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ABSTRACT
As an integral aspect of health care, digital technology has enabled
modelling of complex relationships to detect, screen, diagnose, and
predict patient outcomes. With massive data sets, artificial intelligence
(AI) can have marked effects on 3 levels: for patients, clinicians, and
health systems. In this review, we discuss contemporary AI-enabled
wearable devices undergoing research in the field of cardiovascular
medicine. These include devices such as smart watches, electrocar-
diogram patches, and smart textiles such as smart socks and chest
sensors for diagnosis, management, and prognostication of conditions
such as atrial fibrillation, heart failure, and hypertension as well as
monitoring for cardiac rehabilitation. We review the evolution of ma-
chine learning algorithms used in wearable devices from random for-
est models to the use of convolutional neural networks and
transformers. We further discuss frameworks for wearable technolo-
gies such as the V3-stage process of verification, analytical validation,
and clinical validation as well as challenges of AI integration in med-
icine such as data veracity, validity, and security and provide a refer-
ence framework to maintain fairness and equity. Last, clinician and
patient perspectives are discussed to highlight the importance of
considering end-user feedback in development and regulatory
processes.
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RÉSUMÉ
Partie int�egrale des soins de sant�e, la technologie num�erique permet
de mod�eliser des relations complexes pour d�etecter, d�epister et
diagnostiquer les maladies et pr�edire les issues pour les patients. En
utilisant d’imposants ensembles de donn�ees, l’intelligence artificielle
(IA) peut avoir des effets marqu�es tant pour les patients que pour les
cliniciens et le système de sant�e. Dans cette revue, nous nous pen-
chons sur les appareils portables contemporains utilisant l’intelligence
artificielle qui font l’objet de recherches dans le domaine de la
m�edecine cardiovasculaire. Cela comprend des dispositifs comme les
montres intelligentes, les timbres d’�electrocardiogramme et les tex-
tiles intelligents comme des chaussettes intelligentes et des capteurs
thoraciques utilis�es pour le diagnostic, la prise en charge et le pro-
nostic de maladies comme la fibrillation auriculaire, l’insuffisance
cardiaque et l’hypertension, ou qui sont utilis�es pour le suivi de la
r�eadaptation cardiaque. Nous avons pass�e en revue l’�evolution des
algorithmes d’apprentissage automatique utilis�es dans les dispositifs
portables depuis les modèles de forêt al�eatoire jusqu’à l’utilisation de
r�eseaux de neurones à convolution et de r�eseaux autoattentifs. Nous
�etudions aussi les systèmes utilis�es pour les technologies portables
comme le processus de v�erification V3, de validation analytique et de
validation clinique, de même que des d�efis d’int�egration de l’IA en
m�edecine comme la v�eracit�e, la validit�e et la s�ecurit�e des donn�ees.
Enfin, nous proposons un cadre de r�ef�erence pour maintenir l’�equit�e et
l’impartialit�e. Pour terminer, les perspectives des cliniciens et des
patients sont abord�ees pour souligner l’importance de tenir compte
des r�etroactions des utilisateurs finaux dans les processus de
d�eveloppement et de r�eglementation.
In this contemporary era of personalized health care, there is a nature of wearable devices is evident, with an estimated 15%-

growing imperative to integrate consumer health technology
products to empower clinicians and patients. The ubiquitous
25% of Canadians, and more than 25% of those in the
United States owning a device that tracks fitness or monitors
health.1 This translates into > 72 million US users alone
within the past year. The global market for smart wearables is
projected to reach CAD$70 billion by 2025, underscoring the
vast potential for harnessing these data and the significant
potential for improving health.2

Wearable technology encompasses devices designed for use
while worn. These are specialized devices comprising a sensor
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with a computer small enough to be worn or carried by in-
dividuals, enabling the measurement of physical parameters
such as step count and heart rate, among a few inputs.3

Ranging from smartwatches to subcutaneous sensors, wear-
ables can sense, record, store, and transmit data, using sensors
such as barometers, gyroscopes, accelerometers, and magne-
tometers in addition to optical, electrical, temperature, and
visual sensors. These sensors facilitate the monitoring of
health-related metrics such as heart rate, blood pressure, ox-
ygen saturation, body temperature, sleep, physical activity
level, electrocardiogram (ECG), and biochemical parameters
(eg, serum glucose level). Physiologic data obtained from
wearables are of limited clinical utility when viewed in isola-
tion. Clinicians have historically reported concerns with
providing timely and accurate interpretation of these data.4,5

Advancements in artificial intelligence (AI) can potentially
unlock thiswealth ofwearable data alongside clinical, laboratory,
and imaging modalities.6 Multimodal AI-powered approaches
have transformative potential particularly for longitudinal
layered data that can enhance prognosis, diagnosis, and improve
treatment strategies.7 Traditional linear models for building
prediction tools on the basis of limited patient-level information
are being surpassed by machine learning algorithms capable of
recognizing new patterns of data and learning without requiring
retraining. Novel AI applications have the potential for identi-
fication of digital signatures using multimodal inputs to
phenotype patients with cardiovascular disease.8,9

Despite the potential use of these devices in cardiovascular
disease, there are limited examples of successful clinical appli-
cations. Many current AI applications rely on antiquated labels
to predict outcomes (eg, International Classification ofDiseases,
ninth revision codes) and primitive decision tools that hinder
their ability to unlock new insights. Additionally, disparities in
the underutilization in the elderly, ethnic minority, and less
educated populations and lower income households need to be
addressed to ensure equitable access to the benefits of wearable
technology.10 Currently AI-based tools have yet to demonstrate
improved patient outcomes at scale.11 Yet, we stand at a pivotal
moment in the evolution of AI because its role will evolve to
further enhance thework of clinicians by improving acumen and
streamlined work flows that alleviate administrative burdens,
thereby affording more time to dedicate to patient care. Addi-
tionally, AI-driven insights will empower patients with greater
understanding and involvement in their health care journey.

In this review, we discuss the current application of ma-
chine learning algorithms in wearable devices, wearable
monitoring of various cardiovascular conditions, and chal-
lenges in integrating this technology in medical practice. Last,
we highlight the patient and clinician perspectives, and
barriers that limit equitable adoption of these devices in
vulnerable groups.
Contemporary Case Use in 2024
Ms S. is a 50-year-old patient with heart failure (HF). Over

the past 2 weeks, she has noted worsening lower limb edema
and weight gain. She awoke during the night experiencing
shortness of breath and was unable to rest comfortably. The
next morning, she called her primary care provider, who
scheduled a clinic appointment in 1 week. By the time of the
appointment, Ms S.’s condition had worsened, precipitating
an urgent visit to the emergency department in acute
decompensated HF requiring positive pressure ventilation and
intravenous diuretic administration.
The Evolution of Machine Learning
Machine learning, a set of computational techniques, can

identify intricate patterns within vast data sets, and subse-
quently produce precise and tailored outputs (Table 1). In
cardiovascular health, reliance has traditionally been on rules-
based algorithms and probabilistic models for clinical
decision-making. For example, a blood pressure remote
monitoring platform might suggest uptitration of an antihy-
pertensive medication on the basis of preset thresholds.

In recent years, machine learning in cardiology has
increasingly used deep learning algorithms, rooted in super-
vised learning, a subcategory of machine learning that uses
labelled data sets to train algorithms to predict patterns and
outcomes, and labelled ground truths, which are targets for
training or validating the model with a labelled data set. Su-
pervised learning involves making predictions on the basis of
provided data and comparing them with human-labelled data.
The algorithm computes the discrepancy between predicted
and actual labels, known as the loss, and minimizes it through
iterative adjustments to the model’s learned features. This
iterative process allows the model to glean insights directly
from raw data, including high-dimensional modalities like
ECG, images, echocardiography video, and textual data.

Deep neural networks (DNNs) have emerged as a powerful
tool for learning features and predictions from raw data in cardi-
ology.12DNNis a complex artificial neural networkwithmultiple
layers of input and output that is used to manage unlabelled and
unstructured data. Their capacity to extract features from diverse,
high-dimensional data sources facilitates data-driven discoveries.
Contemporary examples of these clinical applications in cardiol-
ogy include the use of ECGs to predict left ventricular dysfunction
or future development of atrial fibrillation (AF).13-16 However,
these conventional approaches limit scalability and adaptability
with challenges related to real-time data variances and catastrophic
forgetting, which occurs when the network “forgets” how to
effectively perform the earlier tasks.17

Wearable data present an ideal opportunity for deep learning
models, incorporating diverse sensor parameters like cuffless blood
pressure, heart rate, oxygen saturation, temperature, activity, 1-lead
ECG, and blood glucose levels. The widespread use of wearable
sensors and the lack of enhanced data aggregation capabilities pose
new challenges in managing, interpreting, and integrating such
data. Addressing these challenges necessitates multimodal AI solu-
tions that capture the complexity of health anddisease.18Currently,
AI integration intomedical care has been limited, with the progress
mainly observed in the applications of medical imaging interpre-
tation. However, because clinicians routinely handle data from
multiple sources and modalities, there is a pressing need to develop
AI models that effectively integrate multimodal data.
Machine Learning Algorithms for Smart
Wearable Devices

Early wearable AI models primarily used traditional
machine-learning techniques suitable for time-series analysis,
such as support vector machine, logistic regression, and



Table 1. Glossary of terminologies related to artificial intelligence

Terminology Definition

AI Simulation of human intelligence
processes such as data acquisition,
reasoning, and data processing by
machines and computer systems

Machine
learning

A subset of AI that involves algorithms
and models capable of revising
output on the basis of experience and
improving performance without
being explicitly programmed

Deep learning Subset of machine learning that focuses
on algorithms inspired by the
structure and function of human
brain, known as ANNs. It is
commonly used for applications such
as image and speech recognition and
language processing

ANN Deep learning models are based on
ANNs, which are layers of
interconnected nodes processing data
and passing it to the next layer

DNN A type of ANN with multiple layers
between the input and output
capable of modelling complex and
abstract features of the data

CNN A subtype of DNNs designed to process
structured grid data (ie, images) using
pattern recognition techniques

FCNN Also known as feed-forward neural
network, FCNN is a type of ANN in
which each neuron in one layer is
connected to every neuron in the
next layer

RNN A type of ANN designed for sequential
data processing. Unlike the feed-
forward neural network, RNNs have
connections that form a cycle,
allowing them to exhibit dynamic
temporal behaviour

LSTM A subtype of RNN designed to model
sequential data and overcome
limitations of traditional RNNs by
capturing long-term dependencies

SVM A supervised machine learning model
used for classification and regression
analysis.

Random forest An ensemble learning method used for
classification and regression tasks in
machine learning that uses decision
trees during training

Transformers A type of deep learning model
architecture capable of effectively
capturing long-range dependencies
and contextual information in text
data

Segmentation Process of partitioning image or data
into multiple segments

AI, artificial intelligence; ANN, artificial neural network; CNN, con-
volutional neural network; DNN, deep neural network; FCNN, fully con-
nected neural network; LSTM, long-short-term memory network; RNN,
recurrent neural network; SVM, support vector machine.
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random forest (Table 1).19 These methods handled structured
data well and performed adequately even with relatively small
data sets. However, because these models require single-value
aggregations from the wearable, such as mean, median, and
aggregate statistics, they need to be more comprehensive in
providing insights into the complex temporal dynamics
inherent in most wearable data streams. As shown in
Figure 1A, the sequential nature of time-series data was often
overlooked, because each data point was treated indepen-
dently (Fig. 1).20

Deep learning pipelines were later introduced to wearables,
and their success in various time-series forecasting tasks offers
a solution for addressing wearable data challenges.21 These
challenges include the large volume of data generated by
wearables, the complex temporal dynamics inherent in most
wearable data streams, and the need to capture temporal de-
pendencies. These models demonstrate exceptional profi-
ciency in decoding the intricate nonlinear relationships
embedded within large quantities of data, thereby addressing
these challenges. Fully connected neural networks (FCNNs)
marked a significant shift by using deep learning for wearables’
data, enhancing the ability to model nonlinear relationships
within larger data sets. Although more potent than support
vector machine or random forest in handling complex pat-
terns, FCNNs still needed to explicitly account for the order
of data points in time series, which is crucial for capturing
temporal dependencies (Fig. 1).

As the field progressed, recurrent neural networks (RNNs)
were developed to model time-series data, to explicitly address
the limitations of FCNNs.22 RNNs have successfully inte-
grated large quantities of wearable data, processing sequences
by maintaining a hidden state that captures information about
previous data points, thus preserving temporal dependencies.
However, they often face challenges with long sequences.
Long-short-term memory networks were introduced to over-
come these challenges, and they can learn long-term de-
pendencies without the vanishing gradient problem.

As RNNs became popular, convolutional neural networks
(CNNs) also competed in the space by adding a novel layer to
processing time-series data. CNNs use convolutional layers to
capture spatial features from sequences. They are suitable for
segmenting and analyzing time-bound signal patterns and
assessing wearable data as a 1-dimensional signal, like how they
process images as 2- or 3-dimensional signals. Because of their
efficiency and capacity to “understand” spatial correlations, they
are the most used algorithm in wearable devices. CNNs usually
have multiple processing blocks. Typically, each block first fil-
ters a signal with a kernel, processes through a nonlinear func-
tion that helps encode the features, and then pools (subsamples)
the signal such that each feature represents an increasingly larger
unit of time. Thus, in each block, the kernel understands re-
lationships across a fixed amount of time, and pooling is used to
summarize samples, thereby increasing the temporal length of
the relationships measured in the next block.

More recently, transformers have revolutionized the field by
using self-attention mechanisms to identify relationships across
much longer sequences, significantly improving processing ef-
ficiency and model performance over earlier models.23 This
architecture allows for parallel processing of sequences and can
manage longer dependencies with greater efficiency. Trans-
formers in wearables signify a move toward models that require
substantial data sets but offer remarkable accuracy and speed.
Looking ahead, the integration of AI in wearable technology is
expected to continue to evolve, with advancements in areas such
as real-time health monitoring, personalized health recom-
mendations, and early disease detection.



Figure 1. Comparison of model treatments of a heart signal over 60 seconds. (A) Key points (circled in blue), indicating that each point is treated
independently by models such as support vector machine and random forest (B) The same heart signal with connections (example of 1 point
[orange] and its related connections in yellow dashed lines) between sequential data points, showing the approach of advanced models like
convolutional neural networks, long-short-term memory networks, and transformers that consider temporal relationships within the data. The
horizontal time line (x-axis) beneath both panels indicates the sequence of heartbeats.
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Wearables in Disease Screening and
Management

A recent survey to assess the uptake of utilization patterns
of wearable devices showed that 49% reported using wearable
devices every day and 82% of users expressed willingness to
share their health data with clinicians. However, among in-
dividuals with, or at risk of cardiovascular disease, fewer than
18% of those with established cardiovascular disease and 23%
at risk reported using wearable devices, compared with 29% of
the general population. Sociodemographic factors such as
older age, lower educational status, and lower household in-
come were associated with a lower odds of wearable usage.
These findings highlight the potential for wearable devices but
also underscore that these devices are underused among those
with cardiovascular disease. Key barriers to the broader use of
these devices is the need for rigourous evidence that un-
equivocally establishes their role in disease monitoring. In the
next section we provide seminal examples of applications of
wearable technologies for patients with cardiovascular disease.

Atrial fibrillation with photoplethysmography
monitoring

AF is associated with a high global burden of cardiovascular
disease and stroke. The detection of AF using smartwatches is
arguably the most successful application wearables in current
clinical practice. The Apple Heart Study, the largest study of
wearable devices for AF detection, investigated whether pho-
toplethysmography (PPG)-enabled devices such as the Apple
Watch (AW; Apple Inc, Cupertino, CA) can detect AF in
individuals with no known history of cardiovascular disease.12

The PPG waveform is synchronous with heartbeats and
therefore can be used to assess the heart rate. Using AI, such
waveforms are assessed with periodicity and if a pulse irreg-
ularity is detected in 5 of a series of 6 tachograms (periods of 1
minute length) the irregular pulse might suggest AF. The
DNN algorithm trained base off of the AW PPG sensor data
has shown excellent prediction of AF compared with the gold
standard 12-lead ECGs (c-statistic, 0.97; 84% positive pre-
dictive value).24 The Heartline trial,25 a randomized clinical
trial on the significance of detection of AF using the AW, has
started recruitment of more than 150,000 individuals. The
primary objective is identifying and diagnosing AF, evaluating
improvement in cardiovascular outcomes, improving antico-
agulant adherence, and identifying predictors of disease. The
results of this study are anticipated in 2025. Additionally,
other types of devices are being evaluated for similar purposes,
including a “smart ring” that measures PPG and was shown to
have 96.9% diagnostic accuracy in detecting AF.26 A sum-
mary of sensor technology and machine learning algorithm
used in various wearable devices is shown in Figure 2.
Furthermore, a comparison of features of commonly available
wearable watches and rings are listed in Supplemental
Table S1.

Atrial fibrillation with 1-lead ECG monitoring

Wearables with ECG monitoring capability have also been
evaluated for the detection of AF. In the mHealth Screening
to Prevent Strokes (mSToPS) study continuous 1-lead ECG
monitoring was evaluated using the Zio patch (iRhythm, San
Francisco, CA) to detect new AF diagnosis up to 1 year.27

This study showed that ECG monitoring analyzed by a
deep learning model led to a higher rate of new AF diagnosis
than standard methods, and was associated with increased
initiation of anticoagulation therapy and cardiology referral.
The Amazfit Health Band (Zepp Health, Hefei, China),
which records PPG and 1-lead ECG data, has a sensitivity
96%, specificity of 98%, and 97% accuracy for the detection
of AF.28

Wearable technology can be also used in managing patients
with established AF. Noninvasive continuous rhythm moni-
toring provides the opportunity to assess the burden of
arrhythmia and the need for ongoing anticoagulation and
rhythm control strategies. Reliable wearable technology can
guide patients to time use of anticoagulation with episodes of



Figure 2. Use of wearable technology sensors, underlying machine learning algorithms, and their clinical indications in cardiovascular medicine.
Apple Watch is from Apple Inc (Cupertino, CA); Garmin Watch is from Garmin Ltd (Olathe, KS); Oura Ring is from Oura Health Ltd (Oulu, Finland);
Cardiopatch is from Novosense Ab (Lund, Sweden); and Smart Socks are from Sensoria (Redmond, WA). CNN, convolutional neural network; ECG,
electrocardiogram; HR, heart rate; iCare-AF, Continuous Anticoagulation theRapy in patiEnts with Atrial Fibrillation; mSToPS, mHealth Screening to
Prevent Strokes; PPG, photoplethysmography; pVO2, estimate of oxygen consumption; QTc, corrected QT interval; SaO2, oxygen saturation; TRUE-
HF, Ted Rogers Understanding Exacerbations of Heart Failure.
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paroxysmal AF. For instance the iContinuous Anticoagulation
theRapy in patiEnts with Atrial Fibrillation (iCARE-AF)
study,28 showed in patients with paroxysmal AF that on-
demand use of anticoagulation on the basis of 1-lead ECG re-
cordings is safe and feasible and can also help improve patient
adherence to therapy. Currently, a large clinical trial of rhythm-
guided treatment with direct oral coagulants and use of smart
watches is under way by Turakhia et al., and is sufficiently
powered to account for superiority of major bleeding events vs
ischemic stroke.29

In the absence of large-scale clinical trials among multiple
populations and external validation of 1-lead ECG devices,
the validity of such devices remains unknown. For instance, in
the mSTOP trial, the information from the device was
communicated to the patient and their primary physician,
which led to higher rates of cardiology visits and follow-up
investigations. A new study published by our group has
shown validity and feasibility of AF detection in elderly HF
patients using the AW. The AW readings compared with the
expert panel’s consensus, showed an agreement (k) of 0.52 (P
< 0.05). This is one of the many validity studies under way to
show how wearables can be used in the real world and lead to
improvement in cardiovascular care outcomes in patients from
a diverse range of backgrounds.30 Although the data from
these trials have yet to be integrated into cardiovascular
societies’ guidelines, clinical use of AI-integrated wearable
devices such as the smartwatches in the formal diagnosis and
management of AF are currently being reviewed by multiple
Canadian, European, and American cardiovascular societies.

Heart failure

Despite significant advances with guideline-directed therapy,
HF still remains one of the most significant progressive cardiac
conditions and affects the life ofmore than 7.5million patients in
North America.31 Wearable technology provides a unique op-
portunity to improve symptom management and reduce hospi-
talization, narrowing the equity gap in cardiac care access by
facilitating the diagnosis, prognosis, and remote monitoring.32

Heart failure diagnosis. AI-empowered wearable and digital
technologies have made significant advances in diagnosis and
management of HF. Recent work using 1-lead ECGs to detect
cardiomyopathies supports the notion of scalability for HF
screening. Although recordings of 1-lead ECGs are often noisy
and prone to artifact, strategies were applied and used to train
a 1-lead CNN.33 The algorithm’s inputs included voltage
data, aggregating information from patterns and identifying
outputs of left ventricular systolic dysfunction, correctly
identifying abnormalities in 90% of the ECGs analyzed. The



Marvasti et al. 1939
Wearables and Artificial Intelligence
algorithm in question showed robust performance even when
the clinical ECG signal was augmented with typical noises
from 1 wearable ECG sensor. Their noise-adapted model has
an area under the receiver operating characteristic curve of
0.87, which is a robust performance compared with clinical
ECGs. This highlights the potential of leveraging advanced
machine learning techniques to enhance the accuracy and
efficiency of cardiomyopathy detection. Attia et al. used 1-lead
ECGs from an AW coupled with an AI algorithm to detect
patients with left ventricular dysfunction with an area under
the curve of 0.885.16

Heart failure prognosis. In patients with HF, data from
wearable devices such as heart rate variability (HRV) and
physical activity are some of the parameters that can be used
for prognostication. HRV is a measurement of the fluctuation
of time between each heartbeat. Patients with HF have
autonomic dysfunction, which might play a role in patho-
physiology. In the United Kingdom Heart Failure Evaluation
and Risk Trial (UK-HEART), patients with low HRV
quantified using a standard deviation of all normal R-R in-
tervals during a 24-hour period had a lower survival rate
particularly if < 50 ms. Wearable monitoring devices capable
of estimating HRV show promise and might identify those
who benefit from cardiac resynchronization therapy.34,35

Although pedometers can typically be used for adminis-
tering the 6-minute walk test, for AW users, monitoring can
occur via the HealthKit (Apple Inc) interface because it can
integrate an AI algorithm for calculating the 6-minute walk,
which is also validated by heart rate data and mean daily step
count algorithms.
Heart failure Hospitalization Prediction Models
Traditionally, clinicians have relied on static snapshots

to determine HF prognosis. Noninvasive cardiac moni-
toring using wearable sensors could provide dynamic data
to accurately predict hospitalization in HF patients. In the
Multisensor Non-invasive Remote Monitoring for Pre-
diction of Heart Failure Exacerbation (LINK-HF) study, a
disposable biosensor provided continuous physiologic data
uploaded to a cloud database for analyzing trends and
designing prognostic algorithms for prediction of HF
exacerbation in patients with HF with reduced ejection
fraction.36 To do this, a wearable sensor (Vital Connect;
VitalConnect, San Jose, CA) was attached to the partici-
pants’ chest for 1-lead ECG detection, skin impedance,
temperature, and continuous 3-axis accelerometer. The
sensor data was then paired via Bluetooth to an android
phone and uploaded to a cloud analytic platform (PhyslQ;
physIQ Inc, Chicago, IL). The cloud-based data were then
analyzed using similarity-based modelling, which is a
machine learning analytic that learns tandem patterns.
Over a 3-month follow-up, differences between a baseline
model estimate of vital signs and actual monitored values
were used to generate a clinical alert. The platform was
able to successfully predict hospitalization for HF exacer-
bation with 76%-88% sensitivity and 85% specificity.

Currently, the Ted Rogers Understanding Exacerbations of
Heart Failure (TRUE-HF) study has completed enrollment of
patients with HF. This study is aimed to determine whether
continuous data gathered by the smartwatch paired with a
transformer AI model can predict acute decompensation.
Additionally, this study will compare wearable-generated es-
timates of oxygen consumption with traditional cardiopul-
monary exercise testing, which is the current gold standard of
assessment but remains inaccessible to most Canadians living
with HF.
Heart failure Congestion
Wearable devices can also be used to detect worsening

congestion in those with HF. For instance, the ZOLL
uCor patch (ZOLL Medical Corp, Pittsburgh, PA)
equipped with ECG monitor and radiofrequency sensor
has the ability to measure pulmonary fluid content and is
currently being evaluated in a clinical trial for its ability to
predict congestion.37 Another patch that uses seismo-
cardiography techniques has been able to detect conges-
tion on the basis of measurement of chest wall vibration
correlating with the movement of the heart in the chest
and blood flow.38 Finally, one of the latest developments
in wearable technology for detection of worsening edema
involves textile-based sensors such as “smart” socks that
have been developed to detect worsening edema via data
from built-in accelerometer and stretch sensors to measure
changes in ankle circumference (Fig. 2).37

The Heart Failure Society of America in collaboration
with the Canadian Heart Failure Society and the European
Cardiovascular Society, are currently working on a docu-
ment for clinical recommendations for standardized
reporting of noninvasive remote patient monitoring in-
terventions and key clinical workflow components for
processing such data in patients with HF. We anticipate
that similar clinical guides and standards of reporting will
soon become available through other cardiovascular soci-
eties as well. At this time, there are no established clinical
standards of care for wearable sensors.
Blood Pressure Monitoring and Treatment
Hypertension screening is fundamental in the primary

care setting for cardiovascular disease prevention. Cuffless
PPG wearable wristbands using features such as pulse
transit time have been shown to accurately measure
continuous blood pressure and screen for hypertension
using AI.39 Pulse transit time is defined as the amount of
time for a pulse to propagate between 2 arterial sites, and
pulse arrival time, which refers to the time between 2 ECG
R waves and the peak of the PPG signal. Transit time can
be calculated by using PPG signs from 2 sensors at
different locations or PPG and the electrocardiographic
signal. An alternative strategy that combines deep learning
and retinal imaging has also been used to diagnose hy-
pertension. The clinical significance of such devices needs
to be further investigated in clinical trials. Multimodal AI
that integrates clinical and laboratory features can further
improve personalized management of hypertension.40

In the context of secondary prevention and monitoring
of blood pressure, the COmbined-device, Recovery
Enhancement (MiCORE) study showed improved adher-
ence to guideline-directed therapy in patients with
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coronary artery disease via self-management programs us-
ing integration of an AW and a Bluetooth blood pressure
cuff to assess blood pressure and activity level.41 In their
study, a 43% reduction in 30-day rehospitalization and
significant health-related cost reductions were reported.41
Cardiac Rehabilitation
Cardiac rehabilitation is a comprehensive guideline-

directed prevention strategy that applies to many cardio-
vascular conditions. Remote rehabilitation programs have
demonstrated significant cost savings and patient conve-
nience. A meta-analysis of 23 randomized clinical trials of
patients who underwent cardiac rehabilitation after
myocardial infarction showed home-based cardiac reha-
bilitation was as effective as a centre-based approach in
improving clinical quality of life outcomes.42 One such
trial used the REMOTE-CR (Android), a real-time remote
rehabilitation platform that includes the use of a chest-
worn sensor and showed improved activity level with
cost effectiveness compared with centre-based programs.43

In this study, physiologic parameters such as heart rate,
and respiratory rate via the chest sensor BioHarness 3
(Zephyr Technologies, Annapolis, MD), as well as single-
lead ECG data collected via smartphone devices collect
and upload data to the cloud for multimodal analysis and
monitoring of exercise adherence and improvements in
cardiopulmonary fitness.

Furthermore, a meta-analysis of 9 trials that evaluated
wearable monitors of physical activity in patients with
cardiovascular disease showed that exercise prescription
and monitoring via a wearable device was superior to no
device, and increased adherence to rehabilitation plans.44

Challenges of Incorporating AI in Health Care

Software algorithms that deploy AI to analyze sensor-
collected data have the capability of collecting and pro-
cessing large amounts of data. However data privacy,
operability, and integrity present challenges to scaling
wearable devices in clinical medicine. There is also a
critical need for ongoing rigour to assess these algorithms
and ascertain the generalizability with prospective data,
clinical trials, and feasibility studies to improve workflow.
A Framework to Development of More Robust
Technologies

Goldsack and colleagues have proposed a 3-stage process of
verification, analytical validation, and clinical validation (V3), in
which verification evaluates that the sensor-level data generates
accurate data, analytical verification evaluates the performance of
the algorithm, and clinical validation predicts a meaningful
clinical, biological, and physical experience in the specified
population (Fig. 3).45,46 A successful V3 (ie, does the tool mea-
sure what it claims to measure? Is the measurement appropriate
for the target population?) process might be challenging because
each component of the framework might be built by a different
company and most applications might not be broadly transfer-
able to different populations (ie, AWparameters to detect oxygen
consumption were derived from healthy populations and are not
necessarily relevant in sick populations).
Bias and Inequity
AI-generated algorithms can be used in diagnosis and

management of many health conditions. Bias in AI affects the
applicability and interpretation of data generated through
such algorithms. One source of bias is “data bias,” when al-
gorithms are trained on previously existing biased data.
Obermeyer et al. have reported evidence of significant racial
bias in widely used AI-generated algorithms in health care. For
instance, in the US-based algorithm at any given risk score,
Black patients had to be deemed much more ill than White
patients to be recommended the same treatment by AI. This is
because the algorithm was trained on health care spending
data rather than illness. Because unequal access to care means
less money is spent for Black patients, this introduces bias
when using health care spending as a means to estimate care
needs. Despite the fact that health care costs can be an
effective proxy for health; large racial biases arise as a result of
unequal access to care.47

Racial bias has been observed in the measurement of ox-
ygen saturation level by pulse oximetry devices. Because of the
greater presence of melanin, Black patients have falsely
elevated peripheral oxygen saturation detected via pulse ox-
imetry compared with arterial oxygen saturation measured in
arterial blood gas.48 Within the HF population, the oxygen
saturation is used to estimate the cardiac index using the Fick
equation. During hospitalization, these calculations guide
patient care. Because of the discrepancy in peripheral vs
arterial oxygen saturation level, use of the Fick cardiac index in
Black patients might underestimate the peripheral oxygen
saturation level via pulse oximetry. This might significantly
affect the course of HF management in Black patients and
lead to suboptimal care.49 Ensuring that these sensors are
generalizable across skin tones is of paramount importance. In
recent studies, there was an absolute error of 30% during
activity than at rest in those with darker skin tone.50 This
raises the need for systematic validation of wearables under
various conditions and across a wide range of skin tones before
further integration of such devices in consumer products.

Bias in AI is a significant source of concern in machine
learning and AI-generated technology. These biases usually
reflect widespread societal views about race, gender, biological
sex, and ethnicity. Currently, researchers are focused on
identifying such biases because AI should be used to mitigate
rather than perpetuate inequalities.

Recently, Jain et al. have proposed a framework of 6 equi-
table AI algorithm principles to maximize performance while
minimizing bias. These 6 principles focus on identification of
clinically relevant equity criteria, development of algorithms on
the basis of diverse data sets to allow for comprehensive rep-
resentation, inclusion of demographically sensitive features to
address disparities, careful choice of prediction targets to avoid
imperfect proxies (ie, health care costs for health care needs),
caution using uninterpretable algorithms and finally, emphasize
that clinical algorithms should remain complementary and not
in replacement of clinical judgement.51 This framework as a
necessary equity lens should be applied to all clinically focused



Figure 3. The V3 framework is essential for ensuring wearables deliver accurate, reliable, and clinically relevant data, facilitating their safe and
effective application in health care. This framework informs all aspects of clinical medicine, underlining the necessity for rigourous model evaluation
and clinical trials to guarantee generalizability, regardless of the complexity of machine learning algorithms involved. ECG, electrocardiogram.
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AI algorithms in development and enforced by organizations
responsible for their approval.
Lack of Regulatory Policies
Regulatory oversight governing wearable devices is lacking,

allowing the emergence of numerous products of unknown
safety and efficacy. Currently, the US Food and Drug
Administration has a new digital health innovation plan that
proposes a pragmatic risk-based approach to regulate software
and wearable medical devices through precertification pro-
grams that aim to assess and determine appropriate product
development.52 This is done using the international medical
device regulators risk categorization framework that allows
regulatory oversight of companies in production and
premarket pathways that are appropriate and require solici-
tation of feedback from stakeholders such as clinicians, sci-
entists, and industry leaders. In the absence of such regulatory
oversight policies, data obtained from wearable devices cannot
be widely accepted in clinical settings. However, presence of
such bodies are critical at the levels of national organizations
to hospitals and front-line clinicians.
Data Quality
Because incorrect data is more harmful than no data, sci-

entific validation studies are under way to assess accuracy of
the raw data obtained by algorithms used in smart wearable
devices. Data quality is a crucial feature of scientific data,
which is the foundation of device development and validation.
It is one of the fundamentals of research ethics. However,
variability of sensors is one of the challenges in assessing data
quality obtained by wearables. For instance, oxygen saturation
could vary on the basis of location of assessment (ie, wrist or
finger) and the type of device used (ie, smart watch vs ring).
One way to mitigate this challenge to ensure data quality is to
perform clinical validation studies.53 Even after clinical vali-
dation of data, data storage practices can play a significant role
in quality and reliability of data. Regulatory hurdles for
accessing proprietary archives could also widen the gaps and
lead to inequity in medical research and development. How-
ever, the presence of such bodies are critical at the levels of
national organizations to hospitals and front-line clinicians.
The clinicians require knowledge of the AI systems and ability
to integrate such systems effectively into existing workflows.
As such, skills related to understanding AI systems in health
care should become a priority in medical education.54
Data Security and Patient Confidentiality
Sensitive patient data via wearable technology is subject to

breaches. As such, specific attention has to be paid toward data
security in this field. Deidentification of data is a possibility to
protect data, however, because of the extent of available data for
each user, they can theoretically be reidentified.55 Next-
generation cybersecurity tools such as block chain have been
proposed as a means for secure storage and prevention of such
data breaches.56 Furthermore, there should be reassessment of
Health Insurance Portability and Accountability Act policies to
account for increasing availability and heterogeneity of patient
technological data and more transparent privacy policies that
can help improve patient trust and engagement.57

In Europe, the General Data Protection Regulation states
that everyone has the right to control and protect their own
personal data and as such manufacturers should allow for
integration of privacy and security options in all wearable
devices.58 However in many cases, users have to “opt out” of
certain settings to restrict the use of their information by
manufacturers. From the patient perspective, such options
create trust and empower the users. In one study, patients
who were willing to share their health data with their physi-
cian (72%) but fewer with their health insurer or
manufacturing companies (53%).57 Therefore, defining better
security options and a more transparent approach for opting
out of data collection by manufacturers is needed for building
trust in transition to digital care.



Table 2. Ongoing clinical trials for wearable devices in cardiovascular medicine

Study name or trial
identifier Study title Primary objective Condition Study design Estimated duration

Strong Hearts Strong Hearts: A Remote,
App-Enabled, Exercise
Program for Patients With
Congenital Heart Disease
(Strong Hearts App)

To create a remote, mobile
application-enabled exercise
program for patients with
congenital heart disease

Congenital
heart disease

Interventional January 2024 to
December 2025

WB-AF Portable Measurement
Methods Combined With
Artificial Intelligence in
Detection of Atrial
Fibrillation (WB-AF)

To develop state of the art
PPG- and ECG-based
methods for long-term AF
monitoring

AF Observational June 2021 to
December 2024

RADAR-HF Remote Dielectric Sensing
(ReDS) Assisted Diuresis in
Acute Decompensated
Heart Failure

To evaluate the use of a
wearable vest capable of
noninvasively measuring
lung fluid content in
hospitalized patients with
HF

HF Interventional December 2018 to
2025

NCT06009718 Artificial Intelligence (AI)
Analysis of Synchronized
Phonocardiography (PCG)
and Electrocardiogram
(ECG)

To develop an artificial
intelligence analysis system
to identify dLVEF (EF <
50%) using PCG and ECG

HF Observational June 2020 to 2028

RECAMO REmote CArdiac MOnitoring
by the Corsano
CardioWatch 287-2
Evaluation Study

To compare the number of
episodes of AF detected
using the Corsano
CardioWatch 287-2 (Health
BV, The Hague, The
Netherlands) during 28 days
of use with the number of
episodes of AF detected
using conventional Holter
monitoring during 48 hours
of use

AF Observational June 2023 to
December 2024

Nanosense Study Nanowear Heart Failure
Management Multi-sensor
Algorithm

To develop and validate a
multiparameter algorithm
for the detection of HF
before an HF event

HF Observational August 2021 to
December 2024

SAFER Wearables
Study

A Study of the Acceptability
and Performance of
Wearables for Atrial
Fibrillation Screening in
Older Adults

To determine the feasibility of
measuring interbeat intervals
using a wristband

AF Observational February 2023 to May
2025

NCT04835857 Comparison of Cuff-Less Wrist
Wearable Blood Pressure
Device to Cuff Based Blood
Pressure Measuring Devices

To compare cuffless wrist
wearable radial artery blood
pressure measurements
using ViTrack (developed by
Dynocardia Cambridge,
MA) with the cuff-based
commercially available blood
pressure device, in healthy
volunteers with normal or
high blood pressure

Hypertension Observational January 2021 to May
2024

CONGEST-
HFEX

Correlation of Non-invasive
CPM Wearable Device
With Measures of
Congestion in Heart Failure
in Exercise

To investigate if changes in
measures derived using a
CPM wearable device
correlate with changes in B-
lines between dialysis
sessions and with the
difference in weight between
dialysis sessions

HF Observational March 2023 to 2025

AF, atrial fibrillation; CONGEST-HFEX, Correlation of Non-invasive CPM Wearable Device With Measures of Congestion in Heart Failure in Exercise;
CPM, continuous passive motion; dLVEF, depressed left ventricular ejection fraction; ECG, electrocardiogram; EF, ejection fraction; HF, heart failure; RADAR-
HF, Real-Time Electrogram Analysis for Drivers of Atrial Fibrillation and Heart Failure; PCG, phonocardiography; PPG, photoplethysmography; WB-AF, Portable
Measurement Methods Combined With Artificial Intelligence in Detection of Atrial Fibrillation.
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Perspectives in AI-Guided Digital Care

Patient perspective

There is a paucity of data on assessment of patient views
and perspectives regarding the use of wearables and how those
data are analyzed, stored, and shared. In a survey of > 500
individuals with AF, 79% were interested in using a mobile-
based technology for detection of AF. The stated benefits of
using such devices include fewer in-person visits to the hos-
pital, reassurance and peace of mind, and more consistent
follow-ups. Approximately two-thirds of the group were
interested in continuing using the mobile-based monitoring
system in the future for quality of life benefits.59 The lower
rate of use of wearable devices in individuals with health issues
might be related in part to their perception that devices are
more geared toward elite athletic performance, rather than
monitoring of health status in those with disease. They might
be less engaged or inclined to use these devices with regularity
when framing their performance against healthy or more
active individuals.9

Furthermore, in some patients, navigating wearable devices,
particularly in patients with cognitive, visual, or hearing im-
pairments, lack of non-English resources, cost of the device and
internet access, and a complex interface can limit usability and
compliance. Without consistent data, the effect and validity
might be limited, and particularly affect those with unequal
access to digital care and thus worsen health disparities.
Research should continue to evaluate patient’s perspectives on
use of wearables and access to the data they record. Ongoing
patient involvement and representation on guideline commit-
tees will remain crucial as well, to ensure issues around equity,
data use, and health privacy are recognized and addressed.

Clinician perspective

From the clinician’s perspective, wearable data offers
potentially invaluable insights into risk-modifying factors,
medication adherence, and disease progression that is inde-
pendent of patients’ self-reports. However, the successful
adoption of such technology hinges on its ability to facilitate
better decision-making leading to improved patient outcomes
and experiences, rather than merely increasing the volume of
data the clinician receives. Digital tools that require constant
monitoring, often leading to false positive results, are prone to
limited sustainability.60

According to a survey of health care professionals, lack of
sufficient clinical infrastructure and personnel is the primary
barrier to the use of health digital tools. AI-based algorithms
must effectively address real-world clinical challenges and this
requires meaningful use criteria, clinical guidelines, and reg-
ulatory oversight committees. Furthermore, clinicians report
concern with regard to patient data privacy and potential legal
liability with the use of new digital programs. In many cases,
the use of wearable technology might be initiated by patients
and providers might be asked to interpret data they are un-
familiar with in the setting of unclear reimbursement policies
and legal liabilities. The lack of transparency in AI algorithms
is another concern among clinicians, because it can be chal-
lenging to decipher the meaning of data and the sources of
information derived from patient presentations. Some clini-
cians perceive AI-guided care as diminishing the role of
human intelligence and expertise. Additionally, there is
apprehension regarding the external validity and generaliz-
ability of the data, further complicating acceptance and inte-
gration of AI into clinical practice.61,62 All of these factors
might lead to delay in acceptance and implementation of
AI-assisted care by the health care providers.
Conclusions
AI algorithms allow for multimodal analysis of data from

various sensors and wearable technologies alongside patient’s
electronic medical records, biochemical, and imaging findings.
Application of AI has helped play a key role in optimizing
wearable technology performance and integration in the car-
diovascular medicine and clinical setting. Accurate real-time
continuous monitoring of health data could pave the way
for enhancing prevention and management of cardiovascular
diseases such as arrhythmias, HF, hypertension, and improved
adherence to cardiac rehabilitation programs.

As sensor technologies advance alongside the refinement of
AI processes, wearable devices will become increasingly so-
phisticated, potentially revolutionizing cardiovascular practice.
Wearable devices have shown potential application in
screening and monitoring of cardiovascular diseases as dis-
cussed previously. However, in the absence of extensive vali-
dation through large-scale clinical trials to verify effectiveness,
their clinical implementation remains in infancy. This tran-
sition presents unique challenges such as ensuring accuracy
and validity of biosensors embedded within these devices.
Regulatory oversight spanning the entire life cycle of wearable
technology development, from initial design to widespread
implementation, is essential to safeguard patient safety and
efficacy. All of the ongoing active clinical trials involving the
use of wearable technologies in cardiovascular medicine
among a diverse cohort of individuals (ie, from congenital
heart disease to cardiovascular rehabilitation in the geriatric
population) are shown in Table 2. The adoption of wearable
technologies requires active engagement of clinicians and pa-
tients alike to ensure that wearable products meet their needs,
are user-friendly, and inspire trust and confidence.

Establishing the necessary infrastructure is crucial to
enabling decentralized health care delivery and ensuring
equitable access to wearable technologies and associated AI
algorithms. By harnessing real-time patient-generated data
obtained from free-living environments, health care providers
can gain valuable insight into individuals’ cardiovascular
health and deliver personalized care interventions.
Case RevisiteddHF Care in 2028
Ms S. is a 50-year-old patient with HF. She is mildly

symptomatic at the time, but has not noticed any weight
change. She receives an alert via an integrated mobile-based
application that collects bioimpedance data from a chest
sensor, triggering a 1-lead ECG by her smartwatch. On the
basis of data from the chest sensor and her smartwatch, an AI-
generated message instructs Ms S. to increase her daily diuretic
dose, ensure daily weight measurement, and to self-monitor
for symptoms of HF. A simultaneous alert is automatically
sent to the health team, suggesting a high risk of impending
HF decompensation and recommendation for clinical
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assessment. Arrangements are made for bloodwork and a
clinic appointment with the primary care physician in 2 days.
Data from Ms S.’s wearable devices, laboratory tests, and
health records are integrated to provide a summary of her
condition and a list of potential management recommenda-
tions for the physician to review and act upon at the
appointment.
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