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ABSTRACT

Current Pedestrian Attribute Recognition (PAR) algorithms typically focus on
mapping visual features to semantic labels or attempt to enhance learning by fus-
ing visual and attribute information. However, these methods fail to fully exploit
attribute knowledge and contextual information for more accurate recognition. Al-
though recent works have started to consider using attribute text as additional input
to enhance the association between visual and semantic information, these meth-
ods are still in their infancy. To address the above challenges, this paper proposes
the construction of a multi-modal knowledge graph, which is utilized to mine the
relationships between local visual features and text, as well as the relationships
between attributes and extensive visual context samples. Specifically, we propose
an effective multi-modal knowledge graph construction method that fully consid-
ers the relationships among attributes and the relationships between attributes and
vision tokens. To effectively model these relationships, this paper introduces a
knowledge graph-guided cross-modal hypergraph learning framework to enhance
the standard pedestrian attribute recognition framework. Comprehensive exper-
iments on multiple PAR benchmark datasets have thoroughly demonstrated the
effectiveness of our proposed knowledge graph for the PAR task, establishing
a strong foundation for knowledge-guided pedestrian attribute recognition. The
source code of this paper will be released upon acceptance.

1 INTRODUCTION

Pedestrian Attribute Recognition (PAR) targets to predict the human attributes like long hair,
long pants from a given attribute set based on a given pedestrian image. It can be seen as a
middle-level semantic representation and contributes to other computer vision tasks like person re-
identification (Lin et al., 2019), pedestrian detection (Zhang et al., 2020), object tracking (Li et al.,
2024), and text-based person retrieval (Aggarwal et al., 2020). PAR has been widely deployed in
practical smart video surveillance, autonomous driving, etc. However, the performance of pedes-
trian attribute recognition is still poor in challenging scenarios, e.g., low illumination, motion blur,
and occlusion.

Current algorithms usually formulate the PAR as a multi-label classification problem and learn a
mapping function from the input image to the semantic labels using the encoder-decoder frame-
work. Specifically, DeepMAR (Li et al., 2015a) proposed by Li et al. first learning a deep neural
network and predicts the pedestrian attributes in an end-to-end manner. Later, some researchers fur-
ther enhanced such a framework by fusing the vision and attribute features, e.g., VTB (Cheng et al.,
2022), SeqPAR (Jin et al., 2025a), and PromptPAR (Wang et al., 2024a), as shown in Fig. 1 (a, b).
Specifically, Cheng et al. first extract the vision and attribute features using the Transformer network
and fuse them for high-performance PAR. After that, Wang et al. propose to enhance this frame-
work by prompting the pre-trained multi-modal foundation model CLIP (Radford et al., 2021), Jin
et al. (Jin et al., 2025a) formulate the PAR as a sequence generation problem based on a Transformer
network.

Despite significant progress having been made with the help of Transformer networks and founda-
tion models, the PAR still suffers from the following issues: 1). Existing works usually model the
PAR as a mapping from the given pedestrian image to the semantic labels using CNN, LSTM, or
Transformers, but ignore the mining of semantic information of pedestrian attributes. Obviously,
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Figure 1: Comparison between existing (a). vision-text fusion based PAR, (b). sequential Trans-
former based PAR, and (c). our newly proposed knowledge graph guided cross-modality hypergraph
learning for PAR.

the semantic gaps will hinder the further improvement of these models. 2). Some models attempt to
fuse the semantic attribute phases into the vision feature learning stage, but few of them consider the
higher-order relations between the attributes and vision features. Thus, it is natural to raise the fol-
lowing question: “How can we exploit the higher-order relations between the pedestrian attributes
and the attribute-vision features for high-performance pedestrian attribute recognition?”

Inspired by the success of knowledge graph (Liang et al., 2024), in this paper, we attempt to bridge
the semantic gap between the vision and attribute information, and achieve knowledge graph guided
hierarchical cross-modal hypergraph learning for pedestrian attribute recognition. The key insight
of this paper is to build a multi-modal knowledge graph that takes the human body, attributes as the
entity, and trunk-attribute as the relation. It also takes the language captions of each attribute and
the context vision samples as attributes of each entity to help the models better understand the at-
tributes. As shown in Fig. 2, we enhance the standard visual-attribute mapping framework from two
perspectives through the constructed multi-modal knowledge graph, namely local patch-attribute
relation mining and attribute-global context sampling relation mining. We adopt the hypergraph to
capture the higher-order relations in these two modules and encode them using the LA-UniGNN
and AG-UniGNN networks. After that, we concatenate these processed tokens and feed them into a
multi-modal Transformer for vision-semantic aggregation. Finally, we adopt a prediction head (i.e.,
the Feed-Forward Network, FFN) to output the predicted pedestrian attributes.

To sum up, the main contributions of this paper can be summarized as the following three aspects:

• We propose a novel multi-modal pedestrian attribute knowledge graph, termed M2PA-KG, this
knowlege graph is the first large-scale multi-modal knowledge graph in the PAR domain, contain-
ing comprehensive attribute entities, human body entities, attribute descriptions, and visual context
samples.

• We propose a novel Hierarchical Cross-Modal HyperGraph Learning for Knowledge Graph Aug-
mented Pedestrian Attribute Recognition, termed KGPAR. This framework fully exploits the high-
order relationships between attributes and between attributes and images, achieving knowledge-
guided high-performance pedestrian attribute recognition through effective hypergraph modeling.

• Extensive experiments on multiple PAR benchmark datasets fully validated the effectiveness of our
proposed M2PA-KG for the PAR task, laying a solid foundation for knowledge-guided pedestrian
attribute recognition.

2 RELATED WORKS

2.1 PEDESTRIAN ATTRIBUTE RECOGNITION

Pedestrian Attribute Recognition (PAR) aims to classify pedestrians based on attributes such as
gender and clothing.Par tasks can be divided into these categories, CNN-based methods, attention-
and pose-guided methods, and transformer-based methods. CNN-based methods were the earli-
est to dominate PAR research. These methods use convolutional neural networks such as VGG
and ResNet to extract global or local visual features from pedestrian images, followed by multi-
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label classifiers to predict attributes. Abdulnabi et al. (Abdulnabi et al., 2015) employ CNNs for
pedestrian attribute analysis and propose a multi-task learning strategy that uses multiple CNNs
to learn attribute-specific features, enabling knowledge sharing across networks.Diba et al. (Diba
et al., 2016) design an iterative clustering algorithm for pedestrian attribute recognition, referred to
as Deep-CAMP, which progressively refines attribute-specific clusters to improve recognition per-
formance. Later, in order to improve the spatial alignment between attributes and corresponding
body regions, attention guidance and posture guidance methods were proposed. For example, HP-
Net (Liu et al., 2017) combines multi-scale attention mechanisms across different semantic levels
to optimize feature representation. VeSPA (Sarafianos et al., 2018) uses the view sensitive attention
mechanism to adaptively select the area Er according to the pedestrian’s perspective networks.

Transformers like ViT improved long-range dependency modeling but still encounter difficulties in
capturing subtle attribute variations and addressing attribute imbalance, as demonstrated in ExpIB-
Net (Wu et al., 2023) and SOFAFormer (Wu et al., 2024).Recent works leverage multimodal learning
for enhanced recognition.VTB (Cheng et al., 2022) combined visual and textual features through
transformer architectures, and LLM-PAR (Jin et al., 2025b) incorporated large language models to
refine semantic reasoning. But these methods still face challenges in cross-dataset generalization.

2.2 KNOWLEDGE GRAPH

In recent years, Knowledge Graphs (KGs) have been widely applied across various domains due
to their ability to represent complex relationships and semantic information. For instance, Google
Knowledge Graph (Singhal et al., 2012) enhances search accuracy through semantic understanding;
IBM Watson Health (Liang et al., 2019) uses KGs to support personalized treatment recommen-
dations in healthcare; and SR-GNN (Wu et al., 2019) in e-commerce improves recommendation
systems by modeling user behavior and product attributes. Knowledge graphs have also found ap-
plications in finance, education, and other fields, demonstrating their versatile utility.

In this study, we construct a multi-modal knowledge graph to provide structured guidance for sub-
sequent hypergraph construction. By integrating multiple modalities such as images and text, the
knowledge graph effectively captures the relationships between entities, offering a solid founda-
tion for hypergraph modeling. This multi-modal knowledge graph serves as a powerful semantic
support for downstream tasks, contributing significantly to the optimization of pedestrian attribute
recognition.

3 METHODOLOGY

3.1 OVERVIEW

The overall framework of our architecture is illustrated in Fig. 2. Our method first obtains input
embeddings through CLIP §3.2. and constructs a multi-modal knowledge graph to capture seman-
tic and structural relationships among visual attributes §3.3. To further model both the internal
topological structure of individual images and the semantic correlations across images, we design a
hierarchical cross-modal hypergraph learning mechanism §3.4. Finally, the learned representations
are integrated for attribute prediction §3.5.

3.2 INPUT EMBEDDING

In this work, we adopt the image encoder f(·) and text encoder g(·) from CLIP as feature extractors
for vision and language, respectively. Formally, given an image xv , we first apply a patch embedding
layer PatchEmbed(·) to split the input image xv and project it into fixed-size patch embeddings
vp = [v1p, v

2
p, . . . , v

N
p ] ∈ RN×d, where N is the number of image patches, and d is the feature

dimension.

To model local region semantics, the input image is horizontally divided into R regions (e.g.,
head, upper, lower, foot), and a corresponding learnable d-dimensional token CLSli is as-
signed to each region. In addition, following existing methods, we introduce a learnable d-
dimensional global classification token CLSg. Therefore, we get the complete input sequence
vall = [CLSg; CLSl1 ,CLSl2 , . . . ,CLSlR ; vp]. Feeding this sequence into the image encoder
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Figure 2: An overview of our proposed knowledge graph augmented PAR by learning the hierarchi-
cal cross-modal hypergraph.

f(·) to get the final input embeddings:

[cg; cl1 , . . . , clR ; hp] = f(vall), (1)

where cg , cli , and hp are the global embedding, local embeddings, and the patch-level embeddings,
respectively. These embeddings are in a shared embedding space enabling alignment with text
modalities and facilitating downstream tasks.

3.3 MULTI-MODAL KNOWLEDGE GRAPH CONSTRUCTION

To capture the semantic and structural relationships among attributes, we construct a multi-modal
knowledge graph for each dataset, as shown in Fig. 4 in the appendix. This knowledge graph serves
as the foundation for subsequent learning tasks. Formally, the knowledge graph is defined as:

G = (V,E, S, I) (2)

where V , E, S, and I represent the set of nodes, edges, textual features, and visual features, re-
spectively. Each pedestrian attribute is modeled as a node and systematically organized into five
semantic modules: head, body, upper body, lower body, and foot. Every node is associated with
both textual and visual representations, while edges are established according to the co-occurrence
patterns of attributes observed in the dataset.

Specifically, we construct an attribute co-occurrence adjacency matrix A ∈ RM×M by aggregating
attribute labels across all images:

Aij =

N∑
k=1

Lki · Lkj , (3)

where L ∈ {0, 1}N×M denotes the label matrix, and Aii indicates the frequency of attribute i. This
adjacency matrix serves to establish edges between nodes in the knowledge graph. To facilitate the
propagation of multimodal features, we perform row-wise normalization of the adjacency matrix:

Ãij =
Aij

Aii
, Aii > 0. (4)

Each element Ãij of the normalized matrix is employed as the edge weight between nodes i and j,
reflecting the strength of their association.

This knowledge graph not only preserves the semantic and visual correlations among attributes
but also provides explicit guidance for the construction of local and global hypergraphs, thereby
promoting efficient interaction and propagation of multimodal features.
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3.4 HIERARCHICAL CROSS-MODAL HYPERGRAPH LEARNING

To capture the internal topological structure of individual images and the semantic relationships
across images, we design a hierarchical cross-modal hypergraph learning mechanism. Within this
mechanism, we construct both local and global hypergraphs to effectively model intra-image feature
interactions and inter-image correlations.

• Local HyperGraph As demonstrated in Section 3.3, each pedestrian image is first divided into
several predefined regions R = {body, head, upper, lower, foot}. To establish semantic correspon-
dences between text Tr = {t1, . . . , tMr

} and visual hpr
= {hp1

, . . . , hpNr
} within each region

r ∈ R, we compute the similarity matrix:

Sr = hpr
· T⊤

r ∈ RNr×Mr . (5)

For each textual token tj ∈ Tr, only the visual patch tokens hpi ∈ hp whose similarity exceeds
a threshold τ are retained. These selected patch tokens are then combined with the corresponding
textual token to form a hyperedge, thereby constructing a region-level hypergraph.

Finally, all regional hypergraph nodes and hyperedges are merged to form the complete local hy-
pergraph. This hypergraph is then input into the UniGNNHuang & Yang (2021) for encoding,
producing region features Hlocal that capture the fused text-visual semantic relationships.

• Global HyperGraph To jointly model the semantic alignment between images and attribute texts,
we construct a Global HyperGraph. The attribute texts are mapped into a shared feature space using
the CLIP text encoder, yielding the text embedding matrix Ftext = [f text

1 , f text
2 , . . . , f text

M ], where
d denotes the embedding dimension. For the image collection, global class tokens extracted by
the CLIP visual encoder serve as semantic representations, forming the image embedding matrix
Fimg = [f img

1 , f img
2 , . . . , f img

N ]. By concatenating image and text features, we obtain the node feature
matrix of the global hypergraph

F =

[
Fimg
Ftext

]
∈ R(N+M)×d. (6)

To capture the image–text correspondence, an image-to-attribute association matrix Yimg ∈ RN×M

is constructed, where

Yimg[i, j] =

{
1, if image Ii is associated with attribute tj ,

0, otherwise.
(7)

To maintain the independence of text nodes, an identity matrix Ytext = IM ∈ RM×M is introduced.
Consequently, the association matrix A of the global hypergraph is constructed as follows:

A =

[
Yimg
Ytext

]
∈ R(N+M)×M . (8)

The constructed global hypergraph is then input into UniGNNHuang & Yang (2021) for encoding,
generating image-text aligned representations Hglobal that capture global semantic relationships.

3.5 ATTRIBUTES PREDICTION

Before performing prediction, we apply a multi-modal fusion strategy to integrate the visual features
derived from both the global and local hypergraphs.

• Multi-modal Fusion Inspired by VTB (Cheng et al., 2022), we concatenate the visual features
with the constructed global hypergraph and local hypergraph, and feed them into a multi-modal
Transformer for joint modeling and deep interaction across different modalities. Specifically, the
concatenated input sequence is:

Z = [Hlocal;Hglobal; f(vall)]. (9)

The multi-head self-attention mechanism enables the Transformer to capture high-order dependen-
cies across modalities while integrating structural information at different granularities. After this
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fusion, the model obtains more discriminative multi-modal representations, which ultimately en-
hance attribute prediction.

• Prediction Based on the representations obtained from the Multi-modal Fusion, we employ a
feed-forward network (FFN) as the classifier to regress attribute scores:

R = FFN(Z) = σ(wZ + b) (10)

where w and b denote the weight and bias of the FFN, and σ(·) is the Sigmoid activation function
for producing the final attribute probabilities.

• Loss Computation In this study, we employ a loss function composed of two components to
optimize the training process. The first is the Global–Local Similarity Loss (LGL), which models
the similarity between the global CLS token, local region CLS tokens, and attribute representations,
and aligns them with the ground truth. This loss effectively evaluates the semantic consistency of
visual features at both global and local levels. It is formulated as a binary cross-entropy function:

LGL = − 1

M

M∑
i=1

N∑
j=1

(
yij log(p

GL
ij ) + (1− yij) log(1− pGL

ij )
)

(11)

where pGL
ij denotes the similarity prediction of the i-th sample for the j-th attribute, and yij rep-

resents the corresponding ground truth label. This loss ensures that attribute embeddings achieve
semantic alignment at both global and local levels. The second is the Weighted Cross-Entropy Loss
(LCLS), which addresses the class imbalance commonly encountered in pedestrian attribute recog-
nition. The weight for each attribute class is determined according to its frequency in the training
set, defined as wj = e−rj , where rj denotes the occurrence ratio of the j-th attribute. The loss is
defined as:

LCLS = − 1

M

M∑
i=1

N∑
j=1

wj (yij log(pij) + (1− yij) log(1− pij)) (12)

where pij indicates the predicted probability of the j-th attribute for the i-th image. By incorpo-
rating this weighting scheme, the loss function reduces the dominance of majority classes in the
optimization process, thereby enhancing the recognition capability for minority attributes. The final
overall optimization objective is formulated as:

L = LCLS + αLGL (13)

where α is a trade-off parameter that balances classification performance and global–local align-
ment.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRIC

To demonstrate the effectiveness of our proposed method, we conduct experiments on five PAR
benchmark datasets, including standard PETA (Deng et al., 2014), PA100K (Liu et al., 2017),
RAPv1 (Li et al., 2016), RAPV2 (Li et al., 2018), MSP60K (Jin et al., 2025b). We adopt five
widely used evaluation metrics to rigorously assess model performance: mean Accuracy (mA), Ac-
curacy (Acc), Precision (Prec), Recall, and F1-score (F1). Some experiments are provided in the
supplementary materials.

4.2 IMPLEMENTATION DETAILS

During the training phase, we employ the ViT-L/14 version of CLIP as the visual encoder, with input
images resized to 224 × 224. The model is trained with a batch size of 16 for a total of 100 epochs.
This training configuration is consistently applied across the RAPv1, RAPv2, PETA, and PA100K
datasets. The initial learning rate is set to 7e-4 and decays progressively at a rate of 1e-4, while an
additional 0.01 learning rate decay is applied to stabilize the training process. Parameter updates are
performed using the AdamW optimizer. Further implementation details are available in our source
code.
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4.3 COMPARISON ON PUBLIC BENCHMARKS

• Results on PETA (Deng et al., 2014) dataset. Our method achieves 88.50, 83.27, 89.74, 89.56,
and 89.43 in mA, Accuracy, Precision, Recall, and F1, respectively. Although it does not surpass
methods such as DRFormer or OAGCN on individual metrics, the overall performance remains
consistently high, demonstrating a well-balanced capability across metrics.

• Results on PA100K (Liu et al., 2017) dataset. Our approach reaches 87.95, 84.01, 89.55, 91.65,
and 90.28 in mA, Accuracy, Precision, Recall, and F1, respectively. Compared with FRDL, it
achieves improvements of 1.65 and 2.36 on mA and F1, respectively; it also outperforms PARformer
in terms of Accuracy and F1.

• Results on RAPv1 (Li et al., 2016) dataset. Our method obtains 85.46, 71.81, 80.54, 85.16, and
82.46 in mA, Accuracy, Precision, Recall, and F1, respectively. Compared with OAGCN, it achieves
comparable or even superior results without relying on additional viewpoint information.

• Results on RAPv2 (Li et al., 2018) dataset. The results are 83.02, 70.03, 78.33, 85.17, and 81.27
in mA, Accuracy, Precision, Recall, and F1, respectively. Although Accuracy is slightly lower than
some other methods, the performance in mA and F1 remains competitive.

• Results on MSP60K (Jin et al., 2025b) datasets. We evaluated our method on the MSP60K
dataset, and the experimental results are shown in Table 3. In the random split, our method achieved
mA 79.03, Acc 76.94, Precision 84.14, Recall 88.14, and F1 85.69. In the cross-domain split, our
method achieved mA 63.82, Acc 53.67, Precision 65.86, Recall 72.35, and F1 68.41, demonstrat-
ing stable performance. These results demonstrate that our method exhibits excellent performance
on the MSP60K dataset, with well-balanced and strong capabilities across multiple key metrics,
validating its effectiveness and stability in cross-domain pedestrian attribute recognition tasks.

Table 1: Comparison with state-of-the-art methods on PETA and PA100K datasets. The best and
second best results are highlighted in bold and underlined, respectively. Missing values are marked
with ”-”.

Methods Publish PETA PA100K

mA Acc Prec Rec F1 mA Acc Prec Rec F1

SSCNet (Jia et al., 2021a) ICCV21 86.52 78.95 86.02 87.12 86.99 81.87 78.89 85.98 89.10 86.87
CAS (Yang et al., 2021) IJCV21 86.40 79.93 87.03 87.33 87.18 82.86 79.64 86.81 87.79 85.18
IAA (Wu et al., 2022) PR22 85.27 78.04 86.08 85.80 85.64 81.94 80.31 88.36 88.01 87.80
DRFormer (Tang & Huang, 2022) NC22 89.96 81.30 85.68 91.08 88.30 82.47 80.27 87.60 88.49 88.04
VAC (Guo et al., 2022) IJCV22 - - - - - 82.19 80.66 88.72 88.10 88.41
DAFL (Jia et al., 2022) AAAI22 87.07 78.88 85.78 87.03 86.40 83.54 80.13 87.01 89.19 88.09
VTB (Cheng et al., 2022) TCSVT22 85.31 79.60 86.76 87.17 86.71 83.72 80.89 87.88 89.30 88.21
PARformer (Fan et al., 2023) TCSVT23 89.32 82.86 88.06 91.98 89.06 84.46 81.13 88.09 91.67 88.52
OAGCN (Lu et al., 2023) TMM23 89.91 82.95 88.26 89.10 88.68 83.74 80.38 84.55 90.42 87.39
SSPNet (Shen et al., 2024) PR24 88.73 82.80 88.48 90.55 89.50 83.58 80.63 87.79 89.32 88.55
SOFA (Wu et al., 2024) AAAI24 87.10 81.10 87.80 88.40 87.80 83.40 81.10 88.40 89.00 88.30
FRDL (Zhou et al., 2024) ICML24 88.59 - - - 89.03 89.44 - - - 88.05
PromptPAR (Wang et al., 2024a) TCSVT24 88.76 82.84 89.04 89.74 89.18 87.47 83.78 89.27 91.70 90.15
SequencePAR (Jin et al., 2025a) PR25 - 84.92 90.44 90.73 90.46 - 83.94 90.38 90.23 90.10
EVSITP (Wu et al., 2025a) CVPR25 89.65 83.93 89.67 90.73 90.20 88.66 84.54 89.90 92.09 90.98
HDFL Wu et al. (2025b) Neural Network25 87.55 79.66 87.08 87.16 86.85 84.92 80.23 87.45 88.74 87.72
FOCUS (An et al., 2025) ICME25 88.04 81.96 88.56 89.07 88.54 83.90 81.23 89.29 88.97 88.41

KGPAR (Ours) - 88.50 83.27 89.74 89.56 89.43 87.95 84.01 89.55 91.65 90.28

4.4 ABLATION STUDY

• Compoment Analysis. In this experiment, we employ CLIP as the pre-trained model to extract
textual and visual features. To evaluate the effectiveness of our approach, we compare it with the
baseline VTB model, in which the textual module is replaced by local and global hypergraphs.
All models are trained on the RAPv1 and PETA datasets to ensure fair and consistent evaluation.
Table 4 summarizes the performance of each model in terms of accuracy (Acc), mean accuracy
(mA), precision (Prec), recall (Rec), and F1-score.

• Effect of Different HyperGraph Encoders. Table 5 presents the results of using different hy-
pergraph encoders for pedestrian attribute recognition on the RAPV1 dataset. We compared several
hypergraph encoders based on the UniGNN (Huang & Yang, 2021) framework, including UniGIN,
UniGCN, UniGAT, and the improved UniGCN2. Each encoder employs a different graph neural net-
work approach—graph isomorphism network (UniGIN), graph convolutional network (UniGCN),
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Table 2: Comparison with state-of-the-art methods on RAPv1 and RAPv2 datasets. The best and
second best results are highlighted in bold and underlined, respectively. Missing values are marked
with ”-”.

Methods Publish RAPv2 RAPv1

mA Acc Prec Rec F1 mA Acc Prec Rec F1

SSCNet (Jia et al., 2021a) ICCV21 - - - - - 82.77 68.37 75.05 87.49 80.43
CAS (Yang et al., 2021) IJCV21 - - - - - 84.18 68.59 77.56 83.81 80.56
IAA (Wu et al., 2022) PR22 79.99 68.03 78.75 81.37 79.69 81.72 68.47 79.56 82.06 80.37
DRFormer (Tang & Huang, 2022) NC22 - - - - - 81.81 70.60 80.12 82.77 81.42
VAC (Guo et al., 2022) IJCV22 79.23 64.51 75.77 79.43 77.10 81.30 70.12 81.56 81.51 81.54
DAFL (Jia et al., 2022) AAAI22 81.04 66.70 76.39 82.07 79.13 83.72 68.18 77.41 83.39 80.29
VTB (Cheng et al., 2022) TCSVT22 81.34 67.48 76.41 83.32 79.35 82.67 69.44 78.28 84.39 80.84
PARformer (Fan et al., 2023) TCSVT23 - - - - - 84.43 69.94 79.63 88.19 81.35
OAGCN (Lu et al., 2023) TMM23 - - - - - 87.83 69.32 78.32 87.29 82.56
SSPNet (Shen et al., 2024) PR24 - - - - - 83.24 70.21 80.14 82.90 81.50
SOFA (Wu et al., 2024) AAAI24 81.9 68.6 78.0 83.1 80.2 83.40 70.00 80.00 83.00 81.20
FRDL (Zhou et al., 2024) ICML24 - - - - - 87.72 - - - 79.16
PromptPAR (Wang et al., 2024a) TCSVT24 83.14 69.62 77.42 85.73 81.00 85.45 71.61 79.64 86.05 82.38
SequencePAR (Jin et al., 2025a) PR25 - 70.14 81.37 81.22 81.10 - 71.47 82.40 82.09 82.05
EVSITP (Wu et al., 2025a) CVPR25 83.83 69.32 77.64 85.13 81.21 86.10 71.64 79.24 86.65 82.78
HDFL (Wu et al., 2025b) Neural Networks25 81.81 68.22 78.30 82.18 79.85 83.68 70.49 80.25 83.55 81.51
FOCUS (An et al., 2025) ICME25 - - - - - 83.45 70.14 80.10 85.18 80.91

KGPAR (Ours) - 83.02 70.03 78.33 85.17 81.27 85.05 71.75 79.95 85.98 82.50

Table 3: Comparison with state-of-the-art methods on MSP60K datasets. The best and second best
results are highlighted in bold and underlined, respectively. Missing values are marked with ”-”.

Methods Publish Random Split Cross-domain Split

mA Acc Prec Recall F1 mA Acc Prec Recall F1

DeepMAR (Li et al., 2015b) ACPR15 70.46 72.83 84.71 81.46 83.06 54.84 44.97 63.38 58.81 61.01
RethinkingPAR (Jia et al., 2021b) arXiv20 74.01 74.20 84.17 83.94 84.06 55.98 46.52 62.85 62.09 62.47
SSCNet (Jia et al., 2021a) ICCV21 69.71 69.31 79.22 82.47 80.82 52.84 40.88 56.26 58.64 57.43
VTB (Cheng et al., 2022) TCSVT22 76.09 75.36 83.56 86.46 84.56 58.59 49.81 65.11 66.11 65.00
Label2Label (Li et al., 2022) ECCV22 73.61 72.66 81.79 84.32 82.56 56.38 45.81 59.67 64.20 61.19
DFDT (Zheng et al., 2023) EAAI22 74.19 76.35 85.03 86.35 85.69 57.85 49.97 65.34 66.18 65.76
Zhou et al. (Zhou et al., 2023) IJCAI23 73.07 68.76 78.38 82.10 80.20 54.26 41.91 56.23 60.11 58.11
PARformer (Fan et al., 2023) TCSVT23 76.14 76.67 84.77 86.93 85.44 57.96 50.63 62.28 71.04 65.82
VTB-PLIP (Zuo et al., 2024) arXiv23 73.90 73.16 82.01 84.82 82.93 56.30 46.77 61.20 64.47 62.18
Rethink-PLIP (Zuo et al., 2024) arXiv23 69.44 68.90 79.82 81.15 80.48 57.18 46.98 63.57 62.16 62.86
PromptPAR (Wang et al., 2024a) TCSVT24 78.81 76.53 84.40 87.15 85.35 63.24 53.62 66.15 71.84 68.32
SSPNet (Shen et al., 2024) PR24 74.03 74.10 84.01 84.02 84.02 56.15 46.75 62.44 63.07 62.75
HAP (Yuan et al., 2023) NIPS24 76.92 76.12 84.78 86.14 85.45 58.70 50.59 65.60 66.91 66.25
MambaPAR (Wang et al., 2024c) arXiv24 73.85 73.64 83.19 84.29 83.28 56.75 47.34 61.92 64.98 62.80
MaHDFT (Wang et al., 2024b) arXiv24 74.08 74.40 82.82 86.41 83.93 58.67 50.65 62.39 71.13 65.85
SequencePAR (Jin et al., 2025a) PR25 71.88 71.99 83.24 82.29 82.29 57.88 50.27 65.81 65.79 65.37
LLM-PAR (Jin et al., 2025b) AAAI25 80.13 78.71 84.39 90.52 86.94 66.29 58.11 65.68 81.21 72.05
KGPAR (Ours) - 79.03 76.94 84.14 88.14 85.69 63.82 53.67 65.86 72.35 68.41

graph attention mechanism (UniGAT), and the enhanced UniGCN2—demonstrating their effective-
ness in pedestrian attribute recognition tasks.

4.5 VISUALIZATION

• Heatmap Visualization. To provide a more comprehensive illustration of the model’s vi-
sual attention mechanism when predicting pedestrian attributes on the RAPV1 dataset, we adopt
a heatmap-based visualization to highlight the critical response regions. As illustrated in Fig. 3, the
model effectively attends to semantically relevant regions that are highly correlated with different
attributes during inference, thereby demonstrating strong interpretability and a robust discriminative
capability in attribute-specific feature localization.

Table 4: Ablation Study on RAPv1, and PETA datasets

# Baseline Local-HG Global-HG RAPv1 PETA

mA Acc Prec Recall F1 mA Acc Prec Recall F1

1 ✓ 83.58 70.02 78.63 84.87 81.24 87.05 81.18 88.29 88.05 87.93
2 ✓ ✓ 85.28 71.19 79.51 85.66 82.11 88.54 82.02 88.65 89.04 88.60
3 ✓ ✓ 84.78 71.36 79.31 86.16 82.24 87.98 82.13 88.58 89.43 88.75
4 ✓ ✓ ✓ 85.05 71.75 79.95 85.98 82.50 88.50 83.27 89.74 89.56 89.43

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 5: Comparison of different HyperGraph Encoders architectures on the RAPV1 dataset for
pedestrian attribute recognition.

KG Encoders mA Acc Prec Recall F1

UniGIN 85.30 71.64 79.53 86.29 82.41
UniGCN 85.36 71.46 79.43 86.14 82.30
UniGAT 85.48 71.58 79.72 85.91 82.36

UniGCN2 85.05 71.75 79.95 85.98 82.50

Figure 3: Visualization of heat maps given the corresponding pedestrian attribute and predicted
attribute results.

• Attributes Predicted. As illustrated in Fig. 3, this work provides multiple examples of attribute
recognition results on the RAPV1 dataset. Both quantitative and qualitative analyses indicate that the
model achieves high stability and accuracy in identifying several key attribute categories, including
gender, age, and clothing style. Even in complex scenarios, the model demonstrates consistent
robustness in recognizing common attributes.

4.6 LIMITATION ANALYSIS

The model achieves competitive results but has some limitations. It relies on predefined body re-
gion partitions, which limits its ability to capture fine-grained attributes, particularly for accessories
or complex textures. The fixed thresholds for constructing hypergraphs may not fully capture rare
attributes, leading to suboptimal performance in such cases. Additionally, datasets like PETA and
PA100K suffer from annotation inconsistencies and imbalances, which affect generalization. Lastly,
the computational overhead from cross-modal hypergraphs may hinder large-scale real-time de-
ployment. Future work will focus on adaptive partitioning, improved hypergraph construction, and
lightweight variants for better efficiency.

5 CONCLUSION

We propose KGPAR, a hierarchical cross-modal hypergraph framework for pedestrian attribute
recognition. By combining local and global hypergraph learning, it effectively captures intra-image
feature interactions and inter-sample semantic relationships between visual and textual modalities.
Extensive experiments on PETA, PA100K, RAPv1, RAPv2, and MSP60K demonstrate competitive
performance across all metrics, showcasing improved robustness and balanced prediction. Future
work will explore dynamic hypergraph construction and more efficient learning to enhance cross-
dataset generalization and real-time applicability.
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have followed responsible research practices and ensured that no private or proprietary data was
included. The proposed methodology is intended for academic research purposes and does not pose
foreseeable risks of misuse. We believe our study complies with the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have included the complete implementation of our
proposed method in the supplementary materials. The released code is accompanied by a detailed
README.md file, which provides step-by-step instructions and execution commands for reproduc-
ing our experiments. This includes dataset preprocessing, model training, and evaluation procedures.
With these resources, other researchers can readily verify and build upon our results.
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A APPENDIX

• Effect of Different Backbone Architectures. Table 6 presents a comparative analysis of differ-
ent backbone networks on the PA100k dataset. Replacing the ViT-B/16 backbone with the larger
ViT-L/14 consistently improves all evaluation metrics, including mean accuracy (mA), overall ac-
curacy (Acc), precision (Prec), recall, and F1 score. Specifically, ViT-L/14 achieves 87.95% mA
and 90.28% F1, outperforming ViT-B/16 by 3.6% and 1.67%, respectively. This performance gain
can be attributed to the greater representational capacity of ViT-L/14, which allows the model to
better capture fine-grained pedestrian attributes. In contrast, the smaller ViT-B/16 backbone may
underrepresent complex attribute interactions, leading to slightly lower precision and recall. Over-
all, these results highlight the importance of backbone selection in pedestrian attribute recognition,
as larger models can more effectively encode discriminative features and enhance recognition ro-
bustness across diverse scenarios.

Table 6: Comparison of different backbone architectures on the PA100K dataset for pedestrian
attribute recognition.

Backbone mA Acc Prec Recall F1

ViT-B/16 84.35 81.45 88.16 89.79 88.61
ViT-L/14 87.95 84.01 89.55 91.65 90.28

• Effect of Different Number of Vision Context Samples. Table 7 presents the effect of varying
the number of images applied to each node’s visual attributes on pedestrian attribute recognition
performance using the RAPv1 dataset. During knowledge graph construction, a fixed number of im-
ages are assigned to each node’s visual attributes. This experiment compares the impact of different
image quantities on the performance of the method.

Table 7: Comparison of the effect of the number of images applied to each node in the knowledge
graph on pedestrian attribute recognition performance on the RAPv1 dataset.

number mA Acc Prec Recall F1

2 85.22 71.60 79.86 85.79 82.39
4 85.09 71.48 79.28 86.31 82.30
6 84.93 71.26 79.47 85.76 82.14
8 84.81 71.09 79.01 86.08 82.04
10 85.05 71.75 79.95 85.98 82.50

• Effect of Different Regional Partitioning Methods. Table 8 presents a comparative analysis
of regional versus non-regional partitioning strategies on the RAPv2 dataset. The regional division
method achieves slightly higher mean accuracy (mA) and F1 score compared to the non-regional
approach, with 83.02% mA and 81.27% F1. This indicates that explicitly dividing the image into
semantic regions can help the model capture localized attribute features more effectively. However,
the non-regional method exhibits marginally higher recall (85.37% vs. 85.17%), suggesting that
global features may sometimes provide complementary information for certain attributes. Overall,
incorporating regional partitioning improves the model’s ability to focus on fine-grained attribute de-
tails while maintaining competitive overall performance, demonstrating its usefulness in pedestrian
attribute recognition tasks.
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Table 8: Comparison of regional and non-regional partitioning methods on the RAPv2 dataset for
pedestrian attribute recognition.

Regional Method mA Acc Prec Recall F1

Regional division 83.02 70.03 78.33 85.17 81.27
non Regional division 83.37 69.50 77.53 85.37 80.91

Figure 4: An overview of the built knowledge graph for pedestrian attribute recognition.
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