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Fig. 1: As a robot navigates an unknown environment, it only observes its immediate surroundings due to sensor range limits. However,
long-horizon global path planning could be significantly improved if the robot can estimate semantics of far-field regions outside its
visibility. We propose learning priors over the semantic structure of navigation environments using a diffusion model that “inpaints”
the semantics of unobserved regions conditioned on observed regions. By sampling a diverse set of high-fidelity far-field environment
maps that are consistent with already-observed regions, our method can plan efficient, low-cost paths in an uncertainty-aware manner that
improves navigation performance.

Abstract— Robots have limited sensor ranges, restricting
what they can observe, complicating navigation through a-
priori unknown environments. If environment structure is
present, priors over this structure can extend the utility of
local observations and improve navigation performance. In this
work, we propose learning priors over the semantic structure
of navigation environments using state-of-the-art generative
diffusion models. We show that diffusion models can capture
complex spatial dependencies in overhead semantic maps,
and are able to infer the semantics of far-away unobserved
regions conditioned on local semantics already observed by the
robot. By sampling a diverse, multi-modal set of high-fidelity
semantic maps that are consistent with observed regions, we are
able to estimate far-field navigation costs in an uncertainty-
aware manner. Our preliminary investigations suggest that
diffusion-based uncertainty-aware navigation costs can enable
a downstream global planner to find more efficient paths and
improve navigation performance.

I. INTRODUCTION

As autonomous mobile robots navigate in a-priori unknown
environments, they must plan paths to reach goal locations
while optimizing for desired mission objectives such as time-
to-goal, safety or energy efficiency, while relying solely on
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information obtained from on-board sensors with limited
sensing range. Whereas local path planners operate within
the sensing range primarily to avoid immediate obstacles,
global planners reason about long-horizon paths that extend
beyond the sensing range. Global reasoning is essential for
efficient navigation. For example, deciding whether to stay
on a road even if it is long and windy versus cutting through
a dense forest could have a significant impact on navigation
performance.

However, such decisions require estimating which direc-
tions the road likely extends in, and how expansive the forest
might be. In other words, global planners need estimates of
environment features that lie far beyond the robot’s sensing
range.

Estimating the semantics of such “far-field” invisible
terrain is challenging due to the immense diversity and
complexity of natural environments. For example, given a
partially observed region in Fig. 1 (left), the unobserved
region (in gray) might contain many different environment
layouts Fig. 1 (right) that are consistent with the observed
data. It is nearly impossible to make precise predictions about
far-away terrain based on a local knowledge of environment
semantics. This inherent unpredictability requires that the
robot’s perception system also produce estimates of uncer-
tainty in far-field environment structure to enable principled
uncertainty-aware global planning, which is challenging for
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most deep-learning methods.
In this work, we propose using diffusion models [20, 8, 21]

to learn priors over structures of far-field navigation environ-
ments. We show that diffusion models are able to capture
complex spatial dependencies in overhead semantic images
such as the linearity of roads and co-location of terrains like
marshes and water bodies. Then, we condition diffusion-
based priors on local semantics observed by the robot to
infer the structure of far-field regions that are not directly
visible. Our diffusion model is able to sample a diverse set of
high-fidelity far-field semantic maps that are consistent with
already-observed regions ( Fig. 1). This diverse yet feasible
sampling enables us to estimate probability distributions over
far-field navigation costs in an uncertainty aware manner.

We contribute two diffusion-based approaches for far-
field semantics prediction: (1) training a conventional un-
conditional diffusion model that formulates far-field predic-
tion given local semantics as a test-time inference problem
(Sec. III-C), and (2) training a conditional diffusion model
to take observed semantics as additional input and directly
predict far-field semantics (Sec. III-D). Our preliminary
investigation indicates that uncertainty-aware far-field pre-
dictions could enable a downstream global planner to plan
more efficient paths and improve navigation performance.

II. PROBLEM FORMULATION

We consider the problem of 2D navigation from an overhead
view where the state of the mobile robot at any given time
is denoted by s ∈ R2. The robot aims to travel from its
current state scurr ∈ R2 to a goal state sgoal ∈ R2 along
a continuous trajectory τ(t) : [0, 1] → R2. Each location
s ∈ R2 is assumed to belong to one of C semantic classes
C := {1, . . . , C}. For example, in outdoor navigation, these
classes could correspond to “road”, “grass”, “building” etc.
We associate a semantic label x(s) : R2 → C with each state
that is a property of the environment the robot navigates.

The cost of a semantic label csem : C → R+ denotes the
difficulty of traversing a region with that label. For example,
the cost of traversing a “road” would be lower than traversing
over tall “grass”. This mapping from semantic labels to
costs is usually defined by domain experts or learned from
data. We can extend the cost of semantic labels to an entire
trajectory as ctraj(τ) : T → R+ =

∫ 1

0
csem(x(τ(t))) dt, where

T is the space of all trajectories. Optimal path planning can
be expressed as a constrained optimization problem:

τ∗ =arg min
τ∈T

∫ 1

0

csem(x(τ(t))) dt (1)

s.t. τ(0) = scurr, τ(1) = sgoal

In order to assist a global planner to plan trajectories that
minimize costs over a long horizon, we predict seman-
tics over a “far-field” rectangular region around the robot:
Ωffield := {s ∈ R2

∣∣ ∥s − scurr∥1 ≤ wffield}. In a-priori un-
known environments, the robot infers semantic labels using
onboard sensors such as cameras and LiDARs to observe
its surroundings, combined with perception algorithms that
predict semantic labels from sensor data. However, due to

limited range of onboard sensing, the robot can only detect
semantic labels in a localized circular region around the
robot’s current position Ωsense := {s ∈ R2

∣∣ ∥s − scurr∥2 ≤
rsense} that is much smaller than the far-field i.e. rsense ≪
wffield. This divides the far-field space Ωffield into two sets:
observed states Ωobs ⊆ Ωffield where an estimated semantic
mapping x(s) has been obtained, and unobserved states
Ωunobs = Ωffield \Ωobs whose semantic labels have not been
observed until the robot explores the environment more.

We assume that the robot is able to perfectly estimate
the semantics of observed regions x(Ωobs), and needs to
infer the semantics of unobserved states x(Ωunobs). The
unobserved semantics, however, are not independent from
the semantics of observed states. Strong spatial correlations
are common in outdoor environments. For example, marshes
are often close to bodies of water and roads are usually con-
tinuous and extend linearly. Therefore, the main objective of
this paper is to accurately predict the conditional probability
distribution p(x(Ωunobs) |x(Ωobs)). These predictions will
then be used to plan trajectories that minimize navigation
costs over the far-field region.

III. METHODS

Our uncertainty-aware global navigation framework is com-
posed of three stages. First, given the observations x(Ωobs),
we produce an estimate of p(x(Ωunobs) |x(Ωobs)). Next, we
accumulate the estimates over time into a cost map belief.
Finally, we deploy a planner that computes the least-cost
path from the current robot state scurr to the goal state sgoal
using the maximum a-posteriori (MAP) cost map estimate.

A. Data pre-processing and notation

In order to leverage diffusion models (described in Sec. III-
B) that operate in continuous spaces, we convert discrete
semantic maps into continuous images. We associate each se-
mantic category with a unique 3D RGB color tuple RGB(c) :
C → [0, 1]3. Then, we define continuous semantic images for
observed, unobserved and the entire far-field region as

xobs/xunobs/xffield := {RGB(x(s)) | s ∈ Ωobs/Ωunobs/Ωffield}

respectively. Examples of such images are shown in Fig. 1.
We define the binary observation mask that indexes the
observed pixels as mobs := {I(s ∈ Ωobs) | s ∈ Ωffield}.

B. Preliminaries: denoising diffusion probabilistic models

Diffusion models [20, 8, 21] are a recently-proposed,
highly performant class of generative models that can learn
and sample from a given continuous data distribution x0 ∈
RD ∼ p(x0). They have shown to be extremely effective
in learning complex, multi-modal image distributions. In
this work, we use Denoising Diffusion Probabilistic Models
(DDPM) [8] to learn distributions over continuous far-field
semantic images x0 ≡ xffield. DDPM introduces T latent
variables x1, . . . ,xT by the “forward diffusion process”
q(xt |xt−1) := N

(
xt ;

√
1− βt xt−1, βtI

)
that progres-

sively adds small amounts of i.i.d. Gaussian noise with
variance βt > 0 at each diffusion timestep t ∈ {1, . . . , T}.



Algorithm 1 Unconditional diffusion: inpainting as inference

Require: Unconditional diffusion model ϵθ(xt), xobs, mobs

1: xT ∼ N(0, I)
2: for t = T, . . . , 1 do

▷ Standard reverse diffusion step [8]
3: µθ(xt) :=

1√
αt

(
xt − βt√

1−αt
ϵθ(xt)

)
4: xt−1 ∼ N(µθ(xt), β̃t I)

▷ In-painting step [21]
5: xobs

t−1 ∼ N
(√

αt−1x
obs, (1− αt−1) I

)
▷ Noised xobs

6: xt−1

[
mobs

]
:= xobs

t−1 ▷ Overwrite observed region

▷ MCMC mixing steps to improve consistency [21, 5]
7: for k = 1, . . . ,Mt do
8: sθ(xt−1) := − 1√

1−αt−1

ϵθ(xt−1) ▷ Score function

9: xt−1 ∼ N (xt−1 + λsθ(xt−1), 2λI) ▷ MCMC step

10: end for
11: end for
12: return x0

With an appropriate noise schedule β1:T , the final latent
variable xT is approximately normally distributed i.e. xT ∼
N(0, I).

Because forward diffusion is Gaussian, latent variables
from intermediate timesteps xt can be directly sampled from
x0 as xt =

√
αt x0+

√
(1− αt) ϵ where αt =

∏t
s=1(1−βt)

[20, 8] and ϵ ∼ N(0,1) is noise sampled from the standard
Normal distribution. DDPM learns to denoise xt. It trains a
neural network ϵθ(xt) with weights θ to regress xt to the
noise ϵ that generated xt from x0. This allows DDPM to
perform “reverse diffusion” that progressively denoises xT to
x0. In the limit of small βt, the reversal of forward diffusion
q(xt−1 |xt) becomes Gaussian [20] and can be approximated
as q(xt−1 |xt) ≈ pθ (xt−1 |xt) = N

(
xt−1 ; µθ(xt), β̃t

)
,

where µθ is a reparametrization of ϵθ (line 3 of Alg. 1). See
Ho et al. [8] for more details.

Given a dataset of far-field semantic maps {xffield
(n) }Nn=1

obtained from [16], and observed semantics xobs provided at
test-time, we wish to predict the distribution p(xunobs |xobs)
where xffield ≡ (xunobs,xobs). In the navigation domain,
the observed region is small relative to the unobserved
region that is to be predicted. As a result, empirically,
direct application of methods such as RePaint [13] fail to
lead to plausible completions. See Appendix V for more
detail. Additionally, we are sensitive to the compute time
required to produce completions. To address these problems,
we consider two approaches using diffusion models.

C. Unconditional diffusion model: inpainting as inference

This is the conventional approach of fitting a diffusion
model to fully-observed images {xffield

(n) }Dn=1 and learning
pθ(x

ffield). The diffusion model is “unconditional” because
its noise function ϵθ(xt) only takes the output of the previous
diffusion step as input.

Given (xobs,mobs) at test time, we treat sampling from
pθ(x

unobs |xobs) as a test-time inference problem with re-
spect to the learned joint model pθ(x

obs,xunobs). In the

Algorithm 2 Conditional diffusion: inpainting mask as input

Require: Conditional model ϵθ(xt,x
obs,mobs), xobs, mobs

1: xT ∼ N(0, I)
2: for t = T, . . . , 1 do

▷ Conditional reverse diffusion step
3: µθ(xt,x

obs,mobs) :=
1√
αt

(
xt − βt√

1−αt
ϵθ(xt,x

obs,mobs)
)

4: xt−1 ∼ N
(
µθ(xt,x

obs,mobs), β̃t I
)

5: end for
6: return x0

image generation literature, this is called “inpainting” un-
known pixels given known pixels. Unconditional diffusion
models are known to perform test-time inpainting even
if not explicitly trained to do so [20, 21, 13]. We find
that vanilla inpainting struggles to generate samples xunobs

that are consistent with xobs, especially when the observed
region is small. We overcome this problem by extending the
inpainting approach to perform additional Langevin Markov
Chain Monte Carlo (MCMC) steps at each noise level [21, 5].
MCMC steps encourage mixing of the sample at intermediate
distributions pθ(xt) of the reverse diffusion process resulting
in increased consistency between xobs

t and xunobs
t . Our

detailed algorithm is outlined in Alg. 1.

D. Conditional diffusion model: inpainting mask as input

While test-time inference on unconditional diffusion mod-
els can generate high-fidelity inpaintings consistent with
observed regions, the critical MCMC procedure can be very
slow. Therefore, we also investigate a faster approach using
conditional diffusion models [7, 22] that takes the observed
data (xobs,mobs) as additional inputs. Specifically, we mod-
ify the U-Net [17] architecture of the diffusion model’s noise
function ϵθ(xt) to take four additional input channels —
three RGB channels corresponding to xobs and one binary
channel corresponding to mobs. The functional form of the
conditional noise function now becomes ϵθ(xt,x

obs,mobs).
This requires us to modify the training procedure and gen-

erate a dataset of pairs of semantic images and observation
masks {(xffield

(n) ,mobs
(n))}

N
n=1. During training, we randomly

generate masks that correspond to simple, linear robot tra-
jectories. First, we sample a pixel on the perimeter of the
image and create a line segment between the selected pixel
and the center of the image; the line segment corresponds to a
hypothetical robot trajectory. The observed region constitutes
all pixels that are within the sensor range (rsense) from
some point along the trajectory. The mask mobs is set to
1 in the observed region and 0 in the unobserved regions.
Once the conditional diffusion model is trained, the test-time
inpainting procedure is a straightforward extension of the
standard reverse diffusion process outlined in Alg. 2 where
(xobs,mobs) are passed as additional inputs.

E. Fusing observations

The estimator maintains a belief over the cost of travers-
ing through a location s given previous observations,



p(csem(s)|xobs
1:t ). The area is discretized into a grid and we

assume that the cost belief for each cell is a Gaussian
which is independent of all other cells. The samples from
the diffusion model are converted into sampled semantic
maps by assigning to each pixel the class with the nearest
associated color in the RGB color space. For each pixel in
the sampled semantic maps, we form Gaussian observations
by selecting a mean and a measurement noise. The mean
is selected as the cost associated with the most commonly
occurring class type at that location. The measurement noise
is computed as the fraction of samples that disagree with the
most commonly occurring class type. The cost belief at each
cell is updated using the Kalman Filter update equations.

IV. EXPERIMENTS

Environment and trials: We explore the characteristics of
our approach outlined in Sec. III in simulated long-horizon
navigation problems. For training, a total of 25, 000 semantic
maps are sampled evenly from five counties mapped by
the Chesapeake Bay Land Use and Land Cover (LULC)
project [16], which has mapped land cover and land use over
the 250,000 square kilometers that makes up the Chesapeake
Bay watershed at meter-per-pixel resolution. Each semantic
map is scaled to be a 128×128 semantic image correspond-
ing to 256 meter × 256 meter area (wffield = 128m). For
testing, we sampled ten 5x5 km maps from counties where
training data was not drawn from. In each map, five feasible
start-goal pairs were sampled. We translate each semantic
class into a manually picked traversal speed. These maps
capture real semantic distributions across the northeastern
United States. An example map is shown in the appendix.
Baseline and oracles: We assume that the robot can sense
within a radius rsense = 50 meters. We compare our dif-
fusion approaches to a baseline (Base-50m) that observes
the ground truth costs also within 50 meter radius of scurr.
To benchmark performance, we also report the performance
of “oracle” policies: Oracle-60m, Oracle-70m, and Oracle-
100m that have farther sensing capabilities. We evaluate two
variants of our approach: Uncond-Diff using unconditional
diffusion described in Sec. III-C, and Cond-Diff using con-
ditional diffusion described in Sec. III-D.

In each problem, the robot iterates through a traditional
sense-plan-act cycle. Costmaps are updated with local and
diffusion observations if applicable. Replanning is performed
on the updated costmaps with D*lite [12]. Finally the agent
navigates 20m along the most recent trajectory before re-
peating. Trials are terminated when the agent reaches the
goal. Diffusion observations are only employed every five
observation cycles.
Performance: As of writing only a preliminary investi-
gation with 50 trials has been completed and is reported
in Appendix III. Since the trails were limited, the results
we obtained were not statistically significant. Furthermore,
we were only able to compute average case performance
in our preliminary investigation where our methods didn’t
show statistically significant positive or negative trends. We
intend to perform a more focused study to characterize

Fig. 2: Visualization of an instance where Cond-Diff significantly
improved navigation. (a) The robot’s semantic observation history.
(b) Samples from the diffusion model conditioned on observed
semantics. (c) Baseline plan that doesn’t use far-field predictions.
The red square is the robot’s position, green line the robot’s state
history, and white line the robot’s future plan. The robot’s goal
lies up and left from its current position. The baseline using a
nominal unobserved cost drives the robot into the field. (d) Costmap
incorporating semantics from diffusion model and corresponding
plan. The inferred costs direct the robot towards the road instead
of the field. This decision reduces the total accumulated cost by 23
minutes in a trial that took the baseline 59 minutes to complete.

situations where diffusion-based inpainting outperforms or
underperforms the baseline. However, our explorations and
qualitative results suggest that diffusion-based inpainting is
a promising research direction that can potentially improve
navigation performance; we will work on more thorough
quantitative evaluation after the deadline.
Qualitative example: Figure 2 demonstrates a case in a
trial where using learned environment structure improves
navigation, reducing the accumulated cost by 39% for the
trial. Please see caption for details. We provide an additional
example of inpainting benefiting navigation, and structure
completion with uncertainty in the Appendix.

V. FUTURE WORK

The proposed approach has many limitations we are in-
terested in exploring. Diffusing samples is expensive, and
intelligently allocating compute to predict environment struc-
ture when it is likely to be most impactful would free up
platform resources. It would also be interesting to deploy
this approach at multiple scales. Instead of inpainting in the
current robot’s state, clever selection of trajectory history
and inpainting window could enable our approach to capture
influential environmental structure at much coarser (or finer)
spatial scales. We observed that the number of MCMC steps
required to produce globally consistent inpainting samples
(Sec. III-C) can vary significantly depending on the size and
properties of xobs. Adaptively tuning the number of MCMC
steps to trade-off speed and accuracy in a principled manner
is another promising direction for future work.



Appendix
Learning semantic traversability priors using diffusion models

for uncertainty-aware global path planning

APPENDIX I
RELATED WORKS

Safely and efficiently navigating through a priori unknown
natural environments requires richer environment represen-
tations than occupancy maps traditionally used for indoor
settings.

To form these richer representations recent approaches
often learn to map sensor data directly to traversability
maps or costmaps [2, 19, 6]. Approaches also often leverage
semantics [14] (usually extracted from images [3] or lidar
[23]) and map these semantics to costs either manually, or
via learning from experience [1].

To fuel these richer representations, dense sensor data is
usually required, which limits the effective sensing range
to tens of meters. With this narrow view of its surround-
ings, myopic behavior is common which puts the robot at
higher risk and increases navigation cost. Even with recent
approaches to extend this range [4], extending effective
observation range in settings with predictable environment
structure can still benefit navigation performance.

Previous works for outdoor navigation have leveraged
inpainting to produce dense maps from features extracted
from sensor data that may not provide dense coverage of
a region [19, 15]. However, these works don’t focus on
extending the effective range of their mapping techniques
and do not estimate confidences over inpainting decisions,
which is critical to extend inference beyond regions with
strong observational support.

Closer in spirit to our work, [18] investigates learning
topological structure of subterranean environments to aid
with the task of goal selection for efficient exploration of
unknown environments. Our work differs in application to
navigation in more natural environments where topological
maps are not sufficient for safe and efficient navigation.

In [9] the authors more explicitly look at predicting
environment structure beyond the range of the robot’s sensors
by inpainting occupancy grids beyond the sensors effec-
tive range. In extensions to this work the authors added
uncertainty over the inpainted maps by looking at inter-
batch variation [10], and demonstrate their approach can help
high-speed vehicles extend local planning horizons beyond
traditional sensor ranges, improving performance [11]. In
this work, we focus more explicitly on using environment
structure to inform global navigation with richer costmaps.
Additionally, we leverage the uncertainty produced by our
approach to fuse observations over time.

Fig. 3: Example of road completion. Given the semantic observa-
tion shown in the top left, the diffusion model proposes environment
samples shown in the top right. These samples produce the costmap
in the bottom left and the uncertainty map in the bottom right. In
both darker color indicates lower values.)

APPENDIX II
ADDITIONAL QUALITATIVE NAVIGATION RESULTS

One example of learned structure can be seen in Figure 3.
Here, the robot sits on a road surrounded by forest. The
strong structure in roads results in many of the sampled
environments shown in the top right continuing the observed
road, resulting in the low-cost continuation of the road in
the produced costmap and low uncertainty region under
the predicted continuation of the road. Around this low
uncertainty region lies the highest uncertainty in the image.
This is caused by the sampled roads diverging in direction.

With less structure, the uncertainty increases with distance
from observed semantics faster around the forest than the
road, as sampled worlds diverge further from the known
semantics. Though uncertainty increases, the dominant class
remains forest across the samples, resulting in the high cost
surrounding the road in the costmap.

APPENDIX III
PRELIMINARY QUANTITATIVE RESULTS

In this submission, we conduct a preliminary investigation
using 50 trials. We report:

1) The percentage of total trials that improved (over base-
line).



Fig. 4: Visualization of an instance where Cond-Diff significantly
improved navigation. The top left image shows the robot’s semantic
observation history, used to condition the samples shown in the top
right. These samples are reduced and added to the costmap shown
in the bottom right, where the red square is the robot’s position,
green line the robot’s state history, and white line the robot’s future
plan. The robot’s goal lies up and left from its current position. The
inferred costs direct the robot towards the road instead of towards
the field as the baseline does in the bottom left image. This decision
reduces the total accumulated cost by 6 minutes in a trial that took
the baseline 106 minutes to complete

2) Average percent difference of cost (time, compared to
baseline cost) across trials.

We report these results in Table I.

As of writing with the limited number of trials the results
we obtained were not statistically significant. Furthermore,
we were only able to compute average case performance
in our preliminary investigation where our methods didn’t
show statistically significant positive or negative trends. We
intend to perform a more focused study to characterize
situations where diffusion-based inpainting outperforms or
underperforms the baseline. However, our explorations and
qualitative results suggest that diffusion-based inpainting is
a promising research direction that can potentially improve
navigation performance.

Method Percentage of
trials improved

Average percent
of cost increase

Cond-Diff 52%± 14% 1.1%± 4.9%
Uncond-Diff 27%± 15%∗ 9.3%± 5.9%∗

Oracle-60m 70%± 12% 1.1%± 3.8%
Oracle-70m 70%± 12% −0.81%± 3.8%
Oracle-100m 84%± 10% −8.7%± 3.5%

TABLE I: Results of preliminary evaluation. Intervals indi-
cate 95% confidence. ∗ indicates that only 33/50 trials were
completed. Negative differences indicate reduction in cost.

Fig. 5: An example of a semantic map and its corresponding
costmap sampled from [16].

Fig. 6: Example datapoints from the STRIPES dataset.

APPENDIX IV
EXAMPLE OF EVALUATION ENVIRONMENT

An example evaluation environment is shown in Figure
5. Semantics from this 5km × 5km map are translated into
costs (traversal times, in seconds) manually, producing the
costmap on the right of the figure.

APPENDIX V
DIFFUSION SAMPLING ANALYSIS ON TOY DATASET

Judging the quality of completions can be difficult when
working with real data. We first choose to examine the
completions for a simplified dataset and then extrapolate our
learnings to our dataset of interest. We start by introducing
the STRIPES dataset, which contains 25,000 images of
stripes of varying thickness and orientation. The STRIPES
dataset is generated by randomly sampling spatial sinusoids
phases and angles spanning in [0, 2π], and wavelengths
spanning from [5, 20] pixels. For some examples, see Figure
6. This dataset contains global structure that a diffusion
model must learn to accurately generate, akin to global
spatial dependencies present in real terrain images. With
this dataset, implausible completions are very easy to judge.
Using the observations shown in Figure 7, we show the
generated completions.

We consider two types of masks shown in Fig. 7.
Fig. 7 (left) contains a smaller observed mask with larger



Fig. 7: Masks used to generate completions on STRIPES
dataset.

Fig. 8: Example completions from different methods.

Fig. 9: Sample datapoint and mask generate completions on
LULC dataset.

Fig. 10: Example completions on LULC dataset.



unobserved region; this is a harder task to infill. Fig. 7 (right),
which call the “inverse” mask contains a larger observed
region mask with smaller unobserved region; this is an easier
task to infill. We find in Fig. 8 that the vanilla inpainting
method and RePaint [13] are able to solve the easy problem
but struggle with the hard problem.

Our insight is that by performing additional MCMC up-
dates at each denoising timestep as described in Alg. 1,
the intermediate distributions are able to mix better and
the reverse diffusion process produces inpainting that are
consistent with the observed regions.

We make a similar observation with the LULC dataset [16]
in Fig. 10. When the problem is hard (i.e. the observed
region is small), vanilla inpainting and RePaint [13] produce
inpaintings that are essentially independent of the observed
regions. Both (1) the MCMC-based reverse diffusion (on the
unconditioned model) as well as (2) the conditional diffusion
model that is explicitly trained to perform inpainting, are
both able to produce inpaintings consistent with the observed
regions.

The number of MCMC steps required to produce globally
consistent inpainting samples (Sec. III-C, Alg. 1) is low
for “easy” problems, and high for “hard” problems. Since
the required number of MCMC steps can vary significantly
depending on the size and properties of xobs, estimating how
challenging a given inference problem at test-time is, and
adaptively tuning the number of MCMC steps to trade-off
speed and accuracy in a principled manner is a promising
direction for future work.
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