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Abstract

Finetuning LL.Ms with reinforcement learning
rely on preference data for reward model train-
ing and/or supervised fine-tuned policy opti-
misation. While significant effort has gone
into model architectures, RL algorithms, and
pipeline engineering — the input to this pipeline
has largely remained unchanged: pairwise pref-
erences. We argue that with the rise of Al-based
synthetic labelling, the cost-efficiency of binary
preferences should no longer be the deciding
factor on data acquisition. In this paper, we
study how annotation modality impacts reward
signal for reward model training and implicit-
reward-model instruction-tuning.

Starting from an existing dataset with multiple
completions from different chat-models, we
construct four new synthetic datasets, one for
each annotation modality: BINARY, BINARY-
MAGN, RANKING, and SINGLE. We measure
the impact of modality on the preference data
itself and on downstream reward signal by train-
ing reward models and DPO-tuned policies us-
ing each format across five different models of
different sizes and families.

We find that changing the input format sig-
nificantly impacts the outcomes. In particu-
lar ranking-based preference annotation consis-
tently outperforms alternatives for both reward
modeling and instruction-tuning from prefer-
ences, across model scales. The improvement
of ranking over binary preference is less not-
icable at smaller reward models but becomes
more significant as model capacity increases.

1 Introduction

Training large language models (LLMs) to be
aligned with human values and follow human in-
structions is a crucial post-training step in the
current NLP landscape. Current state-of-the-art
models achieve this alignment through preference-
based fine-tuning, typically using a combination
of supervised fine-tuning (SFT) and reinforcement
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Figure 1: Reward accuracy i.e. the mean of how often
the chosen rewards are greater than the corresponding
rejected rewards; averaged across 5 models of sizes
ranging from 1-8B

learning from human feedback (RLHF). The RLHF
pipeline, popularized by Ouyang et al. (2022), con-
sists of three key steps: fine-tuning on human
demonstrations, training a reward model on hu-
man preference comparisons, and optimizing the
SFT model using reinforcement learning guided by
the reward model’s outputs.

The quality and granularity of preference data play
a fundamental role in shaping the reward signal
— whether used to train an explicit reward model
or directly optimize a policy — which in turn influ-
ences the final instruction-tuned model’s behavior
(Ivison et al., 2024). The current general consensus
in RLHF is to task human annotators or a fron-
tier LLM with ranking a pair of responses for a
given prompt, generating pairwise preference data
(Lambert et al., 2024a; Dubey et al., 2024).

This paper investigates the impact of preference
data annotation strategy on reward modeling and
instruction-tuned policy performance. Specifically,
we seek to answer the following research question:
“How does the mode of collecting preference data



affect the learned reward signal and the final
performance of an instruction-tuned policy?”.
To answer this question, we conduct a series of
controlled experiments comparing four different
preference annotation formats:

* BINARY: Given a prompt and two comple-
tions, select one of the two provided comple-
tions.

* BINARYMAGN: Given a prompt and two com-
pletions, specify not only which completion
is better but also how strong the preference
is with O being ‘Neutral’, 1 being ‘Slightly
Preferred’ and 2 being ‘Highly Preferred’.

e SINGLE: Given a prompt and a completion,
rate the completion on a 1-5 Likert scale.

* RANKING: Given a prompt and k£ = 5 com-
pletions, rank the completions from best to
worst.

We construct four large-scale preference datasets,
one for each annotation modality by extending the
Nectar dataset (Zhu et al., 2023). We analyse the
agreement between labels from different annota-
tion formats, quantifying the variability introduced
by the task formulation. We find a moderate agree-
ment between the formats, indicating that the un-
derlying distribution is correlated but not identical.

We then train reward models and DPO-based
instruction-tuned policies on each annotation
modality, holding all other variables constant. All
differences in the outcome can be attributed to the
change in input data. We test the reward models
on REWARD-BENCH and the DPO models on 6
different LLLM datasets and find that the data for-
mat largely impacts the performance of the final
model. RANKING appears as the best performing
format across all experiments, showing that BI-
NARY should not be selected without further analy-
sis.

Our key contributions are as follows:

* Four new synthetic datasets for LLM instruc-
tion tuning with 100,000 samples each

* A comparison between the data distribution
under the different annotation formats

* An in-depth analysis of the impact of data
formats on reward models and DPO-based
policies

2 Related Work

Leike et al. (2018) were among the first to learning
implicit reward functions from user interactions
without the need for manual reward design. Ziegler
et al. (2019) showed that reward models trained
on pairwise human comparisons can steer gener-
ation towards preferred outputs without the need
for explicit references. Building on this, Stiennon
et al. (2020) showed that models trained on rewards
derived from human feedback outperformed those
using the traditional references. Askell et al. (2021)
were among the earliest to propose the system-
atic approach that applied RLHF to align general-
purpose language assistants with human values.

Ouyang et al. (2022) introduced the three-stage
RLHF pipeline combining supervised fine-tuning,
reward model training from pairwise comparisons
and policy optimization. They employed de-
tailed annotation protocols where labellers rated
responses along multiple axes such as quality, hal-
lucination, and toxicity. While most axes involved
binary comparisons, the metric “Overall Quality”
was assessed using a 1-7 Likert scale.

The Llama-series of models from Meta (Touvron
et al., 2023a,b; Dubey et al., 2024) have shaped
current open source training conventions. Llama
2 (Touvron et al., 2023b) used binary preference
annotation with optional magnitude labels, justify-
ing their choice by emphasizing its efficiency in
maximizing prompt diversity. Annotators in Tou-
vron et al. (2023b) were asked to provide additional
information on the magnitude of their preference,
selecting from categories such as “significantly bet-
ter”, “better”, “slightly better”, or “negligibly bet-
ter/unsure”. Llama 3 (Dubey et al., 2024), however,
dropped the magnitude labels citing diminishing
returns.

Recent work has focused on investigating the
impact of algorithm choices and data quality in
preference-based learning. Dsouza and Kovatchev
(2025) explored the sources of disagreement in
datasets used for instruction tuning in RLHF. They
found that variability in annotation is mostly depen-
dent on task formulation and annotator selection.
Ivison et al. (2024) showed that using diverse syn-
thetic data with per-aspect preferences works the
best for learning from preferences and that the qual-
ity of the preference pairs matters more than the
actual model completion.



However, to our knowledge, no comprehensive
study exists yet on comparing the impact of the
choice of annotation format on downstream reward
model and instruction tuning performance.

3 Methodology Overview

We design a five-step pipeline to study the effect
of different preference annotation schemes on both
the reward signal and downstream policy perfor-
mance. We begin by describing our synthetic data
generation pipeline in Section 4. Next, we perform
supervised finetuning, described in Section 5. We
then use DPO to train instruction-tuned models in
Section 6 and train and evaluate rewards models in
Section 7. We describe our evaluation strategy in
Section 8.

Through this pipeline, we ensure that the only vari-
able across experiments is the modality of prefer-
ence data, enabling a clear, controlled comparison
of its downstream impact.

4 Preference Data Generation

Our goal is to generate four parallel prefer-
ence datasets (BINARY, BINARYMAGN, SIN-
GLE, and RANKING) over the same set of
prompt—completion pairs, so that downstream dif-
ferences can be attributed only to the annotation
modality. We sample and extend the Nectar dataset
from Berkeley-NEST (Zhu et al., 2023) as our
source of prompts and completions which consists
of 7 completions from a diverse set of models for
every prompt, each ranked by GPT4

We resample Nectar and re-annotate it as follows.
Samples containing ranks outside 1-7 are dropped.
We select 10,000 prompts from the Nectar training
split and deterministically pick five completions per
prompt by sampling the completions corresponding
to ranks {0, 2, 3,5, 6} based on the original annota-
tions from GPT4. This yields a pool of 10,000 x 5
prompt-completion instances.

We then use the open-weights reasoning model
Qwen/QwQ-32B (Qwen-Team, 2025) to repro-
ducibly annotate the dataset across the four modali-
ties. The model is loaded in bfloat16 with reason-
ing enabeld on a VLLM server (Kwon et al., 2023)
on 8 L40s GPUs and responses are sampled with a
temperature of 0.4, a top-k of 40, a top-p of 0.95
and a repetition penalty of 1.0.

For each annotation modality, we prompt' the
model to evaluate the quality of the completion(s)
based on 2 rubrics:

* Helpfulness: Check for relevance, factual ac-
curacy, creativity and level of detail.

e Harmlessness: Check for adherence to stan-
dards, truthfulness, politeness, and refusal be-
haviour on adversarial queries.

For RANKING, we modify the prompt from Zhu
et al. (2023) to use a 3-stage thinking process: an
initial ranking, pairwise deep-dive for any adjacent
pair where the distinction is not clear in stage 1, and
a final random tie-breaker. The other modalities
have a similar prompt structure with slightly modi-
fied instructions to match the annotation modality.

We randomly swap completions and do not pro-
vide the names of the assistants that generated the
completions to avoid positional and implicit biases.
On a small number of samples where the prompt-
completion set exceeds the context length, we use
structured decoding with tool use enabled to get
both the labels and the reasoning for their assign-
ment.

We annotate 10,000 RANKING samples, 100,000
(°C x 10,000) BINARY and BINARYMAGN
samples each and 50,000 (°C} x 10,000) SINGLE
samples. The annotated samples for RANKING and
SINGLE are then binarized to finally get 4 datasets
of 100,000 rows each with the same samples anno-
tated in 4 different ways.

We also compute a margin for RANKING, SINGLE
and BINARY MAGNITUDE following from Llama
2 (Touvron et al., 2023b) where margin is the differ-
ence between the rank of the chosen and rejected,
difference between the scores of chosen and re-
jected and the preference magnitude respectively.

4.1 Annotation Analysis

We evaluate annotation consistency through three
complementary analyses: (1) agreement between
our re-annotated datasets and the original GPT4-
based annotations in the Nectar dataset, (2) pair-
wise agreement across our four modalities, and (3)
overall agreement among modalities.

For the agreement between Nectar and our dataset,
we treat each of our modalities as a single annota-
tor and compute two-annotator agreement with the

'The specific prompts used are detailed in Appendix A.



original dataset using Fleiss’ Kappa and Krippen-
dorff’s o. For RANKING, we compute agreement
between the two datasets after binarising the rank-
ings into pairwise preferences. In the SINGLE set-
ting, we compute the agreement between binarised
preferences using Likert scores in our annotation
and k£ = 7 rankings in the Nectar dataset. We find
moderate agreement between the original dataset
and our labels in the Nectar dataset on the Binary
formats and Ranking. The agreement on the Single
is much lower, indicating substantially different
labels.

For the pairwise agreement across our four modali-
ties, we compute pairwise Krippendorft’s alpha be-
tween each of our four modalities, treating them as
independent annotators. Agreement varies across
modality pairs, with higher scores seen between
structurally similar formats like BINARY and BI-
NARYMAGN.

Finally, we estimate overall inter-modality agree-
ment by treating all four modalities as independent
annotators and computing multi-annotator Krippen-
dorff’s alpha. Agreement across all modalities is
moderately good at 0.66.

We explore the differences between modalities fur-
ther by calculating the individual correlations be-
tween then shown in Table 3. The two Binary for-
mats have the highest correlation, as expected. The
rest of the modalities have a moderate correlation
between 60 and 70. The lowest correlation is be-
tween SINGLE and RANKING at 0.56. Overall our
findings indicate that the different modalities are
measuring correlated but not identical correlation.

Annotators Kappa

4 0.65

Alpha
0.66

Table 1: Agreement metrics across annotators.

Annotator 1 Annotator 2 Pearson R
BINARY BINARYMAGN  0.80
BINARY SINGLE 0.60
BINARY RANK 0.68
BINARYMAGN  SINGLE 0.60
BINARYMAGN RANKING 0.67
SINGLE RANKING 0.56

Table 2: Agreement between modalities when consid-
ered as different annotators.

Dataset Kappa Krippendorft’s Alpha
Binary 0.52 0.52
BinaryMagn  0.54 0.54
Single 0.25 0.25
Ranking 0.28 0.58

Table 3: Agreement between modalities and Nectar
dataset.

5 Supervised Finetuning

To ensure that any changes in model performance
are only due to the data modality, we take five
“base” LLMs and finetune them on the same data
using the same configuration. We adapt the SFT
training mixture from Lambert et al. (2024a) used
to train the Tiilu 3 series of models for our work.
We drop all non-English prompts and limit the
dataset to only include prompt-completion sam-
ples under 2048 tokens. We drop all multi-turn
conversations from the dataset keeping only single-
turn samples leaving ~ 750k prompt-completion
pairs. Two new tokens based on the ChatML format
[CITE] are added to the base models’ tokenizers:
<|im_start|>and <|im_end]|> to indicate conver-
sation start and end respectively and the input em-
beddings are resized to a multiple of 64. We re-use
the [EOS], [BOS], [PAD] tokens when specified by
the base model’s tokenizer. If not, the [EOS] and
[BOS] are set to be the same as the conversation
start and end tokens while a new [PAD] token is
specified and trained.

We perform SFT on five base models drawn
from two distinct families — Meta’s Llama-3 and
Google’s Gemma-3 — to ensure our findings gener-
alize across architectures and scales. This choice
allows us to study the effect of preference data
modality across models sizes, training recipes and
also text-only versus multimodal architectures. The
specific models chosen are listed in Table 4.

Model Name

meta-1lama/Llama-3.2-1B
meta-1llama/Llama-3.2-3B
meta-1lama/Llama-3.1-8B

Reference

Dubey et al. (2024)

google/gemma-3-1b-pt

google/gemma-3-4b-pt Aishwarya et al. (2025)

Table 4: List of Models

A learning rate of 2 x 1075 and a linear LR sched-
uler are used alongside the AdamW optimizer with



b1 = 0.9 and B2 = .999. We use an effective
batch-size of 64, Flash Attention 2 (Dao, 2023)
and gradient checkpointing. We load all models in
bfloat16 and train them on only the model com-
pletions for 1 epoch as previous works (Lambert
et al., 2024a) have found diminishing returns after
1 epoch. We benchmark our SFT with the corre-
sponding official instruct-model releases in Table
6. Our models perform better on the BBH, MUSR,
and MMLU tasks, match the instruct-models on
GPQA and perform worse on IFEval and Math.
Overall, the results of our SFT models are strong,
given that we use much less data than the official
instruct models. The training dynamics of all the
models are provided in Appendix B.

6 Direct Preference Optimisation

We use DPO (Rafailov et al., 2023) to instruction-
tune each of the five models on the four annotation
modalities. Both the policy and reference models
are set to the corresponding SFT checkpoint ob-
tained from Section 5. Our training setup uses a
learning rate of 1 x 10~% with a linear LR sched-
uler and an effective batch size of 64 and train the
models for a single epoch. We use a 3 of 0.22 to
control the deviation of the learned policy from
the reference model. The training dynamics for
two representative models — L1lama 3.2 3B and
Gemma 3 4B — are shown in Figure 2, which plots
reward accuracy and reward margin over the course
of training. Reward accuracy is the mean of how
often the chosen rewards are greater than the corre-
sponding rejected rewards and reward margin is the
mean difference between the corresponding cho-
sen and rejected rewards. We also benchmark each
of the DPO-tuned models on standard leaderboard
datasets and the results are presented in Table 6.
The DPO models show improvement over their
SFT counterparts across all experiments. The train-
ing dynamics of all the models are provided in
Appendix C.

7 Reward Modelling

To evaluate the effect of different annotation
schemes on reward modeling, we train a separate
reward model for each of the four preference modal-
ities. We use the standard pairwise loss derived
from the Bradley-Terry model where the model is
trained to assign a higher score to the preferred
completion over the rejected one as:

Epairwise = —log G(TG ($+) —To (.%'_))

where 2 and 2~ are the preferred and rejected
completions, respectively.

In addition to the pairwise loss, we also train an-
other set of reward models for BINARYMAGN,
RANKING and SINGLE with the margin loss from
Llama 2 (Touvron et al., 2023b):

)

Liank = — loga(rg(x - 7“9(.%'_) - m(r))

where m(r) is a non-negative scalar. m(r) is com-
puted as the difference between ranks for RANK-
ING, the magnitude of preference for BINARY-
MAGN and the difference between the Likert scores
for SINGLE.

The models are trained with a learning rate of
2 x 107° and a linear LR scheduler for 1 epoch.
We use REWARDBENCH (Lambert et al., 2024b) to
benchmark reward model performance across an-
notation modalities, as described in Section 8. The
results for the Llama-series of models are presented
in Table 5.

8 Evaluation

We evaluate both our SFT and DPO models
on standard leaderboard benchmarks using the
Im-evaluation-harness framework?. We re-
port average performance across six diverse tasks:
IFEval (Zhou et al., 2023), BBH (Suzgun et al.,
2022), Mathgyg (Hendrycks et al., 2021), MuSR
(Sprague et al., 2023), GPQA (Rein et al., 2023), and
MMLUp,, (Wang et al., 2024). These benchmarks
span mathematical reasoning, factual knowledge,
multilingual understanding, and professional do-
main tasks, providing a broad measure of model
capabilities under instruction-following settings.

For reward model evaluation, we use REWARD-
BENCH (Lambert et al., 2024b), which consists
of four subsets measuring different abilities: Chat,
Chat Hard, Safety, and Reasoning. Each instance in
the dataset is a triplet of the form (prompt, chosen,
rejected). A reward model is scored by comput-
ing the proportion of instances where it assigns a
higher score to the (prompt, chosen) pair than to
(prompt, rejected). A random model would score
50%, so accuracy above this threshold indicates
meaningful alignment with human preferences.

9 Results and Discussion

Our experiments demonstrate that the choice of
preference annotation modality significantly im-

Zhttps://github.com/EleutherAl/Im-evaluation-harness


https://github.com/EleutherAI/lm-evaluation-harness
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Figure 3: Reward Model training curves for Llama 3.2 1B and Llama 3.2 3B

pacts the reward models or DPO-based policies
trained on them. In our experiments RANKING con-
sistently emerges as the most effective annotation
modality across model sizes suggesting that ordinal
feedback provides richer reward signal compared
to just binary judgements.

Reward Model Results Table 5 shows the re-
sults of our comparison of reward models. The
best performing data formats are Ranking (for 1B)
and Ranking with margin for 3B and 8B). The
Single modality is consistently the worst across
all experiments. We find that incorporating addi-
tional information on the magnitude of preference
as “margin” either by using the provided prefer-
ence magnitude in BINARYMAGN, or by using the
difference between absolute scores in SINGLE or
by using the difference between ranks in RANK-
ING yields increasing benefits as model size grows.
Interestingly, at smaller sizes the margin informa-
tion appears to be unhelpful or even actively deteri-
mental to performance as noted by the regression
in BINARYMAGN scores as compared to BINARY
scores for 1B and 3B. We hypothesise that this is

due to the inherent capacity limitations of smaller
models causing them to struggle with using this
additional information.

DPO Results The results from the DPO exper-
iments in 6 are less conclusive as to which data
format is the best. While Ranking still has the high-
est overall rewards, the best performing modality
for each benchmark and model size vary. If we
compare the benchmark results to the reward accu-
racy during training shown in Figure 1, RANKING
consistently demonstrates better reward accuracy
throughout the training process across model sizes.
This further reinforces our finding that Ranking
should be the go-to format for training data. Inter-
estingly, while Single format performs the worset
for reward models, it obtains good results on DPO.

10 Conclusions

In this work, we conducted a systematic compari-
son of preference learning approaches across vary-
ing model sizes, focusing specifically on ranking-
based methods, binary preference learning, and bi-
nary preference learning with margin information.



Model Variant Chat Chat [Hard] Safety Reasoning

BINARY 0.89 0.31 0.63 0.50
BINARYMAGN 0.87 0.30 0.63 0.37
RANKING 0.90 0.33 0.67 0.51
Llama 3.2 1B SINGLE 0.82 0.32 0.48 0.29
BINARYMAGN w/ margin  0.86 0.28 0.50 0.44
RANKING w/ margin 0.85 0.32 0.51 0.48
SINGLE w/ margin 0.81 0.33 0.52 0.35
BINARY 0.87 0.31 0.52 0.31
BINARYMAGN 0.94 0.37 0.72 0.72
RANKING 0.94 0.38 0.77 0.67
Llama 3.2 3B SINGLE 0.91 0.34 0.70 0.55
BINARYMAGN w/ margin  0.92 0.37 0.67 0.69
RANKING w/ margin 0.94 0.36 0.78 0.69
SINGLE w/ margin 0.91 0.32 0.67 0.43
BINARY 0.87 0.31 0.53 0.46
BINARYMAGN 0.93 0.35 0.70 0.60
RANKING 0.86 0.32 0.60 0.62
Llama 3.1 8B SINGLE 0.93 0.35 0.70 0.60
BINARYMAGN w/ margin ~ 0.92 0.37 0.71 0.71
RANKING w/ margin 0.94 0.38 0.77 0.67
SINGLE w/ margin 0.93 0.38 0.75 0.60

Table 5: Reward model performance as measured on REWARDBENCH

Model Variant IFEval BBH MATHy,s MUSR GPQA MMLUp,
Instruct 67.63 28.40 7.40 32.80 24.83 11.32
SFT 44.13  32.88 2.57 34.26 24.33 12.24
Llama 3.2 1B DPO BINARY 43.53  32.04 2.57 34.40 25.34 12.09
DPO BINARYMAGN  44.13  32.70 1.44 33.99 24.33 12.42
DPO RANKING 43.89 32.15 2.27 34.52 24.50 11.71
DPO SINGLE 4293 3225 2.57 35.05 24.08 11.43
Instruct 8297 29.32 18.88 35.71 22.73 11.40
SFT 5456 39.21 4.53 36.91 27.52 21.67
Llama 3.2 3B DPO BINARY 56.95 41.28 6.04 37.30 26.51 21.72
DPO BINARYMAGN 5731 41.33 6.65 34.26 24.92 22.51
DPO RANKING 55.40 41.28 6.04 38.23 27.27 22.16
DPO SINGLE 55.16 41.61 6.12 35.98 25.17 21.91
Instruct 84.29 36.76 29.09 38.36 30.80 16.32
SFT 62.83 45.67 11.10 37.30 27.52 27.52
Llama 3.1 8B DPO BINARY 62.07 46.93 11.07 38.61 26.52 26.16
DPO BINARYMAGN  62.49 46.93 11.07 36.23 25.52 27.11
DPO RANKING 62.83 48.38 11.78 38.36 26.59 28.12
DPO SINGLE 61.03 46.79 12.16 36.64 25.67 27.63

Table 6: Benchmark performance of the Llama-series of models

Our findings reveal that ranking-based approaches  consistently outperform alternative methods across



all model sizes examined in our study. This sug-
gests that providing models with richer preference
information through rankings offers significant ad-
vantages for alignment regardless of model scale.
We find an interesting relationship between model
size and the utility of preference magnitude infor-
mation. As model size increases, they become
more capable of effectively utilizing margin infor-
mation. This relationship highlights the importance
of considering model capacity when selecting pref-
erence learning approaches for alignment.

Our results from DPO experiments further rein-
force these findings, with ranking methods demon-
strating superior training dynamics across models
of varying sizes. While evaluation results were not
picking a clear winner, Ranking modality comes
on top more often than any other model. The mis-
match between training reward and benchmark per-
formance also point to potential limitations in cur-
rent evaluation methodologies that may mask im-
portant differences in model performance.

These findings have critical implications for annota-
tion design. Ranking-based approaches are highly
query-efficient, as a single ranking of n comple-
tions produces (g) binary preference pairs, for in-
stance, ranking 5 completions yields 10 pairwise
comparisons. However, it requires significantly
more tokens and cognitive effort per annotation
task. Binary comparisons offer simplicity but at
lower data efficiency. Single-completion annota-
tions lack comparative anchors and thus are chal-
lenging for both smaller language models and non-
expert annotators. This creates a practical trade-off:
ranking methods provide richer supervision signals
per query but at higher per-task annotation costs,
while binary approaches offer simplicity despite
requiring more individual queries.

We also want to emphasize that the magnigude of
observed variance of performance across modali-
ties validates our initial motivation to evaluate the
data impact. Both reward models and DPO poli-
cies are impacted by the change of labeling strategy
indicating that the data format is a parameter that
should be taken into consideration when training
LLMs.

As a future work we plan to explore the posibility
of combining different data modalities to achieve a
more robust performance.

Limitations

This study focuses on model-generated preference
data to ensure consistency and control across anno-
tation modalities. While this allows for scale and
consistency, it may not fully capture the variability
or ambiguity present in human-labeled data. Our
analysis is also bounded by models up to 8B pa-
rameters. This is a scale that is representative of
many open-weight models and workflows. But it
is unclear whether the effects of annotation modal-
ity persist or change at larger scales. We leave to
future work the question of whether the observed
trends extrapolate to larger scales.

References

Aishwarya, Johan Ferret, Shreya Pathak, Nino Vieillard,
Ramona Merhej, Sarah Perrin, Tatiana Matejovicova,
Alexandre Ramé, Morgane Riviere, et al. 2025. Gemma
3 technical report. arXiv preprint arXiv:2503.19786.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, et al. 2021. A
general language assistant as a laboratory for alignment.
arXiv preprint arXiv:2112.00861.

Tri Dao. 2023. Flashattention-2: Faster attention with
better parallelism and work partitioning. arXiv preprint
arXiv:2307.08691.

Russel Dsouza and Venelin Kovatchev. 2025. Sources
of disagreement in data for LLM instruction tuning.
In Proceedings of Context and Meaning: Navigating
Disagreements in NLP Annotation, pages 20-32, Abu
Dhabi, UAE. International Committee on Computa-
tional Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Hamish Ivison, Yizhong Wang, Jiacheng Liu, Zeqiu
Wau, Valentina Pyatkin, Nathan Lambert, Noah A Smith,
Yejin Choi, and Hanna Hajishirzi. 2024. Unpacking dpo
and ppo: Disentangling best practices for learning from
preference feedback. Advances in neural information
processing systems, 37:36602-36633.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving with


https://aclanthology.org/2025.comedi-1.3/
https://aclanthology.org/2025.comedi-1.3/
https://aclanthology.org/2025.comedi-1.3/

pagedattention. In Proceedings of the 29th Symposium
on Operating Systems Principles, pages 611-626.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin,
Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V Miranda, Alisa Liu, Nouha Dziri, Shane
Lyu, et al. 2024a. T\" ulu 3: Pushing frontiers in
open language model post-training. arXiv preprint
arXiv:2411.15124.

Nathan Lambert, Valentina Pyatkin, Jacob Morrison,
LJ Miranda, Bill Yuchen Lin, Khyathi Chandu, Nouha
Dziri, Sachin Kumar, Tom Zick, Yejin Choi, et al. 2024b.
Rewardbench: Evaluating reward models for language
modeling. arXiv preprint arXiv:2403.13787.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic,
Vishal Maini, and Shane Legg. 2018. Scalable agent
alignment via reward modeling: a research direction.
arXiv preprint arXiv:1811.07871.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730-27744.

Qwen-Team. 2025. Qwq-32b: Embracing the power of
reinforcement learning.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neural
Information Processing Systems, 36:53728-53741.

D Rein, BL Hou, AC Stickland, J Petty, RY Pang,
J Dirani, J Michael, and SR Bowman. 2023. Gpqa:
A graduate-level google-proof q&a benchmark, nov.
arXiv preprint arXiv:2311.12022.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri,
and Greg Durrett. 2023. Musr: Testing the limits of
chain-of-thought with multistep soft reasoning. arXiv
preprint arXiv:2310.16049.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford, Dario
Amodei, and Paul F Christiano. 2020. Learning to sum-
marize with human feedback. Advances in Neural In-
formation Processing Systems, 33:3008-3021.

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebas-
tian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha
Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou,
et al. 2022. Challenging big-bench tasks and whether
chain-of-thought can solve them. arXiv preprint
arXiv:2210.09261.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Roziére, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. 2023a. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,

Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al.
2023b. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren, Aaran
Arulraj, Xuan He, Ziyan Jiang, et al. 2024. Mmlu-pro:
A more robust and challenging multi-task language un-
derstanding benchmark. In The Thirty-eight Conference
on Neural Information Processing Systems Datasets and
Benchmarks Track.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha
Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou.
2023. Instruction-following evaluation for large lan-
guage models. arXiv preprint arXiv:2311.07911.

Banghua Zhu, Evan Frick, Tianhao Wu, Hanlin Zhu,
and Jiantao Jiao. 2023. Starling-7b: Improving llm
helpfulness harmlessness with rlaif.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv preprint
arXiv:1909.08593.


https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

A Prompts

A.1 RANKING

System Prompt

We are interested in ranking different large language model chat completions to a conversation. Please act as an impartial judge and evaluate the quality of
the completions provided by 5 Al assistants. We have 2 rubrics, one is the helpfulness rubric, one is the harmlessness rubric. The helpfulness rubric is as
follows:

1. Is the completion relevant? The completion should be the best possible assistant answer.

2. Is the completion accurate? The completion should accurately fulfill the prompt’s request.

3. If a creative answer is expected, is the completion creative? If an analytical answer is expected, is the completion factual/objectively correct?

4. Is the completion detailed? The completion should at minimum satisfy the full level of detail required by the prompt.

The harmlessness rubric is as follows:

1. Does the completion adhere to moral and ethical standards?

2. Is the completion truthful?

3. Is the response polite and respectful?

4. If the request given is not good natured, does the completion politely decline to reply while giving a short explanation why they cannot comply with the
request? Completions should always maintain harmlessness in the face of adversarial requests.

We may see conversations that are good natured and some that are not good natured. All conversations should be completed in a manner that aligns with the
harmlessness rubric. Good natured conversations additionally should align with the helpfulness rubric. You will see a conversation with one or more turns
between a human and an assistant of arbitrary nature, and then there will be 5 different answers from different models. This will be labeled with "INPUT:"
Note that there is no order in which the models responses are provided; each response should be considered equally regardless of its position. After the
label "OUTPUT:"

Then proceed in three stages:

**Stage 1: Initial Ranking**: Based on your overall reasoning against the relevant rubric(s), produce an initial ranking of all 5 responses from best to
worst.

**Stage 2: Pairwise Deep Dive**: For any ties in your initial ranking, or for any adjacent pair where the distinction is unclear, consult the provided
PAIRWISE EVALUATION ORDER and perform detailed pairwise comparisons **only** for those pairs. Declare a winner for each comparison.
**Stage 3: Random Tie-Break**: If any ties remain after Stage 2, break them randomly — don’t overthink it. Just cut it short and choose one.

Finally, considering your initial ranking and any pairwise refinements, please rank all 5 responses in accordance with their pairwise performance from best

I I

to worst, strictly in the following format: [, ’,”’,” ”,” ’]] where ’ * contains the letter associated with a model.

Don’t overthink after stage 2. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision.
Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

&

INPUT:

[CONVERSATION START]:
Conversation
[CONVERSATION END]

[MODEL A RESPONSE START]:
{ Completion A }
[MODEL A RESPONSE END]

[MODEL B RESPONSE START]:
{ Completion B }
[MODEL B RESPONSE END]

[MODEL C RESPONSE START]:
{ Completion C }
[MODEL C RESPONSE END]

[MODEL D RESPONSE START]:
{ Completion D }
[MODEL D RESPONSE END]

[MODEL E RESPONSE START]:
{ Completion E }
[MODEL E RESPONSE END]
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A.2 BINARY

System Prompt Template

We are interested in ranking different large language model chat completions to a conversation. Please act as an impartial judge and evaluate the quality of
the completions provided by 2 AT assistants. We have 2 rubrics, one is the helpfulness rubric, one is the harmlessness rubric.

The helpfulness rubric is as follows: 1. Is the completion relevant? The completion should be the best possible assistant answer. 2. Is the completion
accurate? The completion should accurately fulfill the prompt’s request. 3. If a creative answer is expected, is the completion creative? If an analytical
answer is expected, is the completion factual/objectively correct? 4. Is the completion detailed? The completion should at minimum satisfy the full level of
detail required by the prompt.

The harmlessness rubric is as follows: 1. Does the completion adhere to moral and ethical standards? 2. Is the completion truthful? 3. Is the response
polite and respectful? 4. If the request given is not good natured, does the completion politely decline to reply while giving a short explanation why they
cannot comply with the request? Completions should always maintain harmlessness in the face of adversarial requests.

We may see conversations that are good natured and some that are not good natured. All conversations should be completed in a manner that aligns with the
harmlessness rubric. Good natured conversations additionally should align with the helpfulness rubric. You will see a conversation with one or more turns
between a human and an assistant of arbitrary nature, and then there will be 2 different answers from different models. This will be labeled with "INPUT:"
Note that there is no order in which the models responses are provided; each response should be considered equally regardless of its position. After the
label "OUTPUT:" do the following: Tell which response (A or B) is better. Produce the output strictly in the format: Preference: * * where * * contains the

Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

-

letter associated with a model Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision.

.

User Prompt

INPUT:
[CONVERSATION START]:

Conversation
[CONVERSATION END]

[MODEL A RESPONSE START]:
{ Completion A }
[MODEL A RESPONSE END]

[MODEL B RESPONSE START]:
{ Completion B }
[MODEL B RESPONSE END]

Output:

r

A.3 BINARYMAGN

System Prompt Template

We are interested in ranking different large language model chat completions to a conversation. Please act as an impartial judge and evaluate the quality of
the completions provided by 2 Al assistants. We have 2 rubrics, one is the helpfulness rubric, one is the harmlessness rubric.

The helpfulness rubric is as follows: 1. Is the completion relevant? The completion should be the best possible assistant answer. 2. Is the completion
accurate? The completion should accurately fulfill the prompt’s request. 3. If a creative answer is expected, is the completion creative? If an analytical
answer is expected, is the completion factual/objectively correct? 4. Is the completion detailed? The completion should at minimum satisfy the full level of
detail required by the prompt.

The harmlessness rubric is as follows: 1. Does the completion adhere to moral and ethical standards? 2. Is the completion truthful? 3. Is the response
polite and respectful? 4. If the request given is not good natured, does the completion politely decline to reply while giving a short explanation why they
cannot comply with the request? Completions should always maintain harmlessness in the face of adversarial requests.

We may see conversations that are good natured and some that are not good natured. All conversations should be completed in a manner that aligns with
the harmlessness rubric. Good natured conversations additionally should align with the helpfulness rubric. You will see a conversation with one or more
turns between a human and an assistant of arbitrary nature, and then there will be 2 different answers from different models. This will be labeled with
"INPUT:" Note that there is no order in which the models responses are provided; each response should be considered equally regardless of its position.
After the label "OUTPUT:" do the following: Tell which response (A or B) is better and by how much (0 = Neutral, 1 = Slightly better, 2 = Much better).
Produce the output strictly in the format: Preference: * * Magnitude: * * where the first * * contains the letter associated with a model and the second *°
contains the magnitude of preference. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your
decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

| .

User Prompt

INPUT:
[CONVERSATION START]:

[MODEL A RESPONSE START]:
{ Completion A }
[MODEL A RESPONSE END]

[MODEL B RESPONSE START]:
{ Completion B }
[MODEL B RESPONSE END]

[CONVERSATION END]
Output

-~

.
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A.4 SINGLE
System Prompt Template

‘We are interested in evaluating the quality of a large language model chat completion. Please act as an impartial judge and evaluate the quality of the
completion provided by an Al assistant. We have 2 rubrics, one is the helpfulness rubric, one is the harmlessness rubric.

The helpfulness rubric is as follows: 1. Is the completion relevant? The completion should be the best possible assistant answer. 2. Is the completion
accurate? The completion should accurately fulfill the prompt’s request. 3. If a creative answer is expected, is the completion creative? If an analytical
answer is expected, is the completion factual/objectively correct? 4. Is the completion detailed? The completion should at minimum satisfy the full level of
detail required by the prompt.

The harmlessness rubric is as follows: 1. Does the completion adhere to moral and ethical standards? 2. Is the completion truthful? 3. Is the response
polite and respectful? 4. If the request given is not good natured, does the completion politely decline to reply while giving a short explanation why they
cannot comply with the request? Completions should always maintain harmlessness in the face of adversarial requests.

‘We may see conversations that are good natured and some that are not good natured. All conversations should be completed in a manner that aligns with
the harmlessness rubric. Good natured conversations additionally should align with the helpfulness rubric. You will see a conversation with one or more
turns between a human and an assistant, and then there will be a single response from an Al model. This will be labeled with "INPUT:" After the label
"OUTPUT:" do the following: Please rate the assistant’s response on a scale of 1 to 5, where 1 is Terrible, 2 is Poor, 3 is Average, 4 is Good, and 5 is
Excellent. Do not allow the length of the response to influence your evaluation. This rating will later be used to compare the completions from different
models. Be as objective as possible.

User Prompt

|

INPUT:
[CONVERSATION START]:

[MODEL RESPONSE START]:
{ Completion }
[MODEL RESPONSE END]

[CONVERSATION END]
Output

B SFT Training Dynamics

train/mean_token_accuracy train/loss

= llama-3_2-3b = llama-3_2-1b — gemma-3-1b — llama-3_2-3b = llama-3_2-1b — gemma-3-1b

0.8
0.78
0.76

0.74

train/global_step

1k 2k 3k 4k 5k 6k 7k 1k 2k 3k 4k 5k 6k 7k

Figure 4: SFT Training dynamics
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C DPO Training Dynamics
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Figure 5: DPO training dynamics across different model sizes and families. Each pair shows accuracy and preference
margin trends. The models on each row are in the order: L1ama 3.2 1B,Llama 3.2 3B,Llama 3.1 8B, Gemma 3
1B, Gemma 3 4B
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D Reward Model Training Dynamics
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Figure 6: Reward Model Training dynamics
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