
Effect of Data Format on Reward Signals for LLM Instruction Tuning

Anonymous ACL submission

Abstract001

Finetuning LLMs with reinforcement learning002
rely on preference data for reward model train-003
ing and/or supervised fine-tuned policy opti-004
misation. While significant effort has gone005
into model architectures, RL algorithms, and006
pipeline engineering – the input to this pipeline007
has largely remained unchanged: pairwise pref-008
erences. We argue that with the rise of AI-based009
synthetic labelling, the cost-efficiency of binary010
preferences should no longer be the deciding011
factor on data acquisition. In this paper, we012
study how annotation modality impacts reward013
signal for reward model training and implicit-014
reward-model instruction-tuning.015

Starting from an existing dataset with multiple016
completions from different chat-models, we017
construct four new synthetic datasets, one for018
each annotation modality: BINARY, BINARY-019
MAGN, RANKING, and SINGLE. We measure020
the impact of modality on the preference data021
itself and on downstream reward signal by train-022
ing reward models and DPO-tuned policies us-023
ing each format across five different models of024
different sizes and families.025

We find that changing the input format sig-026
nificantly impacts the outcomes. In particu-027
lar ranking-based preference annotation consis-028
tently outperforms alternatives for both reward029
modeling and instruction-tuning from prefer-030
ences, across model scales. The improvement031
of ranking over binary preference is less not-032
icable at smaller reward models but becomes033
more significant as model capacity increases.034

1 Introduction035

Training large language models (LLMs) to be036

aligned with human values and follow human in-037

structions is a crucial post-training step in the038

current NLP landscape. Current state-of-the-art039

models achieve this alignment through preference-040

based fine-tuning, typically using a combination041

of supervised fine-tuning (SFT) and reinforcement042

Figure 1: Reward accuracy i.e. the mean of how often
the chosen rewards are greater than the corresponding
rejected rewards; averaged across 5 models of sizes
ranging from 1-8B

learning from human feedback (RLHF). The RLHF 043

pipeline, popularized by Ouyang et al. (2022), con- 044

sists of three key steps: fine-tuning on human 045

demonstrations, training a reward model on hu- 046

man preference comparisons, and optimizing the 047

SFT model using reinforcement learning guided by 048

the reward model’s outputs. 049

The quality and granularity of preference data play 050

a fundamental role in shaping the reward signal 051

– whether used to train an explicit reward model 052

or directly optimize a policy – which in turn influ- 053

ences the final instruction-tuned model’s behavior 054

(Ivison et al., 2024). The current general consensus 055

in RLHF is to task human annotators or a fron- 056

tier LLM with ranking a pair of responses for a 057

given prompt, generating pairwise preference data 058

(Lambert et al., 2024a; Dubey et al., 2024). 059

This paper investigates the impact of preference 060

data annotation strategy on reward modeling and 061

instruction-tuned policy performance. Specifically, 062

we seek to answer the following research question: 063

“How does the mode of collecting preference data 064
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affect the learned reward signal and the final065

performance of an instruction-tuned policy?”.066

To answer this question, we conduct a series of067

controlled experiments comparing four different068

preference annotation formats:069

• BINARY: Given a prompt and two comple-070

tions, select one of the two provided comple-071

tions.072

• BINARYMAGN: Given a prompt and two com-073

pletions, specify not only which completion074

is better but also how strong the preference075

is with 0 being ‘Neutral’, 1 being ‘Slightly076

Preferred’ and 2 being ‘Highly Preferred’.077

• SINGLE: Given a prompt and a completion,078

rate the completion on a 1-5 Likert scale.079

• RANKING: Given a prompt and k = 5 com-080

pletions, rank the completions from best to081

worst.082

We construct four large-scale preference datasets,083

one for each annotation modality by extending the084

Nectar dataset (Zhu et al., 2023). We analyse the085

agreement between labels from different annota-086

tion formats, quantifying the variability introduced087

by the task formulation. We find a moderate agree-088

ment between the formats, indicating that the un-089

derlying distribution is correlated but not identical.090

We then train reward models and DPO-based091

instruction-tuned policies on each annotation092

modality, holding all other variables constant. All093

differences in the outcome can be attributed to the094

change in input data. We test the reward models095

on REWARD-BENCH and the DPO models on 6096

different LLM datasets and find that the data for-097

mat largely impacts the performance of the final098

model. RANKING appears as the best performing099

format across all experiments, showing that BI-100

NARY should not be selected without further analy-101

sis.102

Our key contributions are as follows:103

• Four new synthetic datasets for LLM instruc-104

tion tuning with 100,000 samples each105

• A comparison between the data distribution106

under the different annotation formats107

• An in-depth analysis of the impact of data108

formats on reward models and DPO-based109

policies110

2 Related Work 111

Leike et al. (2018) were among the first to learning 112

implicit reward functions from user interactions 113

without the need for manual reward design. Ziegler 114

et al. (2019) showed that reward models trained 115

on pairwise human comparisons can steer gener- 116

ation towards preferred outputs without the need 117

for explicit references. Building on this, Stiennon 118

et al. (2020) showed that models trained on rewards 119

derived from human feedback outperformed those 120

using the traditional references. Askell et al. (2021) 121

were among the earliest to propose the system- 122

atic approach that applied RLHF to align general- 123

purpose language assistants with human values. 124

Ouyang et al. (2022) introduced the three-stage 125

RLHF pipeline combining supervised fine-tuning, 126

reward model training from pairwise comparisons 127

and policy optimization. They employed de- 128

tailed annotation protocols where labellers rated 129

responses along multiple axes such as quality, hal- 130

lucination, and toxicity. While most axes involved 131

binary comparisons, the metric “Overall Quality” 132

was assessed using a 1-7 Likert scale. 133

The Llama-series of models from Meta (Touvron 134

et al., 2023a,b; Dubey et al., 2024) have shaped 135

current open source training conventions. Llama 136

2 (Touvron et al., 2023b) used binary preference 137

annotation with optional magnitude labels, justify- 138

ing their choice by emphasizing its efficiency in 139

maximizing prompt diversity. Annotators in Tou- 140

vron et al. (2023b) were asked to provide additional 141

information on the magnitude of their preference, 142

selecting from categories such as “significantly bet- 143

ter”, “better”, “slightly better”, or “negligibly bet- 144

ter/unsure”. Llama 3 (Dubey et al., 2024), however, 145

dropped the magnitude labels citing diminishing 146

returns. 147

Recent work has focused on investigating the 148

impact of algorithm choices and data quality in 149

preference-based learning. Dsouza and Kovatchev 150

(2025) explored the sources of disagreement in 151

datasets used for instruction tuning in RLHF. They 152

found that variability in annotation is mostly depen- 153

dent on task formulation and annotator selection. 154

Ivison et al. (2024) showed that using diverse syn- 155

thetic data with per-aspect preferences works the 156

best for learning from preferences and that the qual- 157

ity of the preference pairs matters more than the 158

actual model completion. 159
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However, to our knowledge, no comprehensive160

study exists yet on comparing the impact of the161

choice of annotation format on downstream reward162

model and instruction tuning performance.163

3 Methodology Overview164

We design a five-step pipeline to study the effect165

of different preference annotation schemes on both166

the reward signal and downstream policy perfor-167

mance. We begin by describing our synthetic data168

generation pipeline in Section 4. Next, we perform169

supervised finetuning, described in Section 5. We170

then use DPO to train instruction-tuned models in171

Section 6 and train and evaluate rewards models in172

Section 7. We describe our evaluation strategy in173

Section 8.174

Through this pipeline, we ensure that the only vari-175

able across experiments is the modality of prefer-176

ence data, enabling a clear, controlled comparison177

of its downstream impact.178

4 Preference Data Generation179

Our goal is to generate four parallel prefer-180

ence datasets (BINARY, BINARYMAGN, SIN-181

GLE, and RANKING) over the same set of182

prompt–completion pairs, so that downstream dif-183

ferences can be attributed only to the annotation184

modality. We sample and extend the Nectar dataset185

from Berkeley-NEST (Zhu et al., 2023) as our186

source of prompts and completions which consists187

of 7 completions from a diverse set of models for188

every prompt, each ranked by GPT4189

We resample Nectar and re-annotate it as follows.190

Samples containing ranks outside 1-7 are dropped.191

We select 10,000 prompts from the Nectar training192

split and deterministically pick five completions per193

prompt by sampling the completions corresponding194

to ranks {0, 2, 3, 5, 6} based on the original annota-195

tions from GPT4. This yields a pool of 10,000× 5196

prompt-completion instances.197

We then use the open-weights reasoning model198

Qwen/QwQ-32B (Qwen-Team, 2025) to repro-199

ducibly annotate the dataset across the four modali-200

ties. The model is loaded in bfloat16 with reason-201

ing enabeld on a vLLM server (Kwon et al., 2023)202

on 8 L40s GPUs and responses are sampled with a203

temperature of 0.4, a top-k of 40, a top-p of 0.95204

and a repetition penalty of 1.0.205

For each annotation modality, we prompt1 the 206

model to evaluate the quality of the completion(s) 207

based on 2 rubrics: 208

• Helpfulness: Check for relevance, factual ac- 209

curacy, creativity and level of detail. 210

• Harmlessness: Check for adherence to stan- 211

dards, truthfulness, politeness, and refusal be- 212

haviour on adversarial queries. 213

For RANKING, we modify the prompt from Zhu 214

et al. (2023) to use a 3-stage thinking process: an 215

initial ranking, pairwise deep-dive for any adjacent 216

pair where the distinction is not clear in stage 1, and 217

a final random tie-breaker. The other modalities 218

have a similar prompt structure with slightly modi- 219

fied instructions to match the annotation modality. 220

We randomly swap completions and do not pro- 221

vide the names of the assistants that generated the 222

completions to avoid positional and implicit biases. 223

On a small number of samples where the prompt- 224

completion set exceeds the context length, we use 225

structured decoding with tool use enabled to get 226

both the labels and the reasoning for their assign- 227

ment. 228

We annotate 10,000 RANKING samples, 100,000 229(
5C2 × 10, 000

)
BINARY and BINARYMAGN 230

samples each and 50,000
(
5C1 × 10, 000

)
SINGLE 231

samples. The annotated samples for RANKING and 232

SINGLE are then binarized to finally get 4 datasets 233

of 100,000 rows each with the same samples anno- 234

tated in 4 different ways. 235

We also compute a margin for RANKING, SINGLE 236

and BINARY MAGNITUDE following from Llama 237

2 (Touvron et al., 2023b) where margin is the differ- 238

ence between the rank of the chosen and rejected, 239

difference between the scores of chosen and re- 240

jected and the preference magnitude respectively. 241

4.1 Annotation Analysis 242

We evaluate annotation consistency through three 243

complementary analyses: (1) agreement between 244

our re-annotated datasets and the original GPT4- 245

based annotations in the Nectar dataset, (2) pair- 246

wise agreement across our four modalities, and (3) 247

overall agreement among modalities. 248

For the agreement between Nectar and our dataset, 249

we treat each of our modalities as a single annota- 250

tor and compute two-annotator agreement with the 251

1The specific prompts used are detailed in Appendix A.
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original dataset using Fleiss’ Kappa and Krippen-252

dorff’s α. For RANKING, we compute agreement253

between the two datasets after binarising the rank-254

ings into pairwise preferences. In the SINGLE set-255

ting, we compute the agreement between binarised256

preferences using Likert scores in our annotation257

and k = 7 rankings in the Nectar dataset. We find258

moderate agreement between the original dataset259

and our labels in the Nectar dataset on the Binary260

formats and Ranking. The agreement on the Single261

is much lower, indicating substantially different262

labels.263

For the pairwise agreement across our four modali-264

ties, we compute pairwise Krippendorff’s alpha be-265

tween each of our four modalities, treating them as266

independent annotators. Agreement varies across267

modality pairs, with higher scores seen between268

structurally similar formats like BINARY and BI-269

NARYMAGN.270

Finally, we estimate overall inter-modality agree-271

ment by treating all four modalities as independent272

annotators and computing multi-annotator Krippen-273

dorff’s alpha. Agreement across all modalities is274

moderately good at 0.66.275

We explore the differences between modalities fur-276

ther by calculating the individual correlations be-277

tween then shown in Table 3. The two Binary for-278

mats have the highest correlation, as expected. The279

rest of the modalities have a moderate correlation280

between 60 and 70. The lowest correlation is be-281

tween SINGLE and RANKING at 0.56. Overall our282

findings indicate that the different modalities are283

measuring correlated but not identical correlation.284

Annotators Kappa Alpha

4 0.65 0.66

Table 1: Agreement metrics across annotators.

Annotator 1 Annotator 2 Pearson R
BINARY BINARYMAGN 0.80
BINARY SINGLE 0.60
BINARY RANK 0.68
BINARYMAGN SINGLE 0.60
BINARYMAGN RANKING 0.67
SINGLE RANKING 0.56

Table 2: Agreement between modalities when consid-
ered as different annotators.

Dataset Kappa Krippendorff’s Alpha

Binary 0.52 0.52
BinaryMagn 0.54 0.54
Single 0.25 0.25
Ranking 0.28 0.58

Table 3: Agreement between modalities and Nectar
dataset.

5 Supervised Finetuning 285

To ensure that any changes in model performance 286

are only due to the data modality, we take five 287

“base” LLMs and finetune them on the same data 288

using the same configuration. We adapt the SFT 289

training mixture from Lambert et al. (2024a) used 290

to train the Tülu 3 series of models for our work. 291

We drop all non-English prompts and limit the 292

dataset to only include prompt-completion sam- 293

ples under 2048 tokens. We drop all multi-turn 294

conversations from the dataset keeping only single- 295

turn samples leaving ∼ 750k prompt-completion 296

pairs. Two new tokens based on the ChatML format 297

[CITE] are added to the base models’ tokenizers: 298

<|im_start|> and <|im_end|> to indicate conver- 299

sation start and end respectively and the input em- 300

beddings are resized to a multiple of 64. We re-use 301

the [EOS], [BOS], [PAD] tokens when specified by 302

the base model’s tokenizer. If not, the [EOS] and 303

[BOS] are set to be the same as the conversation 304

start and end tokens while a new [PAD] token is 305

specified and trained. 306

We perform SFT on five base models drawn 307

from two distinct families – Meta’s Llama-3 and 308

Google’s Gemma-3 – to ensure our findings gener- 309

alize across architectures and scales. This choice 310

allows us to study the effect of preference data 311

modality across models sizes, training recipes and 312

also text-only versus multimodal architectures. The 313

specific models chosen are listed in Table 4. 314

Model Name Reference

meta-llama/Llama-3.2-1B
Dubey et al. (2024)meta-llama/Llama-3.2-3B

meta-llama/Llama-3.1-8B

google/gemma-3-1b-pt
Aishwarya et al. (2025)google/gemma-3-4b-pt

Table 4: List of Models

A learning rate of 2× 10−5 and a linear LR sched- 315

uler are used alongside the AdamW optimizer with 316
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β1 = 0.9 and β2 = .999. We use an effective317

batch-size of 64, Flash Attention 2 (Dao, 2023)318

and gradient checkpointing. We load all models in319

bfloat16 and train them on only the model com-320

pletions for 1 epoch as previous works (Lambert321

et al., 2024a) have found diminishing returns after322

1 epoch. We benchmark our SFT with the corre-323

sponding official instruct-model releases in Table324

6. Our models perform better on the BBH, MUSR,325

and MMLU tasks, match the instruct-models on326

GPQA and perform worse on IFEval and Math.327

Overall, the results of our SFT models are strong,328

given that we use much less data than the official329

instruct models. The training dynamics of all the330

models are provided in Appendix B.331

6 Direct Preference Optimisation332

We use DPO (Rafailov et al., 2023) to instruction-333

tune each of the five models on the four annotation334

modalities. Both the policy and reference models335

are set to the corresponding SFT checkpoint ob-336

tained from Section 5. Our training setup uses a337

learning rate of 1× 10−6 with a linear LR sched-338

uler and an effective batch size of 64 and train the339

models for a single epoch. We use a β of 0.22 to340

control the deviation of the learned policy from341

the reference model. The training dynamics for342

two representative models – Llama 3.2 3B and343

Gemma 3 4B – are shown in Figure 2, which plots344

reward accuracy and reward margin over the course345

of training. Reward accuracy is the mean of how346

often the chosen rewards are greater than the corre-347

sponding rejected rewards and reward margin is the348

mean difference between the corresponding cho-349

sen and rejected rewards. We also benchmark each350

of the DPO-tuned models on standard leaderboard351

datasets and the results are presented in Table 6.352

The DPO models show improvement over their353

SFT counterparts across all experiments. The train-354

ing dynamics of all the models are provided in355

Appendix C.356

7 Reward Modelling357

To evaluate the effect of different annotation
schemes on reward modeling, we train a separate
reward model for each of the four preference modal-
ities. We use the standard pairwise loss derived
from the Bradley-Terry model where the model is
trained to assign a higher score to the preferred
completion over the rejected one as:

Lpairwise = − log σ(rθ(x
+)− rθ(x

−))

where x+ and x− are the preferred and rejected 358

completions, respectively. 359

In addition to the pairwise loss, we also train an-
other set of reward models for BINARYMAGN,
RANKING and SINGLE with the margin loss from
Llama 2 (Touvron et al., 2023b):

Lrank = − log σ(rθ(x
+)− rθ(x

−)−m(r))

where m(r) is a non-negative scalar. m(r) is com- 360

puted as the difference between ranks for RANK- 361

ING, the magnitude of preference for BINARY- 362

MAGN and the difference between the Likert scores 363

for SINGLE. 364

The models are trained with a learning rate of 365

2 × 10−5 and a linear LR scheduler for 1 epoch. 366

We use REWARDBENCH (Lambert et al., 2024b) to 367

benchmark reward model performance across an- 368

notation modalities, as described in Section 8. The 369

results for the Llama-series of models are presented 370

in Table 5. 371

8 Evaluation 372

We evaluate both our SFT and DPO models 373

on standard leaderboard benchmarks using the 374

lm-evaluation-harness framework2. We re- 375

port average performance across six diverse tasks: 376

IFEval (Zhou et al., 2023), BBH (Suzgun et al., 377

2022), MathHard (Hendrycks et al., 2021), MuSR 378

(Sprague et al., 2023), GPQA (Rein et al., 2023), and 379

MMLUPro (Wang et al., 2024). These benchmarks 380

span mathematical reasoning, factual knowledge, 381

multilingual understanding, and professional do- 382

main tasks, providing a broad measure of model 383

capabilities under instruction-following settings. 384

For reward model evaluation, we use REWARD- 385

BENCH (Lambert et al., 2024b), which consists 386

of four subsets measuring different abilities: Chat, 387

Chat Hard, Safety, and Reasoning. Each instance in 388

the dataset is a triplet of the form (prompt, chosen, 389

rejected). A reward model is scored by comput- 390

ing the proportion of instances where it assigns a 391

higher score to the (prompt, chosen) pair than to 392

(prompt, rejected). A random model would score 393

50%, so accuracy above this threshold indicates 394

meaningful alignment with human preferences. 395

9 Results and Discussion 396

Our experiments demonstrate that the choice of 397

preference annotation modality significantly im- 398

2https://github.com/EleutherAI/lm-evaluation-harness
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Figure 2: DPO training curves for Llama 3.2 3B

Figure 3: Reward Model training curves for Llama 3.2 1B and Llama 3.2 3B

pacts the reward models or DPO-based policies399

trained on them. In our experiments RANKING con-400

sistently emerges as the most effective annotation401

modality across model sizes suggesting that ordinal402

feedback provides richer reward signal compared403

to just binary judgements.404

Reward Model Results Table 5 shows the re-405

sults of our comparison of reward models. The406

best performing data formats are Ranking (for 1B)407

and Ranking with margin for 3B and 8B). The408

Single modality is consistently the worst across409

all experiments. We find that incorporating addi-410

tional information on the magnitude of preference411

as “margin” either by using the provided prefer-412

ence magnitude in BINARYMAGN, or by using the413

difference between absolute scores in SINGLE or414

by using the difference between ranks in RANK-415

ING yields increasing benefits as model size grows.416

Interestingly, at smaller sizes the margin informa-417

tion appears to be unhelpful or even actively deteri-418

mental to performance as noted by the regression419

in BINARYMAGN scores as compared to BINARY420

scores for 1B and 3B. We hypothesise that this is421

due to the inherent capacity limitations of smaller 422

models causing them to struggle with using this 423

additional information. 424

DPO Results The results from the DPO exper- 425

iments in 6 are less conclusive as to which data 426

format is the best. While Ranking still has the high- 427

est overall rewards, the best performing modality 428

for each benchmark and model size vary. If we 429

compare the benchmark results to the reward accu- 430

racy during training shown in Figure 1, RANKING 431

consistently demonstrates better reward accuracy 432

throughout the training process across model sizes. 433

This further reinforces our finding that Ranking 434

should be the go-to format for training data. Inter- 435

estingly, while Single format performs the worset 436

for reward models, it obtains good results on DPO. 437

10 Conclusions 438

In this work, we conducted a systematic compari- 439

son of preference learning approaches across vary- 440

ing model sizes, focusing specifically on ranking- 441

based methods, binary preference learning, and bi- 442

nary preference learning with margin information. 443
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Model Variant Chat Chat [Hard] Safety Reasoning

Llama 3.2 1B

BINARY 0.89 0.31 0.63 0.50
BINARYMAGN 0.87 0.30 0.63 0.37
RANKING 0.90 0.33 0.67 0.51
SINGLE 0.82 0.32 0.48 0.29
BINARYMAGN w/ margin 0.86 0.28 0.50 0.44
RANKING w/ margin 0.85 0.32 0.51 0.48
SINGLE w/ margin 0.81 0.33 0.52 0.35

Llama 3.2 3B

BINARY 0.87 0.31 0.52 0.31
BINARYMAGN 0.94 0.37 0.72 0.72
RANKING 0.94 0.38 0.77 0.67
SINGLE 0.91 0.34 0.70 0.55
BINARYMAGN w/ margin 0.92 0.37 0.67 0.69
RANKING w/ margin 0.94 0.36 0.78 0.69
SINGLE w/ margin 0.91 0.32 0.67 0.43

Llama 3.1 8B

BINARY 0.87 0.31 0.53 0.46
BINARYMAGN 0.93 0.35 0.70 0.60
RANKING 0.86 0.32 0.60 0.62
SINGLE 0.93 0.35 0.70 0.60
BINARYMAGN w/ margin 0.92 0.37 0.71 0.71
RANKING w/ margin 0.94 0.38 0.77 0.67
SINGLE w/ margin 0.93 0.38 0.75 0.60

Table 5: Reward model performance as measured on REWARDBENCH

Model Variant IFEval BBH MATHHard MUSR GPQA MMLUPro

Llama 3.2 1B

Instruct 67.63 28.40 7.40 32.80 24.83 11.32
SFT 44.13 32.88 2.57 34.26 24.33 12.24
DPO BINARY 43.53 32.04 2.57 34.40 25.34 12.09
DPO BINARYMAGN 44.13 32.70 1.44 33.99 24.33 12.42
DPO RANKING 43.89 32.15 2.27 34.52 24.50 11.71
DPO SINGLE 42.93 32.25 2.57 35.05 24.08 11.43

Llama 3.2 3B

Instruct 82.97 29.32 18.88 35.71 22.73 11.40
SFT 54.56 39.21 4.53 36.91 27.52 21.67
DPO BINARY 56.95 41.28 6.04 37.30 26.51 21.72
DPO BINARYMAGN 57.31 41.33 6.65 34.26 24.92 22.51
DPO RANKING 55.40 41.28 6.04 38.23 27.27 22.16
DPO SINGLE 55.16 41.61 6.12 35.98 25.17 21.91

Llama 3.1 8B

Instruct 84.29 36.76 29.09 38.36 30.80 16.32
SFT 62.83 45.67 11.10 37.30 27.52 27.52
DPO BINARY 62.07 46.93 11.07 38.61 26.52 26.16
DPO BINARYMAGN 62.49 46.93 11.07 36.23 25.52 27.11
DPO RANKING 62.83 48.38 11.78 38.36 26.59 28.12
DPO SINGLE 61.03 46.79 12.16 36.64 25.67 27.63

Table 6: Benchmark performance of the Llama-series of models

Our findings reveal that ranking-based approaches444 consistently outperform alternative methods across 445
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all model sizes examined in our study. This sug-446

gests that providing models with richer preference447

information through rankings offers significant ad-448

vantages for alignment regardless of model scale.449

We find an interesting relationship between model450

size and the utility of preference magnitude infor-451

mation. As model size increases, they become452

more capable of effectively utilizing margin infor-453

mation. This relationship highlights the importance454

of considering model capacity when selecting pref-455

erence learning approaches for alignment.456

Our results from DPO experiments further rein-457

force these findings, with ranking methods demon-458

strating superior training dynamics across models459

of varying sizes. While evaluation results were not460

picking a clear winner, Ranking modality comes461

on top more often than any other model. The mis-462

match between training reward and benchmark per-463

formance also point to potential limitations in cur-464

rent evaluation methodologies that may mask im-465

portant differences in model performance.466

These findings have critical implications for annota-467

tion design. Ranking-based approaches are highly468

query-efficient, as a single ranking of n comple-469

tions produces
(
n
2

)
binary preference pairs, for in-470

stance, ranking 5 completions yields 10 pairwise471

comparisons. However, it requires significantly472

more tokens and cognitive effort per annotation473

task. Binary comparisons offer simplicity but at474

lower data efficiency. Single-completion annota-475

tions lack comparative anchors and thus are chal-476

lenging for both smaller language models and non-477

expert annotators. This creates a practical trade-off:478

ranking methods provide richer supervision signals479

per query but at higher per-task annotation costs,480

while binary approaches offer simplicity despite481

requiring more individual queries.482

We also want to emphasize that the magnigude of483

observed variance of performance across modali-484

ties validates our initial motivation to evaluate the485

data impact. Both reward models and DPO poli-486

cies are impacted by the change of labeling strategy487

indicating that the data format is a parameter that488

should be taken into consideration when training489

LLMs.490

As a future work we plan to explore the posibility491

of combining different data modalities to achieve a492

more robust performance.493

Limitations 494

This study focuses on model-generated preference 495

data to ensure consistency and control across anno- 496

tation modalities. While this allows for scale and 497

consistency, it may not fully capture the variability 498

or ambiguity present in human-labeled data. Our 499

analysis is also bounded by models up to 8B pa- 500

rameters. This is a scale that is representative of 501

many open-weight models and workflows. But it 502

is unclear whether the effects of annotation modal- 503

ity persist or change at larger scales. We leave to 504

future work the question of whether the observed 505

trends extrapolate to larger scales. 506
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A Prompts624

A.1 RANKING625

System Prompt

We are interested in ranking different large language model chat completions to a conversation. Please act as an impartial judge and evaluate the quality of
the completions provided by 5 AI assistants. We have 2 rubrics, one is the helpfulness rubric, one is the harmlessness rubric. The helpfulness rubric is as
follows:
1. Is the completion relevant? The completion should be the best possible assistant answer.
2. Is the completion accurate? The completion should accurately fulfill the prompt’s request.
3. If a creative answer is expected, is the completion creative? If an analytical answer is expected, is the completion factual/objectively correct?
4. Is the completion detailed? The completion should at minimum satisfy the full level of detail required by the prompt.

The harmlessness rubric is as follows:
1. Does the completion adhere to moral and ethical standards?
2. Is the completion truthful?
3. Is the response polite and respectful?
4. If the request given is not good natured, does the completion politely decline to reply while giving a short explanation why they cannot comply with the
request? Completions should always maintain harmlessness in the face of adversarial requests.

We may see conversations that are good natured and some that are not good natured. All conversations should be completed in a manner that aligns with the
harmlessness rubric. Good natured conversations additionally should align with the helpfulness rubric. You will see a conversation with one or more turns
between a human and an assistant of arbitrary nature, and then there will be 5 different answers from different models. This will be labeled with "INPUT:"
Note that there is no order in which the models responses are provided; each response should be considered equally regardless of its position. After the
label "OUTPUT:"
Then proceed in three stages:
**Stage 1: Initial Ranking**: Based on your overall reasoning against the relevant rubric(s), produce an initial ranking of all 5 responses from best to
worst.
**Stage 2: Pairwise Deep Dive**: For any ties in your initial ranking, or for any adjacent pair where the distinction is unclear, consult the provided
PAIRWISE EVALUATION ORDER and perform detailed pairwise comparisons **only** for those pairs. Declare a winner for each comparison.
**Stage 3: Random Tie-Break**: If any ties remain after Stage 2, break them randomly — don’t overthink it. Just cut it short and choose one.
Finally, considering your initial ranking and any pairwise refinements, please rank all 5 responses in accordance with their pairwise performance from best
to worst, strictly in the following format: [[’ ’, ’ ’, ’ ’, ’ ’, ’ ’]] where ’ ’ contains the letter associated with a model.

Don’t overthink after stage 2. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision.
Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

626

User Prompt

INPUT:
[CONVERSATION START]:
Conversation
[CONVERSATION END]

[MODEL A RESPONSE START]:
{ Completion A }
[MODEL A RESPONSE END]

[MODEL B RESPONSE START]:
{ Completion B }
[MODEL B RESPONSE END]

[MODEL C RESPONSE START]:
{ Completion C }
[MODEL C RESPONSE END]

[MODEL D RESPONSE START]:
{ Completion D }
[MODEL D RESPONSE END]

[MODEL E RESPONSE START]:
{ Completion E }
[MODEL E RESPONSE END]

627
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A.2 BINARY 628

System Prompt Template

We are interested in ranking different large language model chat completions to a conversation. Please act as an impartial judge and evaluate the quality of
the completions provided by 2 AI assistants. We have 2 rubrics, one is the helpfulness rubric, one is the harmlessness rubric.
The helpfulness rubric is as follows: 1. Is the completion relevant? The completion should be the best possible assistant answer. 2. Is the completion
accurate? The completion should accurately fulfill the prompt’s request. 3. If a creative answer is expected, is the completion creative? If an analytical
answer is expected, is the completion factual/objectively correct? 4. Is the completion detailed? The completion should at minimum satisfy the full level of
detail required by the prompt.
The harmlessness rubric is as follows: 1. Does the completion adhere to moral and ethical standards? 2. Is the completion truthful? 3. Is the response
polite and respectful? 4. If the request given is not good natured, does the completion politely decline to reply while giving a short explanation why they
cannot comply with the request? Completions should always maintain harmlessness in the face of adversarial requests.
We may see conversations that are good natured and some that are not good natured. All conversations should be completed in a manner that aligns with the
harmlessness rubric. Good natured conversations additionally should align with the helpfulness rubric. You will see a conversation with one or more turns
between a human and an assistant of arbitrary nature, and then there will be 2 different answers from different models. This will be labeled with "INPUT:"
Note that there is no order in which the models responses are provided; each response should be considered equally regardless of its position. After the
label "OUTPUT:" do the following: Tell which response (A or B) is better. Produce the output strictly in the format: Preference: ’ ’ where ’ ’ contains the
letter associated with a model Avoid any positional biases and ensure that the order in which the responses were presented does not influence your decision.
Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

629

User Prompt

INPUT:
[CONVERSATION START]:
Conversation
[CONVERSATION END]

[MODEL A RESPONSE START]:
{ Completion A }
[MODEL A RESPONSE END]

[MODEL B RESPONSE START]:
{ Completion B }
[MODEL B RESPONSE END]

Output:
630

A.3 BINARYMAGN 631

System Prompt Template

We are interested in ranking different large language model chat completions to a conversation. Please act as an impartial judge and evaluate the quality of
the completions provided by 2 AI assistants. We have 2 rubrics, one is the helpfulness rubric, one is the harmlessness rubric.
The helpfulness rubric is as follows: 1. Is the completion relevant? The completion should be the best possible assistant answer. 2. Is the completion
accurate? The completion should accurately fulfill the prompt’s request. 3. If a creative answer is expected, is the completion creative? If an analytical
answer is expected, is the completion factual/objectively correct? 4. Is the completion detailed? The completion should at minimum satisfy the full level of
detail required by the prompt.
The harmlessness rubric is as follows: 1. Does the completion adhere to moral and ethical standards? 2. Is the completion truthful? 3. Is the response
polite and respectful? 4. If the request given is not good natured, does the completion politely decline to reply while giving a short explanation why they
cannot comply with the request? Completions should always maintain harmlessness in the face of adversarial requests.
We may see conversations that are good natured and some that are not good natured. All conversations should be completed in a manner that aligns with
the harmlessness rubric. Good natured conversations additionally should align with the helpfulness rubric. You will see a conversation with one or more
turns between a human and an assistant of arbitrary nature, and then there will be 2 different answers from different models. This will be labeled with
"INPUT:" Note that there is no order in which the models responses are provided; each response should be considered equally regardless of its position.
After the label "OUTPUT:" do the following: Tell which response (A or B) is better and by how much (0 = Neutral, 1 = Slightly better, 2 = Much better).
Produce the output strictly in the format: Preference: ’ ’ Magnitude: ’ ’ where the first ’ ’ contains the letter associated with a model and the second ’ ’
contains the magnitude of preference. Avoid any positional biases and ensure that the order in which the responses were presented does not influence your
decision. Do not allow the length of the responses to influence your evaluation. Do not favor certain names of the assistants. Be as objective as possible.

632

User Prompt

INPUT:
[CONVERSATION START]:

[MODEL A RESPONSE START]:
{ Completion A }
[MODEL A RESPONSE END]

[MODEL B RESPONSE START]:
{ Completion B }
[MODEL B RESPONSE END]

[CONVERSATION END]

Output
633
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A.4 SINGLE634

System Prompt Template

We are interested in evaluating the quality of a large language model chat completion. Please act as an impartial judge and evaluate the quality of the
completion provided by an AI assistant. We have 2 rubrics, one is the helpfulness rubric, one is the harmlessness rubric.
The helpfulness rubric is as follows: 1. Is the completion relevant? The completion should be the best possible assistant answer. 2. Is the completion
accurate? The completion should accurately fulfill the prompt’s request. 3. If a creative answer is expected, is the completion creative? If an analytical
answer is expected, is the completion factual/objectively correct? 4. Is the completion detailed? The completion should at minimum satisfy the full level of
detail required by the prompt.
The harmlessness rubric is as follows: 1. Does the completion adhere to moral and ethical standards? 2. Is the completion truthful? 3. Is the response
polite and respectful? 4. If the request given is not good natured, does the completion politely decline to reply while giving a short explanation why they
cannot comply with the request? Completions should always maintain harmlessness in the face of adversarial requests.
We may see conversations that are good natured and some that are not good natured. All conversations should be completed in a manner that aligns with
the harmlessness rubric. Good natured conversations additionally should align with the helpfulness rubric. You will see a conversation with one or more
turns between a human and an assistant, and then there will be a single response from an AI model. This will be labeled with "INPUT:" After the label
"OUTPUT:" do the following: Please rate the assistant’s response on a scale of 1 to 5, where 1 is Terrible, 2 is Poor, 3 is Average, 4 is Good, and 5 is
Excellent. Do not allow the length of the response to influence your evaluation. This rating will later be used to compare the completions from different
models. Be as objective as possible.

635

User Prompt

INPUT:
[CONVERSATION START]:

[MODEL RESPONSE START]:
{ Completion }
[MODEL RESPONSE END]

[CONVERSATION END]

Output
636

B SFT Training Dynamics637

Figure 4: SFT Training dynamics
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C DPO Training Dynamics 638

Figure 5: DPO training dynamics across different model sizes and families. Each pair shows accuracy and preference
margin trends. The models on each row are in the order: Llama 3.2 1B, Llama 3.2 3B, Llama 3.1 8B, Gemma 3
1B, Gemma 3 4B
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D Reward Model Training Dynamics639

Figure 6: Reward Model Training dynamics
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