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Abstract

Learning an effective representation in multi-001
label text classification (MLTC) presents a002
significant challenge in NLP. This challenge003
emerges due to the inherent complexity of the004
task and is shaped by two key factors: the in-005
tricate interconnections among labels and the006
widespread long-tailed distribution of data. In007
order to overcome this major issue, one po-008
tential approach involves the integration of su-009
pervised contrastive learning with classical su-010
pervised loss functions. Although contrastive011
learning has shown remarkable performance012
in multi-class classification, its impact in the013
multi-label framework has not been thoroughly014
examined. In this paper, we conduct an in-015
depth study of supervised contrastive learning016
and its influence on representation in the MLTC017
context. We emphasize the significance of tak-018
ing into account long-tailed data distributions019
to establish a resilient representation space, ef-020
fectively tackling two critical challenges as-021
sociated with contrastive learning: the “lack022
of positives” and “attraction-repulsion imbal-023
ance”. Building on this insight, we introduce024
a novel contrastive loss function for MLTC. It025
attains Micro-F1 scores that either are similar026
or surpass those obtained with other frequently027
employed loss functions, and demonstrates a028
significant improvement in Macro-F1 scores029
across three multi-label datasets.030

1 Introduction031

In recent years, multi-label text classification has032

gained significant popularity in the field of Natural033

Language Processing (NLP). Defined as the pro-034

cess of assigning one or more labels to a document,035

MLTC plays a crucial role in numerous real-world036

applications such as document classification, senti-037

ment analysis, and news article categorization.038

Despite its similarity to multi-class mono-label039

text classification, MLTC presents two fundamental040

challenges: handling multiple labels per document041

and addressing datasets that tend to be long-tailed. 042

These challenges highlight the inherent imbalance 043

in real-world applications, where some labels are 044

more present than others, making it hard to learn a 045

robust semantic representation of documents. 046

Numerous approaches have emerged to address 047

this issue, such as incorporating label interactions 048

in model construction and devising tailored loss 049

functions. Some studies advocate expanding the 050

representation space by incorporating statistical 051

correlations through graph neural networks in the 052

projection head (Vu et al., 2022; Xu et al., 2020). 053

Meanwhile, other approaches recommend either 054

modifying the conventional Binary Cross-Entropy 055

(BCE) by assigning higher weights to certain sam- 056

ples and labels or introducing an auxiliary loss 057

function for regularization (Zhang et al., 2021). 058

Concurrently, recent approaches based on super- 059

vised contrastive learning employed as an auxiliary 060

loss managed to enhance semantic representation 061

in multi-class classification (Cui et al., 2021; Gunel 062

et al., 2020). 063

While contrastive learning represents an inter- 064

esting tool, its application in MLTC remains chal- 065

lenging due to several critical factors. Firstly, defin- 066

ing a positive pair of documents is difficult due to 067

the interaction between labels. Indeed, documents 068

can share some but not all labels, and it can be 069

hard to clearly evaluate the degree of similarity re- 070

quired for a pair of documents to be considered 071

positive. Secondly, the selection of effective data 072

augmentation techniques necessary in contrastive 073

learning proves to be a non-trivial task. Unlike 074

images, where various geometric transformations 075

are readily applicable, the discrete nature of text 076

limits the creation of relevant augmentations. Fi- 077

nally, the data distribution in MLTC often shows 078

an unbalanced or long-tailed pattern, with certain 079

labels being noticeably more common than others. 080

This might degrade the quality of the representa- 081

tion (Graf et al., 2021; Zhu et al., 2022). Previous 082
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research in MLTC has utilized a hybrid loss, com-083

bining supervised contrastive learning with classi-084

cal BCE, without exploring the effects and prop-085

erties of contrastive learning on the representation086

space. Additionally, the inherent long-tailed dis-087

tribution in the data remains unaddressed, leading088

to two significant challenges that we term as “lack089

of positive” and “attraction-repulsion imbalance”.090

The “lack of positive” issue arises when instances091

lack positive pairs in contrastive learning, and the092

“attraction-repulsion imbalance” is characterized by093

the dominance of attraction and repulsion terms for094

the labels in the head of the distribution.095

In this paper, we address these challenges head-096

on and present a novel multi-label supervised con-097

trastive approach, referred to as ABALONE, intro-098

ducing the following key contributions:099

• We conduct a comprehensive examination of100

the influence of contrastive learning on the rep-101

resentation space, specifically in the absence102

of BCE and data augmentation.103

• We put forth a substantial ablation study, illus-104

trating the crucial role of considering the long-105

tailed distribution of data in resolving chal-106

lenges such as the “Attraction-repulsion im-107

BAlance” and “Lack of pOsitive iNstancEs”.108

• We introduce a novel contrastive loss func-109

tion for MLTC that attains Micro-F1 scores110

on par with or superior to existing loss func-111

tions, along with a marked enhancement in112

Macro-F1 scores.113

• Finally, we examine the quality of the rep-114

resentation space and the transferability of115

the features learned through supervised con-116

trastive learning.117

The structure of the paper is as follows: in Sec-118

tion 2, we provide an overview of related work.119

Section 3 introduces the notations used throughout120

the paper and outlines our approach. In Section121

4, we present our experimental setup, while Sec-122

tion 5 provides results obtained from three datasets.123

Finally, Section 6 presents our conclusions.124

2 Related Work125

In this section, we delve into an exploration of126

related work on supervised contrastive learning,127

multi-label text classification, and the application128

of supervised contrastive learning to MLTC.129

2.1 Supervised Contrastive Learning 130

The idea of supervised contrastive learning has 131

emerged in the domain of vision with the work 132

of Khosla et al. (2020) called SupCon. This study 133

demonstrates how the application of a supervised 134

contrastive loss may yield results in multi-class 135

classification that are comparable, and in some 136

cases even better, to the traditional approaches. The 137

fundamental principle of contrastive learning in- 138

volves enhancing the representation space by bring- 139

ing an anchor and a positive sample closer in the 140

embedding space, while simultaneously pushing 141

negative samples away from the anchor. In super- 142

vised contrastive learning, a positive sample is char- 143

acterized as an instance that shares identical class 144

with the anchor. In Graf et al. (2021), a comparison 145

was made between the classical cross-entropy loss 146

function and the SupCon loss. From this study, it 147

appeared that both loss functions converge to the 148

same representation under balanced settings and 149

mild assumptions on the encoder. However, it was 150

observed that the optimization behavior of SupCon 151

enables better generalization compared to the cross- 152

entropy loss. 153

In situations where there is a long-tailed distri- 154

bution, it has been found that the representation 155

learned via the contrastive loss might not be effec- 156

tive. One way to improve the representation space 157

is by using class prototypes (Zhu et al., 2022; Cui 158

et al., 2021; Graf et al., 2021). Although these 159

methods have shown promising results, they pri- 160

marily tackle challenges in multi-class classifica- 161

tion problems. 162

2.2 Multi-label Classification 163

Learning MTLC using the binary cross-entropy 164

loss function, while straightforward, continues to 165

be a prevalent approach in the literature. A widely 166

adopted and simple improvement to reduce imbal- 167

ance in this setting is the use of focal loss (Lin et al., 168

2017). This approach prioritizes difficult examples 169

by modifying the loss contribution of each sample, 170

diminishing the loss for well-classified examples, 171

and accentuating the importance of misclassified or 172

hard-to-classify instances. An alternative strategy 173

involved employing the asymmetric loss function 174

(Ridnik et al., 2021), which tackles the imbalance 175

between the positive and negative examples during 176

training. This is achieved by assigning different 177

penalty levels to false positive and false negative 178

predictions. This approach enhances the model’s 179
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sensitivity to the class of interest, leading to im-180

proved performance, especially in datasets with181

imbalanced distributions.182

Other works combine an auxiliary loss function183

with BCE, as in multi-task learning, where an addi-184

tional loss function serves as regularization. For in-185

stance, Zhang et al. (2021) suggest incorporating an186

auxiliary loss function that specifically addresses187

whether two labels co-occur in the same document.188

Similarly, Alhuzali and Ananiadou (2021) propose189

a label-correlation-aware loss function designed190

to maximize the separation between positive and191

negative labels inside an instance.192

Rather than manipulating the loss function, alter-193

native studies suggest adjusting the model architec-194

ture. A usual approach involves integrating statisti-195

cal correlations between labels using Graph Neu-196

ral Network (Xu et al., 2020; Ma et al., 2021; Vu197

et al., 2022). Additionally, a promising avenue of198

research looks into adding label parameters to the199

model, which would enable the learning of a unique200

representation for every label as opposed to a sin-201

gle global representation (Kementchedjhieva and202

Chalkidis, 2023; Alhuzali and Ananiadou, 2021;203

Xiao et al., 2019).204

2.3 Supervised Contrastive Learning for205

Multi-label Classification206

The use of supervised contrastive learning in multi-207

label classification has recently gained interest208

within the research community. All the existing209

studies investigate the effects of supervised con-210

trastive learning by making some kind of prior as-211

sumption about label interactions in the learned212

representation space.213

Dao et al. (2021) suggest to use supervised con-214

trastive learning for image classification based on215

the assumption that labels are situated in distinct216

areas of an image. Their contrastive loss is utilized217

alongside the BCE loss function and serves as a218

type of regularization more details can be found in219

Appendix F.220

Lin et al. (2023) propose five different super-221

vised contrastive loss functions that are used jointly222

with BCE to improve semantic representation of223

classes. In addition, Su et al. (2022) suggest using224

a KNN algorithm during inference in order to im-225

prove performance. Some studies use supervised226

contrastive learning with a predefined hierarchy of227

labels (Zhang et al., 2022; Wang et al., 2022).228

While contrastive loss functions in mono-label229

multi-class scenarios push apart representations of230

instances from different classes, directly applying 231

this approach to the multi-label case may yield sub- 232

optimal representations, particularly for examples 233

associated with multiple labels. This can lead to 234

a deterioration in results, particularly in long-tail 235

scenarios. 236

In contrast to other methods, our approach does 237

not rely on any prior assumptions about label inter- 238

actions. We address the long-tail distribution chal- 239

lenge in MLTC by proposing several key changes 240

in the supervised contrastive learning loss. 241

3 ABALONE 242

We begin by introducing the notations and then 243

present our approach. In the following, B is de- 244

fined as the set of indices of examples in a batch, 245

and L represents the number of labels. The repre- 246

sentation of the ith document in a batch is denoted 247

as zi. The associated label vector for example i is 248

yi ∈ {0, 1}L, with yji representing its jth element. 249

Furthermore, we denote by IB = {zi | i ∈ B} the 250

set of document embeddings in the batch B. 251

3.1 Contrastive Baseline LBase 252

Before introducing our approach, we provide a 253

description of our baseline for comparison, denoted 254

as LBase, and defined as follows: 255

LBase = − 1

|B|
∑
zi∈IB

1

N(i)∑
zj∈IB\zi

|yi ∩ yj |
|yi ∪ yj |

log
exp(zi · zj/τ)∑

zk∈IB\zi exp(zi · zk/τ)

256

This loss is a simple extension of the SupCon loss 257

(Khosla et al., 2020) with an additional term intro- 258

duced to model the interaction between labels, cor- 259

responding to the Jaccard Similarity. τ represents 260

the temperature, · represents the cosine similarity, 261

and N(i) is the normalization term defined as: 262

N(i) =
∑
j∈B\i

|yi ∩ yj |
|yi ∪ yj |

263

It is to be noted that LBase, does not consider 264

the inherent long-tailed distribution of multi-label 265

dataset, and that it is similar to other losses pro- 266

posed in contrastive learning (Su et al., 2022; Lin 267

et al., 2023). We provide further details in Ap- 268

pendix C. 269
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Figure 1: Illustration of how “lack of positives” and “attraction-repulsion imbalance” problem are addressed by
LBase (classical contrastive loss for MLTC) and LMSC (our proposed balanced Multi-label Supervised Contrastive
loss). (a) Adding prototypes and a queue in LMSC ensures a consistent positive pairing and expands positive and
negative samples diversity. (b) Reweighting negative pairs addresses the imbalance between head and tail labels.
For clarity, only the attraction/repulsion on the sample in the middle is depicted, without queue and prototypes.
Color blue (respectively yellow) corresponds to a label in the head (respectively tail) of the distribution.

3.2 Motivation270

Our work can be dissected into two improvements271

compared to the conventional contrastive loss pro-272

posed for MLTC.273

Each of these improvements aims to tackle the274

long-tailed distribution inherent in the data and275

alleviate concerns related to the absence of posi-276

tive instances and the imbalance in the attraction-277

repulsion dynamics. These improvements are out-278

lined as follows.279

Lack of Positive Instances: We use a280

memory system by maintaining a queue281

Q = {z̃j}j∈{1,...,K}, which stores the learned282

representations of the K preceding instances from283

the previous batches obtained from a momentum284

encoder. This is in line with other approaches285

(He et al., 2020; Chen et al., 2020) that propose286

to increase the number of positive and negative287

pairs used in a contrastive loss. Additionally,288

we propose to incorporate a set of L trainable289

label prototypes C = {ci | i ∈ {1, . . . , L}}.290

This strategy guarantees that each example in291

the batch has at least as many positive instances292

as the number of labels it possesses. These two293

techniques are particularly advantageous for294

the labels in the tail of the distribution, as they295

guarantee the presence of at least some positive296

examples in every batch.297

Attraction-Repulsion Imbalance: Previous 298

work highlights the significance of assigning 299

appropriate weights to the repulsion term within 300

the contrastive loss (Zhu et al., 2022). In the 301

context of multi-label scenarios, our proposal 302

involves incorporating a weighting scheme into 303

the repulsion term (denominator terms in the 304

contrastive loss function), to decrease the impact 305

of head labels. More details about attraction and 306

repulsion terms introduced in Graf et al. (2021) can 307

be found in Appendix E. For an anchor example 308

i with respect to any other instances k ̸= i in the 309

batch and in the memory queue, we define the 310

weighting of the repulsion term as: 311

gi(zk, β) =

{
1 if zk ∈ C,

β otherwise.
(1) 312

with 0 < β < 1. This function assigns equal 313

weights to all prototypes, allocating less weight to 314

all other examples present in both the batch and the 315

queue. 316

In contrastive learning for mono-label multi- 317

class classification, the attraction term is consis- 318

tently balanced, as each instance is associated with 319

only one class. While, in MLTC, a document can 320

have multiple labels, some in the head and others 321

in the tail of the class distribution. Our approach 322

not only weights positive pairs based on label in- 323

teractions but also considers the rarity of labels 324
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within the set of positive pairs. Instead of iterating325

through each instance, we iterate through each pos-326

itive label of an anchor defining a positive pair, as327

an instance associated with this label.328

Figure 1 illustrates the impact of our strategy329

on the representation space during the learning330

phase. It demonstrates how our new multi-label331

contrastive loss, denoted as LMSC , compares with332

LBase on the exact same training examples in two333

different situations.334

3.3 Multi-label Supervised Contrastive Loss335

To introduce properly our loss function, we use the336

following notation: H = I∪Q represents the set of337

embeddings in the batch and in the queue; ∆(zi) =338

{k ∈ [1, L]|yki = 1} represents the set of labels for339

example i; and P (j, i) = {zl ∈ H|yjl = 1}\zi340

represents the set of representations for examples341

belonging to label j, excluding the representation342

of example i. Our balanced multi-label contrastive343

loss can then be defined as follows :344

LMSC =
1

|B|
∑
i∈B

ℓ(zi) (2)345

where ℓ(zi) is the individual loss for example i346

defined as :347

ℓ(zi) = − 1

|yi|
∑

j∈∆(zi)

1

N(i, j)

∑
zl∈P (j,i)∪cj

f(zi, zj) log
exp(zi · zl/τ)∑

zk∈H∪C\zi gi(zk, β) exp(zi · zk))
(3)

348

gi(zk, β) are our tailored weights for repulsion349

terms defined previously. f represents the weights350

between instances and N(i, j) is a normalization351

term, both are defined as:352

f(zi, zj) =

{
1 if zj ∈ C

1
|yi∪yj | otherwise.

(4)353

N(i, j) =
∑

zl∈P (j,i)∪cj

f(zi, zl) (5)354

This f defined in equation 4 is build so that the355

equation coincides with the Jaccard similarity in356

scenarios where labels are balanced.357

It is to be noted that until now, the learning of358

a representation space for documents through a359

pure contrastive loss has remained uncharted. De-360

spite numerous studies delving into multi-label con-361

trastive learning, none have exclusively employed362

contrastive loss without the traditional BCE loss.363

4 Experimental Setup 364

This section begins with an introduction to the 365

datasets employed in our experiments. Subse- 366

quently, we will provide a description of the base- 367

line approaches against which we will compare 368

our proposed balanced multi-label contrastive loss, 369

along with the designated metrics. 370

4.1 Datasets 371

We consider the following three multi-label 372

datasets. 373

1. RCV1-v2 (Lewis, 2004): RCV1-v2 com- 374

prises categorized newswire stories provided 375

by Reuters Ltd. Each newswire story may be 376

assigned multiple topics, with an initial total 377

of 103 topics. We have retained the original 378

training/test split, albeit modifying the num- 379

ber of labels. Specifically, some labels do not 380

appear in the training set, and we have opted 381

to retain only those labels that occur at least 382

30 times in the training set. Additionally, we 383

extract a portion of the training data for use as 384

a validation set. 385

2. AAPD (Yang et al., 2018): The Arxiv Aca- 386

demic Paper Dataset (AAPD) includes ab- 387

stracts and associated subjects from 55,840 388

academic papers, where each paper may have 389

multiple subjects. The goal is to predict the 390

subjects assigned by arxiv.org. Due to consid- 391

erable imbalance in the original train/val/test 392

splits, we opted to expand the validation and 393

test sets at the expense of the training set. 394

3. UK-LEX (Chalkidis and Søgaard, 2022): 395

United Kingdom (UK) legislation is readily 396

accessible to the public through the United 397

Kingdom’s National Archives website1. The 398

majority of these legal statutes have been sys- 399

tematically organized into distinct thematic 400

categories such as health-care, finance, educa- 401

tion, transportation, and planning. 402

Table 1 presents an overview of the main charac- 403

teristics of these datasets, ordered based on the 404

decreasing number of labels per example. 405

4.2 Comparison Baselines 406

To facilitate comparison, our objective is to assess 407

our approach against the current state-of-the-art 408

1ttps://www.legislation.gov.uk
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Dataset |Train| |Val| |Test| L L W

RCV1 19.7k 3.5k 781k 91 3.2 241
AAPD 42.5k 4.8k 8.5k 54 2.4 163
UK-LEX 20.0k 8.0k 8.5k 69 1.7 1154

Table 1: Datasets statistics. The table shows the number
of examples (in thousands) within the training, valida-
tion, and test sets, as well as the number of class labels
L, the average number of labels per example L, and the
average word count per document W .

from two angles. We first examine methods that409

focus on the learning of a robust representation,410

and then we assess approaches that are centered411

around BCE and its extensions.412

4.2.1 Baseline: Learning a good413

representation space414

We assess our balanced multi-label contrastive415

learning by comparing it with the following loss416

functions that were introduced for learning im-417

proved representation spaces.418

• LMLM , represents the classical masked lan-419

guage model loss associated with the pre-training420

task of transformer-based models (Liu et al., 2019).421

• LBase, serves as our baseline for contrastive422

learning, as presented in the previous section.423

• LBQueue, corresponds to LBase with additional424

positive instances using a queue.425

• LBQProto, represents the strategy that involves426

integrating prototypes into the previous LBQueue427

loss function.428

4.2.2 Standard loss function for Multi-Label429

The second type of losses that we consider in our430

comparisons are based on BCE.431

• LBCE , denotes the BCE loss, computed as fol-432

lows :433

LBCE = − 1

N

N∑
i=1

1

L

L∑
j=1

yji log(ŷ
j
i ) + (1− yji ) log(1− ŷji )

434

where, {ŷ1i , ..., ŷLi } represent the model’s output435

probabilities for the ith instance in the batch.436

• LFCL, denotes the focal loss, as introduced by437

Lin et al. (2017), which is an extension of LBCE . It438

incorporates an additional hyperparameter γ ⩾ 0,439

to regulate the ability of the loss function to empha- 440

size over difficult examples. 441

LFCL = − 1

N

N∑
i=1

1

L

L∑
j=1

yji (1− ŷji )
γ log(ŷji ) + (1− yji )(ŷ

j
i )

γ log(1− ŷji )

442

443

• LASY , represents the asymmetric loss function 444

(Ridnik et al., 2021) proposed to reduce the im- 445

pact of easily predicted negative samples during 446

the training process through dynamic adjustments, 447

such as ’down-weights’ and ’hard-thresholds’. The 448

computation of the asymmetric loss function is as 449

follows: 450

LASY = − 1

N

N∑
i=1

1

L

L∑
j=1

yji (1− sji )
γ+

log(sji )(1− yji ) + (sji )
γ−

log(1− sji )

451

with sji = max(ŷji − m, 0). The parameter m 452

corresponds to the hard-threshold, whereas γ+ and 453

γ− are the down-weights. 454

4.3 Implementation Details 455

Our implementation is Pytorch-based2, involving 456

the truncation of documents to 300 tokens as input 457

for a pre-trained model. For AAPD, RCV1 datasets, 458

we utilized the Roberta-base (Liu et al., 2019) as 459

the backbone, implementing it through Hugging 460

Face’s resources3. For the UK-LEX dataset, we 461

employed Legal-BERT, also provided by Hugging 462

Face4. As common practice, we designated the 463

[CLS] token as the final representation for the text, 464

utilizing a fully connected layer as a decoder on this 465

representation. Our approach involves a batch size 466

of 32, and the learning rate for the backbone is cho- 467

sen from the set {5e−5, 2e−5}. Throughout all ex- 468

periments, we use AdamW optimizer (Loshchilov 469

and Hutter, 2017), setting the weight decay set 470

to 0.01 and implementing a warm-up stage that 471

comprises 5% of the total training. For evaluat- 472

ing the representation space, we trained logistic 473

regressions with AdamW separately for each in- 474

dividual label. To expedite training and conserve 475

memory, we employed 16-bit automatic mixed pre- 476

cision. Additional details and the pseudocode of 477

2https://pytorch.org
3https://huggingface.co/roberta-base
4https://huggingface.co/nlpaueb/

legal-bert-base-uncased
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AAPD RCV1

Loss µ-F1 M-F1 Ham µ-F1 M-F1 Ham

LMLM 63.86 45.62 28.48 80.06 58.42 13.5

LBase 72.25 56.42 24.4 87.89 73.7 8.51
LBQueue 72.73 57.92 24.15 87.56 72.9 8.72
LBQProto 73.3 59.126 23.69 88.00 74.82 8.44
LMSC (ours) 73.59 60.00 23.74 88.40 76.82 8.21

Table 2: Evaluation of progressive complexity in contrastive loss functions. Micro-F1 (µ-F1), Macro-F1 (M-F1),
and Hamming Loss (multiplied by 103) metrics are averaged over nine values (three seeds and three temperatures
0.07, .1, .2) - except for LMLM averaged on three seeds.

our approach are available in Appendices A and B478

respectively.479

The evaluation of results is conducted on the test480

set using traditional metrics in MLTC, namely the481

hamming loss, Micro-F1 score and Macro-F1 score482

(Zhang et al., 2021).483

5 Experimental Results484

We start our evaluation by conducting an ablation485

study, comparing various loss functions proposed486

for representation learning, as outlined in Section487

4.2.1. Table 2 summarizes these results obtained488

across various temperatures and seeds. The score489

achieved with LMLM is merely 10 points lower in490

the Micro-F1 score compared to the best results,491

highlighting the effectiveness of the representation492

space found during the pre-training phase. Our ap-493

proach primarily focuses on the Macro-F1 score,494

targeting the prevalent long-tailed distribution in495

MLTC data. As the table shows, each additional496

component we have introduced contributes around497

one point to the Macro-F1 score. Maintaining a bal-498

ance between attraction and repulsion terms proves499

crucial, particularly for RCV1-v2, where it resulted500

in a 2-point improvement in the Macro-F1 score.501

Our proposed loss function, LMSC , exhibited502

superior performance over the baseline LBase for503

all metrics, emphasizing the importance of ad-504

dressing both the ’Lack of Positive’ issue and the505

’Attraction-Repulsion Imbalance’ for an optimal506

representation space. Throughout our experiments,507

setting the temperature to 0.1 consistently yielded508

the best results across all baselines. Consequently,509

we adopted this setting for all subsequent experi-510

ments.511

5.1 Comparison with standard MLTC losses 512

Table 3 presents a comparison of performance be- 513

tween the standard BCE-based loss functions out- 514

lined in Section 4.2.2 and our approach. LMSC 515

outperforms all baselines in Macro-F1 score. The 516

asymmetric loss function achieves comparable re- 517

sults only for the AAPD dataset, albeit with the 518

worst score in other metrics. Regarding Micro-F1, 519

the performance of the LBase is equivalent for the 520

AAPD dataset and slightly better for RCV1-v2 and 521

UK-LEX compared to the best score of the three 522

standard losses. These results suggest that super- 523

vised contrastive learning in MLTC can achieve 524

comparable or even superior results compared to 525

standard BCE based loss functions without the ad- 526

dition of another loss function. 527

5.2 Fine-Tuning after Supervised Contrastive 528

Learning 529

To evaluate the quality of the representation space 530

given by the contrastive learning phase, we ex- 531

plored the transferability of features through a fine- 532

tuning stage. This study introduces two novel base- 533

lines: LBase−FT and LMSC−FT , which are ob- 534

tained by fine-tuning the representation learn with 535

contrastive learning instead of doing a simple lin- 536

ear evaluation. In all cases, LMSC−FT achieved 537

superior results in both micro-F1 and macro-F1 538

scores compared to LBase−FT . These results show 539

that the features learned with LMSC are robust and 540

offer an enhanced starting point for fine-tuning, 541

in contrast to the traditional LMLM . Conversely, 542

the performance of LBase−FT was either worse or 543

comparable to that of BCE, which underlies the 544

benefits of our new loss function. 545
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AAPD RCV1 UK-LEX

Loss µ-F1 M-F1 Ham µ-F1 M-F1 Ham µ-F1 M-F1 Ham

Supervised Loss

LASY 72.92 60.63 25.3 86.63 75.02 10.02 70.53 60.58 14.43
LFCL 73.85 59.91 22.61 88.36 76.69 8.19 73.23 61.17 11.54
LBCE 73.89 59.98 22.53 88.17 76.06 8.17 72.61 60.97 11.95

Contrastive Loss

LBase 72.51 56.67 24.13 87.86 73.79 8.48 72.3 59.66 12.31
LBase−FT 73.09 58.55 23.61 88.41 76.08 8.18 72.45 60.66 12.23

Ours

LMSC 73.84 60.75 23.72 88.54 77.05 8.12 73.5 62.06 11.83
LMSC−FT 74.00 60.41 23.01 88.65 77.18 7.99 72.97 61.33 12.04

Table 3: Comparative Analysis of multi-label loss functions. Metrics used are Micro-F1 (µ-F1), Macro-F1 (M-F1),
and Hamming Loss (multiplied by 103). FT stands for fine-tuning.

5.3 Representation Analysis546

To quantify the quality of the latent space learned547

by our approach, we evaluate how well the embed-548

dings are separated in the latent space according to549

their labels using two established metrics : Silhou-550

ette score (Rousseeuw, 1987) and Davies–Bouldin551

index (Davies and Bouldin, 1979). These metrics552

collectively assess the separation between clusters553

and cohesion within clusters of the embeddings.554

We treat each unique label combination in the555

dataset as a separate class to apply these metrics556

to the multi-label framework. Such expansion can557

potentially dilute the effectiveness of traditional558

clustering metrics by creating too many classes. To559

mitigate this, our analysis focuses on subsets of the560

most prevalent label combinations, retaining only561

half of the most represented label combination. A562

detailed exploration of the impact of the size of the563

subset selection is provided in the Appendix D.564

Table 4 presents our findings. A direct compari-565

son between the baseline contrastive method LBase,566

and our proposed LMSC method (prior to fine-567

tuning) reveals a significant enhancement in both568

metrics score. The integration of fine-tuning using569

BCE significantly enhances LBase and LMSC for570

both metrics, which demonstrates the effectiveness571

of the hybrid approach. Using our loss with fine-572

tuning is the only method able to surpass BCE in573

both metrics. This underscores its efficacy in creat-574

ing well-differentiated and cohesive clusters in the575

latent space.576

Method Sil ↑ DBI ↓

LMLM -0.14 2.83
LBCE 0.15 2.02

LBase 0.07 2.23
LBase−FT 0.13 2.00

LMSC 0.10 2.07
LMSC−FT 0.16 1.98

Table 4: Clustering Metrics for different loss functions
on 104 embeddings from RCV1-v2 test set. Only 50%
of most represented label combinations are kept.

6 Conclusion 577

In this paper, we have introduced the first super- 578

vised contrastive learning loss for MTLC which 579

outperforms standard BCE-based loss functions 580

for this task. Our method highlights the impor- 581

tance of considering the long-tailed distribution of 582

data, addressing issues such as the ’lack of posi- 583

tives’ and the ’attraction-repulsion imbalance’. We 584

have designed a loss that takes these issue into 585

consideration, outperforming existing standard and 586

contrastive losses in both micro-F1 and macro-F1 587

across three standard multi-label datasets. More- 588

over, we also verify that these considerations are 589

also essential for creating an effective representa- 590

tion space. Additionally, our findings demonstrate 591

that initializing the model’s learning with super- 592

vised contrastive pretraining yields better results 593

than existing contrastive pre-training methods. 594
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7 Limitation595

Even though our approach demonstrates effective-596

ness in practice, it is subject to certain limitations,597

as outlined in this paper.598

Firstly, our approach inherits the typical drawbacks599

of contrastive learning, including a prolonged600

training phase relative to traditional methods601

and the necessity of a secondary step to evaluate602

the representation space with linear evaluation.603

Secondly, our experiments were solely conducted604

using the base version of the pre-trained model,605

without exploring the behaviors of supervised606

contrastive learning in larger versions of these607

models.608

Lastly, investigating data augmentation for long609

texts presents challenges due to their discrete610

nature. We did not explore data augmentation611

techniques, despite the fact that they are critical in612

contrastive learning. Further research in this area613

could yield insightful contributions for future work.614

615
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A Implementation details 756

This section describes the implementation details 757

of our framework in six parts: experimentation 758

baselines, standard approaches, pretraining for con- 759

trastive learning, evaluating representation space, 760

the fine-tuning stage and GPU budget. 761

Common Process for All Experiments: The 762

dropout rate in the pre-trained model is set to 0.1, 763

and weight decay is excluded from bias and Layer- 764

Norm parameters. The learning rate for parameters, 765

other than the backbone, is consistently set to 5e−5. 766

Gradient Clipping is used with the parameter set 767

to 1. No data augmentation is employed. Specifics 768

for standard approaches: In the baseline, we 769

employed the standard linear scheduler, and the 770

number of epochs was selected from {10, 40, 80}. 771

As is commonly practiced, we employed a linear 772

scheduler. During training, the model with the 773

best F1-micro score is kept for testing, while the 774

model achieving the best average results (averaged 775

over seeds) on validation is retained for testing 776

part. In the baseline, we tested the standard pa- 777

rameters. For the focal loss we set in all experi- 778

ments γ = 2 and for the Asymmetric loss we set 779

γ+ = 0, γ− = 3,m = 0.3. 780

Contrastive Learning Pretraining Contrastive 781

Learning tends to converge to a better represen- 782

tation with more iterations, which is why we con- 783

sistently set the number of epochs to 80 in all ex- 784

periments. We assessed the representation space 785

of three checkpoints and retained the best one for 786

testing. The available checkpoints include the last 787

checkpoint, the one with the lowest loss in train- 788

ing, and the one with the lowest loss in validation. 789

The checkpoints with the best micro-F1 is kept. 790

As a common practice for contrastive learning, a 791

cosine scheduler is used. As in SupCon Khosla 792

et al. (2020), we use a projection head composed of 793

two fully connected layers with ReLU as activation 794

function: W2 · ReLU(W1 · x) where W1 ∈ Rh×h 795

and W2 ∈ Rd×h where h is the dimension of the 796

hidden space and d is set to 256 in our experiments. 797

As in SupCon the projection head is discarded to 798

evaluate the representation space. For the hyperpa- 799

rameter, we set the size of the MoCo queue equal 800

to 512 and the momentum encoder is update with 801

a momentum equal to 0.999 as in He et al. (2020). 802

Finally, in our experiments, we set β to 0.1; this 803

parameter was not subject to search. 804

Details evaluating representation space: To 805

study the representation space, we employed 806
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AdamW Loshchilov and Hutter (2017) for train-807

ing logistic regression on frozen model, without808

exploring alternative optimizers. For each label809

we trained logistics regression with learning rate810

in the set {1, 1e−1, 1e−2} and weight decay in811

{1, 1e−1, 1e−2, 1e−4, 1e−6} for a number of 40812

epochs. To eliminate sensitivity to initialization,813

we trained 3 logistic regressions per label, and the814

output was computed as the mean probability. For815

each label individually, the best parameters for the816

micro-F1 are kept.817

Fine-Tuning details: When the best model check-818

point obtained by supervised contrastive learning819

is found, we discard the projection head and train a820

linear layer using BCE. The settings are the same821

as "Common process for all experiments" and we822

searched a learning rate in {5e−5, 2e−5} and a823

number of epochs in {5, 10}. GPU budget: In824

this section we will discuss on the GPU budget. To825

start, it is crucial to note the number of parameters826

in the model utilized. We exclusively used base827

models, implying that the parameter count stands828

at 110 millions. For all experiments on AAPD and829

RCV1-v2 we used NVIDIA RTX A6000, and we830

used NVIDIA Quatro RTX A6000 for UK-LEX.831

For the AAPD dataset, training a single model us-832

ing contrastive learning requires 25 hours, while a833

fine-tuning step of 10 epochs takes 1 hour and 30834

minutes. If we assume uniform time requirements835

across all datasets, the estimation suggests that all836

experiments will collectively take approximately837

5000 hours.838

B Pseudo-code 839

Algorithm 1: Algorithms
Input: gθ = fθ ◦ hθ pre-trained model and

its non-linear projection head
gθk : momentum encoder of gθ ;
pθ̃: Linear Layer
m: momentum;
τ : temperature;
Queue: Moco Queue;
C: Prototypes

for x in loader do
/* Forward Encoder and Momentum

Encoder */
q = gθq(x);
k = gθk(x).detach();
/* Compute loss function */
L(q, Queue, C, τ ).backward();
/* Update Parameters */
update(θ), update(C);
/* Update Parameters Moco

Encoder */
θk = m ∗ θk + (1−m) ∗ θ
/* Update Queue */
enqueue(Queue, k); dequeue(Queue)

/* Discard the projection head h */
g̃θ̃ = fθ.freeze() ◦ pθ̃
/* Evaluate the representation

space */
for x, y in loader do

/* Forward */
ŷ = g̃θ̃(x)
/* Compute Standard BCE */
BCE(y, ŷ).backward();
/* Update Parameters */

update(θ̃)
Output: g̃θ̃

C Comparative Analysis with Our 840

Baseline and Past SCL for MLTC 841

In this section, we compare our LBase equation 842

(refer to Equation 3.1) with the two previously used 843

loss functions in MLTC. The Jaccard Similarity 844

Contrastive Loss (JSCL): The JSCL introduced 845

in Lin et al. (2023) shows significant resemblance, 846

or is nearly identical, to our baseline. The primary 847

difference lies in the position of the weight obtained 848

through Jaccard similarity; in our approach, it is 849

placed outside the logarithm. If kept inside, the 850
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coefficient has no impact on training (log(ax) and851

log(x) have the same derivative), making the loss852

similar to defining a positive pair as any example853

that shares at least one label without weighting.854

LJSCL = − 1

|B|
∑
zi∈I

− 1

|B|∑
zj∈A(i)

log
|yi ∩ yj |
|yi ∪ yj |

exp(zi · zj/τ)∑
k∈A(i) exp(zi · zk/τ)

(6)

855

Contrastive Learning Multi-label: The other856

loss function for SCL in MLTC called Lcon in (Su857

et al., 2022) aimed to enhance the representation858

specifically for the utilization of K-Nearest Neigh-859

bors (KNN) algorithms. The primary distinction860

from our baseline lies in the similarity measure,861

utilizing distance, motivated by the application of862

KNN. Additionally, rather than employing Jaccard863

similarity, the authors utilized the conventional dot864

product. Lcon can be written as follows:865

LCon = − 1

|B|
∑
zi∈I

1

C(i)∑
zj∈A(i)

⟨yi, yj⟩ log
exp(−d(zi, zj)/τ)∑

k∈A(i) exp(−d(zi, zk)/τ)

(7)

866

C(i) represents a classical normalization term like867

N(i) and d is a distance function. We observe that868

our contrastive baseline, LBase, exhibits signifi-869

cant similarity, requiring only minor modifications,870

thereby establishing it as a fair baseline.871

D Clustering Quality Across Diverse872

Multi-Label Embeddings Proportions873

To apply clustering evaluation metrics such as the874

Silhouette score or the Davies-Bouldin index to875

multi-label embeddings, it is necessary to create876

one class for each unique multi-label combination,877

resulting in up to 2L classes. Although 50% of878

these were retained in Table 4, we now explore a879

more general scenario by varying this proportion880

as reported in Figure 2.881

Our approach, LMSC , consistently outperforms882

LBase, except for a single proportion value of 20%,883

for Silhouette score. This could be attributed to the884

fact that our approach attempts to address the tail885

labels, which are typically discarded when keeping886

smaller proportions of top label combination.887

E Attraction and Repulsion Term 888

In this section, we define the classical SupCon 889

loss(Khosla et al., 2020) as LSC . Given all in- 890

stances representation Z of a batch with their cor- 891

responding class Y. The paper Graf et al. (2021) 892

shows that: 893

LSC(Z;Y,B, y) ≥
∑
i∈By

log(|By| − 1+

|ByC | exp(Si
att(Z, Y,B, y) + Si

rep(Z, Y,B, y)))

(8)

894

Where: 895

Si
att(Z, Y,B, y) = − 1

|By| − 1

∑
j∈By\i

⟨zi, zj⟩ (9) 896

Si
rep(Z, Y,B, y) =

1

|BC
y |

∑
j∈BC

y

⟨zi, zj⟩ (10) 897

The set BC
y denotes the indices of instances that do 898

not possess the class y, while By represents the in- 899

dices of instances with the class y. Zhu et al. (2022) 900

proposes the normalization of Si
rep(Z, Y,B, y) in- 901

volves re-weighting the denominator to achieve 902

balance influence of classes. The attraction term 903

Si
att(Z, Y,B, y) relies on the numerator only, yet 904

it can be adjusted by applying different weights 905

before the logarithm. 906

F Study of LMulCon representation space 907

In this section, we explain the claim that the loss 908

function LMulCon proposed in Dao et al. (2021) 909

converges to a trivial solution without BCE. In this 910

work, the author inserts to the input a label represen- 911

tation called L ∈ RL×d where d is the dimension 912

of the hidden space. The output is composed of one 913

representation per labels called Z ∈ RL×d and zk
i 914

is the representation of the kth label for ith element 915

inside a batch. For one input, X their model f can 916

be summarized as: 917

f(X,L) = Z (11) 918

We redefined I = {zi
j |yij = 1, j ∈ {1, ..., N}, i ∈ 919

{1, ..., L}} the set of all labels representation 920

which appears inside a batch and the set of pos- 921

itive instance for the ith label of the jth instance 922

P (i, j) = {zi
k|zi

k ∈ I, yik = yij , k ̸= j}. Under 923
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Figure 2: Clustering quality metrics of different approaches across top classes retained.

these notations LMulCon can be defined as follows:924

LMulCon =
1

|I|
∑
zi
j∈I

1

|P (i, j)|
∑

zi
k∈P (i,j)∑

zi
k∈P (i,j)

log
exp(zi

j · zi
k/τ)∑

zt
f∈I\z

i
j
exp(zi

j · zt
f/τ)

(12)925

For this demonstration, we position ourselves in926

the same configuration as Graf et al. (2021):927

1. f is powerful enough to realize any geometric928

arrangement of the representations.929

2. Our dataset is balanced in terms of labels.930

Under these assumptions, the LMulCon attains931

its minimum with {zi
j = ζi}i={1,...,L} where932

{ζi}i∈{1,...,L} the vertices of an origin-centered reg-933

ular L− 1 simplex Graf et al. (2021). The previous934

expression shows that the representation of each935

label collapses, which implies that the output of936

the model is a constant C equals to [ζ1, ..., ζL]. The937

output does not depend on the input, which implies938

that the loss converges to a trivial solution without939

BCE.940
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