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Abstract

The minimax sample complexity of group distri-
butionally robust optimization (GDRO) has been
determined up to a log(K) factor, where K is the
number of groups. In this work, we venture be-
yond the minimax perspective via a novel notion
of sparsity that we call (), 3)-sparsity. In short,
this condition means that at any parameter 6, there
is a set of at most 3 groups whose risks at 6 are all
at least A larger than the risks of the other groups.
To find an e-optimal 6, we show via a novel algo-
rithm and analysis that the e-dependent term in the
sample complexity can swap a linear dependence
on K for a linear dependence on the potentially
much smaller 5. This improvement leverages re-
cent progress in sleeping bandits, showing a fun-
damental connection between the two-player zero-
sum game optimization framework for GDRO and
per-action regret bounds in sleeping bandits. We
next show an adaptive algorithm which, up to
logarithmic factors, obtains a sample complexity
bound that adapts to the best (A, 3)-sparsity con-
dition that holds. We also show how to obtain a
dimension-free semi-adaptive sample complexity
bound with a computationally efficient method.
Finally, we demonstrate the practicality of the
(A, B)-sparsity condition and the improved sam-
ple efficiency of our algorithms on both synthetic
and real-life datasets.

1. Introduction

Performing well across different data subpopulations and be-
ing robust to distribution-shift in testing are two of the most
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important goals in building machine learning models (Ben-
Tal et al., 2013; Williamson & Menon, 2019; Sagawa et al.,
2020). These goals are especially important for models mak-
ing decisions that could have societal and safety impacts. A
recently proposed framework for achieving these goals is the
group distributionally robust optimization (GDRO) frame-
work, in which a learner aims to find a single hypothesis that
minimizes the maximum risk over a finite number of data
distributions. This minimax objective is often considered in
the context of fairness (Rawls, 1971; Williamson & Menon,
2019; Abernethy et al., 2022) when the distributions repre-
sent different demographic groups, or as a means to promote
robustness when they represent possible shifts in the data
distribution (Mohri et al., 2019; Sagawa et al., 2020).

More formally, given an n-dimensional hypothesis set © and
a group of K distributions P;, the learner aims to solve the
optimization mingee max; ¢y, x} Ri(0), where R;(0) is
the risk of the learner with respect to P;. Intuitively, this
objective encourages the learner to find a model with good
balance in performance with respect to a finite number of
distributions of data, and avoid models that might perform
extremely well on one distribution but have significantly
worse performance on others. The GDRO framework as-
sumes that the learner has access to a sampling oracle, which
returns an i.i.d sample from P; upon receiving a request
i € [K]. The sample complexity of the learner is the number
of samples needed to find an e-optimal hypothesis 6 such
that the optimality gap max; R;(#)—max; R;(6*) is smaller
than a target value €, where 6 is an optimal hypothesis.

Throughout the paper, the O notation hides logarithmic
factors. Existing works (Soma et al., 2022; Zhang et al.,
2023) have shown a sample complexity lower bound of or-
der Q(Gz[Z#) and a near-matching O (6;2[2#) worst-
case upper bound, where D is the /> diameter of © and G
is the Lipschitz constant of the loss function. While these
existing results are useful for understanding worst-case sce-
narios, practical problems may have additional structure that
allows for significantly lower sample complexity. In partic-
ular, the Q(@#) lower bound construction in (Soma
et al., 2022) relies on having arbitrarily small gaps (i.e.,
difference in risks) between groups for all 6 € ©. This
property rarely holds in practice, where most hypotheses
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can have significant gaps between groups. For example,
in car manufacturing, each car model often has noticeably
different effects on different surfaces and road conditions.

1.1. Contributions and Techniques

We transcend the established minimax bounds by consid-
ering problem instances with additional structure. We for-
mally define such a structure called (A, 3)-sparsity in Sec-
tion 2.1. The main idea of (A, 8)-sparsity is that for all
6, the groups can be divided into two sets: one contains
groups with large risks and the other contains groups with
small risks. The parameter A specifies the risk-difference
between these two sets of groups, while [ specifies the
number of groups with large risks. Let /) denote the small-
est (8 for which (A, 8)-sparsity holds. For problem with
(A, B)-sparsity, we show that the dependence on K in the
leading term (here and throughout, the term for which 1/¢
is of the highest order) can be reduced from O(K In K) to
O(Bx1n K). Table 1 summarizes our main results, which
consist of three high-probability upper bounds and a lower
bound. The leading terms in the upper bounds grow with

0) (%) instead of O (%), where 3 could

be much smaller than K.! To the best of our knowledge,
these are the first bounds that go beyond the established min-
imax bound in (Soma et al., 2022; Zhang et al., 2023). The

D2G?*+p
62

near-matching lower bound is of order €2 ( ), gen-

eralizing the minimax lower bound in (Soma et al., 2022).

Technically, our results are based on improving the sample
complexity of the two-player zero-sum game framework for
GDRO (Nemirovski et al., 2009; Zhang et al., 2023). In this
framework, a game is played repeatedly as follows: in round
t, the first player (the min-player) plays a hypothesis §; € ©
and the second player (the max-player) plays a group index
iy € [K] and draws a sample from distribution P;,. For the
max-player, choosing one of K groups and getting an i.i.d
sample from that group is similar to pulling one of K arms
and getting feedback from that arm in a multi-armed bandit
problem. While existing works (Soma et al., 2022; Zhang
et al., 2023) use a fixed set of K arms in every round for the
max-player to choose from, the (A, 8)-sparsity condition al-
lows us to use a smaller, time-varying subset of active arms
of size at most 3. To handle this time-varying action set, we
use the sleeping bandits framework (Kleinberg et al., 2010)
to model the learning process of the max-player. Critically,
recent progress (Nguyen & Mehta, 2024) in bounding the
per-action regret in sleeping bandits (details in Section 3.2)
enables us to reduce the max player’s regret bound and im-
prove the dependency on the number of groups from K In K
to S 1n K in the leading term of the sample complexity.

For the dimension-dependent bounds, the computation of

'See Table 1 for full results.

the time-varying subsets of arms for the max-player is
based on a uniform convergence bound for O that uses
O (42) samples. The first bound is obtained by an al-
gorithm called SB-GDRO that takes A as input and out-

puts an e-optimal hypothesis using O (% + %)

samples. Letting A\* be the A that minimizes the sam-
ple complexity bound of SB—GDRO, a natural question is
whether it is possible to nearly obtain this minimum sam-
ple complexity without knowing A\*. Surprisingly, in Sec-
tion 4 we show that such adaptivity is possible. A disad-
vantage of the fully-adaptive approach is that it is com-
putationally expensive due to the explicit computation of
covers of the potentially high-dimensional set ©. In Sec-
tion 4.2, we partially resolve this by proposing a computa-

tionally efficient semi-adaptive algorithm achieving another
( D2G%+max(In(K),Bx+) )
€2

dimension-independent 0 bound in

high-precision settings where € < A*.

For the dimension-free bound, we use the Lipschitzness of
the loss function and the stability properties in the strategy
of the min-player to compute the time-varying active arms

. ~ [ DKG+/D2G2+81In( £RC
usmgO( 7 (£22)

samples. This leads

to a dimension-free bound that is potentially much smaller
than the dimension-dependent bounds when n is large.

In Section 6, we present experimental results showing
that not only this (), 3)-sparsity condition holds for high-
dimensional practical setting around the optimal hypothesis
0*, but also our algorithms can efficiently (in both sample
and computational complexity) compute an estimate of \*
and leverage it to find e-optimal hypotheses with signifi-
cantly fewer samples compared to baseline methods.

1.2. Related Works

We consider the GDRO problem where the loss function
is real-valued in [0, 1] and the hypothesis space © is convex
and compact. In this setting, (Nemirovski et al., 2009)? con-
verts GDRO to a stochastic saddle point problem and uses
stochastic mirror descent methods with O(W)
sample complexity guarantee. (Sagawa et al., 2020) adopts
the two-player convex-concave game framework from the
deterministic min-max optimization literature (Freund &
Schapire, 1999; Cesa-Bianchi & Lugosi, 2006) to obtain

0] (W) sample complexity bound, which
was improved to O(W) by (Zhang et al., 2023)
by refining the approach. An €2 (GZDG#) information-
theoretic lower bound was shown in (Soma et al., 2022).

A related, more constrained setting is the class of multi-

2 (Nemirovski et al., 2009) do not impose the bounded loss as-
sumption, although (Zhang et al., 2023) do adopt this assumption.
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Table 1. Summary of main results. A-adapt indicates if the bound is adaptive to the best A* possible. Dimension-free indicates whether

the bound depends on the dimension of ©. § is the failure probability.

Upper and Lower Bounds A-adapt? Dimension-free?
0] K 1n§:’§’<) + (G2D2+f§)ln(%) (Theorem 3.4) X X
0 (K i (G2D2+fé*”n(§)) In (i))(Theorem A1) v x
0 DKG (D2G2+£>3\)316n(K/5) 1n(KE§’5G) n (D2G2+f2) 1n(K/5)> (Theorem 5.1) % v
0] ((D2Gz+max(lng)’ﬂ”)) IH(K/(S)) (Theorem 4.2) v v

Q (22642 ) (Theorem 3.5)

distribution binary classification problems in which © has
finite VC-dimension d (Haghtalab et al., 2022; Awasthi et al.,
2023). Recent works have established tight minimax sample
complexity bounds of order deK for this setting (Zhang
et al., 2024; Peng, 2024). Multi-distribution learning with
multi-label prediction with offline data was recently ex-
plored in (Jang et al., 2024). We refer interested readers
to (Haghtalab et al., 2022; Zhang et al., 2024) for a more
comprehensive discussion of related works in min-max fair-
ness and federated learning settings.

2. Problem Setup

Let © C R"™ be a compact convex set of hypotheses, Z be
a sample space and ¢ : © x Z — [0, 1] be a loss function
measuring the performance of a hypothesis on a data point.
Similar to previous works in GDRO (Sagawa et al., 2020;
Haghtalab et al., 2022), we use the following assumption.

Assumption 2.1. The diameter of © is bounded as ||0||, <
D for all # € ©. The loss function ¢ is convex and G-
Lipschitz in the first argument, i.e., |£(6, ) — £(¢', )] <
G||0 —¢'||, forall 0,0" € ©.

There are K groups, each associated with a distribution
(,Pi)i,i=1,.4.,K over Z. Let [K} = {1,2,..., K} Let
R;(0) = E..p,[€(0,2)] be the risk of 6 with respect to
group i. The worst-case risk of a hypothesis 6 is measured
by its maximum risk over these distributions:

(0) e (0)

The objective is find a hypothesis 8* with minimum £(8):

0* = argmin £(#) = arg min max R; (). )

0co gco i€[K]

The optimality gap of § € O is err() = L(0) — L(6).
Similar to previous works, we assume that the learner has
access to a sampling oracle that, for every query i € [K],

returns an i.i.d sample z ~ P;. Given a target optimality ¢,
the sample complexity of a learner is the number of samples
to find an e-optimal hypothesis 6 such that err(0) < e.

2.1. (A, B)-Sparsity Structure
First, we formally define the notion of a A-dominant set.

Definition 2.2. For any A € [0, 1] and 6 € ©, a non-empty
set of groups S C [K] is A-dominant at 6 if for all j ¢ S,

@

Note that S = [K] is a dominant set, as there is no j in the
empty set [K] \ S such that R;(0) + X > min;e(x] R;i(0).
Next, we introduce (A, 3)-sparsity, our novel condition for
GDRO problems.

Definition 2.3. For A > 0 and 8 € [1, K], a GDRO problem
is (A, B)-sparse if for all § € ©, there exists a A-dominant
set whose size is at most 5. If A > 0 and 8 < K, we say
that (A, 8) is nontrivial.

By definition, a GDRO instance can be (), /3)-sparse for
multiple (A, ). For example, a (0.2, 10)-sparse problem
with K = 20 is also (0.2,11) and (0.1, 10)-sparse. Simi-
larly, there can be multiple A-dominant sets at each 6. Let
S0 be the collection of all A-dominant sets at 6. Since [K]
is always a A-dominant set, this collection always contains
[K]. Let 3 9 = minges, , |S| be the size of the smallest \-
dominant set at § € ©. Then, we have 8, = maxgpceo S0
is the smallest value of 3 such that (X, 5)-sparsity holds.
Moreover, all GDRO instances are trivially (0, 1)-sparse, in
which case the 0-dominant set contains one of the groups
with maximum expected loss. If (A, 3)-sparsity holds for
nontrivial (), ), then for every model, there is a prominent
gap in the outcome (i.e., risks) of applying that model across
different groups.
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2.2. (A, 3)-sparsity for linear regression with linear
Gaussian model

Figure 1 (Right) illustrates the mathematical plausibility of
nontrivial (A, §)-sparsity in the continuous domain via a
simple example with © = [0, 1]. In the following, we show
that a non-trivial (A, §)-sparsity holds for the problem of lin-
ear regression with linear Gaussian model where the number
of groups K and the dimensionality n are arbitrarily large.
In this problem, each group ¢ € [K] is characterized by two
vectors p;, 07 € R™. A sample z = (X, y) is generated
from group i by X ~ N (u;,I) and y ~ N ({07, X), 1).

Next, taking K = 3 and n = 1, we show a choice of the
p;’s and 07’s for which (A = 0.5, 3 = 2)-sparsity holds.
We set the parameter space © = [—1, 1] and use squared
loss £(6, z) = (X6 — y)?. Next, we take p; = 0 for all j
and set ] = —1, 05 = 1, and 05 = 0. The model is well-
specified since all ; are in ©. In Appendix A, we show that
for any 0 € O, its risks on groups 1, 2, and 3 are R;(0) =
(0+1)2+1, Re(0) = (0 —1)® + 1, and R3(0) = 6> + 1,
respectively. Moreover, max { R1(0), R2(0)} — R3(0) > 1
holds for all # € ©. This immediately implies that this
GDRO instance is (0.5, 2)-sparse, and the 0.5-dominant set
is either {1}, {2}, or {1, 2}.

Note that everything extends to higher dimensions n > 1
(as higher dimensions only increase the gaps between the
groups). To extend to larger K, the idea for 7 > 4 is to take
pj = 0 and let the parameter ¢ be slightly perturbed from
63 so that all these groups’ risks are always dominated by
(the maximum of) groups 1 and 2 with a margin of 1. Asa
result, it still is the case that (0.5, 2)-sparsity holds.

Next, in Section 3, we begin by presenting an algorithm
which, for any input A € (0, 1], returns an e-optimal hypoth-
Kn + D2G>+8x
A2 €2

esis with sample complexity O ) For any

such ), including trivial choices for which 3, = K, this
algorithm (with high probability) provides a valid sample
complexity guarantee, but the guarantee is most useful for
the unknown, optimal A — call it A* — that minimizes
the sample complexity. The focus of Section 4 is adap-
tive algorithms that obtain, without any knowledge of \*,
sample complexity whose order is only larger than that of
our previous algorithm (were it given A*) by a logarithmic
factor.

3. Two-Player Zero-Sum Game Approach

In this section, we present a new algorithm SB-GDRO

that, for a given input A € (0,1], obtains an

O ( Knln(GDK/5) (G®D?+8x) In(K/8)
)\2 + 62

) sample complex-

ity. Let A be the K -dimensional probability simplex. For
any g € Ag, let ¢(0,q) = Zfil qiRi(0) be the weighted
sum of the risks of 6 over K groups. Following (Nemirovski

et al., 2009), we write the objective function in (1) as

in £ 0
g L0 =iy ey 00

The duality gap of § € © and ¢ € A is defined as

err(6,q) = max o(0,q) — min $(6, ).

Since £(0) > ¢(6, q) for all 0, we have err(6) < err(6, q).
To minimize err(f,q), similar to existing works (Ne-
mirovski et al., 2009; Soma et al., 2022), we employ the
following two-player zero-sum game approach: a game is
run in 7" rounds, where in each round, there are two players
Ay and A, corresponding to the min and max operators
in the objective function (1). In round ¢, the min-player
Ay first plays a hypothesis 6;, and then the max-player A,
plays a vector ¢; € Ag. Then, a random group i; ~ ¢ is
drawn, and the sampling oracle returns a sample z;, ¢ ~ P;,.
The two players compute 01 and g;1 for the next round
based on i; and z;, ;. The min-player’s goal is to minimize
its regret with respect to the best hypothesis in hindsight:

T
= Z¢(9t7Qt)
t=1

The max-player’s goal is to minimize its regret with respect
to the best weight vector in hindsight:

T
- Iergélgfb(@,qt)- (3)

T
R4, = max Z¢ 0,9) = Y d(On,q). (4
t=1

QGAK

The SB—GDRO algorithm is illustrated in Algorithm 1. Be-
fore the game starts, SB—~GDRO draws a set V; of m samples
from each group i € [K], where m is defined in Lemma 3.1.
Let V = {Vi,..., Vi } be the collection of these sets. The
strategies of the two players are as follows:

* The min-player Ay follows the stochastic mirror de-
scent framework similar to (Zhang et al., 2023). Specif-
ically, given a sample z;, ; ~ P;, and an existing 6,
Ap computes ;1 by

. N 1
9t+1:al"gmln{ﬂw,t@tﬁ*eﬁ+§||9*9t||3} (5)

0coO

where 7, = \/{ is a time-varying learning rate and
gt = VL(0:, z;, +) is a stochastic gradient of R;, (0;).
Note that §; = argmingcg ||0]|,. We refer to the
strategy of the min-player as MinP, whose formal pro-
cedure is given in Algorithm 4 in Appendix B.

* The max-player A, uses §; and V' to compute a set of
“active” groups Sp,. A group i is active if the empirical
risk of 6 with respect to V; is sufficiently large. Then, a
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E.[6(0,2)]

Algorithm 1 SB-GDRO with a known A

Input: Constants K, D, G, A, €, hypothesis set © C R”

Draw m (defined in Lemma 3.1) samples from each group into set V'

Initialize §; = argmingcg [|0||5
for eachround ¢ =1,...,7"do

Sp, = DominantSet (6, V,0.7)\) // 0.4 -dominant set at 0;

¢t = MaxP(t, Sg, ) // Action of max-player
Draw iy ~ q; and z;, + ~ Py,
Or41 = MinP (04, z;, +) // Action of min-player
5 T
Return: 0 = + >, 6,

Figure 1. (Left) SB-GDRO with known A. (Right) A (A, 5)-sparse example with K = 3, 5 = 2.

Algorithm 2 MaxP: the sleeping bandits max-player A,

Input: Time step ¢t > 0, a dominant set Set

if t = 1 then Initialize ¢; , = 1 for i € [K]

else
Leth;s =1—4(0s,2s) fors=1,2,...,t—1
Compute g; + by Equation (7)

1{i€Se, } i,

Return: qt where qit = m
Ji= t ’

sleeping bandits algorithm called SB-EXP3 is used to
compute a group-sampling probability vector ¢; € A,
where ¢;; > 0 for ¢ € Sgt and ¢;, = 0 for i ¢ S’Qt.
We refer to the strategy of the max-player as MaxP,
whose details are given in Algorithm 2.

Compared to existing works (Soma et al., 2022; Zhang et al.,
2023; Haghtalab et al., 2022), our two-player zero-sum
game procedure has two additional steps: the construction
of the collection V' and the computation of the set Sgt.
At the end of round T', the hypothesis § = % Z;_l 0, is
returned. As shown in (Soma et al., 2022), err(6, q) is
bounded by £ (R4, + Ra,). The min-player Ag uses a
variant of the stochastic online mirror descent algorithm
in (Zhang et al., 2023) that uses time-varying learning
rates instead of fixed learning rates, and obtains the same
high-probability O(DG+/T In(1/6)) regret bound. Our
focus is to obtain an improved bound for the max-player
A, with a modified strategy.

Next, in Section 3.1, we compute the size of V' needed to
construct the A-dominant sets in each round. Section 3.2
presents the strategy of using V' to improve the regret of 4,.

3.1. Computing the Dominant Sets

Before the game starts, a set of m samples is drawn from
each of K groups. Let V; ; € V; be the j-th sample col-
lected from group i. Let R2;(#) = L > 0521 40,V ;) be the

Algorithm 3 Dominant Set: compute a dominant set Sgt

Input: §; € ©, collection of samples V, threshold 7 > 0
Compute R;(0;) = 1 D (B, Vi) fori € [K]

Sort R;(6;) in decreasing order and let ord(i) be the
sorted order of group ¢

Compute nxt(7) by ord(nxt(i)) = ord (i) + 1

Let ¢ be the first group in ord such that R;(6,) >
]A%nxt(i) (0¢) + 7, or —1 if no such groups exist.

Return: Sy, = {i € [K] : ord(i) < ord(:)} if 2 # —1,
otherwise Sy, = [K].

empirical risk of 6 with respect to V;. To compute a 0.4\-
dominant set at 6;, we use the algorithm DominantSet
(Algorithm 3) which traverses the groups in order of de-
creasing Ri(ﬁt) and returns a set S‘gt of groups up to (and
including) the first group whose empirical risk exceeds the
next group’s empirical risk by at least 7 = 0.7A. The fol-
lowing lemma shows that if m is sufficiently large, then the
set S@t returned by Algorithm 3 is a 0.4\-dominant set at
0; whose size does not exceed ). This implies that the
max-player only needs to sample the groups in Sy , 1n order
to maximize the cumulative risks over 7" rounds.

384n In( THGDE

Lemma 3.1. Letm = Wé). With probability at
least 1 — 6/2, for any t € [T), DominantSet returns a

0.4\-dominant set S, at 0 satisfying ‘Sgt < B

3.2. Non-Oblivious Sleeping Bandits

In this section, we discuss the sleeping bandits prob-
lem (Kleinberg et al., 2010). Sleeping bandits is a variant
of the adversarial multi-armed bandit problem with K arms,
where arms can be non-active in each round. Formally,
inround ¢t = 1,2,...,T, an adaptive adversary gives the
learner a set Ay C [K] of active arms. For each arm i € A,
the adversary also selects a (hidden) loss value h; ¢ € [0,1].
The learner pulls one active arm ¢; € A, observes and in-
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curs the loss h;, ¢ Let I, , = 1{i € A,}. For any a € [K],
the per-action regret of the learner with respect to arm a is
the difference in the cumulative loss of the learner and that
of arm a over the rounds in which a is active:

ZL” int = hat)- (6)

Regret(a

Modified EXP3-IX for sleeping bandits. We use an al-
gorithm called SB-EXP3 (Nguyen & Mehta, 2024) for
sleeping bandits. SB-EXP3 uses the standard IX-loss esti-
mate (Neu, 2015) as the loss estimate hZ ¢+ in round ¢, i.e.,

hq',,t = % where ~; > 0 is the exploration factor in
round ¢. For each arm ¢, over 7" rounds SB-EXP3 maintains

a weight vector ¢; € Rf defined as

t—1

Q1t—eXp anzlze(h1 97 i,s — Vs Z h]e 7(7)

- j€So,

where 7, . > 0 is the learning rate and h; ; is the loss
estimate of arm ¢ in round s. Initially ¢; ; = 1 for i € [K].
The sampling probability ¢; is computed by a filtering step,
where inactive arms have ¢; ; = 0 and the weights of active

Lt Gie :
ST i . The following

theorem bounds the per-action regret of SB-EXP3.

Theorem 3.2. With 1, = 2, = ,/%, SB-EXP3
guarantees that with probability 1 — 6, -

arms are normalized as ¢; ; =

Regret(a) < O
;Ielfml)g] egret(a) <

T
In(K/6) Y " |A|

Our Theorem 3.2 is a relatively straightforward but im-
portant extension of Nguyen & Mehta (2024, Theorem 3).
While the latter requires knowing max(|A;|); for tuning n, ;
and ~;, we obtain the same bound using adaptive learning
rates without knowing anything about future active sets.

3.3. Sample Complexity of SB-GDRO

In SB-GDRO, the max-player uses SB-EXP3 to compute
the group-sampling probability ¢;. For the max-player, the
set Sp , in Algorithm 2 is similar to the set A; in sleeping
bandits as the set of “active groups” in round ¢ depends on 6,
which is decided by a non-oblivious adversary (i.e., the min-
player). Furthermore, choosing a group #; ~ ¢; and then
drawing z;, ; ~ 'P;, is mathematically equivalent to having
K samples {z; ; ~ P; | i € [K]} (one from each group) but
observing only z;, ;. The hidden stochastic loss of group @
in round ¢ is £(6y, z; ). Note that SB-EXP3 is formulated in
terms of minimizing losses rather than maximizing gains, so

similar to (Zhang et al., 2023), we set h; y = 1 — £(04, 2 1)
to be the (hidden) stochastic losses of arms ¢ for SB-EXP3.
A fundamental connection between the two-player zero-sum
game approach in GDRO and sleeping bandits is shown in
the following lemma, which states that the regret of the
max-player R 4, is bounded by the per-action regret with
Sgt being the set of active groups at round ¢.

Lemma 3.3. With probability at least 1 — § /2, the regret of
the max-player is bounded by

T
Ra, < Z {i € So,} (Ri(6:) — 661, q1)) -

Theorem 3.2 and Lemma 3.3 imply the following sample
complexity bound for SB~GDRO.

Theorem 3.4. For any ¢ > 0,9 € (0, 1), with probability
1 — 9, Algorithm 1 has sample complexity

O(Knln(szK/a) (D2G2+f2,\)ln(K/§)> )

In Theorem 3.4, because A is a fixed problem-dependent
quantity while the required optimality gap e can be arbitrar-
ily small, the dependency on K in Theorem 3.4 is dominated

by O (M) The following lower bound shows that
the upper bound in Theorem 3.4 is essentially near-optimal.

Theorem 3.5. For any algorithm A and any X\ > 0.5, 3 > 3,
there exists a (X, 8)-sparse GDRO instance with 3 = f3 so

22
that the sample complexity of A is at least (G 1?2 +8 )

4. \*-Adaptive Sample Complexity

Theorem 3.4 suggests that a desirable A\ must be significantly
larger than € (so that /\—Ig < 652) but also small enough that
By < K. In this section, we define the notion of an optimal
A* and present a sample-efficient approach for adapting to
this unknown A*. First, we write the sample complexity in
Theorem 3.4 in the form

(K/(S)(C—s-ﬁ’\) D2G2?(K/6)7 .

K‘ILIII(G?K) . ’

where C = W) By definition, 3\, < () for any
A < )\, and thus A — (3, is non-decreasing. Let A* be the A
that minimizes (9). Our goal is to develop a sample-efficient

method to find \*.

To describe our approach for finding A*, it will be useful to
frame the idea of an optimal A more generically. Consider
any C > K > 1 (not necessarily taking the value above),

€ (0,1), and 6 in (0,1). Let g: [0,1] — [1,K] be a
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nondecreasing function which is unknown. Now, let A7, g
be the minimizer, among all A € [0, 1], of

(GDRo) C g()‘)
. Kn ln(%ék) «
Clearly, if ' = — 7757 and g(A) = B, then A;, | =

A*. In general, g (e.g., A — [)) is unknown. How-
ever, g can be evaluated at any A € (0,1] at a cost of

Costg?;em()\) = O(C'In(K/5)/\?) samples. The prob-
lem OPT(C, g) is to find A7, ; using as few samples as
possible.

Now, at a high level (our actual approach in Section 4.1
slightly differs), by solving OPT(C, g) for C as above and
g(\) = B, we obtain a fully adaptive algorithm for GDRO
that adapts to A* and has total (including the cost of find-
ing A*) sample complexity whose rate (in big-O) is equal
to the product of In(1/¢) and (9) with A replaced by \*;
here, In(1/€) is the price paid for adaptivity. We present
this algorithm in Section 4.1. However, this algorithm is
computationally intractable for large n, and so Section 4.2
introduces a computationally efficient semi-adaptive algo-
rithm with total sample complexity that, in high-precision
settings where € < A*, swaps the )« in the fully adap-
tive algorithm’s sample complexity with max{ln K, Sy- };
moreover it entirely avoids the dimension-dependent term

T )f)Q , making it dimension-free.

4.1. A*-Adaptive Sample Complexity for GDRO

We present an algorithm called SB—GDRO-A, shown in full
in Algorithm 8 in Appendix C.2. The idea of this algo-
rithm is to (i) construct a non-decreasing function § so that
Co tgzko)()\*c ;) is sufficiently close to Cost;?zo))()\* )
with high probability; (ii) solve OPT(C, g) to get A ;3

(iti) input A¢, ; into SB—GDRO. Our approach uses at most

O(Co tg%]zo)) ()\a@) In(1)) samples .for steps (i) and (ii),
which, together with Theorem 3.4, gives us the following

theorem (proved in Appendix C.2).

Theorem 4.1. Forany e > 0,0 € (0, 1), with probability at
least 1 — 0, SB-GDRO—-A (Algorithm 8) with 1y, +,7q,+ and
v defined in Theorem 3.4 has sample complexity

Knln(S2E)  (D2G? + By ) In(£) 1
O(( )2 + 2 ln(6> .

Compared to Theorem 3.4, the sample complexity bound
in Theorem 4.1 contains an additional multiplicative factor
of O(In(1/€)), which we consider a small price for not
knowing \* beforehand. Next, we briefly describe the two
main steps above, with the full details in Appendix C.

First Step: Constructing g We first describe a method
that, given A € [0, 1], returns an estimate B, for By using
at most O(m) samples. This method constructs a
012 cover for ©, uses Algorithm 3 to compute a 0.4A-
dominant set at each element of the cover, and then returns
as its estimate B » the maximum cardinality among these
dominant sets. Now, the function ¢ is defined by setting §(\)
equal to 1 for A < £, setting it to B \ for A in the geometric
sequence (1, %, 5%, ...), and then interpolating at other A to
form a non-decreasing step function. In Appendix C.2, we
prove that with high probability, By 2y < B,\ < Bxand g is
non-decreasing, leading to A¢, ; being close to A¢, 5.

Second Step: Our method for solv-

ing OPT(C, g) is called SolveOpt. It outputs A such
that Cost(°®*)(X) = O(Cost(®***)(\*)) while using
O(Cost %Pk (\*)In(1/€)) samples; note that we drop the
subscripts C' and ¢g. The main idea of SolveOpt is to main-
tain two variables U and L which specify an interval [L, U]
that always contains a good estimate of \*. We iteratively
evaluate g(A) for A € [L, U] and shrink this interval, i.e., U
monotonically decreases while L monotonically increases.
The shrinking process is based on comparing Cost(®°%%) ())
and Cost(®*)(U7): if Cost(®°*)(\) < Cost(®Pr) (1)),
then U is set to A and L is increased accordingly. The
process stops when A < L, at which point the algorithm
return the last value of U as its estimate of A*. The value
of ) is taken from a geometric sequence; this ensures that
at most In(1/€) values of g()) are evaluated, leading to the
In(1/¢) multiplicative factor in the final bound.

Solving for Ag ,

4.2. A Semi-Adaptive Bound in High-Precision Settings

While SB-GDRO-A is fully adaptive to A*, it relies on build-
ing covers for ©, which is computationally intensive when n
is large. We now propose a semi-adaptive, computationally
efficient algorithm called SB-GDRO-SA that avoids covers.
The main idea is to merge the A*-estimation process into the
two-player zero-sum game: starting with A = 1, if the dom-
inant sets S g, computed in round ¢ of the game is bigger
than a threshold (e.g. In(K)), then similar to SolveOpt,
we decrease A exponentially (e.g. A « A/2). To avoid
a too small A, we also set a lower threshold L so that A
stops decreasing once A < L. These two thresholds, one
for |Si 0, | and one for A, determine the trade-off between
adaptivity and sample complexity. In SB-GDRO-SA, we
use In(K) and L = O(ey/Kn) as the two thresholds. Let
Ain(k) be the largest A such that 8y = In(K). In high-
precision settings where ¢ < \*, the following theorem
states that Algorithm 9 is adaptive to max (A, (x), A*).

Theorem 4.2. Ife,/ (K < A*, then with probability at
least 1 — §, SB-GDRO-SA (Algorithm 9 in Appendix C.3)
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has sample complexity

0 ((D2G2 + maz{z(]n(K)v 6)\*)) ln(K/(S) In 1)

We emphasize that Theorem 4.2 holds without knowing \*.
This bound guarantees that in high-precision settings, Algo-
rithm 9 enjoys (on average) dominant sets of small sizes that
never exceed max (-, In(K)). Remarkably, this bound is
also dominantly dimension-free, although the algorithm still
uses the dimension n.

5. A Dimension-Independent Approach

In this section, we present SB-GDRO-DF, a

modified version of Algorithm 1 that wuses
KDG+/(D2G2+8) In(K/§

O ( )\3:6) n( ”) samples for comput-

ing the dominant sets over T rounds of the two-player
zero-sum game. This bound avoids the dependency on
n, the dimension of ©, which might be preferable in
high-dimensional settings. The trade-off for getting rid of n
is an additional i multiplicative factor in the non-leading
term of the sample complexity bound.

We assume that a pair (A, 8) is known such that
the problem instance is (A, ()-sparse. Unlike
SB-GDRO, SB-GDRO-DF does not use a fixed set
of samples V' for computing the dominant sets of all § € ©.
Instead, SB-GDRO-DF computes the dominant sets only
for the hypotheses 6; that the learner encounters during
the game. In particular, the 7" rounds are divided into %
episodes, in which each episode has o consecutive rounds
that use the same dominant set. By the stability property
of the regularized update (5) and the Lipschitzness of the
loss function /, if o is sufficiently small then the differences
between the risks of the hypotheses within each episode is
small. This implies that a dominant set for 8; will remain a
dominant set (possibly with smaller gaps) and therefore can
be reused for the hypotheses 6,11, 612, ..., 60:1,. The full
procedure is given in Algorithm 10 in Appendix D, and its
sample complexity is stated in the following theorem.

Theorem 5.1. For any ¢ > 0,9 € (0, 1), with probability
1—0, SB-GDRO-DF with 1y + = (?27\[/)?’ Ng,t and v defined
in Theorem 3.4 returns an e-optimal hypothesis with sample
complexity

DKG\/(D?G? + B) In(K/5) In( KRS
A3e
L (D*G?+ B)In(K/5)

€2

6. Experimental Results

We support our theoretical findings with empirical results
in two different GDRO instances: one with the lower bound
environment constructed in Theorem 3.5, and another with
the Adult dataset (Becker & Kohavi, 1996). On the lower
bound environment, we set ¢ = 0.005, K = 10, \* = 0.2
and B+ = 2 so that the maximum risks can only be attained
by the first two groups for any . On the Adult dataset, we
use the same setup as (Soma et al., 2022) and divide 48 842
samples into groups based on race X gender with the
goal of finding a linear classifier that determines whether the
annual outcome of a person exceeds USD 50 000 based on
n = b features: age, years of education, capital gain, capital
loss, and number of working hours. Similar to (Soma et al.,
2022), P; is the empirical distribution over samples in group
. One difference from (Soma et al., 2022) is we have K =
10 groups from 5 races and 2 genders instead of 6 groups, so
that the difference between In(K) and K is amplified. With
e = 0.001, we use hinge loss and normalize the features so
that the losses are in [0, 1]. We set T' = 105 and § = 0.01
on both GDRO instances. The results are aggregated from
five independent runs with random seeds {0, 1,2, 3,4}. To
compute 0%, we run the two-player zero-sum game with
ideal players who have access to the underlying distributions
‘P;. More experimental details are in Appendix G.

On both GDRO instances, we compare SB—GDRO-SA
(Algorithm 9) to the Stochastic Mirror Descent for GDRO
algorithm (SMD-GDRO) proposed by (Zhang et al., 2023).
To the best of our knowledge, SMD-GDRO is the only
suitable baseline with a near-optimal high-probability
guarantee in the minimax regime.

6.1. Discovering non-trivial (A, 3)-sparsity

Figure 2 (Left) shows the sizes ’Sgt

and the average

% Zzzl ’Sgh‘ computed by SB-GDRO-SA in the first
10000 rounds. On GDRO with Adult dataset, it indicates
that SB—~GDRO-SA quickly discovers dominant sets of sizes
smaller than [In(K)] within the first 3000 rounds. This
shows that a non-trivial (A, In(K))-sparsity condition in-
deed holds for hypotheses around 6* in practical settings.
Further inspection reveals this (A, In(K))-sparsity is discov-
ered early in the game without using too many samples: on
the lower bound environment the final A is 0.125 ~ 0.5\*
using roughly 3000 samples, while on the Adult dataset

the final A is 55 ~ €, /% using roughly 36 000 samples.
Both of these values are much smaller than 7', and as T’
is scaled with e%, this empirically supports the insight in
Theorem 4.2 that the sample complexity is dominated by the
number of rounds needed in the two-player zero-sum game.
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Figure 2. (Left) Sizes of the dominant sets in the first 10000 rounds computed by SB-GDRO-SA. (Right) The number of times a group is
selected by the max-player, displayed in natural log. The highest group (group 8) is female Amer-Indian-Eskimo people.
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Figure 3. The optimality gap of SB—~GDRO-SA and SMD-GDRO
on GDRO with the Adult dataset. Lower is better.

6.2. Convergence Properties of SB-GDRO-SA

Next, we show results indicating that SB—-GDRO-SA
finds a e-optimal hypothesis using fewer samples
than SMD-GDRO. Figure 3 shows the optimality gap err
of 8; of SB—-GDRO-SA and SMD-GDRO as a function of
the number of drawn samples on the Adult dataset. Ini-
tially, SB-GDRO-SA uses more samples than SMD—GDRO
because SB—-GDRO-SA needs to estimate \*. However, as
0. gets closer to 6%, the optimality gap of SB—GDRO-SA
decreases much quicker since it only collects samples from
the two groups with the largest risks. While SMD—-GDRO
struggles to get an optimality gap under 4 x 10~° even after
nearly 7 = 10° samples, SB—GDRO-SA manages to do
so well below 4 x 10° samples. Figure 2 (Right) shows an
interesting observation that more than 60% of the samples
drawn by SB-GDRO-SA are from the female Amer-Indian-
Eskimo group. This is in stark contrast to the fact that
this group constitutes only 0.3% of the dataset (186 out
of 48 842 samples). This underlines the robustness aspect
of GDRO, which is different compared to the traditional
empirical risk minimization regime where samples from the
largest groups contribute more to the optimization process.

7. Conclusion and Future Work

We introduced a new structure called (), 3)-sparsity into
the GDRO problem. We showed a fundamental connection
between the per-action regret in sleeping bandits and the
optimality gap of the two-player zero-sum game approach
for the GDRO problem, and then improved the dependency
from O(K In(K)) to O(S1In(K)) in the leading term of the
sample complexity of (A, 3)-sparse problems, even when
the optimal A is unknown. We also showed a near-matching
lower bound, which both extends and generalizes the lower
bound construction in minimax settings to the (\, 3)-sparse
settings.

Global versus local sparsity. One interesting future direc-
tion is relax the (A, 8)-sparsity to hold only within some
neighborhood of 6*. This local sparsity condition is a more
practical version of Definition 2.3. Our experiments show
that our algorithms, which are developed for the global
version of (A, 5)-sparsity, still work well for a real-world
dataset where only the local version holds. To rigorously
solve the local sparsity version, it seems that developing
high-probability last iterate convergence guarantee for the
sequence of 6;’s in stochastic games is needed. To our
knowledge, this is a still an fundamental open problem for
non-strongly convex losses.

Impact Statement

We study the GDRO problem generally; yet, because the
GDRO problem setting can capture societally relevant ap-
plications like min-max fairness, we acknowledge that our
theoretical work could later be applied in settings where
min-max fairness is the goal. Whether or not min-max fair-
ness is appropriate can depend on the particular application
domain being considered and especially on the particular
meaning of the loss function adopted in that domain.
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A. Proof for the Global Sparsity in Linear Regression in Section 2.2

A.1. Expected Loss of Linear Regression

Let p € R, 0% € [-1,1], X ~ N(p,1) and Y (X) ~ N(X0*,0?). Consider the linear regression problem where the goal

is to predict 6*. Let # € R be a prediction for 8*. The loss of 6 on an example (X,Y") is the squared loss

00,(X,Y) = (X0-Y)%

The expected loss of 6 is
E[(X0 —Y)?] = E[X?0* + Y? — 2V X{)]
= 0’E[X?] + E[Y?] — 20E[Y X].

We have E[X?] = (E[X])? + Var(X) = p? + 1. Moreover,
E[Y?] = Ex[Eyx[Y? | X]]
= Ex[(Ey|x[Y | X])? + Vary|x ()]
= Ex[(X0")* + 2]
= (0")’E[X°] + 0®
= (0*)*(p® + 1) + o>

In addition,
E[Y X] = Ex[XEyx[Y | X]]

= Ex[X?%0"]
= 0"Ex[X?]
= 0" (p? + 1).

Overall, we have
E[(X0 — V)] = 62(u® + 1) + (0)2( + 1) + 0® — 200" (1> + 1)

= (u? +1)(6% + (67)2 — 200%) + o2
= (u*+1)(0 - 6")> + 0°
The expected loss of 8 is R(0) = (u? + 1)(0 — 0*)? + o2.

A.2. GDRO with K =3

Let K = 3. Consider the GDRO problem with K groups, p1 = po = u3 = 0,01 = 02 = 03 = 1 and 07 =

1,05 = 0. For any 6 € R, from the previous section, we have the expected loss of  on these three groups is
Ri(0)= (2 +1)(0—607)* +0? = (0+1)% +1,
Ro(0) = (u3 +1)(0 = 63)* + 05 = (0 —1)* + 1,
R3(0) = (u2 4+ 1)(0 — 65)% + 02 = 6% + 1.

Next, we will show that for all 0 € R,

max{R;(0), R2(0)} — R3(0) > 1
Indeed, we have
max{R;(0), Ro(0)} — R3(0) = max{6? + 20 + 2,6% — 20 + 2} — (26% + 1)
= max{20,—20} +2 > 1.

(11)

(12)
(13)

(14)

15)

(16)

~1,65 =

7)

(18)

Obviously, the result holds for # € [—1,1] since it holds for # € R. We conclude that that this GDRO instance is

(0.5, 2)-sparse.

12
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B. Proofs for Section 3

For a pseudo-metric space (F, |.||), for any v > 0, let N'(F, v, ||.||) be the v-covering number of F; that is N'(F, v, ||.||) is
the minimal number of balls of radius v needed to cover F.

First, we prove the following lemma on a uniform convergence bound that holds for a sufficiently large value of m.

384n In( T4LGDE

00Tz ) With probability at least 1 — 6 /2, the event

Lemma B.1. Let m =
Eio = {|Ri(0) — Ri(6)] < 015} (19)
holds simultaneously for all i € [K| and § € ©.

B.1. Proof of Lemma B.1
Our proof for the uniform convergence bound in Lemma B.1 is based on the Rademacher complexity bound of the class of
functions Lg defined as follows:

Lo ={4(6,.): Z—[0,1],0 € ©}, (20)
which is the set of all possible functions £(6, .) for § € ©. First, we state the following bound for the empirical Rademacher

complexity based on the chaining argument (Dudley, 1967; Liao, 2020).

Lemma B.2. (Dudley’s Entropy Integral Bound (Dudley, 1967, Liao, 2020)) Let F = {f : Z — R} be a class of
real-valued functions, S = {z1, 2, ..., zm } be a set of m random i.i.d samples. For a function | € F, let

1fll2,s = @D
be an S-dependent seminorm of f. Assuming
sup ||f||2,s <c
fer
where c is a positive constant, we have
Rad(F,S) < inf [ 4e+ -2 / \/1 (N(]-‘ 111 ))d 22)
,S) < in e+ — n |- v,
e€l0,5] \/TTL € 2,8
where Rad(F,S) = %Ege{ﬂ}m [supfef Z;nzl ajf(zj)} is the empirical Rademacher complexity of F and

N(F, v, -lly,5) is the size of a v-cover of F.

A proof of this lemma can be found in (Liao, 2020). We now prove Lemma B.1.

Proof (of Lemma B.1). For i € [K], Theorem 26.5 in (Shalev-Shwartz & Ben-David, 2014) states that with probability at
least 1 — % over the set V; of size m, for all 0 € ©,

1 & 21In(4K/6§
— 3 00, Vi ;) — Ri(0)| < 2Rad(Le, Vi) + W
Jj=1

Our proof is based on the fact that the covering number of the compact set © C R" is finite, and hence the empirical
Rademacher complexity Rad(Le, V;) is bounded for all ¢ € [K]. Because the values of the loss function £ is in [0, 1], we

13
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have || f||, . < 1forall f € Le. Moreover, the diameter of Lo measured in |. ||, y, is

1 m 1 m )
— E V- — i _ E 2 —_p
0%%% m O, Viy) = 000", ”)) erg%% mjzlG 19 = &'l

IN

= GD,

where the first inequality is due to the Lipschitzness of the loss function £ and the second inequality is due to D being the
diameter of © measured in {5-norm. Applying Lemma B.2 with ¢ = 1 and € = 0, we have

12 (2
Rad(Le,V;) < 7/ \/hl N(Le,v, H'”Q,Vi))dl/

12G / / 4GD
< —

12¢n /f : 4GD
= n
14

where the second inequality is due to a result that the size of the smallest -cover on a set F with diameter d is bounded by
(24" (seee. g Carl & Stephani, 1990 Equation 1.1.10). To compute this integral, let w = /In(4GD/v). We then have

v =4GDe ", and dv = AGDd(e=""). As v — 0,u — 00. As v -1 In(8G'D). Hence,

SGD
/ ,/1n 4GD dy_4GD/ dle™")

- \/In(8GD)
— 4GD (ue_“2 |y REED) / _“2du>

_yep [ YIEED) / e du
8GD /In(3GD)
§4GD <\/1n 8GD 1n(8GD)>

8GD

_ 2/I(8GD) + /7
- ) ,

where the second equality is integration by parts and the inequality is by a Chernoff-type bound on the Gaussian error
function % fxoo et dt < e (Chang et al., 2011). Overall, we have

Rad(Le, V;) < 2V (2\/ (8GD) +f)

We conclude that the uniform convergence bound is

m

LS 0.1 - 1) < B2 (26D + &) + [ 2ROET)

j=1

By setting the right-hand side to 0.15), solving for m and simplifying, we obtain the following sufficient condition on m:

384n In(HLGLE) @3

=TT 00N
so that with probability at least 1 — 7%=, we have L Z:"Zl 00,V ;) — Ri(ﬁ)) < 0.15X for all § € ©. Taking a union
bound over all K groups leads to the desired statement. O

14
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Algorithm 4 MinP: the stochastic-OMD min-player Ay
Input: 6, € O, sample z;, +
Compute g = VI(0y, 2, +)
Compute 0,1 = arg mingce {nw,¢(Ge, 0 — 6¢) + 50 — 9t||§} by Equation (5)
Return: 6; 4

B.2. Proof of Lemma 3.1

Proof. From Lemma B.1, we immediately have the event &; 9 holds simultaneously for all i € [K] and § € O with
probability at least 1 — g. Thus, it suffices to prove the desired statement assuming that all &; ¢ hold. Let R; , = R;(f;) and

R; . = R;(0:) be the risk and empirical risk of 8, with respect to group ¢, respectively. We consider two cases: Sy < K and
Br = K.

When 5, < K:

In this case, there exists a non-empty set A\-dominant set .S g, whose size is smaller than $, < K. This implies that the set
[K]\ Sh,g, is also non-empty. For any ¢ € Sy 9, and k € [K]\ Sy 9,, dueto & g,, &k ¢, and by Definition 2.2, we have

Riy— Ry > (Riy — 0.150) — (Rps + 0.15))
= R;t — Ry — 0.3\
>\ — 0.3\
=7>0.

Thus, at any time ¢, the sorted sequence of groups can be divided into two non-empty parts: the first contains all
groups in Sy 9, and the second contains the rest. Since |Syg,| < B», the size of the first part is at most 5. Let

i* = argmax;eg, , {ord(j)} be the last group in the first part. Since nxt(i*) € [K]\ Sx,9,, we have Riwy > Rnxt(i*),t +7.

This satisfies the condition in Algorithm 3, therefore the resulting set 519 , is non-empty and its size does not exceed (3. To
show that Sy, is a 0.4\-dominant set, for any i’ € Sy, and k' € [K] \ Sp,, we have

Ri’,t —_ Rk/,t Z (Ri’,t - 015)\) - (Rk/7t + 015)\)
= Riry — Ry — 0.3\
> R%,t - Rnxt(%),t —0.3X
>7—0.3\= 0.4\,

(24)

where the second inequality is from the definition of iand Sp, = {i € [K] : ord(i) < ord(:)}, we have ord(i’) <
ord(z),ord(nxt(¢)) > ord(k") and the empirical risks are sorted in decreasing order.

When 3, = K:

In this case, the inequality ‘5‘9 .| < B holds trivially. To show that Sy , is a 0.4\-dominant set, we further consider two

sub-cases: 1 # —1landi = —1.

* i # —1: in this case, the set Sy, = {i € [K] : ord(i) < ord(:)} has size at most K — 1 because the group with the
largest empirical risk is excluded. Therefore, by the same argument as in (24), the set Sp, is a 0.4\-dominant set.

« i = —1: in this case, we have Sy, = [K] is trivially a 0.4\-dominant set by Definition 2.2.

We conclude that the set S@t is a 0.4\-dominant set at 6; and ‘S”gt < Ba. O
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Algorithm 5 FTARLShannon: Follow the regularized and active leader with Shannon entropy regularizer and time-varying
learning rates for sleeping bandits

Input: K > 2

Initialize L; o = 0 for all arms i € [K].

for eachroundt =1,...,do

The non-oblivious adversary selects and reveals A,

E‘XP(*’fhiz‘,t)

Zf:l eXp(—ntj/j,t)

R Li1qit .
Compute p; ; = SE L by Equation (26)

Draw arm i; ~ p; and observe ét =V, t
for each arm ¢ € [K] do

Compute g; + =

If I; ; = 1, compute lzyt — Wi=itly by Equation (27)

Pi,t+7t
If I;; = 0,compute £; = £, — v > ¢, + by Equation (28)

Update Ei,t = -Z/i,tfl + gi,t

JEA:

B.3. Proof of Theorem 3.2

Let A; = |A| be the number of active arms in round ¢. Throughout this section, we write 7; = 1, ; for the learning rate of
the SB-EXP3 algorithm used by the max-player.

The O (\/ In(K/6) Zthl At) high-probability per-action regret bound of the SB-EXP3 algorithm in (Nguyen & Mehta,

2024) was established for a fixed learning rate 1y = 7 and a fixed exploration factor v, = +. In this section, we generalize
their result to algorithms with time-varying learning rates and exploration factors defined as follows:

Ne =27 = ln(tgﬂ (25)

Zs:l AS

Note that n; and v, are chosen after the set of active arms A, is revealed. As pointed out in Nguyen & Mehta (2024, Appendix
G), the SB-EXP3 algorithm is equivalent to their Follow-the-Regularized-and-Active-Leader (FTARL) algorithm with the
Shannon entropy regularizer. Therefore, a high-probability regret bound of FTARL with Shannon entropy regularizer and
1y and y; defined in (25) would imply Theorem 3.2. For completeness, we provide the full procedure of FTARL with
Shannon entropy regularizer in Algorithm 5. For each arm 7 € [K] and round ¢ € [T, this algorithm maintains an estimated
cumulative loss I?i’t defined as

t
Liv=Y li,
s=1
and computes the weight of arm ¢ in round ¢ by
eXp(_ntii,tfl)
Z]K:l exp<fntf/jyt,1>

where 7, is the learning rate in round ¢. Initially, L; o = O for all arms ¢ € [K]. Upon receiving the set A; of active arms,
the sampling probability p; is computed by normalizing I, ;q; ; as follows:

qit =

)

Ii 1qit
Dit= - (26)
> i1 1)

Note that I; ; = 1{¢ € A;}, hence p; ; is non-zero only for active arms. An arm ¢; ~ p, is drawn according to p; and its loss
¢, = {;, 1 is observed. For an active arm 7 € Ay, its loss estimate is the IX-loss estimator (Neu, 2015):
. 1{i, = i},
fy = —t= 12

27
Pit + Tt @7)

16



Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity

where ~; is the exploration factor in round ¢. For a non-active arm 7 ¢ A, its loss estimate is defined as the difference
between the observed loss #; and the weighted sum of estimated losses of active arms (Nguyen & Mehta, 2024):

gz‘,t =0 — Z gj,t- (28)
JEAL
The following theorem states the per-action regret bound of Algorithm 5.

Theorem B.3. Let (1);)1=1,... and (y;)i=1,... be two sequences of non-increasing learning rates and exploration factors such
that n; < 2v;. With probability at least 1 — 0, FTARLShannon (Algorithm 5) guarantees that

In(K In(3K
max Regret(a) < n(K) + n(3K/9)
a€[K] nr 2yr

T
+In(3/6)+ 3 (% + %) Ay (29)
t=1

The proof of this theorem is in Appendix E. We are now ready to prove Theorem 3.2

Proof (of Theorem 3.2). By plugging (25) into the bound in Theorem B.3, we obtain

T
max Regret(a) < In(K) + In(3K/9) +ln(§> + ZWtAt
t=1

a€[K] nr nr
21In(3K/6) 3\«
——— < +1In( = A
< - + D((;) + Zm t
T
_ 2InB8K/5) +ln(§) W(3K/0) > — b
It t=1 Zizl A
T 3 T
In(3K/6) Y " A+ ln<6) +1/In(3K/0) Z S —
t=1 Zi—l As
We bound 23;1 \/% as follows: let C} = Z 1At and Cy = 0. Then,
ZT: A, iict—cH
=1 /3L Ay =1 Y Ci
B XT: /Ct dz
o o VG
T .C
¢ dx
< -
T dg
Ja, VE
=2 V CT?
where the inequality holds because T \/1@ < Cy. This implies that
T 5 T
mf?{(] Regret(a) < 2,|In(3K/9) Z A+ ln(5> +2,|In(3K/0) Z
e t=1 t=1

In(K/6) ) A
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B.4. Proof of Lemma 3.3

Proof. Since A is convex, we can write

T T K
max 0:,q) = max i R; (64
quKt:21¢(tQ) qEAK;;% 1( f)
K T
= max ; R
QEAK;(]Z; 1,1
T
= max R
zG[K]tZ:; ot
Thus,
T T
RAq = max th Z¢ 0+, qt)-

7€[K
If a group 7 is not included in S@t at time ¢, then by Lemma 3.1, for any &k € Sgt we have
Ry < Rit + 04X < Ry,
By construction, the probability vector ¢; contains non-zero elements only for groups in S@t , hence for any i ¢ S(yt , we have

R 9t7€It Zth it — Rkt)_
kGSHt

We conclude that for any i € [K],

T T
ZRi,t — o0, q0) < Z 1{i € gé)t}(Ri,t — (0, q1)),
=1 =1

hence
T
- 1t T 9 )
Ry, = g% R ¢ Z¢( b )
T
< zrél[% 1{i € Sp, } (Ri(0) — (0, q1)) -
t=1

B.5. Proof of Theorem 3.4

Let 515 = ’S@t
state the following bound for the regret of the max-player as a function of /3;, which is obtained directly by combining
Theorem 3.2 and Lemma 3.3.

be the size of Sgt. Let fr = % ZtT:l B be the average number of active groups over 7" rounds. We first

Lemma B.4. With probability at least 1 — 6 /4, the regret of the max-player in SB—GDRO (Algorithm 1) is bounded by

RAQSO
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Proof. The max-player in Algorithm 1 uses the sleeping bandits algorithm SB-EXP3 with the stochastic loss of arm ¢ at
round ¢ is

hi,t =1- E(Gt, Zi,t)-
Let H;y = E., ,~p, [hi ] be the expected value of h; ;. We have H;; = 1 — R;(6;). Note that both h; ; and H; ; are in
[0,1]. Fix a group a € [K] and let I, ; = 1{a € Sp, }. The per-action regret of group a is

T
GroupRegret(a) = Z a,t(Ra(0:) — 0(04, 1))

K
Ra(0) =) qz‘,tRi(9t)>
i=1

o
-
|

Iat

)

Il
M=
=

Il
MH

qi in,t - Ha,t)

ﬁ
Il
_
I\
-

Il
MH
Mx

Ioy G it — hig o + iyt — Pay + Dot — Hm,t)

t=1 =1
T K T T

= Z Loy (Z G Hiy — it,t> + Z Ioi(har — Hat)+ Z Lot(hiyt — hayt) -
t=1 i=1 t=1 t=1

(4) (B) (o))
The term C'is exactly the per-action regret of arm a in SB—GDRO-SA defined in Equation (6) which, by Theorem 3.2, is

bounded by O ( In(K/9d) Zthl ﬁt> with probability at least 1 — 2 simultaneously for all a € [K]. Next, we bound the

terms A and B. Since

[EitNQt []Ezit,t’\"P'it [hiut]] = Eit’\/(h [Hit,t]
K
= Z Qe H
=1

and

it zt, zt lt t)

H; i — hi, 4
S ]-;

A is a sum of a martingale difference sequence in which the absolute values of its elements are bounded by 1. By

Azuma-Hoeffding inequality, with probability at least 1 — 5 K, we have

A < /2T In(12K/5). (30)

For term B, we also have E., ,~p, [ha,s] = Ha:, therefore B is also a sum of a martingale difference sequence with
elements’ absolute values bounded by 1. We then have B < /27" In(12K/§) with probability at least 1 — 5 K By taklng
a union bound twice: once over A and B for each action a and once all K actions, we obtain with probability at least 1 —

A+ B < 2,/2T In(12K/5)
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simultaneously for all ¢ € [K]. Furthermore, since

T T
=) 1<) .5
t=1 t=1

due to 1 < ;, we obtain that with probability at least 1 — g,

[Vj»ﬂ

max GroupRegret(a) < O
a€[K]

In(K/6)

o~
Il
_

By Lemma 3.3, when &; ¢ holds simultaneously for all i € [K] and 6 € ©, we have

R4, < max GroupRegret(a)
a€[K]

Corollary B.S. ForanyT' > 1, SB-GDRO (Algorithm 1) guarantees that with probability at least 1 — 3

err(0, q) <O< (DG + v/B)/In(K3) >
T vT

Proof. By (Zhang et al., 2023), the duality gap is bounded by the average regret of the two players:
~ 1
err(0,9) < 7 (Ra, + Ra,) -

In Appendix F, we prove that with probability 1 — §/4, the regret of the min-player is bounded by

4, <O (DG\/W) .

For the max-player, Lemma B.4 implies that with probability 1 — §/4,

T
Ra, <O [ |> BiIn(K/d)
t=1

-0 < TBr 1n(K/5))

€1y

(32)

(33)

(34)

(35)

where the equality is from the definition of S = # Plugging (34) and (35) into (33) and taking a union bound, we

obtain that with probability at least 1 — §/2

err(8,4) < O (DG\/ln(l/cS)\“‘ﬁ\/ﬂT 1n(K/5)>

O(DG+%W>'

IN

VT
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E-[£(6, 2)]

4 top B groups with arbitrarily close risks

\

> &

gap A

bottom K — 8 groups with small risks

0

G2D%4p
€2

Figure 4. The construction for the €2 ( ) lower bound.

Corollary B.5 implies 7" = O <(D2G2+BE E)IH(K/ 5)> is sufficient for a target optimality gap e. This is a self-bounding

condition on 7" since the quantity B is dependent on (and changes with) 7. Nevertheless, it represents a valid stopping
condition because S is fully observable and bounded above by a constant K. We are now ready to prove Theorem 3.4.

Proof (of Theorem 3.4). In Corollary B.5, by setting the right-hand side to € and solving for 7', we obtain that with
probability at least 1 — g, the number of samples collected during the game for having err(6, g) < e is

o (I,

€2

By Lemma B.1, we collect

o (nln(G;\l;K/(S))

samples from each group before the game starts so that with probability at least 1 — g, we have 8; < (3, simultaneously for
all t € [T]. This implies that 7 < (3 and thus the bound can be written as

o ((D202 +6)) 1n(K/6)> .

€2

By taking a union bound, we obtain that with probability at least 1 — 9, the total sample complexity is

O (Kn(ln(GDK/&)) N (D2G? + 5,\)1n(K/6)> .

A2 €2

B.6. Proof of Theorem 3.5

Proof. Our lower bound construction directly extends that of (Soma et al., 2022). In particular, let Z = [0, 1]3 be the set of
21

samples and © = [0, 1] be the hypothesis set. The loss of a hypothesis § on a sample z = |22 is
23

000,2) = 6(210 + 22(1 = 0)) + 23,
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where § € (0,1) is a constant defined later.

The distributions of the first 5 groups are similar to that of (Soma et al., 2022), where

e The first 5 — 1 distributions are

z1=0 almost surely
P=(2z2=1 almost surely
z3 ~ Bernoulli(y;),

where p; = 3 fori=1,2,...,8— 1.

* The " distribution is

z1=1 almost surely
Pg=1(2=0 almost surely
z3 ~ Bernoulli(pg),

where 15 = 1.

The last K — (3 distributions are

z1=0 almost surely
P,=<2,=0 almost surely
z3=75—A  almost surely

fori=p+1,8+2,..., K. Figure 4 illustrates this construction. The risks of the groups are

A(1 —0) + p; (i=1,2,....,6-1)
Ri(0) = E-up,[0(0,2)] = { AG + 15 (i = B)
1-2 (i=B+1,8+2,...,K).

Since A > 0,0 € (0,1) and p; = %fori: 1,...,3, wehave R;(§) — R;(0) > Aforany 1 <i<fandf+1<j < K.
It follows that the set [5] = {1,2,..., 8} is a A-dominant set, and this GDRO instance is (), /3)-sparse. Because the risk
differences between the top 3 groups are upper bounded by

[R1(0) = Rp(0)] = [A(L - 20)],

which is arbitrarily smaller than ), there can be no A-dominant sets of size smaller than 3. Thus, we have 5, = 3. Moreover,
for any 6, its maximal risk is attained on a group within the set [3] only. Therefore, the sample complexity of algorithm A is
lower bounded by the total samples drawn from the first S groups.

s=o(\/7).

where T is the expected total number of samples drawn by A, the first 8 groups are identical to the groups that give rise to
the minimax lower bound in (Soma et al., 2022). It follows that for any algorithm A, there exists a GDRO instance which
requires at least

On the other hand, by setting

0 (G2D2 +ﬁ>

€2
samples to find a e-optimal hypothesis. O
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Algorithm 6 So1veOpt: algorithm for solving OPT(C, g)
Input: € € (0,1), K > 3,C > K, function g
Evaluate g(1)

Initialize U =1, L= |— & A\ =1;
b C+g(1€)2 19

while A > L do
Evaluate g()\)
if f(A\) < f(U) then

Assign U < A\, L <

T a1

2 o2
Update A = \/5

Return: A =U.

C. Proofs for Section 4
Remark C.1. For notational simplicity, we use a short-hand notation f¢ 4 for Cost(c(_;fRO). In other words, we will write

c . 9
feg(\) = vt e (36)
We will also drop C, g when it is clear from the context and simply write f()).
Remark C.2. Throughout the proofs for Section 4, some of our bounds contain a In (ln(%)) factor. While we will always
present this term explicitly the first time they appear in the bounds, for ease of exposition we generally are not pedantic
about this term and will treat it as a constant. For example, we will write

(S50 - (5) en(u(2))
~o(u()).

assuming that in practice, the number of arms X > 1 is not too small and the failure probability 6 < 1 is not too large so
that £ > In(2).

C.1. A Sample-Efficient Approach for Estimating ¢, |

We present an algorithm called SolveOpt for solving OPT(C, €, g). SolveOpt outputs a A such that f(A) = O(f(A\*))
while using at most O(f(A*)In(K/d)In(1/¢€)) samples. The significance of this result in the context of GDRO is as
follows: by using O(f(\*)) samples to obtain an estimate A and then using \ for GDRO, we guarantee that the total sample
complexity is of order O( f(A*)). This implies that without knowing A*, we can achieve a bound with only a logarithmic
factor overhead than the bound obtained when A* is known. Our results and techniques are applicable to other trade-off
problems similar to (10), and thus they could be of independent interest.

As mentioned in the main text, SolveOpt maintains two variables U and L which specify an interval [L, U] that always
contains a good estimate for A*. This [L, U] shrinks over time based on how large f(\) is in comparison to f(U): U is
set to \ and L is increased accordingly if f(\) < f(U) holds. A crucial element of this process is choosing the geometric
sequence (1, %, %, ... ) of common ratio % as the sequence of A at which g(\) is evaluated. The process stops when A < L,
at which point the algorithm return the last value of U as an estimate for A*. The first key technical insight of this process
is that L and U can be computed using only readily known quantities such as C, K and evaluated g()\). The second key
technical insight is after some finite number of steps, it is guaranteed that any value in the interval [L, U] is a good estimate

for A\*. The full procedure is given in Algorithm 6. The following lemma states the sample complexity of this approach.

Theorem C.3. For any OPT(C, g) problem defined in (10), SolveOpt (Algorithm 6) returns a X such that f(\) < 50f(\*)
while using at most O (f(A*) In(K/§)In(1/€)) samples.

Before proving Theorem C.3, we note that So1lveOpt (Algorithm 6) maintains a range of values [L, U] that always contains

at least one good estimate for \*, and evaluates g()) at elements of the geometric series (U, %, 2—U5, el %(U)J) to
sloes (T
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compute this estimate. Note that all elements of this series are in [L,U]. Whenever f()) is strictly smaller than f(U)

for some A, we shrink the range [L, U] by setting U = X and L = % We first prove the following lemma

A2 €2

which shows that L is always smaller than or equal to A*, thus at least one g(\) for A < A\* will be evaluated while

running SolveOpt.
Lemma C4. Forany U € (0,1], let
C
L= |—F——.
Vo

Proof. Since By > 1, we have L < U. By definition of A\*, we have

c  g\) ¢ 9)
= <flU)=— .

(A2 2 < f(U) + 2

Then, L < min{\*,U}.

Since g(A*) > 1, this implies

C . 1_C g
(A*)Q 62 — U2 62 :

Subtracting E% and dividing C on both sides, we obtain

c
*\2
W2 e o

€2

=L%
We conclude that L < min{\*,U}. O

The next lemma shows that if A falls into the range [%, A*] when f(U) is much larger than f(\*), then the inequality
f(A) < f(U) holds.

Lemma C.5. Forany U € (0,1, if

then for any \ € [%, A*], we have

Proof. Forany \ € [2, \*], we have & < 22, and g()\) < g(\*). Hence,

3 S0
oy =5+ 2
25C  g(A")
— ()\*)2 62
< f(U).

O

We need one last lemma, showing that once U is sufficiently close to A* such that f(U) = O(f(A\*)), then any values
between [L, U] can be used as an estimate for \*.

24



Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity

Lemma C.6. Forany U € (0,1], if

then with L = /%, we have for any \ € [L, U],
vz e

F(A) < 50f(A7).

\Q

Proof. Forany A € [L,U], we have {5 < -5 and g(\) < g(U). Hence,

Q

g(A
=5+ 4
c gU
Sﬁ+ €2

Nag

~—

O

Proof (of Theorem C.3). First, we prove that SolveOpt (Algorithm 6) always terminates after a finite number of steps.
Observe that during the while loop, the sequence of values of A is (1, }7 55, - - - ), which is monotonically decreasing. On

the other hand, L is non-decreasing from the initial value of % This is because whenever f(A) > f(U), the value
C+&y—

of L is

C C
G o) fO) -z

L =

Once the inequality f(A) < f(U) holds, U is assigned to A and L is assigned to a new value L', where

;o C C B
L_¢ﬂM—i>¢ﬂw—;_L

It follows that the condition A > L of the while loop must be false after a finite number of steps.

Next, we consider two cases: f(1) < (%\5%; + g(’\ and f(1) > (%\5% + g()‘ ),

Case1: f(1) < 2")24—9( -

In this case, by Lemma C.6, any value in the range [L, 1] where L = _ | T%)’l is a good estimate for \*. Because these

values are at least L and there are at most logy ( ) evaluations, the maximum number of samples needed for testing all

25



Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity

values of ) in the sequence (1, %, 5%, e m) is bounded by

o <Cln(K/5L)2logr (L)> =0 <ln(K/6) C+=——5—

<0 (ln(K/5) C+ 9) i+ g(gegl»
<0 <1n(K/6) C+ S)) L+ 612))
< O (In(K/8) f(\) In(1/e))

where the first inequality is from logs (v/z) = 211115;{5)) < In(x), the second inequality is due to g(1) — 1 < K < C, and the

third inequality is from C + 9(1) =f(1)<25f(A)andln(1+ %) <In(%)=2In (@)

Case 2: f(1) > (2;1?2 + 250

In this case, since f(1) > (%\4*02 + f(A*) > f(\*), initially, we have U = 1 > \*. By Lemma C.4, we have \* belongs

to the range [L, 1], where L = /W As ) repeatedly shrinks by 1 from 1, after at most log; (52 ) iterations of the

while loop, it must fall into the range [?, A*]. Each of these iterations makes one evaluation g(\) for some A > \*/5.

Hence, the total number of samples to evaluate g(\) for A from 1 to m (i.e., the first element of the geometric series
5 b
that lies inside the range [\* /5, A*]), is at most
ClIn(K/d)logs (>
o (€Il /5)logs (55) ) -
(A)?

Let U, be the largest value of \ being tested for which f(\) < Qi’—c + @. By Lemma C.5, U, > \*/5. Note that U,

might be larger than A*. Because the algorithm starts with f(1) > 2/‘\5*0 + 4 (6/\2*) , the inequality f(\) < f(U) must be true at
A = U.,. It follows that U is set to a U,, and f(U,) < 50f(A\*) by Lemma C.6.

Let L, = % be the corresponding value of L after U is assigned to U*. In each of the subsequent iterations,
V ozt e

since L is non-decreasing and U is non-increasing, the returned value A must be in this range [L., U,]. The number of
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iterations needed until termination starting from U, is at most

U* U* Ugf + g(U;)—l
10g5 (L) = 10g5 \/5

U,)U2
= logs ( 1+ 9(06)2> (38)

where the second inequality is from g(U.) < K < C and U, < 1, the third inequality is due to logs(/z) = 1 logs(z) =
%i’;gg < In(z) for > 1 and the last inequality is 1 + 6% < E% for € < 1. In each of these iterations, SolveOpt evaluates

g(\) once for A > L,. In total, the number of samples in these iterations is at most

U.
L.

Oln(K/éi;OgS (%) —0 <ln(K/5) (52 + g(Uel_l) log; (g))

< O (In(K/8)f(U.) In(1/€?))

= O (In(K/0) f(A") In(1/e))
where the first inequality is due to (38) and the second inequality is due to f(A*) < f(U.) < 50f(A\*) and In(1/€?) =
21n(1/€). The total number of samples used by Algorithm 6 is the bounded by the sum of the number of samples for testing

A from 1 to U,, and then from U, to L,. Combining (37) and (39), we have the total number of samples needed until
Algorithm 6 terminates is at most

(39)

CIn(K/6)logs(2) Cn(K/6)logs (g
()\*)2 L2

*

< O(f(\)In(K/6)In(1/e)),

where the inequality is from f(\*) = (/\%2 + £ (:é*) > (,\%z- [

C.2. Proofs for Section 4.1

Let B(6,7) = {0 € © : ||§ — 0'||, < r} be a £2-ball of radius  centered at # € ©. In this section, we prove Theorem 4.1
which specifies the sample complexity of SB-GDRO-A (Algorithm 8) for the setting where no A is known beforehand. The
most important component of SB—-GDRO-A is computing an estimate A for the optimal A* using the algorithm SolveOpt
(Algorithm 6). This computation uses the algorithm Est G (Algorithm 7) to compute an estimate of 3 for A in the geometric
sequence (1, 1, o=, ... ) of common ratio %.

First, we prove the following lemma which bounds the number of A tested in Algorithm 6.

Lemma C.7. For any OPT(C, g) problem, in SolveOpt (Algorithm 6), the number of values X\ whose g(\) need to be

evaluated is at most
2
N - (> . (40)
€
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Algorithm 7 EstG: estimating g(\) for \ in the geometric sequence of common ratio é
Input: X € (0,1)
Compute a Og)‘ cover © of © with centers é(l), 5(2)7 ... ,é(|®|)
Let N =1In ( 6)

384n In( TALCPEN
0.01A2
Compute S¥) = DominantSet (8@, Vy,0.7)) fori =1,2,...,

Draw my = samples from each of the K groups into a set V)

O by Algorithm 3

Return: () = max,_, , 8| B

Algorithm 8 SB-GRDRO-A: SB-GDRO without knowing any A
Input: Constants T', K, D,G > 0,0 > 0,e > 0
Compute \ = SolveOpt(e, K, C , §) by Algorithm 6 where § is defined in Equation (45).
Let © = {9 )}Z 6| be the & 1’\-covelr of © constructed when querying A in EstG

AAAA

Initialize 6§ = arg mng@ 61/,
for eachroundt =1,...,7T do

Let ¢; = argmin, be the index of the center in © closest to 0;

Let S@t be the pre-computed 0.4\-dominant set at §(c*)

Compute ¢; = MaxP(t, Sp,) by Algorithm 2

Draw a group ¢; ~ ¢; and a sample z;, + ~ P;,

Compute 0;1 = MinP(6;, z;, +) by Algorithm 4
Return: 0

Proof. In SolveOpt, the values of A belong to a geometric sequence of common ratio % starting at 1 and terminating at a

value no smaller than /W, where C' > K > ¢(1). Therefore, the number of values in this sequence is at most

1
1+ 2) since g(1) < C

1 4 1 4
§§log5 = 51ncel+—2§6—2

where the last inequality is due to % = Eg; < In(z) for any = > 0. O

Next, we show that any 0.4\-dominant set Sy 45,9 ata 6 € © is also a 0.2A-dominant set at any 6" within the Euclidean ball
B(502).

Lemma C.8. Ler0 € © and \ € [0,1]. Forany ' € B (97 %), any 0.4\-dominant set So 4,9 at 8 is also a 0.2\-dominant
setat .
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Proof. The statement holds trivially if So.4x,0 = [K]. If So.4x,0 # [K], for any 6’ € B(6, 22*) and any group k € [K], we
have

|Ri(0") — Ri(0)] < G[l0" — 0],
< 0.1\,

where the first inequality is due to the Lipschitzness of the loss function, and the second inequality is due to [|0" — 0|, < %.
It follows that for any k € Sy 4x,9 and &’ € [K]\ Sp.4x,9, We have

Ri(0') — Rir (0') > Ri(0) — 0.1\ — (Ri/ (0) + 0.10)
> 0.2,
where the second inequality is due to Ry (6) — Ry (6) > 0.4\. This implies that Sy 4 ¢ is also a 0.2A-dominant set at
0. O

Using Lemma C.8, we prove the following guarantee of Est G, which is obtained directly from Lemma B.1 and Lemma 3.1
by re-scaling ¢ to /N

)

Lemma C.9. For any input A € [0,1], EstG (Algorithm 7) outputs a BA such that with probability at least 1 — 5, the

following condition hold:
Bozx < B < Ba. 41

Moreover, the number of samples needed to compute B \ IS

384KnIn (741(’”3? tn() >

0.0122 (42)

=0(K1§K)>

Proof. In EstG, for each g(\) being evaluated, the number of samples drawn from each of the K groups is

2
384n1n(741GD§(1n(6)>

0.01)\2
By Lemma B.1 and Lemma 3.1, this value of my is sufficiently large so that with probability at least 1 — %, for all
i=1,2,...,|0], the set S® is a 0.4\-dominant set at (). Since |S@| < Bx by Lemma 3.1, we have

KmN:

my = (43)

~

o

By= max ’S(i)

i=1,2,...,|8|

< Ba.

Moreover, by Lemma C.8, at any 6 € B(é(“, %), S is also a 0.2\-dominant set at 6. It follows that

‘ g0

> Bo.2x,0 44)

where we recall the definition of 3y 2 ¢ being the size of the smallest 0.2A-dominant set at §. Taking the maximum over ¢
on both sides, we obtain

A= max ’S(i)
i€{1,2,...,|6}

~on 0.1
> max max {ﬂo.g/\’g :0eB (9(1), 0G>\>}

ie{1,2,...,|é)|}

= 1max Po.2x,0
) g

= Bo.2x,

29



Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity

where the second equality (third line) is due to 6 being a cover of © and the last equality is due to the definition of S 2.
We conclude that 5p.2x < Bx < Ba.

Finally, since my samples are drawn from each of K groups, the total number of samples needed to compute By is
Km N- O

Next, we define a function g : [0, 1] — [K] as follows.

: 1
1 ifA < gllozs(2)]

N : 11 1

g()\) = EStG()\) if A e (1,57%,...,m) (45)
g(z) forz = argmax{t < A:te€ (1,4, 5,..., m)} otherwise

In other words, we define §(\) = 1 for any sufficiently small A that will never be called during So1veOpt, which consists

of values smaller than m For any \ > m, if A that belongs to the geometric sequence (1, %, %, ey ), then
g(\) is the output of Est G with input A. Otherwise, §(\) is equal to the output 5, of EstG with input z = Wﬁ
pY
which is the first value in the geometric sequence that is smaller than \. Let
Knln <GDK61n(E)>
C= 46
m&/s) (46)

and

i - C W

f(A):FJ'_ 62 ) (47)

We have §()\) € [1, K] due to the fact that Dominant Set always returns a non-empty subset of [K]. Moreover, C' > K.
The following lemma shows that with high probability, this function §(.) is non-decreasing.

Lemma C.10. With probability at least 1 — g, the function § defined in (45) is non-decreasing.

Proof. Since § < within the range [0, 5] we have g(\) = 1 which is never larger than any possible returned

1
gllozs(2)]°
value by EstG. Therefore, we only need show that §(\) is non-decreasing for A\ > . To this end, we will prove that

§(2) < g(X) for any value X in the truncated geometric sequence (1,1, 5, ..., m) This trivially holds for the last

1 . . . .. A Mast \ .
Toss (D] in this sequence, since by definition §( =) = 1 and the returned value of EstG is always greater
A

than or equal to 1. For other ) in this sequence, let \" = £ = 0.2). Observe that the number of values in this truncated
geometric sequence is at most

logs (i) <In <i) =N,

hence we can apply Lemma C.9 and take a union bound (over at most N values of the truncated geometric sequence)
to obtain that with probability at least 1 — g, we haYe g(\') = By < By = Poax and B2 < By simultaneously for
any A\ > Apast. We conclude that g(A') < Spox < By = §(A) forany M = A/5 and A < 1 in the geometric sequence
(1, %, %, ... ). Furthermore, this implies that for any pair (A\’, \) where \’ < X from this geometric sequence, we have
g\) < g(n).

More generally, for any 0 < z < y < 1, we have three possibilities:

value \j,gt =

o ify < §, then g(z) = g(y) =1
s ife < § <y, theng(z) =1<g(y)
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g< ]—10g5 >
g( ﬂoga(ww)

9(y),

* if § < =, then

IN

In all cases, g(x) < g(y). We conclude that the function g is piecewise-constant and non-decreasing. O

Lemma C.10 indicates that with high probability, the function ¢ defined in (45) satisfies the conditions of the optimization
problem (10), thus enabling the use of SolveOpt (Algorithm 6) and Theorem C.3. From Lemma C.9, taking a union
bound over all queried A throughout SolveOpt and note that there are at most N such A by Lemma C.7, we immediately
obtain the following result.

Corollary C.11. Running SolveOpt (Algorithm 6) with () defined in (45) guarantees that with probability at least
1—6/2, simultaneously for all X queried in SolveOpt, EstG (Algorithm 7) returns a value B such that Bp.ax < Bx < Ba.

We are now ready to prove Theorem 4.1.
Proof (of Theorem 4.1). Let

GDK In(1/€)
) _ [ En ln(ia ) L (DG + B)) In(K/9)
A* = argmin 5 5
A€[0,1] A €

(48)

We run SolveOpt for solving OPT(C‘ §) and obtain ) as an estimate for )\* . Theorem C.3 and Corollary C.11 implies

that with probability at least 1 — the returned value ) is an element of the geometrlc sequence (1, 1 ) and satisfies

VBV Er e
fA) < 50f()\27§), which is equ1valent to
¢ B8_C i
2oe N2 e
A~ g A*A R
) QP
COER
9 (49)
¢ )
<
<50 <(A*)2 +55 )

where the second inequality is from the definition of )\* , and the last inequality is due to g(A*) = §(z.) < Bz, < B,

1

where z, = Tos GET

< \*. Moreover, the number of samples needed for running SolveOpt is at most
0 (F(re 5.) (K /8) n(1/e)) < O (f(\) In(F/6) In(1/e))

_ ¢ g0
=0 ((()\*)2 + =2 ) In(K/9) ln(l/e)> (50)

¢ B
<0 (((/\*)2 + :) n(K/9) 1n(1/e)> .
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Algorithm 9 SB-GDRO-SA: adaptive and computationally efficient approach without knowing any A
Input: Constants K > 2, D, G > 0,0 > 0,e >0

Knl GDK
Compute constant C' = %

Initialize \y = 1,L = e\/%

Initialize 6, = arg mingcg(]|0]|5)
Initialize §; = 5, counter ¢y = 1
384n In( TALEDK)

Draw a new set of samples V; of size K'm1, where m; = 0D
N 1

for eachroundt =1,...,do
Min-player plays 6,
Compute a 0.4\;-dominant set S; = DominantSet(0;, V4, 0.7)\;) at 6; using Algorithm 3
if |S¢| > In(K) and \; > L then
Increase counter ¢y 41 = ¢ + 1
Reduce Ay %

Reduce ;41 + 265;
TCi

384n In (THELK )
Ot 41

0.01A7

Draw a new set of samples V1 of size K'm;, where m; =

else
Set Adyy1 + Ay, Vig1 < Vi and 6t+1 — O, Ct+1 < Ct
Compute ¢; = MaxP(t, S;)
Draw iy ~ g and z;, + ~ Py,
Compute 0,11 = MinP(6y, z;, +)
Return: § = % "7 6,.

In each round ¢ of the two-player zero-sum game in SB—GDRO-A, the dominant set used by the max-player is taken to be

the pre-computed 0.4\-dominant set of the center ¢, closest to 6, where ¢; € {1,2,..., ’C:) ’ }:
¢y = argmin ‘ 0; — o |l
c=12,...,|0|

As aresult, the sizes of the dominant sets used by the max-player never exceeds B 5.- Together with Corollary B.5, this implies
that with probability at least 1 — ¢ /2, the number of samples used by the two-player zero-sum game in SB—GDRO-A is

o <(D2G2 +B5) 1n<2K/6>)

5 1)

Finally, combining (50) and (51) and taking a union bound, we obtain that with probability at least 1 — 9, SB~GDRO-A
returns an e-optimal hypothesis 6 with sample complexity

Knln(GDKIn(%)/6 2G2 x
o nIn( n(1)/9) L (D*G2 + f-) In(K/9) (1)) = 52)
(A)2 2
C D2G? + By~
0] (((A*)Q + = > In(K/9) ln(l/e)) , (53)
nln GDK
where C' = % and we dropped the In(In(1/€)) term in the final bound for ease of exposition. O

C.3. Proofs for Section 4.2

The detailed procedure of the computationally efficient approach SB-GDRO-SA is given in Algorithm 9. Similar
to SB-GDRO (Algorithm 1), SB-GDRO-SA uses the two-player zero-sum game framework. The main difference is
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that SB-GDRO-SA does not assume any input A. Instead, it uses A from the geometric sequence (1, %, i, e ) A new value

of Ay in this sequence is used for computing the dominant set in round ¢ + 1 if both of the following conditions hold:

o The size | S;| of the dominant set in round ¢ is larger than In(K)

 The value of \; used in round ¢ is not smaller than L = ¢, / %

If at least one of the two conditions does not hold, we set Ayy1 = As.

Whenever a new value of \; is used, i.e., either t = 1 or \; # \;_1, a new set of samples of size m is drawn from each of K

384n In(T41GLE )

groups. The value of m is set by Lemma B.1 and Lemma 3.1, that is m; = . Here, the failure probability d,

0.017?
is set by a geometric sequence of the form (recall that ¢ is the global failure probability of the algorithm)
36
o= —— -, (54)
T (Lsma H{As # As—1})
so that the total failure probability of computing the dominant sets is bounded by
o0 (o)
30 1 ]
PR O Y e DI (55)

s=1 s=1
Note that we define A\g = —1 by convention, so that A; # As;_; holds for s = 1.

We will prove the following theorem, which is more general than Theorem 4.2

nin( SDE
Theorem C.12. Let C = % and L = ¢ ﬁ For any ¢ > 0,0 € (0, 1), with probability at least 1 — 0,

SB-GDRO-SA (Algorithm 9) returns an e-optimal hypothesis with sample complexity

D*G? In(K 1
€ €
Obviously, Theorem C.12 immediately implies Theorem 4.2 since 57, < By~ forall L < A\*.
Before proving Theorem C.12, we first prove a lemma showing that the sets Sy in all ¢ = 1,2,...,7 rounds are indeed

0.4\;-dominant sets with probability 1 — §/2.

Lemma C.13. With probability at least 1 — %, SB-GDRO-SA (Algorithm 9) guarantees that for all t > 1, the set S; is a
0.4)\;-dominant set at 0.

Proof. Fix a X in the geometric sequence (1, %, %, ...). Let t and ¢’ be the first and last rounds in which X is used for
computing the dominant sets, respectively. By Lemma B.1 and Lemma 3.1, m, is sufficiently large so that with probability
atleast 1 — 5—5, for all the rounds from ¢ to ¢/, the set Sy, for h = ¢,t+1,...,t is a 0.4\-dominant set of ;. By construction,
) ER Taking a union bound over all X in the geometric sequence (1, %, i, ... ) and using

e

we obtain with probability at least 1 — Y o0 | 6,1{\s # A\s_1} > 1 — g, the set S; is a 0.4)\;-dominant set at 6, for all
t>1. O

_ 368
10 A TP

The next technical lemma helps bounding the sum Zil mg1{As # As—1}.

nln( ERK
Lemma C.14. Letd >0,G>1,D>1,K > 1and C = %/g)) Forany x € (0,1), we have
[—log, ()] 2
GDK 1 1 1
Kn ; In (71'2835> < 2C1In(K/é)In <x>+O(Knln (w) In (ln (w)>>
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Proof. Without loss of generality, assume 1/x is a power of e. We have
[—logy ()] In(x)

S (ﬂszgmf) <y <ln(G?K) +1n (7;2) +In (52))

s=1 s=1

— In(z)
GDK 1 9 (57)
§21n<6> In (x) + In 81;[1 s

1 1 1
=2C1n(K/J) () +0 (ln() In <ln<>>) ,
x x x
where the inequalities are from log,(1/2) < In(1/z) and In(n!) = O(nln(n)). Multiplying Kn to both sides leads to the
desired statement. O

We are now ready to prove Theorem C.12.

Proof (of Theorem C.12). Let A\, i be the largest A such that 8y = In(K). If no such A exists, we set A\j, k = 0. Let
A = max(L, Aiy(k)). Note that A > L = €, / 5= (K) > esince C > K > In(K).

In the worst case, Algorithm 9 draw a new set of samples unt11 2 < A¢ < ). Without loss of generality, we can assume
A < 7. Otherwise, Algorithm 9 draws only three sets of samples and stops doing so immediately after some \; > =, which

tr1V1a11y leads to a sample complexity of O (%;n(f())
With A < i, the total number of samples of used for computing the dominant sets in Algorithm 9 are

T —logy(N)

384KnIn (T41GDK/5;) Kn 2GDK
E < - E el
t=1 1A # de-1) 0.01A7 =0 A2 s=1 8 1
c ; 58
<0 (vln(K/(S) ln(l/A)> (58)

C
<0 (5\2 In(K/9) ln(l/e)> ,
where the second inequality is from Lemma C.14 and the last inequality is from A > e. Note that we dropped the In(In(2))

for ease of exposition.

Next, we bound the regret bound of the max-player. Let 3 = max(In(K), 8z ). We show the average 37 = + Zthl | St is
not much larger than B .

'ﬂ \

1 T
T 2150 =
t=1

(418l > B} + 114l < B3 ) I

IN

r
Z {1S:] > BYK +1{|S,| < B}3
( (59)

w(3)+
(QBT) log,(1/3)
< 2f31n(1/e),

where the first inequality is from |S;| < K for all ¢, the second inequality is because there are at most log,( %)
S| > B, the third inequality is from K < ST as 3 > 1, and the last inequality is from log,(1/) < In(1/

,Hl= == ’ﬂ\

IN

rounds where
A)as A > e
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Algorithm 10 SB-GDRO-DF: Dimension-free SB—~GDRO Algorithm with known (), 3)
Input: Constants K, D, G, 1y, A, 5, € > 0, hypothesis set © C R™
Compute T’ = O(W)

Compute the maximum length of each episode o = H)TlG)\ZJ
Initialize an episode counter p = 1
C , _ 24In(4EL)
ompute m’ = ——5"=
Draw m/ samples from each K groups into set V!
Initialize §; = argmingcg ||0||5
Compute a dominant set S! = DominantSet (61, V!, \) at §; by Algorithm 3
Let 391 =51t
Compute ¢; = MaxP (6, Sp,) by Algorithm 2
for eachroundt =1,...,7 do
Draw a group %; ~ ¢; and a sample z;, ; ~ P;,
Compute 0,11 = MinP(6;, z;, ¢) by Algorithm 4
if ¢ is divisible by ¢ then
Increase episode counter p <— p + 1
Draw new m’ samples from each of K groups into V.
Compute a dominant set S” = DominantSet(0;11,V?, A) at 6,11 by Algorithm 3
Let S0t+l = SP
Compute g; 1 = MaxP (041, Sgt“) by Algorithm 2 using the last computed S”

Return: = 57 6, andg= LS ¢

Combining this with (35), the regret of the max-player is bounded by

Ru, <O ( TBr ln(K/5)>

(60)
—0 (\/TB In(K/6) In(1 /e)) .
Plugging (60) into (33) and combining with (58), we have the total amount of samples to get an e-optimal hypothesis is
212 4 A
0 ((f) 1n(1/e>2) e <(G D7+ 5) In(K/0) 1n(l/e>> < (61)
€
2,12
o[ (min ln(K), 2C n (D*G* + max(In(K), fr)) In(K/3) lnl 62)
€2 Aln(f() €2 €
where the inequality is from A = max (A k), L) and % = 1ng<)’ thus

—C < min g 70 = min n(K) _C
(N2 L2 N k) e TN )

Since min ln(f) c } < 1ng<) < %W, the final bound can be simplified to

e /\12n(1<) - €

1o} ((D2G2+ma6x2(ln(K),,8L)) IH(K/(S) In %) O

D. A Completely Dimension-Independent Approach

First, we give a detailed description of SB-GDRO-DF (Algorithm 10) and prove its sample complexity bound in Theorem 5.1.
Essentially, SB-GDRO-DF also uses the two-player zero-sum game framework similar to SB—-GDRO. Note that since 3
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is known, we can compute the number of rounds 7" = O(w) before the game starts. Unlike the previous

algorithms, knowing 7" before the game starts allows us to use a fixed learning rate

2D
77111,t 77t G\/T

for the min-player in Algorithm 10. Another difference is that SB-GDRO-DF proceeds in episodes, each consists of multiple
consecutive rounds, and the max-player uses the same dominant set for the rounds within each episode. More concretely,
in SB—-GDRO-DF, the T rounds of the game are divided into [%] episodes, each is of length o, except for the last episode
which may have fewer than o rounds if 7" is not divisible by o. The value o is defined as follows:

(63)

0.1x
=[] o
By this construction, the first episode contains rounds (1,2, ..., ), the second episode contains rounds (o + 1,...,20)
and so on, until the last episode which contains rounds (| £ ]o +1,...,7). Let p = 1,2,..., [Z] be the running index of

the episodes. Within an episode p,

* Before the first round of this episode, a set V* of K'm/' samples are drawn from the K groups, where m/’ i.i.d samples
241In(4EL)
P

are drawn from each group. The value of m/ is

* Let t” be the index of the first round in episode p and 6 = 6;, be either the initial hypothesis (if p = 1) or the
hypothesis played by the min-player using the algorithm MinP (Algorithm 4) (if p > 1) in round ¢”. A 0.4\-dominant
set S? is computed using DominantSet (Algorithm 3) with input 6 and V*.

e Inrounds t € (t*,t” + 1,...,min{¢” 4+ o, T}) of this episode, the max-player plays ¢; using the algorithm MaxP
(Algorithm 2) with the same input S”. Then, a group i; ~ ¢; is drawn and a sample z;, ; ~ P;, is drawn from group ;.
The min-player then follows the MinP strategy (Algorithm 4) with input ; and z;, to compute ;1.

The algorithm returns § = % Zthl 0, after T rounds. The following lemma shows that for any episode p, with high
probability, S” is a 0.4\-dominant set at §”.

Lemma D.1. At the beginning of episode p in SB—GDRO—DF, with probability at least 1 — %, the set S is a 0.4\-dominant
set at 0°.

. , _ 24In(4EL) s .
Proof. In each episode p, we draw m’ = ——5%—* samples from each group. By Hoeffding’s inequality, for each group k,

we have

’
m

1
Pr [ —|Y (07, V7;) = Ri(67)| = 0.15) | < 2exp (—0.045)3°m’)

Vel m
= 2exp (—1.08111 (4KT)>
)

k
4KT
< 2exp (—ln <)>
od

j=1

)
- 2KT’
By taking a union bound over K groups, we have
1 &
~ > 007,V )) = Ri(6°)] < 0.15) (65)
j=1

holds simultaneously for all k € [K] with probability at least 1 — %. The condition (65) of V* is the same as the event
Eko0 in (19) of V in Lemma B.1. Hence, we can apply Lemma 3.1 and conclude that with probability at least 1 — %, the
set S” is a 0.4 A-dominant set at 6°. O
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The next lemma shows that the set S” is a dominant set not only at #” but also at the hypotheses within the episode p.
Lemma D.2. SB-GDRO-DF guarantees that if S is a 0.4\-dominant set at 0; for some t € [T, then for any non-negative
integer 0/ < min { Lnoﬁlé\"‘J T — t}, S is also a 0.2\-dominant set at 0y .

Proof. SB-GDRO-DF uses the update rule (5) to compute ;1. This update rule can be written as follows:
Oip1 = arg rgin{2<77w§t79 —0) + 10 = 0" + 02 )13l
€
= arg min{||0; — nwge — 0]}
)

which is equivalent to projecting 6; — 1,,g: onto the convex set ©. By properties of projection onto convex sets (see e.g.
Orabona, 2019, Proposition 2.11), for any 1 < ¢ < T, we have
(041 = Ol < 16 — nwge) — Ol

= Nuwl|gel (66)

< NG,
where the last inequality is ||§:|| < G by the Lipschitzness of the loss function ¢. Combining (66) and triangle inequality, we
obtain

10t40r = Ocll < 01400 — Oraor 1l + [[0e40r—1 — 64|
S0tror = Orporall + 10401 = Orior 2|l + -+ - + [|0e41 — O]

o’ elements
< U/an
0.1A

< A

- G
where the last inequality is due to o/ < Lno—lc)‘zj < n041652 . This implies that 6, .- € B(6,, %) By Lemma C.8, it follows
that if a set is 0.4 A\-dominant at 6, then it is also a 0.2A-dominant set at the hypotheses 0;+1, 042, . . ., 04+, played in o
subsequent rounds of the game. O

Finally, we show the proof of Theorem 5.1.

Proof (of Theorem 5.1). Since the maximum number of rounds in each episode is o < n041(§\2 , there are at most % episodes.

Combining Lemma D.1, Lemma D.2 and taking a union bound over % episodes, in total we draw

21y (KT
o (nwKTG In (X2 )) -

)\3

samples over % episodes to guarantee that with probability at least 1 — /2, all the computed sets over % episodes are

dominant sets at (6;)¢=1 2,... 7 with sizes no larger than 3y 4. Plugging n,, = GQ—% and o = 7]011;163\2 = 0'2%‘(/;7 into (67), we
obtain a sample complexity of order
N KTG?In (ET) DKGVT In(£5G/T)
O 33 =0 I . (68)

From Corollary B.5, we have T' = O(w) is sufficient for obtaining an e-optimal hypothesis with probability
at least 1 — g. By plugging T' = O(w)

the dominant sets over % episodes is

<DKG\/(D2G2 + B) In(K/8) In(£2<) )
0 A3e ‘ ’

into (68), we obtain the number of samples collected for computing

(69)
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Algorithm 11 FTARL: Follow the regularized and active leader with a-Tsallis entropy regularizer and time-varying learning
rates for sleeping bandits

K et
Input: K > 2, a-Tsallis entropy function 1 (z) = 1_21:%
Initialize L; o = 0 for all arms i € [K].
for eachroundt =1,...,do

The non-oblivious adversary selects and reveals A

Compute ¢; = argmingea . ¥:(q) + (g, Li_1)

Compute p; ; = ZI% by Equation (26)
Draw arm i; ~ p; and observe Et =V, t
for each arm i € [K] do
If I; ; = 1, compute £; ; = % by Equation (27)

If I; + = 0, compute /; + = =0 — Zjez&t Zj,t by Equation (28)
Update Li,t = Li,t—l + gi,t

In addition, each of the 7" rounds uses exactly one sample to compute the outputs of the two players in the next round.
Hence, with probability at least 1 — ¢, the total sample complexity of the two-player zero-sum game needed to return an
e-optimal hypothesis is of order

o (DKG\/ (D2G? + B) In(K /) In(KR9) L (D26 +p) ln(K/5)>
A3e €2

E. FTARL with Time-Varying Learning Rates

We consider a variant of the FTARL algorithm in (Nguyen & Mehta, 2024) with time-varying learning rates. The procedure
is given in Algorithm 11. The only difference between this algorithm and the FTARLShannon algorithm (Algorithm 5) is
that Algorithm 11 uses the a-Tsallis entropy regularizer to compute the weight ¢, as follows:

q = argmin ¢y (q) + <q,I~/t71>7 (70)
qEAK

where 1;(q) = ¥a)- mmJGAK 20 for P(q) = = Zl =1 9% and o € (0,1) is a constant. The computation of the sampling

probability p; and the loss estimates of active and non-active arms El’t are identical to that of FTARLShannon. Since the
a-Tsallis entropy tends to Shannon entropy when o« — 1 (see e.g. Nielsen & Nock, 2011), we will prove the following
high-probability per-action regret bound of Algorithm 11 and then take the limit o — 1 to obtain Theorem B.3.

Theorem E.1. Let (1;)1=1,... and (y;)i=1,... be two sequences of non-increasing learning rates and exploration factors such
that ny < 2. With probability at least 1 — 0, FTARL (Algorithm 11) guarantees that

K= —1 1In(3K/s) ( 1 1> d
max Regret(a) < + + [ = + (3/6) + LU
aciK] o (@) < nr(l - «a) 27 20 (3/9) ;( %)

Before proving Theorem E.1, similar to (Nguyen & Mehta, 2024), we state the following results on the concentration bound
of the IX-loss estimator. These results are adapted from Neu (2015, Lemma 1 and Corollary 1) in the non-sleeping bandits
setting to the sleeping bandits setting with nearly identical proofs.

Lemma E.2 (Lemma 1 of (Neu, 2015)). Let (v; ;) be non-negative random variables satisfying v; y < 27y, for all i € [K]
and t > 1. With probability at least 1 — &/,

T K ~
Z Z vial{L;; > 0}(0; — Liy) < In(1/8").

t=1 i=1
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Since the sequence ('Yt)t:L--- is non-increasing, we have vy < ; for all ¢ < T'. Hence, for any fixed arm a € [K], we can
apply Lemma E.2 with v; ; = 2yp1{i = a} < 27, and take a union bound over K arms to obtain the following corollary.

Corollary E.3. With probability at least 1 — ', simultaneously for all a € [K],

In(K /&)

Iot(lgs— <
Z a,t(ga,t Ea,t) = 2'YT

We turn to the proof of Theorem E.1.
i

Proof (of Theorem E.1). Fix an arm a € [K| and let e, be the a-th standard basis vector of R¥. Let 0 = bat be the
UK

vector of estimated losses of K arms in round ¢. Since the sequence of learning rates is non-increasing and positive, we have

Yi(z) > 0and ;11 (x) > () for all z € Af. Hence, we can invoke the standard local-norm analysis of FTRL with
Tsallis entropy regularizer (e.g. Orabona, 2019, Lemma 7.14) on non-negative loss estimates (L;);=1,.._ to obtain

T
> (e ar = ea) < Pria(ea) — mlﬂ U1 (z + . Znt Zfz N/ (71
t=1 i=

Following the proof of Nguyen & Mehta (2024, Lemma 26) and by definition of ?;, we obtain

Ztvqt Zfthzt"i_zgzt(ht

1€A; (13,
= g@,t%,t + Z gz‘,tQi,t
igA,
=litipa+ | =1 Y L | D qin
JEA, IEA
=Ly, tDi, ¢ Z Qi+ | e — e Z liy Z it
1E€EA JEA, IERA
K
= b= D e | D ain
jen, i=1
=l — Z éj,tv
JEA:

where the second equality is due to lz-,t = 0 for ¢ € Ay, i # iy, the third equality is due to lﬁiyt = ft — Y ZjEAt Ejyt for all
non-active arms 7 ¢ A, the second-to-last equality is due to

~

~ i, il . vl ) _ . _
b tPiest Di,t TVt ‘ Diyt + Ve L o JEA, "

and the last equality is due to ¢ € A k. Plugging this into (71) and using (Zt, €a) = ga,t implies that

T
Z 0 — 'Ytzgjt Loy <¢T+1(ea)—m1n V1 ( +7Z77tz€thzt

t=1 JEA,
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By the definition of the loss estimate for non-active arms in (28), in the rounds where I, ; = 0, we have ét -y jen, li—
ga,t = 0. It follows that

Zfat Kt %ng, at ZZ gt ’Ytzfg, at

JEA, t=1 JEA: (72)

~

< Yria(es) = min (e +*Zm2&%t
1=

By the non-negativity of the regularizer function, we have

Yri1(eq) — mlélg; V1(z) = Yrii(eq)

1
= €q,) — min
L (vten) — min v10))
_ Klfa -1
nr1(l—a)’
where the third equality is from ¢(e,) = 0 and min,ea, ¥(v) = =5 :a by properties of Tsallis entropy function (Aber-

nethy et al., 2015). Since the round 7" + 1 does not contribute to the total regret, we can set 41 = 1 and obtain
Yri1(eq) — mingea, ¥1(x) < =L Furthermore, by Lemma 10 in (Nguyen & Mehta, 2024), for all t > 1,

Kl—a
= nr(l-a)”
~ 9_
Z@%féiﬂﬁm*

JEA

It follows that the right-hand side in (72) can be further bounded by

1 a_q
ZI“ b= ) o = bat Sfl(l—a Qazntzﬁﬂ)ﬁ?“
JER =1 jeh,
Klfa
%ﬁﬁ; ZmZ@@t
t=1 JEAL
Kl
SW QQZntzgjt
t=1  jEA:

£1{ii=5}p. ¢
Pyt e
forp;, € [0,1] and v € (0, 1). Moving Zthl Lot Zjem éﬁ to the right-hand side and using I, ; < 1, we obtain

where the second inequality is due to Zj,tpj,t = < 1forall j € A; and the last inequality is due to p1 “<1

T —

D Lol —Lay) < rl;(T(li—oS + Z (m + %) > e (73)

t=1 JEA:

We then apply Lemma E.2 twice and Corollary E.3 once, each of them with §' = g. The first application of Lemma E.2
uses v; ¢+ = 1y < 27, and obtains with probability at least 1 — § /3,

T
Zntzégt<ln< )JerZ&t (74)

t=1 JEA = JEA

The second application of Lemma E.2 uses v; ; = 2+, and obtains with probability at least 1 — §/3,

Z2’ytZ€]t<ln< )—1—22%2€]t (75)

JERA JERA:

40



Beyond Minimax Rates in Group Distributionally Robust Optimization via a Novel Notion of Sparsity

An application of Corollary E.3 leads to

T

T

~ 1 K
AN Sl (76)
=1 2 =1

with probability at least 1 — §/3. Plugging (74), (75) and (76) into (73) and taking a union bound, we obtain that with
probability at least 1 — 6,

T T
. K'=—1 In(3K/9) 1
Tot(by—Loy) < + + | — + In(3/0) + o T liy

; nr(l — a) 2T 2c ; ( ) J;A:t
K=« —1 In(3K/s) ( 1 > d

< + (50 + 5 ) MG/ + 3 (58 +) A

nr(l — a) 27 20 (3/0) ; ) e
holds for simultaneously for all a € [K], where the last inequality is >, 5, €50 <>, 1= Ay O

Finally, we prove Theorem B.3.

Proof (of Theorem B.3). Since Theorem E.1 holds for any « arbitrarily close to 1, we can take the limit of o to 1 on the
right-hand side of its bound and obtain the desired bound in Theorem B.3:

In(K) | WBK/5) d
R t(a) < + n(3/6) + + 77
;rel% egret(a) = vy /0) ; ( %) (77

F. Stochastic OMD with non-increasing, time-varying learning rate

(Zhang et al., 2023) lamented that they could not find an analysis of stochastic mirror descent for non-oblivious online
convex optimization with stochastic gradients, and they therefore proved their own high probability result. Their result uses
a fixed learning rate, whereas we would like to avoid needing knowledge of the time horizon 7" and therefore will describe
how one can trivially (in light of known results) extend their derivation to the case of a non-increasing learning rate. All that
is needed is to extend their upper bounds in equations (40) and (44) in their work to the case of a non-increasing learning
rate 7, ¢ (50 that 7y, 11 < 1y, for t € [T]). Such an extension is for free using, e.g., Theorem 6.10 of (Orabona, 2019).
All other steps of the proof of Theorem 2 of (Zhang et al., 2023) can proceed without any important modifications, including
the application of the Hoeffding-Azuma inequality. Here, we just highlight a few keyframes of the proof.

Using our notation and with non-increasing learning rate sequence (7, ¢);>1 and applying Theorem 6.10 of (Orabona,
2019), the bound in equation (40) of (Zhang et al., 2023) becomes, for any ¢ € O,

T T

2 2
Z<gt70t - 9> < Df + % an,t~

t—1 Tho, T =1

Fastforwarding to our analogue of equation (42) of (Zhang et al., 2023), we now get

T T
D2
max 2 (60, q1) — (0, q1)] < - + - ant + max {;<V9¢(9t7% = Gt, 0 — 9>}
Setting
Or1 = argglgin {nqu,t<v9¢(9t7Qt) gt,0 — 9t H9 0 } )
€
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we now again apply Theorem 6.10 of (Orabona, 2019) to get the following analogue of equation (44) of (Zhang et al., 2023):

T

D?
E Voo (0, q:) gtagf*9><7+2G2 E Tw,t-
t=1 Thw,T t=1

All of the remaining steps of the analysis of (Zhang et al., 2023) go through without any interesting modification, giving the
result that with probability at least 1 — 6,

d d D2 2 D2 o [ 1
— 1mi < Z 4= = —
;:1 »(0t, qt) grgg ;_1 o(0,q:) < - + 5 t; Nw,t + T + 2G ;:1 Nt +8DG/T In 5

where the last term is from applying the Hoeffding-Azuma inequality in precisely the same way as in (Zhang et al., 2023).
Using a learning rate schedule of 7, ; = 7o - GL\/{ gives the upper bound

1
DGf( +770++4770+1/1n5> DGf( +5770+\/1n6>,
which, letting ng = 1, gives
1 1
DG\/T(?—F\/IH(S):O<DG\/Tln§>,

as desired.

G. Details of the Experiments

In this section, we provide the full setup details of the experiments presented in Section 6.

G.1. The Lower Bound Environment

For the GDRO problem instance constructed based on the lower bound construction in the proof of Theorem 3.5, we scale
the loss by % to ensure that the losses are in [0, 1]. This implies that for a hypothesis 8 € [0, 1], its maximum risk over K
groups is

1 1 1

We set A = 0.1. The optimal hypothesis is 6* = 0.5 with L(6*) = 17 = 0.275. The optimality gap of a hypothesis 0 is

1 1 1
exe(0) = £(6) — £(67) = 2A]2 - 9’ _ 0.05’2 . 9’.

With the desired optimality gap of ¢ = 0.005, the acceptable range of the risk of f7 is [0.27,0.28]. The set of e-optimal
hypotheses is obtained by solving 0.05|4 — 6| < 0.005, which implies that 6 € [0.4,0.6] is the set of e-optimal hypotheses.

G.2. The Adult Dataset

Loss function and data normalization. Similar to (Soma et al., 2022), we train a linear classifier with hinge loss
00, z,y) = max(0,1 — y(0, z)),

where z € RS is a feature vector of a sample and y € {—1,1} is the label.

On the Adult dataset, the default value of the features could be much larger than 1, leading to loss values larger than 1. To
avoid exceedingly large losses, we compute the maximum norm of all feature vectors in the dataset and then divide all
features by this maximum norm. Note that the same maximum norm value is used for all 10 groups.
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UCIT Adult Dataset As mentioned in the main text, we construction X = 10 groups from five races White, Black,
Asian-Pac-Islander, Amer-Indian-Eskimo, Other and two genders male, female. The dataset of
48 842 samples is heavily imbalanced. The largest group is (White, male) having 28 736 samples while the smallest
groupis (Other, female) having 156 samples.

No batch processing. Our results in Section 6 are generated by the exact algorithms described in Sections 3 and 4 without
adding any batch processing. This is different from (Soma et al., 2022), who used a batch of 10 samples to stabilize the
gradients. We find that as the dominant sets quickly converge to just one or two groups, especially the groups with small
amount of samples such as (Amer-Indian-Eskimo, female), the gradients computed from just one random sample
are sufficiently stable with the long horizon of 7' = 106.

Computing (an estimate of) 6*. In order to obtain the optimality gap of SB-GDRO—-SA and SMD-GDRO, we compute an
estimate of £(6*) using the following algorithm: we run a deterministic two-player zero-sum game in which both players
have full knowledge of (P;)i=1,2.... k. In each round ¢, the max-player is able to compute a dominant set consisting of just
one group — that is, the group with maximum risk on #,. Similarly, the min-player is given the expected value of the gradient
E[g,] instead of the stochastic gradients. We run the game for 7' = 107 rounds and record the final maximum risk of 67 to
be L(0*) =~ 0.49945. This final maximum risk of is observed to be on group 8 (i.e., female Amer-Indian-Eskimo).

H. Discussion of the Competing Approach in Stochastically Constrained Adversarial Regime

Our approach to going beyond minimax bounds in GDRO is based on the (), 3)-sparsity condition and, algorithmically,
based on the sleeping bandits framework. The expert bandit reader may wonder about the viability of the following
competing approach: suppose that after some unknown time horizon 7, all 6,’s fall within a radius-p ball of #*, and within
such a ball, further suppose for simplicity that a unique group obtains the maximum risk in all subsequent rounds by a
margin of at least \. This setup generalizes the previously studied stochastically constrained adversarial (SCA) regime (Wei
& Luo, 2018; Zimmert & Seldin, 2021) wherein the best arm’s mean is separated with a gap from the other arms’ means for
all rounds. In this generalized SCA regime, one might hope for better regret bounds for the max player than we achieve
using our sleeping bandits-based approach. However, there are at least three major challenges: first, to our knowledge, it is
not known how to get high probability regret bounds in the SCA regime even when 7 = 1; second, we are not aware of
results that provide last iterate convergence so that, eventually, all iterates 8; are within distance p of 8* (SCA requires such
convergence); third, there could well be multiple best arms or multiple nearly best arms, which recently has been addressed
in some different regimes but adds another layer of complexity for the generalized SCA regime.

As mentioned in Section 7, if we had last iterate convergence, then our (), /3)-sparsity condition could be relaxed to hold
only within some proximity of §*. However, our condition is more flexible as compared to SCA since it is not known how
the latter can be analyzed when the best arm (or set of best arms) changes throughout the game, whereas such a changing set
of approximate (within gap \) maximizers fits naturally with sleeping bandits.
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