and out-of-
distribution benchmarks. For example, on bench-
mark MATH 500, majority voting over five re-
finement steps increases first-turn accuracy from
58.2% to 63.2% with Ministral-based models.
An ablation study further confirms the benefits of
multi-agent collaboration and out-of-distribution
generalization.

1. Introduction
Large language models (LLMs) have shown strong capabil-
ities in solving reasoning tasks such as mathematical prob-
lems and coding (Lozhkov et al., 2024; Shao et al., 2024;
Team et al., 2024). A series of effective methods to im-
prove the reasoning performance of LLMs involve leverag-

1Department of Computer Sciences, University of Wis-
consin–Madison, Madison, WI, USA. Correspondence to:
Yurun Yuan <yurun yuan@cs.wisc.edu>, Tengyang Xie
<tx@cs.wisc.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

ing additional computation at inference time. Mechanisms
such as best-of-N sampling (Charniak and Johnson, 2005;
Stiennon et al., 2020; Chow et al., 2024), self-consistency
(Wang et al., 2022), explicit reasoning (Wei et al., 2022;
Yao et al., 2023; OpenAI, 2024), and refinement through
critique and revision (Qu et al., 2024; Kumar et al., 2024)
exemplify this approach.

Among the various test-time scaling methods, the verify-
and-improve paradigm offers a distinct advantage by en-
abling interaction with external environments to explore the
solution space and incorporate feedback into response gen-
eration. For instance, when faced with tasks like using an
unfamiliar coding library that is not covered in the LLM
agent’s knowledge, the LLM agent needs to compose trial
programs and interact with the compiler and tests to refine
its attempts. In contrast, methods like chain-of-thought and
self-consistency remain confined to the knowledge already
embedded within the LLM, limiting their adaptability in
dynamically evolving tasks.

Various prior works have explored methods to enhance
LLMs’ ability to refine their responses. One line of re-
search focuses on enabling LLMs to correct their own er-
rors by extracting and utilizing latent knowledge that was
not effectively applied in the initial attempt (Kumar et al.,
2024; Qu et al., 2024), despite the findings from other
works that LLMs is unable to reliably correct their errors
without external information (Kamoi et al., 2024; Huang
et al., 2024). Another line of research introduces exter-
nal feedback mechanisms to guide refinement, leveraging
resources such as compilers, external tools, and verifier
models (Welleck et al., 2022; Havrilla et al., 2024; Chen
et al., 2024a; Shinn et al., 2023). By incorporating exter-
nal feedback, LLMs gain access to new information that
can improve their prior responses. Nonetheless, these ap-
proaches face limitations such as: (1) a restricted feedback
space (e.g., compiler messages in code generation tasks or
output of a fixed set of tools for tool-assisted refinement),
and (2) the absence of joint training processes among LLM
agents and feedback providers, resulting in suboptimal in-
teraction between LLMs and their environments.

Recent progress in multi-agent systems have shown great
promise across various tasks, highlighting new opportuni-
ties for response improvement (Guo et al., 2024b; Mot-

1

Reinforce LLM Reasoning through Multi-Agent Reflection

wani et al., 2024). Instead of treating feedback resources
as fixed, multi-agent systems incorporate different parties
into the training-time optimization process, enabling better
coordination among agents. Building on this foundation,
we propose DPSDP: Direct Policy Search by Dynamic
Programming, an RL algorithm designed to train a multi-
agent LLM system to iteratively improve its responses for
reasoning tasks with self-generated data. DPSDP intro-
duces an actor model that generates and refines responses
over multiple turns, guided by feedback from a critic model
at each turn. This approach enables a broad and flexible
feedback space by utilizing the diverse and dynamic re-
sponses generated by LLM agents. Furthermore, the joint
training process optimizes the collaboration between the
actor and critic, harnessing the strengths of both models
to achieve more effective response refinement.

Contribution Our contributions are three-fold. First, we
introduce DPSDP, an RL algorithm that enables LLMs to
iteratively refine responses with collaboration. We for-
mulate the multi-turn improvement process as a Markov
Decision Process (MDP) and design a direct preference
learning algorithm to teach LLMs from self-generated data.
Furthermore, we theoretically prove that the policy pro-
duced by DPSDP competes with any policy under single-
policy concentrability and bounded in-distribution gener-
alization error. Finally, we demonstrate the effectiveness
of our algorithm by instantiating our method across vari-
ous model families, including Ministral (Mistral AI team,
2024), Llama-3.1 (Grattafiori et al., 2024), and Qwen2.5
(Yang et al., 2024a), and evaluating their performance on
multiple benchmarks. Specifically, by sampling five se-
quential answers on problems from MATH 500, Ministral-
based models improve their first-turn accuracy from 58.2%
to 63.2%, Llama-3.1-based models from 55.8% to 58.4%,
and Qwen2.5-based models from 60.4% to 62.0%. We
also show that our models generalize effectively to out-
of-distribution benchmarks, from grade-school-level prob-
lems to challenging Olympiad-level benchmarks.

Additionally, we explore the factors that contribute to the
strong empirical performance. First, we replicate the train-
ing process on a single LLM agent, and our findings indi-
cate that while training a single LLM to both solve ques-
tions and reflect on them can improve reasoning capabili-
ties, it struggles with more challenging benchmarks, such
as MATH 500 and the Olympiad Bench, highlighting the
benefits of specialized LLM agents. Furthermore, we eval-
uate the models in non-Markovian settings, where agents
have access to the full history of prior refinement iterations.
This setup deviates from the MDP defined by our frame-
work, which assumes states are based only on the most
recent answer. While providing the full conversation his-
tory offers richer context, our results show that this setting

induces greater distribution shift and leads to degraded per-
formance.

2. Problem Setup and Preliminaries
Consider a scenario involving two agents: an actor πa,
which generates answers to questions, and a critic πc,
which provides feedback on the actor’s responses to help
refine them. Let Dprob = {(xi,a

∗
i)}

N
i=1 represent a dataset

of N questions and corresponding ground truth answers,
with x,a∗ ∼ Dprob denoting a question posed by a hu-
man user along with its correct answer. When the actor
receives the question x, it generates an initial response
a0 ∼ πa(· | x). The critic then evaluates this response,
providing feedback a1 ∼ πc(· | [x, a0]) that identifies po-
tential errors or inaccuracies. Using this feedback, the ac-
tor refines its response, generating a2 ∼ πa(· | [x, a0, a1]).
This critique-and-refine process can be repeated multiple
times, enabling the actor to iteratively improve its answers.
The final output is determined by majority voting across all
answers. We illustrate this process in Figure 1.

Cast to a Markov Decision Process (MDP) This multi-
turn conversation can be naturally formulated as a stan-
dard episodic Markov Decision Process (MDP). Let π =
(πa, πc) represent the joint policy governing the iterative
refinement process. The state at turn h, denoted as sh, cap-
tures the conversation history up to that point. The actions
in this MDP correspond to the responses ah generated by
either the actor or the critic at each turn, and the policy
π determines the action taken given the current state, i.e.,
ah ∼ π(· | sh). The new state sh+1 incorporates the new
response ah and full or partial conversation history from
last state. We use a deterministic function δ(sh, ah) to in-
tegrate the new response into the conversation history to
produce the next state: sh+1 = δ(sh, ah). We define the
state space at turn h as Sh and action space asAh. The state
distribution over Sh induced by policy π is represented as
dπh. If the critique-and-refine process is performed L times,
the MDP will have a horizon of H = 2L + 1, comprised
of an initial answer from the actor and following L rounds
of feedback from the critic and refinements by the actor.
The reward function r(s) incentivizes the actor to produce
correct answers. Specifically, a reward is assigned when
the actor’s response matches the ground truth answer a∗,
defined as r(s2i+1) = I[a2i = a∗] for i ∈ {0, 1, · · · , L}.

We also define the value functions Qπ
h(s, a) =

Eπ

[∑H−1
t=h r(st) | sh = s, ah = a

]
and V π

h (s) =

Ea∼π(·|s)
[
Qπ

h(s, a)
]

as the expected undiscounted cumu-
lative returns starting at step h for h ∈ [H]. Specifically,
we define J (π) as the expected return of the entire trajec-
tory and we aim to learn a policy that maximize the number
of correct answers: maxπ J (π) := Es0∼dπ

0
[V π

0 (s)], where

2

Reinforce LLM Reasoning through Multi-Agent Reflection

ActorProblem

Critic

Answer Feedback Answer ...
Turn 1 Turn 2

Feedback ...

Majority
Vote

Figure 1. Inference time. Given a problem x, the actor πa generates an initial response a0. The critic πc then provides feedback a1,
identifying potential errors in a0. The actor iteratively refines its response based on the feedback, continuing this process for L rounds.
Finally, majority voting is applied to all generated answers to determine the final response ã.

dπ0 denotes the distribution over initial states.

Policy Search by Dynamic Programming (PSDP)
PSDP (Bagnell et al., 2003) is a classic reinforcement
learning algorithm designed to optimize undiscounted re-
wards over a fixed horizon. For a non-stationary policy
πNS =

(
π0, π1, . . . , πH−1

)
, where each πh ∈ Π is a sta-

tionary policy deployed at time step h, the PSDP algorithm
shown as in Algorithm 3 iteratively optimizes policies in
reverse order from h = H − 1 to h = 0, selecting πh from
Π at each step to maximize the expected future rewards fol-
lowing the policy sequence (πh, πh+1, . . . , πH−1), starting
with states sampled from a baseline distribution µh. PSDP
provides a theoretical performance guarantee, even when
the maximization step argmaxπ∈Π can be done only ap-
proximately (Bagnell et al., 2003).

3. DPSDP: Direct Policy Search by Dynamic
Programming

In this section, we develop DPSDP, an RL algorithm in-
spired by PSDP, to enable LLMs to generate enhanced an-
swers via collaboration. We first induce an ideal version
of our algorithm, consisting of data collection and Q-value
learning. We then provide a theoretical proof for perfor-
mance guarantees. Lastly, we modify the algorithm to ob-
tain a practical version which accommodates implementa-
tion difficulty and computational efficiency.

3.1. Algorithm Development

We start with a reference policy πref , which represents
LLM agents that are capable of but not specialized in rea-
soning or response refinement.

Motivated by PSDP, we want to maximize the ex-
pected return at each turn following the optimized pol-
icy from the last iteration, i.e., πh(· | sh) =
argmaxa∈Ah

Q
πh+1

h (sh, a). However, accurately solving
this requires a finite action space, which is unrealistic for a
model’s open-ended responses. We alternatively consider a

KL-regularized objective with respect to πref . Specifically,
for each fixed h ∈ {H−1, H−2, · · · , 0}, we aim to obtain
a policy π̂h such that

π̂h = max
π∈∆(Ah)

Esh∼d
πref
h ,ah∼π(·|sh)

[
Q

π̂h+1

h (sh, ah)

− βDKL[π(· | sh)∥πref(· | sh)]
]
.

(1)

Here, DKL denotes the Kullback-Leibler divergence and
parameter β is used to balance the gap to the unregu-
larized objective. Prior works show that there exists a
closed-from solution to this problem: π̂h(a | sh) ∝
πref(a | sh) exp

(
1
βQ

π̂h+1

h (sh, a)
)

, and this objective can
be learned in a direct learning manner (Rafailov et al.,
2023; Rosset et al., 2024).

Particularly, we define the cross-entropy loss as

LCE (π, πref ; ρ,Q)

= E(s,a1,a2)∼ρ

{
HB

(
σ
(
Q(s, a1)−Q(s, a2)

)
,

σ

(
β log

π(a1 | s)
πref(a1 | s)

− β log
π(a2 | s)
πref(a2 | s)

))}
,

(2)

where HB(z, ẑ) := −z log ẑ−(1−z) log(1−ẑ) is the cross
entropy of two Bernoulli distributions. With a dataset Dh

consisting of
(
sh, a

1
h, a

2
h

)
, where sh ∼ dπref

h , aih ∼ πref(· |
sh), i ∈ {1, 2}, we can achieve Eq. (1) via optimizing
minπ LCE

(
π, πref ;U[Dh], Q

π̂h+1

h

)
. In brief, at each step,

DPSDP first samples various responses from πref , then ob-
tains a policy that minimizes the cross-entropy loss Eq. (2)
over the collected pairwise dataset. The reference policy
πref induces the baseline distributions. We formally outline
DPSDP algorithm in Algorithm 1.

3.2. Algorithm Analysis

In this section, we analyze the performance of DPSDP un-
der appropriate assumptions. We first assume that πref pro-
vides fair coverage of the state distribution of the optimal

3

Reinforce LLM Reasoning through Multi-Agent Reflection

Algorithm 1 DPSDP
Input: horizon H , reference policy πref , dataset Dprob, and
Q-value functions Qπ

h(s, a)

for h = H − 1, H − 2, . . . , 0 do
Initialize Dh ← ∅.
for (x,a∗) ∈ Dprob do

Sample m pairs
{(

sh, a
1
h, a

2
h

)}
m

, where
sh ∼ dπref

h (· | s0 = x), a1h ∼ πref(· | sh), a2h ∼
πref(· | sh).
Collect the pair: Dh ← Dh ∪

{(
sh, a

1
h, a

2
h

)}
m

.
end for
Let π̂h ← minπ LCE

(
π, πref ;U[Dh], Q

π̂h+1

h

)
where LCE is defined as Eq. (2).

end for
Let the final policy be π̂ = π̂0.

Ourput: DPSDP policy π̂

policy π⋆ and generates more diverse responses than other
policies, as formalized in Assumption 1.

Assumption 1 (Coverage). We assume the concentrabil-
ity coefficients with respect to space distribution and ac-
tion space defined below are bounded, i.e., C⋆

S < +∞ and
CA < +∞.

C⋆
S := max

h,sh

dπ
⋆

h (sh)

dπref

h (sh)
, CA := max

π∈Π
max
h,sh

π(ah | sh)
πref(ah | sh)

.

This ensures the training data generated from πref is suf-
ficiently exploratory, providing an opportunity for DPSDP
to learn the optimal actions.

Additionally, we assume that Algorithm 1 maintains a
bounded in-distribution generalization error, as stated in
Assumption 2.
Assumption 2 (In-distribution reward learning). We as-
sume the policy π̂ obtained with Algorithm 1 satisfies that
for any h ∈ {0, 1, 2, · · · , H − 1},

Esh∼d
πref
h

,ah∼πref (·|sh),a′
h
∼πref (·|sh)

[(
β log

π̂(ah | sh)
πref(ah | sh)

−

β log
π̂(a′

h | sh)
πref(a′

h | sh)
−Qπ̂

h(sh, ah) +Qπ̂
h(sh, a

′
h)

)2
]
≤ εstat.

By Lemme C.5 of Xie et al. (2024), we can immediately in-
fer that εstat is small with high probability for large dataset.

Under these assumptions, we establish the following per-
formance guarantees for DPSDP.

Theorem 1. Under Assumptions 1 and 2, if we choose β =

O

(√
C⋆

SCAεstat

logCA

)
, then DPSDP policy π̂ satisfies J (π⋆)−

J (π̂) = O
(
H
√

C⋆
SCAεstat

)
.

The policy produced by DPSDP theoretically competes
with any policy under single-policy concentrability and
bounded in-distribution generalization error. We defer the
proof of Theorem 1 to Appendix C.

3.3. Practical Algorithm

While Algorithm 1 achieves a theoretical performance
guarantee, we also aim for a practical and efficient imple-
mentation. Achieving this requires carefully refining sev-
eral key aspects.

Reduced Context and Horizon Generalization Previ-
ous works that model multi-turn conversations as MDPs
maintain the full conversation history at each state, i.e.,
they define δ(sh, ah) = concat[sh, ah] (Qu et al., 2024;
Xiong et al., 2024). However, in iterative refinement tasks,
the most recent answer and its feedback are more crucial
than earlier responses, as the actor no longer needs to ad-
dress errors that have already been corrected in previous
iterations. Based on this heuristic, we design πa to re-
fine its previous answer while observing only its most re-
cent response and the corresponding feedback. Likewise,
the critic provides feedback exclusively based on the lat-
est answer. Formally, function δ is defined as δ(sh, ah) :=
[x, ah] if h is even, else concat[sh, ah].

This design simplification not only reduces the model’s
context length requirements but also enables generaliza-
tion to longer test-time horizons than train-time horizon.
Intuitively, if the actor and critic are trained to effectively
improve diverse initial answers, the two-agent system can
iteratively refine an answer multiple times, even if it was
only trained for a single refinement step. Since the ac-
tor and critic only observe the last answer, future refine-
ment iterations are not affected by test-time horizon shift.
Therefore, our practical version of DPSDP involves only
one refinement step at train-time, resulting in a compact
MDP with horizon H = 3. Our evaluation results in Sec-
tion 4.3 demonstrate that DPSDP policies are effective to
improve answer over turns regardless of the horizon dif-
ference, while the reduction in horizon enables easy and
efficient implementation.

Estimation of Q-Values Algorithm 1 assumes access to
the Q-value function Q

π̂h+1

h (sh, ah), which is impracti-
cal. In practice, we approximate the Q-value by rolling
out the policy and evaluating the correctness of its an-
swers. Particularly, for the refined answer a2, its unbi-
ased estimated Q-value is naturally given by its own cor-
rectness, Q̃π̂3

2 (s2, a2) = r(s3). For the feedback a1, we
use the reference policy πref as an approximation of π̂2

to generate a refined answer a′2 based on a1, and esti-
mate the expected return using the correctness of a′2, i.e.,

4

Reinforce LLM Reasoning through Multi-Agent Reflection

Answer

Answer ✔

Answer ✖

...

Feedback

Feedback ✖

Feedback ✔

...

Answer

Answer ✖

Answer ✔

...
DPSDP Data Creation
DPSDP Training

DPO DPO

Problem
ACTOR CRITIC ACTOR

ACTOR ACTOR CRITIC CRITIC

Figure 2. Model training. DPSDP first samples a complete trajectory τ = (x, a0, a1, a2) from the reference policy πref . At each state
along this trajectory, it generates n responses to explore possible answers and feedback. Q-values of these n candidate responses are
then estimated as in Section 3.3 and a pairwise preference dataset is extracted for subsequent DPO training on both the actor and critic.

Q̃π̂2
1 (s1, a1) = Ea′

2∼πref(·|s2)[r(δ(s2, a
′
2))]. Since we fo-

cus on KL-regularized target in Eq. (1), πref is a proper
approximation of π̂2, and our results in Appendix E.3
also supports our approach. For the first-turn answer a0,
we estimate Qπ̂1

0 (s0, a0) based on its correctness, i.e.,
Q̃π̂1

0 (s0, a0) ∝ r(s1) = I[a0 = a∗]. This approach
is motivated by three key considerations: (1) in an ideal
scenario where the policy from the last iteration is op-
timal for all actions after h = 0, i.e., π̂1 = π⋆, then
Qπ̂1

0 (s0, a0) = Qπ⋆

0 (s0, a0) = r(s1) +
H−1
2 , which dif-

fers from r(s1) by only a constant shift. (2) we want to
encourage correct first-turn answers, as they serve as the
foundation for subsequent refinements. (3) empirical re-
sults indicate that only a small fraction of first-turn answers
change correctness in later turns relative to the total num-
ber of problems. This suggests a strong positive correlation
between r(s1) and Qπ̂1

0 (s0, a0). We analyze the impact of
Q-value estimation on the performance guarantee in Ap-
pendix C.3.

Remarkably, all estimated Q-values can be obtained by
rolling out πref , which effectively eliminates the loop-
carried dependencies across different h in Algorithm 1.
This allows us to consolidate all pairwise datasets into a
single dataset, DH =

⋃H−1
i=0 Dh, and perform a single op-

timization step.

Reduction of Cross-Entropy Loss to DPO Loss In
practice, experiments typically use β ≈ 0.1, which may
be significantly larger than the value suggested by The-
orem 1: According to Lemma C.5 of Xie et al. (2024),
εstat is of order O(1/n), where n is the number of sam-
ples used to solve the objective, indicating that β should
be small. However, it is important to note that the ob-
jective in Eq. (1) remains unchanged if both the Q-values

and β are scaled by the same factor. Motivated by this,
we amplify the estimated Q-values from their original val-
ues, which are either 0 or a positive constant. For each pair
(sh, a

1
h, a

2
h) in Algorithm 1 where the estimated Q-values

differ, we relabel the actions as
{
a+h , a

−
h

}
=

{
a1h, a

2
h

}
such

that Q̃π̂h+1

h (sh, a
+
h) > 0 and Q̃

π̂h+1

h (sh, a
−
h) = 0. We in-

crease Q̃
π̂h+1

h (sh, a
+
h) to a sufficiently large positive value

while leaving Q̃
π̂h+1

h (sh, a
−
h) unchanged. By substituting

the amplified Q-values into Eq. (2) and leveraging the fact
that σ(+∞) = 1, we find that Eq. (2) can be effectively
estimated with a DPO loss:

LDPO(π, πref ;D) = −E
(sh,a+

h
,a−

h
)∼D

[
log σ

(
β log

π(a+
h | sh)

πref(a
+
h | sh)

− β log
π(a−

h | sh)
πref(a

−
h | sh)

)]
.

(3)

This significantly simplifies the implementation of DPSDP
without compromising performance.

Furthermore, we sample a complete trajectory τ =
(s0, a0, a1, . . . , aH−1) from πref for each problem x and
use the resulting states sh as an alternative to directly sam-
pling from dπref

h . The practical implementation of DPSDP
is presented in Algorithm 2 and illustrated in Figure 2.

3.4. Preliminary Training

We find a direct adoption of DPSDP on off-the-shelf mod-
els leads to inferior improvement, as the base models strug-
gle to reflect on prior responses or refine their answers
based on feedback. Aligned with prior works (Qu et al.,
2024; Xiong et al., 2024), we observe it is beneficial to su-
pervised fine-tuning base models on feedback and refined
answers generated by a capable model as a preliminary

5

Reinforce LLM Reasoning through Multi-Agent Reflection

Algorithm 2 Practical DPSDP
Input: reference policy πref = (πrefa, πrefc), β, dataset
Dprob, and number of samplings n

Let H = 3.
for (x,a∗) ∈ Dprob do

Sample a trajectory τ ∼ πref with s0 = x, τ =
(s0, a0, a1, a2).
for h = 0, 1, . . . ,H − 1 do

Sample n responses aih ∼ πref(· | sh), where i =

1, · · · , n, and estimate their Q-values Q̃π̂
h

(
sh, a

i
h

)
as described in Section 3.3.
Extract m pairs (a+h , a

−
h) from

{
aih

}n

i=1
where

Q̃π̂
h

(
sh, a

+
h

)
> Q̃π̂

h

(
sh, a

−
h

)
, collected as Dh.

end for
end for
Let π̂ = (π̂a, π̂c) be

π̂a ← min
π
LDPO(π, πrefa;D0 ∪ D2)

π̂c ← min
π
LDPO(π, πrefc;D1)

where LDPO is defined as Eq. (3).
Ourput: DPSDP policy π̂

training phase before DPSDP. This phase enables the ac-
tor to better utilize feedback for refinement and equips the
critic to provide more insightful reflections. We defer train-
ing details of this phase to Appendix D.1.

4. Experimental Evaluation
4.1. Experiment Setup

Tasks and Datasets We focus on mathematical problem-
solving tasks, evaluating our approach on MATH 500
(Hendrycks et al., 2021b) and GSM8K (Cobbe et al.,
2021) benchmarks. In general, MATH 500 is more
challenging than GSM8K. We use problems from the
OpenMathInstruct-2 (Toshniwal et al., 2025) for train-
ing, which are sourced or augmented from MATH and
GSM8K—the same datasets used for benchmarking. To
assess generalizability of our models to out-of-distribution
problems, we evaluate on two additional benchmarks:
MMLU-Pro Math (Wang et al., 2024b) and Olympiad
Bench (He et al., 2024). Among them, the Olympiad
Bench is the most challenging benchmark, featuring
Olympiad-level scientific questions.

Baselines We compare our algorithm against methods
adapted to enhance LLM-generated responses: (1) STaR
(Zelikman et al., 2022) fine-tunes the models on self-gener-
ated correct answers. Specifically, for each problem in the
training set, STaR samples multiple complete answer-feed-

back-refinement trajectories and fine-tunes the actor and
critic using only trajectories that produce correct final an-
swers. During SFT, messages from the other LLM agent
are masked: the actor’s loss is computed solely from an-
swers, while the critic’s loss is based only on feedback.
(2) STaR-DPO follows the same data collection strategy
as STaR but incorporates both correct and incorrect answer
trajectories. It applies DPO to train the actor and critic us-
ing a pairwise preference dataset derived from self-gener-
ated trajectories. Same as STaR, loss computation is re-
stricted to the messages of the individual LLM agent, with
messages from other agents masked. (3) Oracle-RISE
(Qu et al., 2024) samples multiple sequent answers under
the assumption of access to an oracle model that provides
ground-truth feedback on the actor’s previous response. At
each refinement iteration, the actor is informed of the cor-
rectness of its last answer and then generates a new at-
tempt. Our implementation of Oracle-RISE retrains base
models starting from the preliminary training stage using
binary feedback, followed by RL training. All baselines
are trained on the same problem set as their DPSDP coun-
terparts to ensure a fair comparison.

Implementation We conduct experiments using
Ministral-8B-Instruct-2410, Llama-3.1-8B-Instruct, and
Qwen2.5-3B as base models. We adopt a subset of
OpenMathInstruct-2 as the problem set. For each state, we
sample n = 8 additional answers or feedback using a tem-
perature of 1.0. We construct at most one chosen-rejected
pair from these 8 candidate outputs using the estimated Q-
values described in Section 3.3, and apply DPO loss with
the collected dataset to train the actor and critic separately.
Beyond a generative critic that provides verbal feedback,
we also implement a value-based critic, referred to as
non-gen critic πNG, which gives only binary correctness
feedback. Under this setting, the critic is trained using
cross-entropy loss, while the actor is fine-tuned to refine
its answers based on binary feedback. More details of our
implementation can be found in Appendix D.

4.2. Main Results

We evaluate our methods and present the main results in
Table 1, and a more comprehensive set of results is pro-
vided in Appendix E. Following Qu et al. (2024), we use
three key metrics:

• pass1@turn1 (p1@t1) measures the accuracy of the
actor’s initial response without any reflection or re-
finement.

• maj1@turn5 (m1@t5) computes the accuracy of the
majority voting answer over five generated answers:
the initial response followed by four refinements from
the actor with feedback from critic. To mitigate the
inherent randomness of LLM evaluations, unless oth-

6

Reinforce LLM Reasoning through Multi-Agent Reflection

Approach ID OOD

MATH 500 GSM8K MMLU-Pro Math Olympiad Bench

p1@t1 m1@t5 p1@t5 p1@t1 m1@t5 p1@t5 p1@t1 m1@t5 p1@t5 p1@t1 m1@t5 p1@t5

Ministral-8B-It 55.8 53.4 58.4 83.4 81.9 84.7 52.1 50.6 55.7 22.8 22.7 24.8
+SFT 55.4 57.2 68.0 82.3 82.3 88.2 50.4 49.7 62.2 22.1 23.4 30.7
+DPSDP (ours) 58.2 63.2 70.0 87.8 89.1 92.7 53.1 54.2 64.3 25.8 27.0 32.9

Non-Gen Critic
+SFT 57.0 59.0 62.0 84.5 85.1 86.2 50.6 51.7 54.4 24.2 24.8 27.2
+DPSDP 59.2 62.0 64.2 88.9 90.4 91.0 52.8 53.3 57.8 25.8 26.6 30.0

Single-Agent 57.0 59.6 63.8 89.9 90.4 91.2 54.0 54.9 58.0 23.6 26.3 28.2
Non-Markovian 58.2 62.6 67.8 87.8 88.9 91.3 53.1 52.8 59.7 25.8 26.4 29.5

Llama-3.1-8B-It 49.2 43.2 60.2 83.4 67.0 88.5 50.1 41.7 62.0 18.1 14.8 26.6
+SFT 51.4 53.4 56.8 83.3 78.9 86.6 55.7 56.1 61.4 20.5 22.3 24.6
+DPSDP (ours) 55.8 58.4 62.0 87.5 88.4 91.2 56.6 58.0 62.1 22.4 23.0 25.1

Non-Gen Critic
+SFT 53.2 54.2 57.4 84.2 85.1 87.1 55.4 55.8 60.0 20.5 21.7 23.3
+DPSDP 56.0 56.2 60.2 88.6 89.8 91.2 56.9 56.5 62.1 20.2 20.6 23.1

Single-Agent 53.4 54.8 58.0 87.9 87.6 90.4 56.1 57.3 62.0 23.0 21.5 25.1
Non-Markovian 55.8 57.2 61.2 87.5 88.2 91.0 56.6 57.0 60.5 22.4 22.6 24.6

Qwen2.5-3B 57.6 48.0 58.6 78.6 75.2 79.4 47.4 41.2 48.4 24.0 22.0 24.5
+SFT 60.0 60.4 64.6 79.1 77.7 81.5 50.9 51.4 56.0 23.9 24.8 26.4
+DPSDP (ours) 60.4 62.0 65.2 79.9 79.9 84.2 52.6 53.2 57.1 24.0 24.0 26.0

STaR
Ministral-8B-It 54.6 55.0 64.6 84.9 85.7 89.9 47.2 47.0 58.6 21.5 22.7 29.4
Llama-3.1-8B-It 50.8 52.2 56.8 83.6 81.3 87.5 53.8 54.6 58.5 20.5 20.3 22.4
Qwen2.5-3B 59.0 59.6 64.8 80.3 79.5 83.7 51.9 51.8 56.8 23.3 22.6 24.8

STaR-DPO
Ministral-8B-It 56.6 58.8 67.8 87.6 89.5 92.7 51.6 52.6 63.2 25.2 26.4 31.8
Llama-3.1-8B-It 54.2 55.6 59.2 87.5 87.4 90.3 54.8 55.0 60.3 20.9 21.5 24.3
Qwen2.5-3B 60.4 60.2 64.8 79.4 78.9 82.6 51.2 52.3 55.9 23.1 22.8 28.9

Oracle-RISE
Ministral-8B-It 59.2 65.4 65.8 88.9 92.6 92.9 52.8 61.3 62.4 25.8 30.6 30.9

Table 1. Performance comparison of various approaches. DPSDP effectively improves reasoning performance from supervised fine-
tuned models and enables agents to achieve higher accuracies by generating more answers. The highest accuracies achieved by the same
base models (excluding Oracle-RISE, which has access to the ground-truth answers) under each metric are underlined.

erwise specified, questions with no more than two cor-
rect responses are considered incorrect.

• pass1@turn5 (p1@t5) is also based on five generated
answers but considers a problem solved if at least one
answer is correct. This metric is particularly valuable
in settings where an oracle or reward model is avail-
able to verify correctness.

The effectiveness of our algorithm is demonstrated in Ta-
ble 1. For instance, DPSDP improves the five-turn majority
voting accuracy of the Ministral-based model from 57.2%
to 63.2% on MATH 500 and from 82.3% to 89.1% on
GSM8K compared to the models after preliminary training

phase. By rolling out five answers, DPSDP policy enables
the actor to increase the correctness of its first answer by
5.0% on MATH 500 and 1.3% on GSM8K. In contrast, su-
pervised fine-tuned models achieve only a 1.8% improve-
ment on MATH 500 and show no gain on GSM8K.

Comparison with Baselines We implement the STaR
and STaR-DPO baselines using the supervised fine-tuned
models obtained during the DPSDP training pipeline. In-
terestingly, STaR, which does not incorporate incorrect fi-
nal answers during training, leads to a negligible improve-
ment with five refinement iterations. STaR-DPO achieves
near-saturated performance on GSM8K but offers only a

7

Reinforce LLM Reasoning through Multi-Agent Reflection

modest accuracy gain over the first-turn answer on the
more challenging MATH 500 benchmark (e.g., 2.2% for
Ministral-based models). The contrast between STaR and
STaR-DPO highlights the importance of incorporating neg-
ative data during training, which helps prevent response
degradation in subsequent attempts. While STaR-DPO
demonstrates the potential for iterative answer refinement,
its lack of the restarting mechanism used in DPSDP lim-
its train-time exploration. On Ministral-based models, this
results in a five-turn accuracy of 58.8%, which is notably
lower than the 63.2% achieved by DPSDP. This gap is also
evident in Llama- and Qwen-based models. We further in-
stantiate Oracle-RISE using Ministral base models. Our
results show that DPSDP models achieve maj@t5 accu-
racies approaching those of Oracle-RISE on challenging
benchmarks such as MATH 500 and Olympiad Bench, de-
spite Oracle-RISE having access to ground-truth feedback.
Notably, our models consistently outperform Oracle-RISE
on pass@t5, suggesting that the actor—guided by critic
feedback—explores the solution space more actively in-
stead of relying solely on initial responses.

Comparison with Self-Consistency Wang et al. (2022)
highlight the effectiveness of majority voting over multi-
ple sampled responses. A potential concern is that the im-
provement in maj1@t5 may stem from sampling multiple
answers rather than the cooperative refinement of multi-
agent interactions. To investigate this, we evaluate the ac-
tors on maj5@t1 (m5@t1), which measures the accuracy of
majority voting over five independently sampled first-turn
answers. As shown in Table 2, the results confirm that the
performance gains primarily come from the models’ abil-
ity to identify and correct errors from previous responses
rather than from majority voting alone—particularly on
challenging benchmarks like MATH 500.

DPSDP MATH 500 GSM8K

p1@t1 m1@t5 m5@t1 p1@t1 m1@t5 m5@t1

Ministral 58.2 63.2 59.2 87.8 89.1 88.9

Llama-3.1 55.8 58.4 55.2 87.5 88.4 88.2

Table 2. Comparison between m1@t5 and m5@t1. The perfor-
mance gains stem mainly from the model’s ability to identify and
correct errors, rather than relying solely on majority voting.

Generalization to Out-of-Distribution (OOD) Problems
Since DPSDP is trained exclusively on problems from
OpenMathInstruct-2—an augmented collection of MATH
and GSM8K problems—a key question is whether it can
generalize to unseen benchmarks. To assess this, we
evaluate our models on MMLU-Pro Math and Olympiad
Bench. The results show, even on challenging Olympiad-

level problems, Ministral-base models improve their first-
turn answers over five attempts by 1.2%, demonstrating
that they have internalized the ability to iteratively refine
responses rather than merely memorizing in-distribution
data. STaR-DPO also exhibits some generalization to OOD
benchmarks, but its limited training-time exploration re-
sults in suboptimal performance compared to DPSDP.

Generative Critic vs. Non-Generative Critic In addi-
tion to using a generative LLM as the critic, we also exper-
imented with a value-based reward model, where a value
head is applied over the transformer’s outputs to serve as
the critic. We denote this non-generative critic as πNG

c .
Given a problem x with a ground truth answer a∗ and an
actor-generated answer ah, the non-generative critic pro-
duces a probability estimate ph+1 ∼ πNG

c (· | [x, ah])
between 0 and 1, approximating the probability that ah
matches a∗. If ph+1 > 0.5, the critic provides feedback
ah+1 affirming the previous answer; otherwise, it warns
the actor that the response may contain an error. Unlike the
generative critic, πNG

c does not provide detailed feedback
beyond correctness estimation. To evaluate the effective-
ness of πNG

c , we train the critic alongside a corresponding
actor πNG

a , which is specialized in processing binary feed-
back, forming the system πNG =

(
πNG
a , πNG

c

)
. Our results

show that DPSDP can be effectively applied in scenarios
where only binary feedback is available, exemplified by the
five turn accuracy improvement in Table 1. It performs par-
ticularly well on elementary problems like GSM8K, even
surpassing the generative critic in this setting. We sus-
pect this is due to the over-thinking phenomenon, where
the generative critic tends to overanalyze less challenging
problems, leading to performance degradation over addi-
tional turns, as observed in prior works (Chen et al., 2024a;
Shridhar et al., 2024). We also provide qualitative analysis
supporting this hypothesis in Appendix E.4. However, the
limited feedback space of non-generative critic constrains
its ability to achieve the same level of refinement as the
generative version on more challenging benchmark MATH
500 and OOD benchmarks. Notably, πNG consistently un-
derperforms the generative critic in pass1@turn5, suggest-
ing that it fails to sufficiently explore the solution space at
inference time and makes less modifications to its previous
answers.

4.3. Ablation Study and Discussion

Single-Agent vs. Multi-Agent We also explore whether
utilizing multiple LLM agents with specialized roles con-
tributes to the performance advantage. To investigate this,
we replicate the training process on a single base model and
report the evaluation results in Table 1. Our findings indi-
cate that DPSDP effectively enhances performance across
most benchmarks even with a single agent, enabling it to

8

Reinforce LLM Reasoning through Multi-Agent Reflection

both solve problems and reflect on its responses. For in-
stance, the Ministral-based single-agent policy improves its
first-turn accuracy from 57.0% to a majority voting accu-
racy of 59.6% on MATH 500. However, the single-agent
approach underperforms compared to multi-agent policies
on more challenging benchmarks such as MATH 500 and
Olympiad Bench. Interestingly, we find that the single-
agent framework has a slight advantage over the multi-
agent approach on benchmarks containing grade-school-
level problems, such as GSM8K and MMLU-Pro Math.
This suggests a potential performance boost through posi-
tive transfer between the two related tasks of answer gener-
ation and feedback provision. For example, the actor may
internalize reflection skills and preemptively avoid errors
in its initial response, while the critic could enhance its
feedback by learning from the answer-generation process.
These observations align with prior research showing that
integrating both tasks into the training objective can be ben-
eficial (Zhang et al., 2024a; Yang et al., 2024b). We view
this as a promising avenue for future research.

Markovian vs. Non-Markovian As discussed in Sec-
tion 3.3, we define the states to incorporate only the most
recent answer with the heuristic assumption that the last
answer has a more profound impact on future refinements,
which corresponds to the Markovian setting. The main ad-
vantage of this design choice is that our models are less
affected by distribution shift, and the policy produced by
DPSDP can be used to refine answers arbitrarily many
times without the constraint of training-time horizon. To
support our argument, we reevaluate the models with each
agent having full access to previous messages, which vi-
olates the defined MDP and which we denote as the non-
Markovian setting. Results in Table 1 show that, under non-
Markovian scenarios, the policy can still improve its first-
turn answer through iterative refinement. However, de-
spite having more information available, agents suffer from
test-time distribution shift and underperform compared to
agents seeing only the last answer. One intuitive reason
why the non-Markovian setting underperforms is that in
Assumption 1, C⋆

S represents trajectory-level distribution
shift in the non-Markovian setting. While if the Markov
assumption holds, Markovian setting has state-level distri-
bution shift for C⋆

S under our defined state, which is always
strictly smaller than the trajectory-level shift.

Restart vs. Non-Restart Data Collection The data col-
lection process in Algorithm 2 follows a restart-style ap-
proach: we sample a complete trajectory to estimate sh ∼
dπref

h and generate multiple responses from this state. We ar-
gue that this strategy enhances action space exploration by
enabling more diverse responses from each sampled state
sh. To test this hypothesis, we modify the data collec-
tion method to a trajectory-level approach, where for each

problem x, we sample n full trajectories τ ∼ πref(· | x)
and construct the DPO dataset accordingly. As shown in
Table 3, our results indicate that incorporating the restart
mechanism generally have a comparable or more substan-
tial improvement performance across multiple answering
attempts, supporting the idea that restart-style data collec-
tion facilitates better exploration.

Approach MATH 500 GSM8K

p1@t1 m1@t5 p1@t5 p1@t1 m1@t5 p1@t5

Ministral
w/o restart 56.6 61.6 68.0 88.9 89.5 92.9
w/ restart 58.2 63.2 70.0 87.8 89.1 92.7

Llama-3.1
w/o restart 56.2 57.6 61.4 87.9 88.3 90.1
w/ restart 55.8 58.4 62.0 87.5 88.4 91.2

Table 3. Comparison of data collection with and without restart.

Additional Analyses and Insights In addition to our
main findings, we provide extensive analyses in Ap-
pendix E to further validate the effectiveness of our ap-
proach. We examine how performance evolves as the num-
ber of refinement iterations increases, scaling up to 10 itera-
tions, and analyze the corresponding transitions in response
correctness. We also ablate the preliminary training phase
to demonstrate its necessity prior to reinforcement learning.
Furthermore, we empirically validate the Q-value estima-
tion methods described in Section 3.3. A comprehensive
qualitative analysis, including common failure patterns, is
also presented. These results offer deeper insights into
the mechanisms behind the observed performance gains
and highlight the key design choices that contribute to our
method’s success.

5. Conclusion and Future Research Direction
We introduce DPSDP, a practical RL algorithm for multi-
agent iterative solution refinement. Our algorithm offers
both strong theoretical performance guarantees and sub-
stantial empirical improvements.

A promising direction for future research is developing an
online or iterative algorithm that adapts to changes in state
distribution during training, analogous to prior work on on-
line/iterative DPO (Guo et al., 2024a; Dong et al., 2024).
Furthermore, it is possible to explore a mixed generation
objective for agents for transfer learning, as detailed in Sec-
tion 4.3.

9

Reinforce LLM Reasoning through Multi-Agent Reflection

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan, Ash-

win Kalyan, Peter Clark, Derry Wijaya, and Niket
Tandon. Rl4f: Generating natural language feedback
with reinforcement learning for repairing model outputs,
2023. URL https://arxiv.org/abs/2305.0
8844.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot,
Daniel Guo, Daniele Calandriello, Michal Valko, and
Rémi Munos. A general theoretical paradigm to un-
derstand learning from human preferences, 2023. URL
https://arxiv.org/abs/2310.12036.

J. Bagnell, Sham M Kakade, Jeff Schneider, and An-
drew Ng. Policy search by dynamic programming. In
S. Thrun, L. Saul, and B. Schölkopf, editors, Advances
in Neural Information Processing Systems, volume 16.
MIT Press, 2003. URL https://proceedings.
neurips.cc/paper_files/paper/2003/fi
le/3837a451cd0abc5ce4069304c5442c87-P
aper.pdf.

Eugene Charniak and Mark Johnson. Coarse-to-fine n-best
parsing and MaxEnt discriminative reranking. In Kevin
Knight, Hwee Tou Ng, and Kemal Oflazer, editors, Pro-
ceedings of the 43rd Annual Meeting of the Association
for Computational Linguistics (ACL‘05), pages 173–
180, Ann Arbor, Michigan, June 2005. Association for
Computational Linguistics. doi: 10.3115/1219840.1219
862. URL https://aclanthology.org/P05-1
022/.

Justin Chih-Yao Chen, Archiki Prasad, Swarnadeep Saha,
Elias Stengel-Eskin, and Mohit Bansal. Magicore:
Multi-agent, iterative, coarse-to-fine refinement for rea-
soning. arXiv preprint arXiv:2409.12147, 2024a.

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan,
Xueguang Ma, Jianyu Xu, Xinyi Wang, and Tony
Xia. TheoremQA: A theorem-driven question answer-
ing dataset. In Houda Bouamor, Juan Pino, and Ka-
lika Bali, editors, Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing,
pages 7889–7901, Singapore, December 2023. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/
2023.emnlp-main.489. URL https://aclantholo
gy.org/2023.emnlp-main.489/.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and
Quanquan Gu. Self-play fine-tuning converts weak lan-
guage models to strong language models, 2024b. URL
https://arxiv.org/abs/2401.01335.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vin-
cent Zhuang, Bo Dai, Sridhar Thiagarajan, Craig
Boutilier, Rishabh Agarwal, Aviral Kumar, and Alek-
sandra Faust. Inference-aware fine-tuning for best-of-
n sampling in large language models. arXiv preprint
arXiv:2412.15287, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong,
Saining Xie, Dale Schuurmans, Quoc V Le, Sergey
Levine, and Yi Ma. Sft memorizes, rl generalizes: A
comparative study of foundation model post-training.
arXiv preprint arXiv:2501.17161, 2025.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark
Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plap-
pert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
Christopher Hesse, and John Schulman. Training ver-
ifiers to solve math word problems. arXiv preprint
arXiv:2110.14168, 2021.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang,
Han Zhao, Yingbo Zhou, Nan Jiang, Doyen Sahoo,
Caiming Xiong, and Tong Zhang. Rlhf workflow:
From reward modeling to online rlhf. arXiv preprint
arXiv:2405.07863, 2024.

Silin Du and Xiaowei Zhang. Helmsman of the masses?
evaluate the opinion leadership of large language models
in the werewolf game, 2024. URL https://arxiv.
org/abs/2404.01602.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenen-
baum, and Igor Mordatch. Improving factuality and rea-
soning in language models through multiagent debate,
2023. URL https://arxiv.org/abs/2305.1
4325.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan
Jurafsky, and Douwe Kiela. Kto: Model alignment as
prospect theoretic optimization, 2024. URL https:
//arxiv.org/abs/2402.01306.

Shanghua Gao, Ada Fang, Yepeng Huang, Valentina
Giunchiglia, Ayush Noori, Jonathan Richard Schwarz,
Yasha Ektefaie, Jovana Kondic, and Marinka Zitnik.
Empowering biomedical discovery with ai agents. Cell,
187(22):6125–6151, 2024a.

Zhaolin Gao, Jonathan D. Chang, Wenhao Zhan, Owen
Oertell, Gokul Swamy, Kianté Brantley, Thorsten
Joachims, J. Andrew Bagnell, Jason D. Lee, and Wen

10

https://arxiv.org/abs/2305.08844
https://arxiv.org/abs/2305.08844
https://arxiv.org/abs/2310.12036
https://proceedings.neurips.cc/paper_files/paper/2003/file/3837a451cd0abc5ce4069304c5442c87-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/3837a451cd0abc5ce4069304c5442c87-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/3837a451cd0abc5ce4069304c5442c87-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2003/file/3837a451cd0abc5ce4069304c5442c87-Paper.pdf
https://aclanthology.org/P05-1022/
https://aclanthology.org/P05-1022/
https://aclanthology.org/2023.emnlp-main.489/
https://aclanthology.org/2023.emnlp-main.489/
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2404.01602
https://arxiv.org/abs/2404.01602
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2402.01306
https://arxiv.org/abs/2402.01306

Reinforce LLM Reasoning through Multi-Agent Reflection

Sun. Rebel: Reinforcement learning via regressing rel-
ative rewards, 2024b. URL https://arxiv.org/
abs/2404.16767.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yu-
jiu Yang, Nan Duan, and Weizhu Chen. Critic: Large
language models can self-correct with tool-interactive
critiquing, 2024. URL https://arxiv.org/ab
s/2305.11738.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex
Vaughan, et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu,
Misha Khalman, Felipe Llinares, Alexandre Rame,
Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret,
and Mathieu Blondel. Direct language model align-
ment from online ai feedback, 2024a. URL https:
//arxiv.org/abs/2402.04792.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang,
Shichao Pei, Nitesh V. Chawla, Olaf Wiest, and Xi-
angliang Zhang. Large language model based multi-
agents: A survey of progress and challenges, 2024b.
URL https://arxiv.org/abs/2402.01680.

Tiankai Hang, Shuyang Gu, Dong Chen, Xin Geng, and
Baining Guo. Cca: Collaborative competitive agents for
image editing, 2024. URL https://arxiv.org/
abs/2401.13011.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis,
Jane Dwivedi-Yu, Maksym Zhuravinskyi, Eric Hambro,
and Roberta Raileanu. Glore: When, where, and how to
improve llm reasoning via global and local refinements,
2024. URL https://arxiv.org/abs/2402.1
0963.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. Olympiadbench: A challenging
benchmark for promoting agi with olympiad-level bilin-
gual multimodal scientific problems, 2024.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding.
Proceedings of the International Conference on Learn-
ing Representations (ICLR), 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. Measuring mathematical problem solv-
ing with the math dataset. NeurIPS, 2021b.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Mono-
lithic preference optimization without reference model.
arXiv preprint arXiv:2403.07691, 2024a.

Sirui Hong, Mingchen Zhuge, Jiaqi Chen, Xiawu Zheng,
Yuheng Cheng, Ceyao Zhang, Jinlin Wang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu
Ran, Lingfeng Xiao, Chenglin Wu, and Jürgen Schmid-
huber. Metagpt: Meta programming for a multi-agent
collaborative framework, 2024b. URL https://ar
xiv.org/abs/2308.00352.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven
Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou.
Large language models cannot self-correct reasoning
yet, 2024. URL https://arxiv.org/abs/23
10.01798.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan,
Tianjun Zhang, Sida Wang, Armando Solar-Lezama,
Koushik Sen, and Ion Stoica. Livecodebench: Holis-
tic and contamination free evaluation of large language
models for code, 2024. URL https://arxiv.org/
abs/2403.07974.

Bowen Jiang, Yangxinyu Xie, Xiaomeng Wang, Weijie J
Su, Camillo Jose Taylor, and Tanwi Mallick. Multi-
modal and multi-agent systems meet rationality: A sur-
vey. In ICML 2024 Workshop on LLMs and Cognition,
2024. URL https://openreview.net/forum
?id=9Rtm2gAVjo.

Edward Junprung. Exploring the intersection of large lan-
guage models and agent-based modeling via prompt en-
gineering, 2023. URL https://arxiv.org/abs/
2308.07411.

Sham M. Kakade and John Langford. Approximately op-
timal approximate reinforcement learning. In Interna-
tional Conference on Machine Learning, 2002. URL
https://api.semanticscholar.org/Corp
usID:31442909.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and
Rui Zhang. When can llms actually correct their own
mistakes? a critical survey of self-correction of llms.
Transactions of the Association for Computational Lin-
guistics, 12:1417–1440, 2024.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Lan-
guage models can solve computer tasks, 2023. URL
https://arxiv.org/abs/2303.17491.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su,
John D Co-Reyes, Avi Singh, Kate Baumli, Shariq Iqbal,
Colton Bishop, Rebecca Roelofs, et al. Training lan-
guage models to self-correct via reinforcement learning.
arXiv preprint arXiv:2409.12917, 2024.

11

https://arxiv.org/abs/2404.16767
https://arxiv.org/abs/2404.16767
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2305.11738
https://arxiv.org/abs/2402.04792
https://arxiv.org/abs/2402.04792
https://arxiv.org/abs/2402.01680
https://arxiv.org/abs/2401.13011
https://arxiv.org/abs/2401.13011
https://arxiv.org/abs/2402.10963
https://arxiv.org/abs/2402.10963
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2310.01798
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://openreview.net/forum?id=9Rtm2gAVjo
https://openreview.net/forum?id=9Rtm2gAVjo
https://arxiv.org/abs/2308.07411
https://arxiv.org/abs/2308.07411
https://api.semanticscholar.org/CorpusID:31442909
https://api.semanticscholar.org/CorpusID:31442909
https://arxiv.org/abs/2303.17491

Reinforce LLM Reasoning through Multi-Agent Reflection

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng,
Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao
Zhang, and Ion Stoica. Efficient memory management
for large language model serving with pagedattention.
In Proceedings of the ACM SIGOPS 29th Symposium on
Operating Systems Principles, 2023.

Yihuai Lan, Zhiqiang Hu, Lei Wang, Yang Wang, Deheng
Ye, Peilin Zhao, Ee-Peng Lim, Hui Xiong, and Hao
Wang. Llm-based agent society investigation: Collabo-
ration and confrontation in avalon gameplay, 2024. URL
https://arxiv.org/abs/2310.14985.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. Encouraging divergent thinking in large
language models through multi-agent debate. arXiv
preprint arXiv:2305.19118, 2023.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison
Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify
step by step. In The Twelfth International Conference on
Learning Representations, 2023.

Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhen-
peng Chen, Lingming Zhang, and Yiling Lou. Large
language model-based agents for software engineering:
A survey, 2024a. URL https://arxiv.org/abs/
2409.02977.

Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman,
Mohammad Saleh, Peter J. Liu, and Jialu Liu. Statis-
tical rejection sampling improves preference optimiza-
tion, 2024b. URL https://arxiv.org/abs/23
09.06657.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico
Cassano, Joel Lamy-Poirier, Nouamane Tazi, Ao Tang,
Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Star-
coder 2 and the stack v2: The next generation. arXiv
preprint arXiv:2402.19173, 2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hal-
linan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha
Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank
Gupta, Bodhisattwa Prasad Majumder, Katherine Her-
mann, Sean Welleck, Amir Yazdanbakhsh, and Pe-
ter Clark. Self-refine: Iterative refinement with self-
feedback, 2023. URL https://arxiv.org/ab
s/2303.17651.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Sim-
ple preference optimization with a reference-free reward.
Advances in Neural Information Processing Systems, 37:
124198–124235, 2024.

Mistral AI team. Un ministral, des ministraux. https:
//mistral.ai/news/ministraux/, October 16
2024. Accessed: 2025-01-14.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and
Ahmed Awadallah. Orca-math: Unlocking the poten-
tial of slms in grade school math, 2024. URL https:
//arxiv.org/abs/2402.14830.

Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti
Das, Markian Rybchuk, Philip H. S. Torr, Ivan Laptev,
Fabio Pizzati, Ronald Clark, and Christian Schroeder
de Witt. Malt: Improving reasoning with multi-agent
llm training, 2024. URL https://arxiv.org/ab
s/2412.01928.

Rémi Munos, Michal Valko, Daniele Calandriello, Mo-
hammad Gheshlaghi Azar, Mark Rowland, Zhao-
han Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas
Mesnard, Andrea Michi, Marco Selvi, Sertan Gir-
gin, Nikola Momchev, Olivier Bachem, Daniel J.
Mankowitz, Doina Precup, and Bilal Piot. Nash learn-
ing from human feedback, 2024. URL https://ar
xiv.org/abs/2312.00886.

Ansong Ni, Srini Iyer, Dragomir Radev, Ves Stoyanov, Wen
tau Yih, Sida I. Wang, and Xi Victoria Lin. Lever: Learn-
ing to verify language-to-code generation with execu-
tion, 2023. URL https://arxiv.org/abs/23
02.08468.

Theo X. Olausson, Jeevana Priya Inala, Chenglong Wang,
Jianfeng Gao, and Armando Solar-Lezama. Is self-repair
a silver bullet for code generation?, 2024. URL https:
//arxiv.org/abs/2306.09896.

OpenAI. Learning to reason with llms, 2024. URL http
s://openai.com/index/learning-to-rea
son-with-llms/. Accessed: 2025-01-14.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho,
He He, Sainbayar Sukhbaatar, and Jason Weston. It-
erative reasoning preference optimization, 2024. URL
https://arxiv.org/abs/2404.19733.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral
Kumar. Recursive introspection: Teaching language
model agents how to self-improve. In A. Globerson,
L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tom-
czak, and C. Zhang, editors, Advances in Neural Infor-
mation Processing Systems, volume 37, pages 55249–
55285. Curran Associates, Inc., 2024. URL https:
//proceedings.neurips.cc/paper_files
/paper/2024/file/639d992f819c2b40387
d4d5170b8ffd7-Paper-Conference.pdf.

12

https://arxiv.org/abs/2310.14985
https://arxiv.org/abs/2409.02977
https://arxiv.org/abs/2409.02977
https://arxiv.org/abs/2309.06657
https://arxiv.org/abs/2309.06657
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://mistral.ai/news/ministraux/
https://mistral.ai/news/ministraux/
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2402.14830
https://arxiv.org/abs/2412.01928
https://arxiv.org/abs/2412.01928
https://arxiv.org/abs/2312.00886
https://arxiv.org/abs/2312.00886
https://arxiv.org/abs/2302.08468
https://arxiv.org/abs/2302.08468
https://arxiv.org/abs/2306.09896
https://arxiv.org/abs/2306.09896
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://arxiv.org/abs/2404.19733
https://proceedings.neurips.cc/paper_files/paper/2024/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/639d992f819c2b40387d4d5170b8ffd7-Paper-Conference.pdf

Reinforce LLM Reasoning through Multi-Agent Reflection

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn. Di-
rect preference optimization: Your language model is se-
cretly a reward model. Advances in Neural Information
Processing Systems, 36:53728–53741, 2023.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn.
From r to q∗: Your language model is secretly a q-
function, 2024. URL https://arxiv.org/ab
s/2404.12358.

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael
Santacroce, Ahmed Awadallah, and Tengyang Xie. Di-
rect nash optimization: Teaching language models to
self-improve with general preferences. arXiv preprint
arXiv:2404.03715, 2024.

Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang,
Daniele Calandriello, Avital Zipori, Hila Noga, Orgad
Keller, Bilal Piot, Idan Szpektor, et al. Multi-turn re-
inforcement learning from preference human feedback.
arXiv preprint arXiv:2405.14655, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junx-
iao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang,
YK Li, Y Wu, et al. Deepseekmath: Pushing the lim-
its of mathematical reasoning in open language models.
arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik
Narasimhan, and Shunyu Yao. Reflexion: language
agents with verbal reinforcement learning. In A. Oh,
T. Naumann, A. Globerson, K. Saenko, M. Hardt, and
S. Levine, editors, Advances in Neural Information Pro-
cessing Systems, volume 36, pages 8634–8652. Curran
Associates, Inc., 2023. URL https://proceeding
s.neurips.cc/paper_files/paper/2023/
file/1b44b878bb782e6954cd888628510e9
0-Paper-Conference.pdf.

Kumar Shridhar, Koustuv Sinha, Andrew Cohen, Tianlu
Wang, Ping Yu, Ramakanth Pasunuru, Mrinmaya
Sachan, Jason Weston, and Asli Celikyilmaz. The ART
of LLM refinement: Ask, refine, and trust. In Kevin
Duh, Helena Gomez, and Steven Bethard, editors, Pro-
ceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long
Papers), pages 5872–5883, Mexico City, Mexico, June
2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.naacl-long.327. URL https://ac
lanthology.org/2024.naacl-long.327/.

Charlie Victor Snell, Jaehoon Lee, Kelvin Xu, and Aviral
Kumar. Scaling llm test-time compute optimally can be
more effective than scaling parameters for reasoning. In

Proceedings of the International Conference on Learn-
ing Representations (ICLR) 2025, 2025. URL https:
//openreview.net/forum?id=4FWAwZtd2n.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler,
Ryan Lowe, Chelsea Voss, Alec Radford, Dario Amodei,
and Paul F Christiano. Learning to summarize with hu-
man feedback. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 3008–
3021. Curran Associates, Inc., 2020. URL https:
//proceedings.neurips.cc/paper_files
/paper/2020/file/1f89885d556929e98d3
ef9b86448f951-Paper.pdf.

Gokul Swamy, Christoph Dann, Rahul Kidambi, Zhi-
wei Steven Wu, and Alekh Agarwal. A minimaximal-
ist approach to reinforcement learning from human feed-
back, 2024. URL https://arxiv.org/abs/24
01.04056.

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael
Rafailov, Jeff Schneider, Tengyang Xie, Stefano Er-
mon, Chelsea Finn, and Aviral Kumar. Preference fine-
tuning of llms should leverage suboptimal, on-policy
data, 2024. URL https://arxiv.org/abs/24
04.14367.

Xunzhu Tang, Kisub Kim, Yewei Song, Cedric Lothritz,
Bei Li, Saad Ezzini, Haoye Tian, Jacques Klein, and
Tegawende F. Bissyande. Codeagent: Autonomous
communicative agents for code review, 2024a. URL
https://arxiv.org/abs/2402.02172.

Yunhao Tang, Zhaohan Daniel Guo, Zeyu Zheng, Daniele
Calandriello, Rémi Munos, Mark Rowland, Pierre Har-
vey Richemond, Michal Valko, Bernardo Ávila Pires,
and Bilal Piot. Generalized preference optimization:
A unified approach to offline alignment, 2024b. URL
https://arxiv.org/abs/2402.05749.

CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua How-
land, Nam Nguyen, Siqi Zuo, Andrea Hu, Christo-
pher A Choquette-Choo, Jingyue Shen, Joe Kelley, et al.
Codegemma: Open code models based on gemma. arXiv
preprint arXiv:2406.11409, 2024.

Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav
Kisacanin, Alexan Ayrapetyan, and Igor Gitman.
OpenMathInstruct-2: Accelerating AI for Math with
Massive Open-Source Instruction Data. In ICLR, 2025.

Leandro von Werra, Younes Belkada, Lewis Tunstall,
Edward Beeching, Tristan Thrush, Nathan Lambert,
Shengyi Huang, Kashif Rasul, and Quentin Gallouédec.
Trl: Transformer reinforcement learning. https:
//github.com/huggingface/trl, 2020.

13

https://arxiv.org/abs/2404.12358
https://arxiv.org/abs/2404.12358
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/1b44b878bb782e6954cd888628510e90-Paper-Conference.pdf
https://aclanthology.org/2024.naacl-long.327/
https://aclanthology.org/2024.naacl-long.327/
https://openreview.net/forum?id=4FWAwZtd2n
https://openreview.net/forum?id=4FWAwZtd2n
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://arxiv.org/abs/2401.04056
https://arxiv.org/abs/2401.04056
https://arxiv.org/abs/2404.14367
https://arxiv.org/abs/2404.14367
https://arxiv.org/abs/2402.02172
https://arxiv.org/abs/2402.05749
https://github.com/huggingface/trl
https://github.com/huggingface/trl

Reinforce LLM Reasoning through Multi-Agent Reflection

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai,
Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui. Math-
shepherd: Verify and reinforce llms step-by-step without
human annotations. arXiv preprint arXiv:2312.08935,
2023.

Xiaoxuan Wang, Ziniu Hu, Pan Lu, Yanqiao Zhu,
Jieyu Zhang, Satyen Subramaniam, Arjun R. Loomba,
Shichang Zhang, Yizhou Sun, and Wei Wang. SciBench:
Evaluating College-Level Scientific Problem-Solving
Abilities of Large Language Models. In Proceedings
of the Forty-First International Conference on Machine
Learning, 2024a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of
thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A
more robust and challenging multi-task language under-
standing benchmark. arXiv preprint arXiv:2406.01574,
2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le, and
Denny Zhou. Chain-of-thought prompting elicits rea-
soning in large language models. In S. Koyejo, S. Mo-
hamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh,
editors, Advances in Neural Information Processing Sys-
tems, volume 35, pages 24824–24837. Curran Asso-
ciates, Inc., 2022. URL https://proceedings.
neurips.cc/paper_files/paper/2022/fi
le/9d5609613524ecf4f15af0f7b31abca4-P
aper-Conference.pdf.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman,
Tianxiao Shen, Daniel Khashabi, and Yejin Choi. Gen-
erating sequences by learning to self-correct, 2022. URL
https://arxiv.org/abs/2211.00053.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davi-
son, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine
Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain
Gugger, Mariama Drame, Quentin Lhoest, and Alexan-
der M. Rush. Transformers: State-of-the-art natural lan-
guage processing. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing: System Demonstrations, pages 38–45, Online,
October 2020. Association for Computational Linguis-
tics. URL https://www.aclweb.org/antholo
gy/2020.emnlp-demos.6.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yim-
ing Yang, and Quanquan Gu. Self-play preference op-
timization for language model alignment, 2024a. URL
https://arxiv.org/abs/2405.00675.

Zengqing Wu, Run Peng, Shuyuan Zheng, Qianying Liu,
Xu Han, Brian Inhyuk Kwon, Makoto Onizuka, Shao-
jie Tang, and Chuan Xiao. Shall we team up: Explor-
ing spontaneous cooperation of competing llm agents,
2024b. URL https://arxiv.org/abs/2402.1
2327.

Zhiheng Xi, Dingwen Yang, Jixuan Huang, Jiafu Tang,
Guanyu Li, Yiwen Ding, Wei He, Boyang Hong, Shi-
han Do, Wenyu Zhan, Xiao Wang, Rui Zheng, Tao
Ji, Xiaowei Shi, Yitao Zhai, Rongxiang Weng, Jingang
Wang, Xunliang Cai, Tao Gui, Zuxuan Wu, Qi Zhang,
Xipeng Qiu, Xuanjing Huang, and Yu-Gang Jiang. En-
hancing llm reasoning via critique models with test-time
and training-time supervision, 2024. URL https:
//arxiv.org/abs/2411.16579.

Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy,
Corby Rosset, Ahmed Awadallah, and Alexander
Rakhlin. Exploratory preference optimization: Harness-
ing implicit q*-approximation for sample-efficient rlhf.
arXiv preprint arXiv:2405.21046, 2024.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han
Zhong, Heng Ji, Nan Jiang, and Tong Zhang. Itera-
tive preference learning from human feedback: Bridging
theory and practice for rlhf under kl-constraint. arXiv
preprint arXiv:2312.11456, 2023.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosen-
berg, Zhen Qin, Daniele Calandriello, Misha Khalman,
Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al.
Building math agents with multi-turn iterative preference
learning. arXiv preprint arXiv:2409.02392, 2024.

Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason
Weston. Some things are more cringe than others: It-
erative preference optimization with the pairwise cringe
loss, 2024. URL https://arxiv.org/abs/2312
.16682.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen
Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Day-
iheng Liu, Fei Huang, et al. Qwen2 technical report.
arXiv preprint arXiv:2407.10671, 2024a.

Rui Yang, Ruomeng Ding, Yong Lin, Huan Zhang, and
Tong Zhang. Regularizing hidden states enables learn-
ing generalizable reward model for llms. In Advances in
Neural Information Processing Systems, 2024b.

14

https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2211.00053
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://arxiv.org/abs/2405.00675
https://arxiv.org/abs/2402.12327
https://arxiv.org/abs/2402.12327
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2411.16579
https://arxiv.org/abs/2312.16682
https://arxiv.org/abs/2312.16682

Reinforce LLM Reasoning through Multi-Agent Reflection

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom
Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of
thoughts: Deliberate problem solving with large lan-
guage models. In A. Oh, T. Naumann, A. Glober-
son, K. Saenko, M. Hardt, and S. Levine, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 36, pages 11809–11822. Curran Associates, Inc.,
2023. URL https://proceedings.neurips.
cc/paper_files/paper/2023/file/271db
9922b8d1f4dd7aaef84ed5ac703-Paper-Con
ference.pdf.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. STar: Bootstrapping reasoning with reasoning.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Informa-
tion Processing Systems, 2022. URL https://open
review.net/forum?id=_3ELRdg2sgI.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran
Kazemi, Aviral Kumar, and Rishabh Agarwal. Genera-
tive verifiers: Reward modeling as next-token prediction.
arXiv preprint arXiv:2408.15240, 2024a.

Xianren Zhang, Xianfeng Tang, Hui Liu, Zongyu Wu,
Qi He, Dongwon Lee, and Suhang Wang. Divide-verify-
refine: Aligning llm responses with complex instruc-
tions, 2024b. URL https://arxiv.org/abs/
2410.12207.

Han Zhong, Guhao Feng, Wei Xiong, Xinle Cheng,
Li Zhao, Di He, Jiang Bian, and Liwei Wang. Dpo meets
ppo: Reinforced token optimization for rlhf, 2024. URL
https://arxiv.org/abs/2404.18922.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine,
and Aviral Kumar. Archer: Training language model
agents via hierarchical multi-turn rl. arXiv preprint
arXiv:2402.19446, 2024.

15

https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/271db9922b8d1f4dd7aaef84ed5ac703-Paper-Conference.pdf
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://arxiv.org/abs/2410.12207
https://arxiv.org/abs/2410.12207
https://arxiv.org/abs/2404.18922

Reinforce LLM Reasoning through Multi-Agent Reflection

Appendix

A. Related Work
A wide range of prior research focuses on improving LLM performance by enabling models to revise their answers for
greater accuracy and robustness. Within this domain, a subset of works investigates intrinsic self-correction, where LLMs
refine their outputs without relying on external feedback (Qu et al., 2024; Kumar et al., 2024). While these methods equip
models with abilities to address their own errors, studies reveal mixed results, with some highlighting the difficulties LLMs
face when self-correcting without external input (Kamoi et al., 2024; Huang et al., 2024). In contrast, other works leverage
external feedback to enhance responses, utilizing tools such as compilers and verifiers (Welleck et al., 2022; Havrilla et al.,
2024; Chen et al., 2024a; Shinn et al., 2023). More recently, multi-agent systems have gained attention as a promising
approach, training two or more LLMs to collaborate or compete to generate improved solutions for reasoning tasks (Xi
et al., 2024; Motwani et al., 2024). Our work aligns with this direction, proposing a novel reinforcement learning algorithm
to enhance the interaction and coordination between models.

Intrinsic Self-Correction Several prior works have developed techniques to enable LLMs to correct errors in their
previous responses. Some approaches prompt LLMs to reflect on their answers and attempt revisions when necessary
(Shinn et al., 2023; Kim et al., 2023; Madaan et al., 2023). Among these, Kim et al. (2023); Shinn et al. (2023) assume
access to ground-truth answers during self-correction, which is often unrealistic. Other works explore algorithms for
training models to enable models of self-correction. Kumar et al. (2024) demonstrate that standard supervised fine-tuning
is insufficient for improving LLMs’ ability to self-correct. Instead, they formulate self-correction as a Markov Decision
Process (MDP) and apply a two-stage reinforcement learning algorithm to enhance performance, which focuses on single
refinement. Qu et al. (2024) train models to iteratively refine their responses over multiple turns, which is relevant to our
work. In contrast, our approach explores leveraging flexible feedback from another model to guide self-correction under
this multi-turn setting.

Self-Correction with External Feedback Another line of research explores self-correction using additional feedback
from the environment. A common setting is code generation, where feedback is derived from unit test results or compiler
messages (Chen et al., 2024b; Jain et al., 2024; Olausson et al., 2024; Ni et al., 2023). Other works incorporate external
tools, such as scripts or search engines, to provide feedback for refining responses (Gou et al., 2024; Zhang et al., 2024b).
Additionally, some approaches utilize feedback generated by other models (Welleck et al., 2022; Havrilla et al., 2024).
However, these works treat the model generating answers and the entity providing feedback as two separate components,
focusing either on leveraging feedback from a fixed set of sources (Olausson et al., 2024; Ni et al., 2023; Gou et al., 2024)
or training a dedicated corrector model for refinement (Welleck et al., 2022). In contrast, our algorithm trains a multi-agent
system jointly, enabling seamless interaction and collaboration between models.

Multi-Agent Collaboration LLM-based multi-agent systems have shown promising results across a variety of tasks
(Guo et al., 2024b; Gao et al., 2024a; Liu et al., 2024a; Jiang et al., 2024). The communication paradigms in these systems
can be broadly classified into two categories (Guo et al., 2024b): (1) Debate or competitive agents, which interact by
defending, and critiquing viewpoints or solutions (Junprung, 2023; Du and Zhang, 2024; Lan et al., 2024), and (2) Coop-
erative agents, which work together toward shared goals, exchanging information to enhance collective solutions (Hong
et al., 2024b; Hang et al., 2024; Tang et al., 2024a; Wu et al., 2024b). In the context of reasoning, Du et al. (2023); Liang
et al. (2023) explored improving LLMs’ reasoning capabilities by employing debate-like interactions among agents. Other
works (Chen et al., 2024a; Shinn et al., 2023; Xi et al., 2024; Motwani et al., 2024) refined LLM-generated responses
through collaborative multi-agent frameworks, often involving specialized roles such as actor models for response gener-
ation and critic models for evaluation and feedback. However, some of these approaches lack specialized model training
(Akyürek et al., 2023; Chen et al., 2024a; Shinn et al., 2023) or omit joint training of agents for collaboration (Xi et al.,
2024). The most related work is Motwani et al. (2024), which trains a three-model system to generate refined answers
after an initial attempt. In contrast, our work focuses on an algorithm with a theoretical performance guarantee that enables
multi-turn refinement, fully encompassing the 2-turn cases.

RL for LLMs Many prior works have applied reinforcement learning (RL) algorithms to LLM training. One line of
research focuses on single-turn settings, where response generation is formulated as a token-level Markov Decision Process
(MDP), and pairwise preference data is used to align models with human preferences (Rafailov et al., 2024; Gao et al.,

16

Reinforce LLM Reasoning through Multi-Agent Reflection

2024b; Zhong et al., 2024). Among these, Direct Preference Optimization (DPO) (Rafailov et al., 2023) demonstrates
that LLMs can be aligned with human preferences by maximizing the margin between the implicit rewards of chosen
and rejected responses. Building on this, many algorithms have been proposed to address specific limitations of DPO
(Tang et al., 2024b; Azar et al., 2023). Some prior works explore online or iterative RL algorithms, providing theoretical
performance guarantees through either high coverage of the reference policy or active exploration (Xiong et al., 2023; Guo
et al., 2024a; Xu et al., 2024; Pang et al., 2024; Mitra et al., 2024; Dong et al., 2024; Xie et al., 2024). Another subset of
these works focuses on a extended problem of general preference learning where binary labels are augmented to numeric
probabilities representing the likelihood of one response being preferred over another (Wu et al., 2024a; Swamy et al.,
2024; Munos et al., 2024; Rosset et al., 2024). Other aspects include on-policy training (Tajwar et al., 2024; Liu et al.,
2024b), direct utility function maximization (Ethayarajh et al., 2024), and and simplified algorithms that eliminate the need
for a reference policy (Hong et al., 2024a; Meng et al., 2024).

Another line of research focuses on improving LLM performance in multi-turn settings, where the prompt and conversation
history are treated as the state, and each response is an action. Some works aim to generally align models with human
preferences in multi-turn conversations (Shani et al., 2024; Zhou et al., 2024), while others specifically enhance step-by-
step reasoning (Snell et al., 2025; OpenAI, 2024; Wang et al., 2023) or integrate tool usage (Xiong et al., 2024). Qu et al.
(2024); Kumar et al. (2024) are most related to our work. They apply RL algorithms to train models for self-correction
through multiple sequential attempts. In comparison, we formulate the conversation as each state contains only most recent
answer, mitigating test-time distribution shift effect regarding number of refinements.

B. Additional Notation and Pseudocode
We provide the pseudocode for original PSDP algorithm described in Section 2.

Algorithm 3 PSDP
Input: horizon H , policy set Π, and baseline distributions µh for h = 0, · · · , H − 1

1: for h = H − 1, H − 2, . . . , 0 do
2: πh ← argmaxπ∈Π Es∼µh

[
V

(π,πh+1,··· ,πH−1)
h (s)

]
where (π, πh+1, · · · , πH−1) denotes a non-stationary policy composed of stationary policies π, πh+1, · · · , πH−1.

3: end for

C. Theoretical Proofs
C.1. Proof of Theorem 1

We first introduce an episodic version of performance difference lemma (Kakade and Langford, 2002).

Lemma 2 (Performance difference lemma). For any policy π′ and π, we have

J (π′)− J (π) =
H−1∑
h=0

Esh∼dπ′
h

[
Eah∼π′(·|sh) [Q

π
h(sh, ah)]− V π

h (sh)
]

Let fh be any function, then from Lemma 2 we have

J (π⋆)− J (π̂) =
H−1∑
h=0

Esh∼dπ⋆

h

[
Eah∼π⋆(·|sh)

[
Qπ̂

h(sh, ah)
]
− V π̂

h (sh)
]

(4)

=

H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π⋆(·|sh)

[
Qπ̂

h(sh, ah)− fh(sh, ah)
]

+

H−1∑
h=0

Esh∼dπ⋆

h

[
Eah∼π⋆(·|sh) [fh(sh, ah)]− Eah∼π̂(·|sh) [fh(sh, ah)]

]
17

Reinforce LLM Reasoning through Multi-Agent Reflection

+

H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π̂(·|sh)

[
fh(sh, ah)−Qπ̂

h(sh, ah)
]
.

Let fh(sh, ah) := β log π̂(ah|sh)
πref(ah|sh) − c(sh), where c(sh) = Eah∼πref(·|sh)

[
β log π̂(ah|sh)

πref(ah|sh) −Qπ̂
h(sh, ah)

]
, then

J (π⋆)− J (π̂) =
H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π⋆(·|sh)

[
Qπ̂

h(sh, ah)− β log
π̂(ah | sh)
πref(ah | sh)

+ c(sh)

]
(I)

+ β

H−1∑
h=0

Esh∼dπ⋆

h

[
Eah∼π⋆(·|sh)

[
log

π̂(ah | sh)
πref(ah | sh)

]
− Eah∼π̂(·|sh)

[
log

π̂(ah | sh)
πref(ah | sh)

]]
(II)

+

H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π̂(·|sh)

[
β log

π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

]
. (III)

For term I, from Cauchy-Schwartz inequality, we have

H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π⋆(·|sh)

[
Qπ̂

h(sh, ah)− β log
π̂(ah | sh)
πref(ah | sh)

+ c(sh)

]

≤
H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π⋆(·|sh)

[∣∣∣∣Qπ̂
h(sh, ah)− β log

π̂(ah | sh)
πref(ah | sh)

+ c(sh)

∣∣∣∣]

≤

√√√√H

H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π⋆(·|sh)

[(
Qπ̂

h(sh, ah)− β log
π̂(ah | sh)
πref(ah | sh)

+ c(sh)

)2
]

From Assumption 1, we have

Esh∼dπ⋆

h ,ah∼π⋆(·|sh)

[(
Qπ̂

h(sh, ah)− β log
π̂(ah | sh)
πref(ah | sh)

+ c(sh)

)2
]

≤ C⋆
SCAEsh∼d

πref
h ,ah∼πref(·|sh)

[(
Qπ̂

h(sh, ah)− β log
π̂(ah | sh)
πref(ah | sh)

+ c(sh)

)2
]

We now introduce the following lemma to further bound term I.

Lemma 3. Under Assumption 2, we have for any h ∈ {0, 1, · · · , H − 1}:

Esh∼d
πref
h ,ah∼πref(·|sh)

[(
β log

π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

)2
]
≤ εstat

2
,

where c(sh) = Eah∼πref(·|sh)

[
β log π̂(ah|sh)

πref(ah|sh) −Qπ̂
h(sh, ah)

]
.

Then from Lemma 3 we know√√√√H

H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π⋆(·|sh)

[(
Qπ̂

h(sh, ah)− β log
π̂(ah | sh)
πref(ah | sh)

+ c(sh)

)2
]

≤

√√√√C⋆
SCAH

H−1∑
h=0

Esh∼d
πref
h ,ah∼πref(·|sh)

[(
Qπ̂

h(sh, ah)− β log
π̂(ah | sh)
πref(ah | sh)

+ c(sh)

)2
]

≤ H

√
C⋆

SCAεstat
2

18

Reinforce LLM Reasoning through Multi-Agent Reflection

Similarly, term III can be bounded as

H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π̂(·|sh)

[
β log

π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

]

≤

√√√√H

H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π̂(·|sh)

[(
β log

π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

)2
]

≤

√√√√C⋆
SCAH

H−1∑
h=0

Esh∼d
πref
h ,ah∼πref(·|sh)

[(
β log

π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

)2
]

≤ H

√
C⋆

SCAεstat
2

Now, let’s consider term II. Given a fixed h and fixed sh,

Ey∼π⋆(·|sh)

[
log

π̂(ah | sh)
πref(ah | sh)

]
− Eah∼π̂(·|sh)

[
log

π̂(ah | sh)
πref(ah | sh)

]
= Eah∼π⋆(·|sh)

[
log

π̂(ah | sh)
π⋆(ah | sh)

]
+ Eah∼π⋆(·|sh)

[
log

π⋆(ah | sh)
πref(ah | sh)

]
− Eah∼π̂(·|sh)

[
log

π̂(ah | sh)
πref(ah | sh)

]
= Eah∼π⋆(·|sh)

[
log

π⋆(ah | sh)
πref(ah | sh)

]
−DKL[π

⋆(· | sh)∥π̂(· | sh)]−DKL[π̂(· | sh)∥πref(· | sh)]

From Assumption 1 we have

Eah∼π⋆(·|sh)

[
log

π⋆(ah | sh)
πref(ah | sh)

]
−DKL[π

⋆(· | sh)∥π̂(· | sh)]−DKL[π̂(· | sh)∥πref(· | sh)]

≤ Eah∼π⋆(·|sh) [logCA]− 0− 0

= logCA

Therefore, with β ≤
√

C⋆
SCAεstat

logCA
, term II can be bounded as

β

H−1∑
h=0

Esh∼dπ⋆

h

[
Eah∼π⋆(·|sh)

[
log

π̂(ah | sh)
πref(ah | sh)

]
− Eah∼π̂(·|sh)

[
log

π̂(ah | sh)
πref(ah | sh)

]]
≤ βH logCA = H

√
C⋆

SCAεstat

In conclusion,
J (π⋆)− J (π̂) = O

(
H
√
C⋆

SCAεstat

)
C.2. Proofs for Supporting Lemmas

Proof of Lemma 2 Let us prove by induction. When H = 1, the trajectory consists of a single step, and the statement is
trivial.

Now assume that for horizon k the statement holds for any policy π′ and π:

Jk(π′)− Jk(π) =
k∑

h=1

Esh∼dπ′
h ,ah∼π′(·|sh) [Q

π
h(sh, ah)− V π

h (sh)] .

For H = k + 1, we expand Jk+1(π
′)− Jk+1(π):

Jk+1(π
′)− Jk+1(π) = Eπ′

[
k+1∑
h=1

r(sh, ah)

]
− Eπ

[
k+1∑
h=1

r(sh, ah)

]

19

Reinforce LLM Reasoning through Multi-Agent Reflection

= Eπ′

[
k+1∑
h=2

r(sh, ah)

]
− Eπ′ [V π

2 (s2)] (I)

+ Eπ′ [r(s1, a1)] + Eπ′ [V π
2 (s2)]− Eπ

[
k+1∑
h=1

r(sh, ah)

]
(II)

Term I corresponds to the difference between expected returns of π′ and π on an MDP with horizon k. Apply the inductive
hypothesis to term I, we have

Eπ′

[
k+1∑
h=2

r(sh, ah)

]
− E′

π[V
π
2 (s2)] =

H∑
h=2

Esh∼dπ′
h ,ah∼π′(·|sh) [Q

π
h(sh, ah)− V π

h (sh)]

For term II, we have

Eπ′ [r(s1, a1)] + Eπ′ [V π
2 (s2)]− Eπ

[
k+1∑
h=1

r(sh, ah)

]
= Eπ′ [Qπ

1 (s1, a1)]− Eπ[V
π
1 (s1)]

= Es1∼dπ′
1

[
Ea1∼π′(·|s1) [Q

π
1 (s1, a1)]− V π

1 (s1)
]

Summing up term I and II concludes our proof.

Proof of Lemma 3

Esh∼d
πref
h ,ah∼πref(·|sh),a′

h∼πref(·|sh)

[(
β log

π̂(ah | sh)
πref(ah | sh)

− β log
π̂(a′h | sh)
πref(a′h | sh)

−Qπ̂
h(sh, ah) +Qπ̂

h(sh, a
′
h)

)2
]

= Esh∼d
πref
h ,ah∼πref(·|sh),a′

h∼πref(·|sh)

[
((

β log
π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

)
−

(
β log

π̂(a′h | sh)
πref(a′h | sh)

−Qπ̂
h(sh, a

′
h)− c(sh)

))2
]

= 2Esh∼d
πref
h ,ah∼πref(·|sh)

[(
β log

π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

)2
]

− 2Esh∼d
πref
h

[(
Eah∼πref(·|sh)

[
β log

π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

])2
]

= 2Esh∼d
πref
h ,ah∼πref(·|sh)

[(
β log

π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

)2
]

The last step follows from the definition of c(sh). Under Assumption 2, we have

Esh∼d
πref
h ,ah∼πref(·|sh)

[(
β log

π̂(ah | sh)
πref(ah | sh)

−Qπ̂
h(sh, ah)− c(sh)

)2
]
≤ εstat

2

C.3. Analysis of the Approximation of Q-Values

In this section, we analyze the Q-value approximation in practical DPSDP described in Section 3.3. As only one feedback
and refinement step is used during training, we assume H = 3. Let π̂ be the resulting policy, and let Q̃π̂

h denote the
estimated Q-values, replacing Qπ̂

h in Assumption 2.

We define advantage function as Aπ
h(sh, ah) = Qπ

h(sh, ah) − V π
h (sh), and Ãπ

h(sh, ah) = Q̃π
h(sh, ah) −

Eah∼π(·|sh)[Q̃
π
h(sh, ah)]. Then Eq. (4) can be rewritten as

J (π⋆)− J (π̂) =
H−1∑
h=0

Esh∼dπ⋆

h ,ah∼π⋆(·|sh)

[
Aπ̂

h(sh, ah)
]
. (5)

20

Reinforce LLM Reasoning through Multi-Agent Reflection

We analyze each term in Eq. (5) as follows:

1. At h = 2, the estimated Q̃π̂3
2 (s2, a2) = r(s3) is exact. Therefore, Aπ̂

h(sh, ah) = Ãπ̂
h(sh, ah).

2. At h = 1, the estimated Q-value is: Q̃π̂2
1 (s1, a1) = Ea2∼πref(·|s2)[r(s3)] = Qπref

1 (s1, a1). We define the approximation
error:

∆ = Esh∼dπ⋆

h ,ah∼π⋆(·|sh)[A
π̂
h(sh, ah)− Ãπ̂

h(sh, ah)]

3. At h = 0, we have Q̃π̂1
0 (s0, a0) = r(s1) +

H−1
2 = Qπ⋆

0 (s0, a0). Therefore,

Eah∼π⋆(·|sh)[A
π̂
h(sh, ah)] ≈ Eah∼π⋆(·|sh)[A

π⋆

h (sh, ah)] = 0,

where the last equality follows from the definition of Aπ
h.

Following steps in Appendix C.1, we obtain the approximate upper bound by adding |∆| to the theoretical bound.

To assess the impact of |∆|, we performed an ablation using the step-by-step DPSDP variant in Appendix E.3, which uses
Qπ2

1 in the DPO-style loss. The results showed no significant performance gain, indicating that |∆| has minimal effect. For
simplicity and efficiency, we use the original version in the main paper.

D. Implementation Details
D.1. Preliminary Training

As described in Section 3.4, we begin by supervised fine-tuning the model to initialize the critic for providing effective
feedback and the actor for refining previous answers. To acquire high-quality SFT dataset, we generate first-turn responses
by rolling out the reference policies, exposing errors that a learner actor might make. An oracle model then generates
feedback and corresponding refined answers, demonstrating expected behavior for critic and actor. After this initial stage,
we proceed with DPSDP from the boosted model.

In experiments, we use a subset of mathematical problems from OpenMathInstruct-2 (Toshniwal et al., 2025) and sample
diverse first-turn answers with the base models Ministral-8B-Instruct-2410 and Llama-3.1-8B-Instruct. To generate high-
quality feedback and refined answers, we employ capable models Mistral-Large-Instruct-2411 and Llama-3.3-70B-Instruct,
to demonstrate how to evaluate and improve initial responses. After filtering (e.g., deduplicating problems and removing
degraded answers), we obtain a final dataset of 381K samples for supervised fine-tuning. We then fine-tune the base models
separately: the critic is trained on feedback generation, while the actor is trained on refining answers. Both DPSDP and
baseline methods are subsequently trained on these fine-tuned models.

D.2. Benchmarks

(1) MATH 500 (Hendrycks et al., 2021b) consists of problems from mathematics competitions, including the AMC 10,
AMC 12, AIME, etc. The dataset covers diverse mathematical topics, including algebra, geometry, statistics, number
theory, linear algebra, and calculus. Following Lightman et al. (2023), we augment the MATH training set with 4500
problems from the test set and report results on the remaining 500 problems, denoted as MATH 500. (2) GSM8K (Cobbe
et al., 2021) includes 1319 grade-school-level math word problems, which are generally simpler than those in MATH.
(3) MMLU-Pro Math (Wang et al., 2024b) is a mathematical subset of MMLU-Pro, a challenging multi-task benchmark.
It consists of 1351 multiple choice questions augmented from TheoremQA (Chen et al., 2023), SciBench (Wang et al.,
2024a), and original MMLU (Hendrycks et al., 2021a). (4) Olympiad Bench (He et al., 2024) is an Olympiad-level scien-
tific benchmark, containing 674 open-ended text-only mathematical problems in English, covering algebra, combinatorics,
geometry, and number theory.

D.3. Training Hyperparameters

For supervised fine-tuning (SFT), we experimented with learning rates of 1 × 10−6, 5 × 10−6, and 1 × 10−5, selecting
1× 10−6 for Llama-based models and 5× 10−6 for Ministral- and Qwen-based models. Base models were trained on the
SFT dataset for 1 epoch, using gradient accumulation steps of 64 and a per-device train batch size of 1 on 4×H100 80GB
GPUs.

21

Reinforce LLM Reasoning through Multi-Agent Reflection

For direct preference optimization (DPO), we tested learning rates of 2 × 10−7 and 4 × 10−7, choosing 2 × 10−7 for
Ministral-based actor and critic, Llama-based actor, and Qwen-based actor, and 4 × 10−7 for Llama- and Qwen-based
critics. For the KL coefficient β, we evaluated values of 0.1, 0.5, and 1.0, selecting 0.1 for all actor model training, 1.0
for Ministral-8B-Instruct-based critic (trained for 1 epoch), and 0.1 for Llama-3.1-8B-Instruct-based critic (trained for 2
epochs) and Qwen2.5-3B-based critic (trained for 3 epochs). Same as in SFT, we used gradient accumulation steps of 64
and a per-device train batch size of 1 on 4×H100 80GB GPUs.

The non-generative critic was trained with a learning rate of 1× 10−6 for 1 epoch.

D.4. Inference Hyperparameters

All evaluations were performed with a temperature (T) of 0, except for self-consistency (maj5@turn1), where we set
T = 0.5. To generate dataset used in the preliminary training phase (SFT), reference models (Ministral-8B-Instruct-
2410 and Llama-3.1-8B-Instruct) generated first-turn answers with T = 0.8. Oracle models (Mistral-Large-Instruct-2411
and Llama-3.3-70B-Instruct) then produced feedback and refined answers with T = 0. In the data collection stage of
Algorithm 2, policies were sampled with T = 1.0 to ensure diverse responses.

D.5. Codebase

We adapted code from TRL (von Werra et al., 2020) for both SFT and DPO training. The non-generative critic was trained
using the Hugging Face Transformers framework (Wolf et al., 2020) with a customized loss function. For inference, we
utilized the vLLM offline engine (Kwon et al., 2023) and adapted scripts from Xiong et al. (2024). Evaluation code was
adapted from Yang et al. (2024a); Grattafiori et al. (2024) to compare LLM-generated answers with ground-truth solution.

D.6. Prompts

Prompts used for first-turn answer feedback and refined answers

For first-turn answer You are an AI language model designed to assist with math problem-solving. In this task,
I will provide you with math problems. Your goal is to solve the problem step-by-step, showing your reasoning at
each step. After you have finished solving the problem, present your final answer as \boxed{Your Answer}.
{problem}
For feedback Take a moment to review your previous response for accuracy and completeness. Briefly identify
any errors or gaps that might lead to incorrect answers, but don’t worry about fixing them—just focus on pointing
them out.
For refined answer Using your reflection as a guide, carefully make any necessary corrections to your previous
response. Ensure your final answer addresses any identified issues and present it as \boxed{Your Answer}. Pay
close attention to the errors you pinpointed during the reflection.

Verbal feedback from non-generative critic

Correct The solution appears to be correct. Please review it to confirm its accuracy, and present the verified final
answer in the format \boxed{Your Answer}.
Incorrect There is an error in the solution. Please review it, correct the mistake, and present the revised answer
in the format \boxed{Your Answer}.

E. Additional Results
E.1. Answer Improvement Over Turns

The training process of DPSDP involves single-step refinement rather than multi-turn enhancement. Despite this discrep-
ancy between training- and test-time conditions, we find that DPSDP effectively enables models to improve accuracy over
multiple turns. In Figure 3, we plot the per-turn accuracy, majority voting accuracy, and pass@t-k accuracies on MATH
500 and GSM8K. For this section only, we do not consider questions with no more than two correct responses as incorrect,
which is adopted in Section 4.2. The results show a general increase in accuracy as the number of refinements grows, with

22

Reinforce LLM Reasoning through Multi-Agent Reflection

models steadily improving majority voting performance over successive turns. Additionally, the increasing pass1@turn-k
scores indicate that models are progressively solving problems they previously could not, demonstrating the effectiveness
of iterative refinement.

1 2 3 4 5 6 7 8 9 1011
55

57

59

61

63

Number of turns k

A
cc

ur
ac

y
M

A
T

H
50

0
(%

)

Accuracy@turn-k

87

87.5

88

88.5

89

1 2 3 4 5 6 7 8 9 1011
53

55

57

59

61

63

65

Number of turns k

Majority1@turn-k

85

86

87

88

89

90

1 2 3 4 5 6 7 8 9 1011
56
58
60
62
64
66
68
70
72

Number of turns k

Pass1@turn-k

87

88

89

90

91

92

93

A
cc

ur
ac

y
G

SM
8K

(%
)

Ministral - MATH 500 Llama - MATH 500
Ministral - GSM8K Llama - GSM8K

Figure 3. Various metrics under different turns. Accuracies improve as the number of refinements increases. The rising pass1@turn-k
scores indicate that iterative refinement enables models to solve previously unsolved problems. Note that the decrease in maj1@t2
accuracy arises from the requirement that both responses (2 out of 2) must be correct to count toward maj1@t2.

We further analyze how the proportion of responses that change in correctness evolves throughout the multi-turn refinement
process. Table 4 reports results using Ministral-based models on the MATH 500 dataset. We focus on the fraction of
responses transitioning from incorrect to correct, denoted ∆i→c, and from correct to incorrect, denoted ∆c→i, at each
refinement step. Notably, ∆i→c consistently exceeds ∆c→i, indicating that the refinement process is generally beneficial.
Interestingly, both ∆i→c and ∆c→i decline over successive iterations, suggesting an initial phase of active correction
followed by stabilization in later stages. The consistently low level of ∆c→i suggest that over-refinement is not a significant
concern in practice. However, to further eliminate the possibilities of over-refinement, we propose monitoring performance
on a validation set at each refinement step and stopping early if accuracy begins to decline as a potential solution.

Turn t2 t3 t4 t5 t6 t7 t8 t9 t10 t11

∆i→c (%) 7.8 4.0 3.4 3.0 1.8 2.0 1.4 1.0 1.0 1.2
∆c→i (%) 4.0 3.6 2.8 2.8 1.6 2.4 1.0 1.2 2.0 1.4

Table 4. Fraction of responses that transition from incorrect to correct (∆i→c) and from correct to incorrect (∆c→i) at each turn.

E.2. Necessity of Preliminary Training Phase

As detailed in Section 3.4, our algorithm begins with models that have been fine-tuned to either utilize or provide feedback.
To assess the necessity of this preliminary training, we conduct an ablation study by removing this phase and applying
DPSDP directly to base models. The results, shown in Table 5, indicate that this fine-tuning step is essential for enabling the
actor and critic models to follow instructions effectively. Without it, applying DPSDP yields negligible performance gains
with additional response attempts. For instance, the models achieve only 53.8% accuracy on MATH 500—an improvement
of just 1.2% over a single-response baseline. In contrast, incorporating the preliminary training leads to a 5.0% absolute
gain in accuracy. These findings are consistent with previous work (Chu et al., 2025), underscoring the importance of
instruction-following capabilities in models used as starting points for RL training.

E.3. Empirical Impact of Q-Value Estimation

In Section 3.3, we present the development of a practical DPSDP approach, leveraging πref to approximate Q-values that are
otherwise infeasible or computationally costly to obtain. We are especially interested in investigating our approximation of

23

Reinforce LLM Reasoning through Multi-Agent Reflection

Approach MATH 500 GSM8K MMLU-Pro Math Olympiad Bench

p1@t1 m1@t5 p1@t5 p1@t1 m1@t5 p1@t5 p1@t1 m1@t5 p1@t5 p1@t1 m1@t5 p1@t5

Ministral-8B-It 55.8 53.4 58.4 83.4 81.9 84.7 52.1 50.6 55.7 22.8 22.7 24.8
DPSDP w/o SFT 52.6 53.8 54.4 90.6 90.8 90.9 54.1 54.4 55.5 26.0 26.1 26.7
DPSDP (ours) 58.2 63.2 70.0 87.8 89.1 92.7 53.1 54.2 64.3 25.8 27.0 32.9

Table 5. Performance comparison of DPSDP with or without preliminary training stage (SFT).

Qπ̂2
1 (s1, a1), the Q-values for the feedback step. To evaluate the impact of it, we conduct experiments on a smaller dataset

primarily consisting of augmented problems from MATH. We first replicate the training process from Algorithm 2 on this
dataset, using πref for estimation and combining training across all turns into a single step for each agent, which we refer
to as unified training. In contrast, we implement a step-by-step training procedure based on Algorithm 1 with a DPO loss,
with each turn being trained separately. We denote this approach as step-by-step training. Specifically, we first use πref to
sample n second-turn answers, which are then used to construct a DPO dataset for actor training, yielding an intermediate
actor model π̂a

2 . Next, we sample diverse feedback from the base critic and use π̂a
2 , instead of πref as in unified training,

to generate refined answers based on this feedback, obtaining an accurate value of Qπ̂a
2

1 . We then conduct DPO training on
the critic, producing a refined critic model π̂c

1. Finally, we improve the actor’s first-turn responses based on π̂a
2 , following

the same approach as in Algorithm 2. To ensure broad exposure to different problems, we use three distinct problem sets at
each stage of step-by-step training, each matching the size of the dataset used in unified training. We evaluate both methods
on MATH 500 using Llama-based models, as shown in Table 6. Notably, we find that the policy trained via unified training
outperforms the step-by-step approach, suggesting both the accuracy of our estimation strategy and the potential advantage
of jointly learning answers alongside their refinements.

Approach MATH 500

p1@t1 m1@t5 p1@t5

Llama-3.1 Unified 54.4 55.2 59.2

Llama-3.1 Step-by-Step
+ Trained on a2 53.0 54.2 58.6
+ Trained on a1 53.0 54.0 58.8
+ Trained on a0 52.6 54.2 59.0

Table 6. Comparison between unified training and step-by-step training. The experiments are conducted on a smaller, MATH-dominated
dataset.

E.4. Qualitative Analysis

We present example output from DPSDP Ministral-based models1.

Critic captures errors in actor’s first answer

Problem A regular hexagon can be divided into six equilateral triangles. If the perimeter of one of the triangles
is 21 inches, what is the perimeter, in inches, of the regular hexagon?
Answer 1 To solve this problem, we need to understand the relationship between the equilateral triangles that
make up the regular hexagon.

1. Identify the Perimeter of One Triangle: We are given that the perimeter of one equilateral triangle is 21
inches. Since all sides of an equilateral triangle are equal, each side of the triangle is 21

3 = 7 inches.

2. Determine the Perimeter of the Hexagon: A regular hexagon is made up of six equilateral triangles. There-

1All modifications to the model-generated responses presented in this section were purely formatting-related and did not affect the
underlying meaning or content.

24

Reinforce LLM Reasoning through Multi-Agent Reflection

fore, the perimeter of the hexagon is the sum of the perimeters of these six triangles.

3. Calculate the Total Perimeter: Since each triangle has a perimeter of 21 inches, the total perimeter of the
hexagon is 6× 21 = 126 inches.

Thus, the perimeter of the regular hexagon is 126 inches.

Feedback 1 Upon reviewing the previous response, I noticed a conceptual error in the calculation of the
hexagon’s perimeter. Specifically, the perimeter of the hexagon should not be calculated by summing the perime-
ters of the six triangles, as this would double-count the sides. Instead, the perimeter of the hexagon is simply the
sum of the lengths of its six sides.
Here are the points to consider:

1. Perimeter of One Triangle: The perimeter of one equilateral triangle is given as 21 inches. Each side of the
triangle is 21

3 = 7 inches.

2. Perimeter of the Hexagon: The hexagon has six sides, each of which is 7 inches long. Therefore, the
perimeter of the hexagon is 6× 7.

The error in the previous response was in incorrectly summing the perimeters of the triangles instead of directly
calculating the perimeter from the side lengths of the hexagon.

Answer 2 To solve this problem correctly, we need to understand the relationship between the equilateral trian-
gles that make up the regular hexagon and how to calculate its perimeter accurately.

1. Identify the Perimeter of One Triangle: We are given that the perimeter of one equilateral triangle is 21
inches. Since all sides of an equilateral triangle are equal, each side of the triangle is 21

3 = 7 inches.

2. Determine the Perimeter of the Hexagon: A regular hexagon is made up of six equilateral triangles. Each
side of the hexagon is the same length as a side of these triangles.

3. Calculate the Total Perimeter: The perimeter of the hexagon is the sum of the lengths of its six sides. Since
each side is 7 inches long, the perimeter of the hexagon is 6× 7 = 42 inches.

Thus, the perimeter of the regular hexagon is 42 inches.

Critic iteratively helps refine the answer

Problem Let z be a complex number such that z5 = 1 and z ̸= 1. Compute

z +
1

z
+ z2 +

1

z2
.

Answer 1 Given that z is a complex number satisfying z5 = 1 and z ̸= 1, we need to compute the expression

z +
1

z
+ z2 +

1

z2
.

First, note that since z5 = 1, z is a fifth root of unity. The fifth roots of unity are given by e2πki/5 for k =
0, 1, 2, 3, 4. Since z ̸= 1, we have z = e2πki/5 for k = 1, 2, 3, 4.
Now, let’s compute the expression step-by-step:
1. Compute z + 1

z :

z +
1

z
= z +

z

|z|2
= z + z

Since z is a unit magnitude complex number (as it is a root of unity), |z| = 1, and thus z = 1
z . Therefore,

z +
1

z
= z + z = z +

1

z

25

Reinforce LLM Reasoning through Multi-Agent Reflection

2. Compute z2 + 1
z2 :

z2 +
1

z2
= z2 +

z2

|z2|2
= z2 + z2

Since z2 is also a unit magnitude complex number, z2 = 1
z2 . Therefore,

z2 +
1

z2
= z2 + z2 = z2 +

1

z2

3. Combine the results:
z +

1

z
+ z2 +

1

z2
= (z +

1

z
) + (z2 +

1

z2
)

Since z + 1
z = z + z and z2 + 1

z2 = z2 + z2, and knowing that the sum of all fifth roots of unity is zero (as they
form a geometric series with sum to zero), we have:

z + z + z2 + z2 = 0

Thus, the final answer is:
0

Feedback 1 Upon reviewing the previous response, I noticed a few points that need attention:
1. Sum of Fifth Roots of Unity: The statement that the sum of all fifth roots of unity is zero is correct. However,

the reasoning provided in the solution does not explicitly use this property correctly. The sum of the fifth roots
of unity is indeed zero, but the solution should clearly state this and use it to simplify the expression.

2. Simplification of the Expression: The solution does not clearly show how the expression z + 1
z + z2 + 1

z2

simplifies using the properties of the fifth roots of unity. The steps should be more detailed to show the
intermediate calculations.

3. Use of Conjugates: The solution mentions the use of conjugates but does not explicitly show how the conju-
gates are used in the simplification process. This could be made clearer for better understanding.

4. Final Calculation: The final calculation should be more explicit in showing how the sum of the terms equals
zero. The solution should clearly state that the sum of the fifth roots of unity (excluding 1) is zero, and thus
the expression simplifies to zero.

By addressing these points, the solution can be made more accurate and complete.

Answer 2 Given that z is a complex number satisfying z5 = 1 and z ̸= 1, we need to compute the expression

z +
1

z
+ z2 +

1

z2
.

First, note that since z5 = 1, z is a fifth root of unity. The fifth roots of unity are given by e2πki/5 for k =
0, 1, 2, 3, 4. Since z ̸= 1, we have z = e2πki/5 for k = 1, 2, 3, 4.
Now, let’s compute the expression step-by-step:

1. Sum of Fifth Roots of Unity: The sum of all fifth roots of unity is zero. This can be shown using the formula
for the sum of a geometric series:

1 + z + z2 + z3 + z4 = 0

Since z ̸= 1, we exclude 1 from our consideration.

26

Reinforce LLM Reasoning through Multi-Agent Reflection

2. Compute z + 1
z :

z +
1

z
= z + z

Since z is a unit magnitude complex number (as it is a root of unity), |z| = 1, and thus z = 1
z . Therefore,

z +
1

z
= z + z

3. Compute z2 + 1
z2 :

z2 +
1

z2
= z2 + z2

Since z2 is also a unit magnitude complex number, z2 = 1
z2 . Therefore,

z2 +
1

z2
= z2 + z2

4. Combine the results:
z +

1

z
+ z2 +

1

z2
= (z + z) + (z2 + z2)

Since the sum of all fifth roots of unity (excluding 1) is zero, we have:

z + z + z2 + z2 = 0

Thus, the final answer is:
0

Feedback 2 Upon reviewing the previous response, I noticed a few points that need clarification or correction:

1. Sum of Fifth Roots of Unity: The statement that the sum of all fifth roots of unity is zero is correct. However,
the sum of the fifth roots of unity excluding 1 is not necessarily zero. The sum of the fifth roots of unity
excluding 1 is actually −1.

2. Compute z + 1
z and z2 + 1

z2 : The steps to compute z + 1
z and z2 + 1

z2 are correct, but the final combination
step needs to be revisited based on the correct sum of the fifth roots of unity excluding 1.

3. Final Combination: The final combination step should consider the correct sum of the fifth roots of unity
excluding 1, which is −1.

These points highlight the need to correct the final combination step to ensure the accuracy of the solution.

Answer 3 Given that z is a complex number satisfying z5 = 1 and z ̸= 1, we need to compute the expression

z +
1

z
+ z2 +

1

z2
.

First, note that since z5 = 1, z is a fifth root of unity. The fifth roots of unity are given by e2πki/5 for k =
0, 1, 2, 3, 4. Since z ̸= 1, we have z = e2πki/5 for k = 1, 2, 3, 4.
Now, let’s compute the expression step-by-step:

1. Sum of Fifth Roots of Unity: The sum of all fifth roots of unity is zero. This can be shown using the formula
for the sum of a geometric series:

1 + z + z2 + z3 + z4 = 0

Since z ̸= 1, we exclude 1 from our consideration. The sum of the other four fifth roots of unity is:

z + z2 + z3 + z4 = −1

27

Reinforce LLM Reasoning through Multi-Agent Reflection

2. Compute z + 1
z :

z +
1

z
= z + z

Since z is a unit magnitude complex number (as it is a root of unity), |z| = 1, and thus z = 1
z . Therefore,

z +
1

z
= z + z

3. Compute z2 + 1
z2 :

z2 +
1

z2
= z2 + z2

Since z2 is also a unit magnitude complex number, z2 = 1
z2 . Therefore,

z2 +
1

z2
= z2 + z2

4. Combine the results:
z +

1

z
+ z2 +

1

z2
= (z + z) + (z2 + z2)

We know that z+ z2+ z3+ z4 = −1. Since z+ z and z2+ z2 are real numbers (as they are sums of complex
conjugates), we can write:

z + z + z2 + z2 = −1

Thus, the final answer is:
−1

Failure Pattern: Over-thinking on easy tasks

Problem Marissa is hiking a 12-mile trail. She took 1 hour to walk the first 4 miles, then another hour to walk
the next two miles. If she wants her average speed to be 4 miles per hour, what speed (in miles per hour) does she
need to walk the remaining distance?
Answer 1 To solve this problem, we need to calculate the total time Marissa has spent hiking and the distance she
has covered so far. Then, we can determine the speed she needs to maintain for the remaining distance to achieve
an average speed of 4 miles per hour.

1. Calculate the distance covered so far: Marissa has walked the first 4 miles in 1 hour and the next 2 miles in
1 hour. So, the total distance covered so far is:

4 miles + 2 miles = 6 miles

2. Calculate the time spent so far: Marissa has spent 1 hour walking the first 4 miles and another hour walking
the next 2 miles. So, the total time spent so far is:

1 hour + 1 hour = 2 hours

3. Determine the total time required to complete the trail at an average speed of 4 miles per hour: The
total distance of the trail is 12 miles. To maintain an average speed of 4 miles per hour, the total time required
to complete the trail is:

12 miles
4 miles per hour

= 3 hours

28

Reinforce LLM Reasoning through Multi-Agent Reflection

4. Calculate the remaining time to complete the trail: Marissa has already spent 2 hours hiking. Therefore,
the remaining time to complete the trail is:

3 hours− 2 hours = 1 hour

5. Calculate the remaining distance: The total distance of the trail is 12 miles, and Marissa has already covered
6 miles. Therefore, the remaining distance is:

12 miles− 6 miles = 6 miles

6. Determine the speed required to cover the remaining distance in the remaining time: To cover the
remaining 6 miles in 1 hour, Marissa needs to walk at a speed of:

6 miles
1 hour

= 6 miles per hour

Therefore, Marissa needs to walk at a speed of 6 miles per hour to cover the remaining distance and maintain an
average speed of 4 miles per hour for the entire trail.

Feedback 1 Upon reviewing the previous response, I noticed a few points that need attention:

1. Average Speed Calculation: The average speed for the entire trail should be calculated based on the total
distance and the total time. The initial calculation of the total time required to complete the trail at an average
speed of 4 miles per hour is correct.

2. Remaining Distance and Time: The calculation of the remaining distance and the remaining time is correct.
However, the speed required to cover the remaining distance in the remaining time should be re-evaluated to
ensure it aligns with the average speed requirement.

3. Speed Requirement: The speed required to cover the remaining distance in the remaining time should be
recalculated to ensure it meets the average speed requirement for the entire trail.

These points highlight areas where the solution might need further verification or adjustment to ensure accu-
racy and completeness.

Answer 2 Upon reflecting on the previous response, let’s correct and clarify the steps to ensure accuracy.

1. Calculate the distance covered so far: Marissa has walked the first 4 miles in 1 hour and the next 2 miles in
1 hour. So, the total distance covered so far is:

4 miles + 2 miles = 6 miles

2. Calculate the time spent so far: Marissa has spent 1 hour walking the first 4 miles and another hour walking
the next 2 miles. So, the total time spent so far is:

1 hour + 1 hour = 2 hours

3. Determine the total time required to complete the trail at an average speed of 4 miles per hour: The
total distance of the trail is 12 miles. To maintain an average speed of 4 miles per hour, the total time required
to complete the trail is:

12 miles
4 miles per hour

= 3 hours

4. Calculate the remaining time to complete the trail: Marissa has already spent 2 hours hiking. Therefore,
the remaining time to complete the trail is:

3 hours− 2 hours = 1 hour

29

Reinforce LLM Reasoning through Multi-Agent Reflection

5. Calculate the remaining distance: The total distance of the trail is 12 miles, and Marissa has already covered
6 miles. Therefore, the remaining distance is:

12 miles− 6 miles = 6 miles

6. Determine the speed required to cover the remaining distance in the remaining time: To cover the
remaining 6 miles in 1 hour, Marissa needs to walk at a speed of:

6 miles
1 hour

= 6 miles per hour

However, we need to ensure that this speed aligns with the average speed requirement for the entire trail. The
average speed is calculated as the total distance divided by the total time. Marissa has already walked 6 miles in 2
hours, which is an average speed of:

6 miles
2 hours

= 3 miles per hour

To maintain an average speed of 4 miles per hour for the entire 12-mile trail, she needs to cover the remaining 6
miles in:

6 miles
4 miles per hour

= 1.5 hours

This means Marissa needs to adjust her pace to cover the remaining 6 miles in 1.5 hours, which is a speed of:

6 miles
1.5 hours

= 4 miles per hour

Therefore, Marissa needs to walk at a speed of 4 miles per hour to cover the remaining distance and maintain an
average speed of 4 miles per hour for the entire trail.

Failure Pattern: Over-pessimistic feedback

Problem The results of a cross-country team’s training run are graphed below. Which student has the greatest
average speed?

[asy]
f o r (i n t i = 1 ; i <= 7 ; ++ i)
{

draw ((i ,0) − −(i , 6)) ;
}

f o r (i n t i = 1 ; i <= 5 ; ++ i)
{

draw ((0 , i) − −(8 , i)) ;
}
draw ((− 0 . 5 , 0) − − (8 , 0) , l i n e w i d t h (1)) ;
draw ((0 , − 0 . 5) − − (0 , 6) , l i n e w i d t h (1)) ;
l a b e l (” O ” , (0 , 0) , SW) ;
l a b e l (s c a l e (. 8 5) * r o t a t e (9 0) * ” d i s t a n c e ” , (0 , 3) , W) ;
l a b e l (s c a l e (. 8 5) * ” t ime ” , (4 , 0) , S) ;
d o t ((1 . 2 5 , 4 . 5)) ;
l a b e l (s c a l e (. 8 5) * ” Evelyn ” , (1 . 2 5 , 4 . 8) , N) ;

30

Reinforce LLM Reasoning through Multi-Agent Reflection

d o t ((2 . 5 , 2 . 2)) ;
l a b e l (s c a l e (. 8 5) * ” B r i a n a ” , (2 . 5 , 2 . 2) , S) ;
d o t ((4 . 2 5 , 5 . 2)) ;
l a b e l (s c a l e (. 8 5) * ” C a r l a ” , (4 . 2 5 , 5 . 2) , SE) ;
d o t ((5 . 6 , 2 . 8)) ;
l a b e l (s c a l e (. 8 5) * ” Debra ” , (5 . 6 , 2 . 8) , N) ;
d o t ((6 . 8 , 1 . 4)) ;
l a b e l (s c a l e (. 8 5) * ” Angela ” , (6 . 8 , 1 . 4) , E) ;
[/ a sy]

Answer 1 [Resoning...] Comparing the average speeds, we find that Evelyn has the greatest average speed.

Evelyn

Feedback 1 Upon reviewing the previous response, I noticed a few errors and gaps: [Feedback...]
Answer 2 [Resoning...] Comparing the average speeds, we find that Carla has the greatest average speed.

Carla

Feedback 2 Upon reviewing the previous response, I noticed a few errors and gaps: [Feedback...]
Answer 3 [Resoning...] Comparing the average speeds, we find that Debra has the greatest average speed.

Debra

Feedback 3 Upon reviewing the previous response, I noticed a few errors and gaps: [Feedback...]
Answer 4 [Resoning...] Comparing the average speeds, we find that Angela has the greatest average speed.

Angela

31

