
Predicting Language Models’ Success at Zero-Shot Probabilistic Prediction

Anonymous ACL submission

Abstract001

Recent work has investigated the capabilities002
of large language models (LLMs) as zero-shot003
models for generating individual-level charac-004
teristics (e.g., to serve as risk models or aug-005
ment survey datasets). However, when should006
a user have confidence that an LLM will pro-007
vide high-quality predictions for their partic-008
ular task? To address this question, we con-009
duct a large-scale empirical study of LLMs’010
zero-shot predictive capabilities across a wide011
range of tabular prediction tasks. We find that012
LLMs’ performance is highly variable, both013
on tasks within the same dataset and across014
different datasets. However, when the LLM015
performs well on the base prediction task, its016
predicted probabilities become a stronger sig-017
nal for individual-level accuracy. Then, we con-018
struct metrics to predict LLMs’ performance at019
the task level, aiming to distinguish between020
tasks where LLMs may perform well and where021
they are likely unsuitable. We find that some of022
these metrics, each of which are assessed with-023
out labeled data, yield strong signals of LLMs’024
predictive performance on new tasks.025

1 Introduction026

There is increasing interest in using large language027

models (LLMs) as predictive models, leveraging028

the world knowledge encoded by their pretraining029

corpora to make zero-shot predictions in domains030

without any labeled data. While this predictive ca-031

pability was first investigated for traditional tasks032

within Natural Language Processing (NLP), such033

as text classification or question-answering (Wang034

et al., 2023b), recent work has utilized LLMs as035

predictive models in a broader sense. For instance,036

LLMs have been used to provide medical risk037

scores (Chung et al., 2024), predict fraud risk in038

financial applications (Xie et al., 2024) and im-039

pute unsurveyed fields in social science surveys040

(Park et al., 2024; Dominguez-Olmedo et al., 2024).041

More generally, LLMs can effectively consume042

text serializations of tabular data; the prevalence 043

of tabular data across many domains likely con- 044

tributes to this increasing interest across application 045

areas. These applications differ from traditional 046

text-based tasks (Cruz et al., 2024) because the 047

label is not determined fully by the input: people 048

with identical features may have different outcomes. 049

We refer to tasks with this property as probabilistic 050

prediction, and the predicted probabilities from the 051

LLM as risk scores. 052

While the zero-shot prediction capabilities of 053

LLMs offer exciting opportunities to scientists and 054

practitioners, it is likely (as we empirically ver- 055

ify) that LLMs’ performance varies widely across 056

settings. Then, how can practitioners tell whether 057

an LLM will perform well as a predictive model, 058

prior to observing labeled data? This is a question 059

with no easy answer. The appeal of using a pre- 060

trained model in many domains lies in avoiding the 061

cost of collecting labeled data. However, validat- 062

ing conclusions from foundation models without 063

labeled-data confirmation is far from straightfor- 064

ward. 065

This challenge is especially pronounced in the 066

fully zero-shot case, where users lack access to 067

ground-truth labels altogether. We distinguish per- 068

formance at two levels of granularity: at the in- 069

dividual level, referring to which examples an 070

LLM is likely to predict accurately; and at the 071

task level, referring to which overall prediction 072

problems—defined by a dataset and outcome vari- 073

able—the model is likely to perform well on. The 074

ability to accurately quantify uncertainty at both 075

levels allows practitioners to judge which individu- 076

als and overall predictive tasks may result in inac- 077

curate predictions by the LLM. 078

Previous work has primarily studied uncertainty 079

at the individual level, finding mixed results. Ab- 080

stention methods use measures of individual-level 081

confidence to flag dubious predictions that should 082

be examined manually by a human expert, or ig- 083
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nored altogether (Tomani et al., 2024; Feng et al.,084

2024). However, both answer-token probabilities085

and verbalized confidence scores from LLMs have086

been found to be badly calibrated for probabilis-087

tic prediction (Cruz et al., 2024) and also for a088

variety of question-answering tasks (Xiong et al.,089

2023), typically due to overconfidence. Despite090

this, multiple approaches train a post-processing091

step to improve calibration using only the outputs092

or last-layer representations of models (Shen et al.,093

2024; Ulmer et al., 2024). Confidence scores have094

also been found to be useful in conformal pre-095

diction frameworks (Kumar et al., 2023; Mohri096

and Hashimoto, 2024), suggesting that they can be097

post-processed to yield informative decisions about098

when to provide specific information.099

Analogously, practitioners may wish to know100

whether a task is likely suitable for an LLM before101

using its outputs, via some metric of uncertainty at102

the task level. Yet, to our knowledge, no previous103

work considers uncertainty quantification at the104

task level, at least in the context of probabilistic105

prediction. This presents a significant challenge, as106

in many real-world scenarios, practitioners would107

benefit from heuristics to assess whether LLMs108

will perform well a priori. However, doing so109

typically requires labeled data—a costly resource110

that pretrained models are meant to help avoid.111

In this work, we conduct a large-scale empirical112

study on the performance of LLMs for probabilistic113

prediction on 316 tasks across 31 tabular datasets.114

The primary question we ask is: given only unla-115

beled data, is it possible to anticipate how well116

the model will perform on a zero-shot prediction117

task? We provide the first empirical evidence using118

task-level strategies to assess signals of LLM per-119

formance across prediction tasks. Additionally, we120

also provide more nuanced results about individual-121

level uncertainty quantification; previous results on122

LLM calibration for probabilistic prediction (Cruz123

et al., 2024) are restricted to data from the US124

Census while we employ a much larger number125

of tabular datasets across many subject areas. Our126

empirical study reveals several findings that can127

inform how LLMs are employed and evaluated in128

predictive settings:129

1. At the task level, naive “elicited confidence"130

strategies (e.g., asking LLMs to rate their own131

skill level given a description of the task) do132

not meaningfully predict success.133

2. However, the distribution of LLMs’ predic-134

tions on unlabeled data encodes substantial in- 135

formation about their suitability for a task. We 136

propose both simple heuristics as well as more 137

elaborate model-based strategies that are able 138

to provide a strong signal of LLMs’ predic- 139

tive performance, using only unlabeled data. 140

While we do not suggest that practitioners 141

forgo labeled-data evaluation in high-stakes 142

settings, our results could be useful to provide 143

an initial assessment of which candidates from 144

a set of prediction tasks are more promising 145

for further development – or to screen out ap- 146

plications that have a lower chance of success. 147

3. Substantial variation in LLMs’ performance 148

on different prediction tasks is not explained 149

by broader patterns of “subject matter exper- 150

tise"; within different tasks defined on the 151

same dataset, predictive performance exhibits 152

very high variance. This implies that attempts 153

to validate LLMs’ suitability must be specific 154

to individual predictive tasks, and should not 155

solely utilize information at a dataset or gen- 156

eral subject level. For example, validating 157

a social simulator by demonstrating that the 158

LLM predicts observed fields well carries a 159

high degree of risk because success on ob- 160

served fields often fails to generalize to suc- 161

cess on a specific, unobserved field. 162

4. At the individual level, LLMs’ responses to 163

probabilistic prediction tasks are typically 164

poorly calibrated. Beyond overconfidence as 165

reported in previous work (Cruz et al., 2024), 166

we find that LLMs’ responses in a given do- 167

main are often additionally describable as sim- 168

ply being over- or under-predictions, where 169

risk scores are consistently too large or too 170

small. 171

5. Despite a lack of calibration in individual- 172

level predictions, in many tasks, individual- 173

level responses still provide an informative 174

signal for abstention decisions because LLMs 175

are more accurate on examples for which they 176

output more extreme risk scores. This conclu- 177

sion empirically holds even if the numerical 178

scale of the scores is highly distorted. This 179

echoes our first two findings at the task level: 180

LLMs’ responses contain considerable latent 181

information about performance at both levels, 182

but this information often requires postpro- 183

cessing to elicit meaningful results. 184
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Our results provide a pathway towards more rig-185

orous decisions about which tasks and individual186

instances are appropriate for LLMs.187

2 Related Work188

LLMs for Tabular Data: Recent work has189

shown that LLMs can effectively process tabular190

data using simple prompting strategies, achieving191

strong performance (Hegselmann et al., 2023). Pre-192

trained models like TaBERT (Yin et al., 2020),193

TAPAS (Herzig et al., 2020), and TURL (Deng194

et al., 2021) focus on tabular data for QA tasks,195

while others leverage chain-of-thought prompting196

(Sui et al., 2023; Jin and Lu, 2023) and fact ver-197

ification (Chen et al., 2020; Eisenschlos et al.,198

2020). Broader generalization strategies include199

UniPredict (Wang et al., 2023a) and instruction200

tuning (Yang et al., 2024). More recent efforts201

highlight LLMs’ ability to perform zero-shot tabu-202

lar predictions (Shi et al., 2024; Wen et al., 2023;203

Gardner et al., 2024). As opposed to developing204

methods to optimize LLMs for the purposes of un-205

derstanding tabular data, our work seeks to empiri-206

cally distinguish general factors predicting LLMs’207

success and failure across prediction tasks.208

Elicited Confidence Scores From LLMs: LLM209

predictions on tabular data can suffer from210

pretraining-induced biases (Liu et al., 2024), and211

their uncertainty estimates are often poorly cali-212

brated (Cruz et al., 2024). Methods like multical-213

ibration and prompt-based scoring (Xiong et al.,214

2023; Detommaso et al., 2024) aim to improve cal-215

ibration. In contrast to prior work, we primarily216

study uncertainty estimation at the task level. En217

route, we also provide a more nuanced picture of218

individual-level uncertainty on a wider range of219

tasks than previous work.220

3 Methods221

We describe our experimental setup, the problem of222

predicting LLM performance, and the set of proxy223

methods that we assess for performance prediction.224

3.1 Experimental Setup225

We conduct experiments on 31 tabular datasets226

spanning domains such as social surveys, finance,227

medicine, and transportation (see Appendix A.1 for228

details). Each dataset is associated with a binary229

classification task. Using the folktexts library230

(Cruz et al., 2024), we serialize 1,000 randomly231

sampled rows per dataset (or the full dataset if232

smaller) into text prompts, followed by a multiple- 233

choice question requesting the label. Predicted 234

probabilities (risk scores) are derived from the 235

token-level output distribution. We evaluate two 236

models that expose token-probability APIs: GPT- 237

4o-Mini and Llama-3.1-8b-Instruct. Each model 238

also generates a verbalized confidence score per 239

row (see Appendix A.6 for details). Final evalua- 240

tions use the ground-truth labels to compute accu- 241

racy, AUC, and expected calibration error (ECE). 242

Beyond the designated “label” column for each 243

dataset, we also treat other features as additional 244

prediction targets, expanding the number of tasks 245

substantially. For continuous features, we define 246

binary labels by whether the row’s value for the 247

feature is above or below the median, to standard- 248

ize output formats across tasks. For categorical 249

features, we use whether the feature is equal to the 250

mode. We exclude columns with >70% null values, 251

and for categorical data, whether >99% of rows 252

equal to the mode or <10% of values are equal to 253

the mode. From the remaining features, we sample 254

10 per dataset and generate zero-shot predictions 255

as above, predicting each sampled feature given all 256

other non-outcome features. This process yields 257

285 additional prediction tasks. 258

3.2 Predicting task-level performance 259

We define and empirically evaluate metrics for 260

predicting LLMs’ zero-shot performance over do- 261

mains. Many of these are intuitive extensions of 262

individual-level uncertainty quantification strate- 263

gies to the task level, and part of our goal is to give 264

practitioners guidance about which extensions per- 265

form well empirically and which do not. We group 266

our strategies into several broad categories. 267

Task-level confidence elicitation: Perhaps the 268

simplest strategy to predict LLMs’ performance 269

at a new task is to ask the LLM itself whether it 270

will perform well, analogous to verbalized confi- 271

dence strategies at the individual level (Tian et al., 272

2023). For each task, we provide the LLM with 273

a text description of the dataset and its target vari- 274

able (see Appendix A.6 for the exact prompt). We 275

assess several strategies that prompt the LLM to 276

output different ways of assessing its own expected 277

performance, given that LLMs are sensitive to the 278

manner in which information is elicited. Direct 279

AUC prediction asks the LLM to output a predic- 280

tion of its own AUC at the task. Integer scoring 281

asks the LLM to rate its confidence at the task as a 282
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number between 1 (no confidence) and 5 (full con-283

fidence). Finally, Decimal scoring asks the LLM284

for a continuous rating between 0.0 (no confidence)285

and 1.0 (full confidence).286

Aggregating individual-level confidence: We287

utilize LLM outputs for each row of a dataset, given288

a prediction task, to design proxies for task-level289

AUC. For each row, we obtain the risk score p̂i and290

verbalized confidence score ci. One natural strategy291

is to aggregate these individual-level measures of292

uncertainty to the task level, reasoning that LLMs293

will perform well on tasks where they are confi-294

dent in many individual examples. We evaluate295

four metrics as proxies for task-level performance.296

First, average confidence, defined for task j as297
1
nj

∑nj

i=1 ci (where nj is the number of samples for298

task j). Second, average Maximum Class Proba-299

bility (MCP), defined as 1
nj

∑nj

i=1max{p̂i, 1−p̂i}.300

This measures how close predictions are to 0 or301

1, which is a proxy for confidence. Finally, we302

include two additional metrics, standard devia-303

tion of confidence and standard deviation of risk304

scores, the empirical standard deviations of the sets305

{ci} and {p̂i}, respectively. These are motivated by306

the anecdotal observation that one common failure307

mode LLMs encounter is outputting (near) identi-308

cal responses for every row. One potential proxy to309

account for this is simply whether the LLM makes310

a wide range of predictions.311

Masking: Finally, we might think that an LLM312

will output high-quality predictions of a label y if313

it performs well at other predictive tasks on the314

same dataset: predicting each feature xi from the315

other features x−i. This procedure is motivated by316

the hypothesis that strong performance on these317

proxy tasks signals broader task-relevant under-318

standing by the LLM. We collect risk scores from319

a sample of such masked prediction tasks for each320

dataset. The masking strategy takes the average of321

the AUCs in these simulated tasks as a proxy for322

the AUC from predicting the true label y.323

4 Results324

Our analysis is structured as follows. We begin325

by examining the zero-shot classification perfor-326

mance of the LLMs on our curated datasets, with327

a focus on the quality of individual-level predic-328

tions. We then broaden the scope to analyze the329

predictability of aggregate-level LLM performance330

across datasets.331

4.1 Overall Trends in Performance. 332
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Figure 1: Histograms of AUC and ECE over all datasets,
for GPT-4o-mini (a,c) and Llama-3.1-8b-Instruct (b,d).

LLMs have significant spread in their predic- 333

tion capabilities, both across datasets and across 334

prediction tasks from the same dataset. In Fig- 335

ures 1a and 1b, we observe that both GPT-4o-mini 336

and Llama-3.1-8b-Instruct have nontrivial zero- 337

shot predictive capabilities, with a median AUC 338

of 0.7232 for the GPT model and 0.7080 for the 339

Llama model. The range is wide, with AUCs above 340

0.9 for some tasks, but at near-random (or worse 341

than random) levels for others. This confirms that 342

practitioners must take steps to assess the appro- 343

priateness of LLM zero-shot inference for a given 344

task. See Appendix A.2 for a full set of AUC and 345

ECE scores over all datasets and LLMs. 346

Within individual datasets, the quality of LLM 347

predictions can vary substantially when using dif- 348

ferent columns as outcome variables (i.e., different 349

prediction tasks). In Figure 2, we plot the distri- 350

bution of AUC scores across columns within each 351

dataset for GPT-4o-Mini (see Appendix A.5 for 352

similar plots for Llama-3.1-8b-Instruct.). These re- 353

sults show that intra-dataset variation is often con- 354

siderable: many datasets contain prediction tasks 355

with AUC scores below 0.5 as well as tasks with 356

scores above 0.9. To quantify this result, we com- 357

pute an intra-class correlation coefficient, defined 358

as the ratio of the variance in AUC within datasets 359

vs overall, measuring the fraction of variance at the 360

dataset level. We find that only 19% of the vari- 361

ance is explained by the dataset for GPT-4o-mini 362

(for Llama-3.1-8b-Instruct, 12.80%), with 81% per- 363

sisting within datasets. Perhaps surprisingly, this 364
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indicates that checking the performance of an LLM365

on some tasks in a given domain offers practitioners366

little confidence that it will perform well in unseen367

tasks from the same domain.368

For deeper analysis, we also examine LLM per-369

formance relative to the best achievable, as some370

within-dataset variation may stem from inherent371

differences in column difficulty, independent of372

model skill. To test for dataset-level variation in373

relative LLM skill, we compute the ratio between374

the LLM’s AUC and that of an XGBoost model375

trained on labeled data (Chen and Guestrin, 2016),376

as a proxy for optimal performance. This normal-377

ized metric is more concentrated within datasets378

than raw AUC (Appendix A.4), with the intra-379

class correlation increasing to 53.02% for GPT-380

4o-mini (47.68% for Llama-3.1-8b-Instruct), in-381

dicating more variation is explained at the dataset382

level. From the perspective of scientific understand-383

ing of LLMs’ capabilities, this suggests there are384

meaningful differences in skill across domains af-385

ter accounting for the inherent difficulty of a task386

(although practitioners may more heavily weigh ab-387

solute performance, where our earlier results show388

high within-dataset variation). Interestingly, GPT-389

4o-Mini’s and Llama-3.1-8b-Instruct’s AUC scores390

correlate strongly across tasks (R2 = 0.497, Fig-391

ure 3), suggesting certain tasks are more amenable392

to LLM-based inference than others. This correla-393

tion is stronger than either model’s correlation with394

XGBoost performance (Figure 4), implying that395

shared LLM performance factors are not reducible396

to the difficulty of the base task.397

4.2 Individual-Level Results.398

Elicited risk scores from LLMs are poorly cali-399

brated – but are often useful for abstention tasks.400

Figure 1c and 1d show median ECEs around 0.2401

for both models (GPT: 0.2426, Llama: 0.1722),402

with GPT exhibiting greater variability across tasks.403

This corroborates previous findings of poor LLM404

calibration in US census tasks (Cruz et al., 2024) in405

a larger set of probabilistic prediction tasks. While406

prior work reports overconfident, inverted-sigmoid407

calibration curves from instruction-tuned models,408

we observe curves (see Figure 5) that often remain409

entirely above or below the identity line, indicat-410

ing predictions are consistently too high or too low.411

This suggests LLMs often misjudge the absolute412

scale of their risk scores, even when preserving rel-413

ative ranking accuracy (as reflected by high AUCs).414

Our findings thus contradict prior notions of over-415
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Figure 2: Box plots of AUC scores over masked-out
columns in the Masking experiment, for all datasets.
Results shown for GPT.
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Figure 3: Plot of AUC scores for each of the datasets, for
both Llama-3.1-8b-Instruct and GPT-4o-mini. Best-fit
line with R2 value plotted in red.

confidence: instead, LLMs ostensibly have diffi- 416

culty scaling their predictions to fit the marginal 417

distribution of the label, even while correctly iden- 418

tifying which features correlate well with the label, 419

which was previously unknown. 420
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Figure 4: Correlation between AUC scores of GPT (a)
and Llama (b) over prediction tasks on each dataset,
along with the AUCs achieved by training an XGBoost
classification model on a subset of the training set, and
evaluating on a disjoint validation set.

Despite poor numerical calibration, predictions421

closer to 0 or 1 (higher confidence) tend to be more422

accurate. We simulate abstention systems with423

LLM outputs by examining the degree to which424

MCP, a proxy of confidence in the predicted label,425

predicts individual-level accuracy, a task referred426

to by (Xiong et al., 2023) as failure prediction. In427

Figure 6, we observe that LLM outputs are non-428

trivially successful at failure prediction for many429

tasks. On the high end, we find AUCs for fail-430

ure prediction of nearly 0.9, although performance431

varies widely across tasks (ranging from around 0.4432

to 0.9). Strikingly, this effect is stronger for tasks433

where the LLM already performs well: the AUC of434

the original prediction task is highly correlated with435

AUC of failure prediction, indicating that when a436

model has a strong baseline ability, its confidence437

is better aligned with accuracy. Thus, risk scores –438

despite calibration issues – can potentially support439

abstention strategies on domains where LLM usage440

is well-motivated to begin with, as LLMs often dis-441

tinguish effectively between more and less reliable442

predictions on those tasks.443

4.3 Task-Level Results.444

LLMs fail to anticipate their own performance445

on new tasks. Figure 7 shows that most of the446

metrics we evaluate – computed using the LLM,447

unlabeled data, and/or the task description – exhibit448

little correlation with AUC. In particular, methods449

that do not leverage any data (i.e., prompting the450

LLM to estimate its own AUC or provide a confi-451

dence score from the task description alone) yield452

predictions that are entirely uncorrelated with per-453

formance. This suggests that LLMs cannot reli-454

ably assess their own confidence at the task level.455
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Figure 5: Calibration curves for GPT-4o-mini (a) and
Llama-3.1-8b-Instruct (b) across 31 datasets. Each
curve corresponds to a prediction task. Curves crossing
the identity line are shown in grey; those consistently
above or below are blue and red, respectively. Con-
cretely, all curves that a) are on average 0.2 above the
identity line and b) have no points more than .1 below
the identity line are colored in blue; curves on average
.2 below the identity line and with no points more than
.1 above are colored in red.
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Figure 6: Correlation between AUC scores of failure
prediction and predicting the outcome variable for all
datasets, for GPT (a) and Llama (b).

Surprisingly, the masking strategy (proxying the 456

LLMs’ performance at predicting a label by its 457

performance at predicting features) also poorly pre- 458

dicts downstream AUC. Although one might expect 459

that an LLM’s performance on masked columns 460

would reflect its overall predictive capacity on a 461

dataset, this assumption does not hold empirically. 462

As shown in Figure 2, AUC scores vary widely 463

across tasks within the same dataset, limiting the 464

utility of dataset-averaged metrics. 465

However, certain metrics over the unlabeled 466

data provide strong signals for downstream per- 467

formance. As shown in Figure 7b, the standard 468

deviation of risk scores correlates positively with 469

downstream AUC. For both the GPT and Llama 470

models, the R2 of this relationship is the high- 471

est among all metrics evaluated (R2 = 0.3171 472

and 0.2699, respectively). A higher variance in 473
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Figure 7: Correlation between aggregate metrics derived from our experiments on the unlabeled datasets and the
AUC scores of GPT-4o-mini on each of the datasets, where each point represents one dataset. We plot the best-fit
line with its corresponding R2 value for each metric. See Appendix A.3 for the same set of plots made for Llama.

risk scores may reflect greater separation between474

classes in a model’s predictions, suggesting that475

some failure modes are distinguished by the model476

giving similar predictions for most rows. Impor-477

tantly, there are significant outliers from this re-478

lationship, indicating that large variance in risk479

scores is not a guarantee of good performance on a480

task. Nevertheless, since this metric exhibits by far481

the largest correlation with predictive performance,482

we conduct a deeper dive by querying the distri-483

bution of model predictions for the 285 additional484

masked-column prediction tasks in addition to the485

31 original tasks of predicting the designated label486

for each dataset. This gives us a significantly larger487

task-level sample size for more detailed analysis.488

Checking the variance of risk scores can aid489

task-level abstention decisions. Aggregating re-490

sults across all 316 tasks (Figures 8a and 8b), we491

still observe a monotonically increasing relation-492

ship between the standard deviation of risk scores493

and AUC. To measure whether a practitioner would494

get an informative signal by screening potential495

tasks according to this metric, Figures 8c and 8d,496

show the mean AUC on all tasks above a given497

minimum threshold for the standard deviation. By498

raising this threshold, we are able to distinguish499

tasks with significantly higher than average AUC.500

For instance, for GPT, the set of all datasets with a501

standard deviation in risk scores of at least 0.4 has502

an average AUC of 0.8417, much higher than the503

average AUC over all datasets (0.7186). While it504

is important not to rely on this metric absolutely,505

we suggest that practitioners check whether LLMs 506

make similarly-valued predictions for all individ- 507

uals, since doing so can help flag datasets where 508

LLMs may not be suitable for zero-shot prediction. 509

The full distribution of predictions captures ad- 510

ditional information about performance. As the 511

standard deviation of the risk score distribution 512

alone contains significant signal, we test whether 513

additional information about performance can be 514

gleaned from the full distribution of risk scores. 515

For each task, we discretize the distribution of risk 516

scores from the LLM into 201 values giving each 517

α-percentile of the distribution, varying α by 0.5- 518

percentile increments, and train XGBoost models 519

to predict task-level AUC. We use 5-fold cross- 520

validation, grouping by dataset to avoid leakage, 521

so each task’s out-of-sample prediction is based 522

on the other 4 folds. Figure 9 plots the average 523

out-of-sample predicted AUC against the actual 524

AUC, along with a LOESS-smoothed curve and 525

95% confidence interval. The resulting trend is 526

clearly positive, suggesting that the distribution 527

of LLM-generated risk scores, computed solely 528

on unlabeled data, contains meaningful informa- 529

tion about task-level zero-shot performance. The 530

relationship between predicted and actual AUCs 531

becomes somewhat tighter than in Figure 8, particu- 532

larly for Llama, suggesting that while the standard 533

deviation of the distribution carries much of the 534

signal about performance, other features of the dis- 535

tribution can contribute additional information. 536

To visualize what information the XGBoost mod- 537
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els associate with high AUCs, Figure 10 shows the538

cumulative distribution functions (CDFs) of the539

LLMs’ risk scores for the 10 tasks with the highest540

and lowest predicted AUCs. Notably, results differ541

between GPT and Llama. For GPT (Figure 10a),542

high AUC is associated with strongly bimodal risk543

scores, clustered near 0 or 1. In contrast, for Llama544

(Figure 10b), high AUC aligns with broader, high-545

variance distributions, while tighter, low-variance546

distributions correspond to lower AUCs. These547

differences suggest that the qualitative signals of548

good performance vary across LLMs. Although549

both LLMs encode useful information, the way this550

information manifests differs, indicating a need to551

analyze distributional traits on a per-model basis.552
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Figure 8: Proxy tasks in the Masking experiment us-
ing GPT (a,c) and Llama (b,d), including the original
31 tasks. LOESS curves with 95% CI shown in (a,b);
each point represents predictions on one dataset column.
(c,d) show average AUC as the minimum threshold on
standard deviation of risk scores increases.

5 Conclusion553

While the zero-shot prediction capabilities of554

LLMs offer exciting opportunities, it remains un-555

clear how to reliably employ LLM predictions with-556

out validating their outputs on labeled data. We557

conduct a large-scale empirical study across 316558

prediction tasks to explore whether LLMs can serve559

as reliable zero-shot predictors across a diverse col-560

lection of tabular classification tasks. We introduce561

eight novel task-level metrics for better estimating562

the LLMs’ confidence in the prediction task.563

Our findings indicate that performance is highly564

variable even within individual datasets, so success565
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Figure 9: Proxy tasks in the Masking experiment using
GPT (a,c) and Llama (b,d), including the original 31
tasks. (a,b) show LOESS fits (with 95% CI) of actual vs.
XGBoost-predicted AUCs, trained via grouped 5-fold
cross-validation. Each point represents one prediction
task. (c,d) show AUC averages after thresholding on
predicted AUCs, analogous to Figures 8c and 8d.
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Figure 10: CDFs of the 10 highest (blue) and lowest
(red) predicted AUCs over prediction tasks by XGBoost,
using 201 percentile values along with standard devi-
ation of risk scores to predict AUC. We observe clear
trends within LLMs – for GPT (a), bimodal distributions
of risk scores correlate with high XGBoost predictions,
whereas for Llama (b), distributions encompassing a
wide range of probabilities correlate with high predic-
tions.

at one task is no guarantee of success at other tasks 566

on similar data. Instead, measuring the distribution 567

of risk scores for a new task yields both heuristics 568

as well as more sophisticated models that capture a 569

strong signal about the LLMs’ performance on that 570

task. However, enough variance in performance re- 571

mains that such predictions of performance should 572

be seen more as a way to prioritize more promising 573

tasks or screen out ones with a low likelihood of 574

success, not a substitute for eventual validation on 575

labeled data for consequential applications. 576
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Limitations577

This paper investigates the predictive performance578

of large language models (LLMs) in zero-shot579

settings on tabular data, using unlabeled data to580

estimate task-level performance while drawing581

new conclusions about individual-level calibrations.582

While our findings offer novel insights, several lim-583

itations merit discussion:584

Memorization or data leakage. The datasets that585

we use are publicly accessible, raising the prospect586

that they may have appeared in LLM training sets.587

Our results do imply that LLMs have not memo-588

rized the data in the sense of perfectly replicating589

individual rows, as AUCs vary widely at predicting590

individual columns within the same dataset given591

the other columns. Our serialization strategy also592

alters the presentation of information from the orig-593

inal csv file, which has been found to disrupt some594

explicit memorization (Bordt et al., 2024). Beyond595

literal row-by-row memorization though, previous596

work shows that LLMs perform better at tasks seen597

more during training, especially for tasks related to598

retrieval of world knowledge (Kandpal et al., 2023;599

Wang et al., 2025). The impact of this phenomena600

depends on the application at hand – practitioners601

in many settings may hope to actually benefit from602

LLMs having seen relevant data to their application603

during the training process. Accordingly, proxies604

for task-level performance that partly pick up on605

prior exposure to similar tasks may still serve their606

needs. However, using public data does represent a607

potential limitation in external validity for our re-608

sults; we can’t rule out that predictors of task-level609

performance might be different in domains that are610

completely unseen during LLM training.611

Model access and scale. We rely on LLMs that612

expose token-level probabilities (GPT-4o-mini and613

Llama-3.1-8b-Instruct), which may not generalize614

to other models without such access or with sub-615

stantially different architectures. Larger models,616

or models with distinct fine-tuning or pretraining617

regimes, may behave differently.618

Prompting. Our serialization of tabular data619

uses fixed, template-based formats (i.e., “Feature:620

Value” pairs, followed by binary questions). Our621

prompting approaches do not explore alternative622

prompts, few-shot settings, or chain-of-thought rea-623

soning.624
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A Appendix819

A.1 Dataset Descriptions, Sources, and Artifacts820

Dataset Name Short Description Source

acsincome ACSIncome task from the folktables package. https://github.com/
socialfoundations/folktables

acsmobility ACSMobility task from the folktables package. https://github.com/
socialfoundations/folktables

acspubcov ACSPublicCoverage task from the folktables package. https://github.com/
socialfoundations/folktables

acstraveltime ACSTravelTime task from the folktables package. https://github.com/
socialfoundations/folktables

acsunemployment ACSEmployment task from the folktables package. https://github.com/
socialfoundations/folktables

airline Predict flight delays based on scheduled departure info. https://www.openml.org/d/
42493

bank Predict term deposit subscription in a marketing campaign. https://www.openml.org/d/
1558

brfssdiabetes Predict whether a patient has diabetes (BRFSS survey). https://github.com/
mlfoundations/tableshift

brfsshbp Predict hypertension diagnosis for 50+ age group. https://github.com/
mlfoundations/tableshift

brfsshighcholesterol Predict high cholesterol in BRFSS survey data. https://github.com/
mlfoundations/tableshift

car Predict acceptability of cars from evaluation records. https://archive.ics.uci.edu/
dataset/19

diabetes Predict readmission of diabetic patients within 30 days. https://archive.ics.uci.edu/
dataset/296

glioma Classify glioma (brain tumor) grade. https://archive.ics.uci.edu/
dataset/759

houses Predict if California housing value exceeds $200k. https://www.openml.org/d/537
indiandiabetes Predict diabetes using diagnostic features. https://www.kaggle.

com/datasets/uciml/
pima-indians-diabetes-database

ipums Predict facility birth in Latin/Caribbean countries. https://globalhealth.ipums.
org/

mushroom Classify mushrooms as edible or poisonous. https://archive.ics.uci.edu/
dataset/73

nursery Prioritize nursery school applications. https://archive.ics.uci.edu/
dataset/76

rice Classify Turkish rice grains as Osmancik or Cammeo. https://archive.ics.uci.edu/
dataset/545

sepsis Predict ICU patient risk of sepsis within 6 hours. https://github.com/
mlfoundations/tableshift

support2 Predict hospital death of critically ill patients. https://archive.ics.uci.edu/
dataset/880

taxibog Predict long taxi rides in Bogota. https://www.kaggle.com/
datasets/mnavas

taximex Predict long taxi rides in Mexico City. https://www.kaggle.com/
datasets/mnavas

taxiuio Predict long taxi rides in Quito. https://www.kaggle.com/
datasets/mnavas

telescope Classify cosmic ray vs gamma signal events. https://archive.ics.uci.edu/
dataset/159

ucibreastcancer Predict breast mass as malignant or benign. https://archive.ics.uci.edu/
dataset/15

ucidiabetes Predict diabetes using lifestyle statistics. https://archive.ics.uci.edu/
dataset/15

uciheart Predict heart disease diagnosis. https://archive.ics.uci.edu/
dataset/45

ucispambase Classify email as spam or not spam. https://archive.ics.uci.edu/
dataset/94

ucistatloggerman Classify credit risk from attributes. https://archive.ics.uci.edu/
dataset/144

usaccidents Predict severity of US traffic accidents. https://www.kaggle.com/
datasets/sobhanmoosavi/
us-accidents

For more details regarding our dataset sources and other artifacts:821
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• The car, diabetes, glioma, mushroom, nursery, rice, support2, telescope, ucibreastcancer, 822

ucidiabetes, uciheart, ucispambase, and ucistatloggerman datasets all come from the UCI 823

repository (Dua and Graff, 2019). 824

• The acsincome, acsmobility, acspubcov, acstraveltime, and acsunemployment datasets all 825

come from the Folktables repository (Ding et al., 2021). 826

• The brfssdiabetes, brfsshbp, brfsshighcholesterol, and sepsis datasets all come from the 827

Tableshift repository (Gardner et al., 2023). 828

• The airline, bank, and house datasets all come from OpenML (OpenML). 829

• The indiandiabetes, taxibog, taximex, taxiuio, and usaccidents datasets all come from 830

Kaggle (UCI and Contributors; Navas, 2022; Moosavi, 2020). 831

• the ipums dataset is curated from the IPUMS Global Health repository of international health survey 832

data (Health). 833

• All datasets are publicly available and we release our data for replication, with the exception of the 834

ipums data, which required individual-level dataset requests for the de-identified data on maternal 835

outcomes, and is thus not released. All data is compliant with anonymization policies (i.e., de- 836

identified) and does not contain offensive or sensitive content. 837

• We use GPT-4o-mini (Hurst et al., 2024) and Llama-3.1-8b-Instruct (Grattafiori et al., 2024) as 838

LLMs for predictive modeling, for all experiments. Both models contain publicly available APIs for 839

personal and research use. Furthermore, Llama-3.1-8b-Instruct makes its model weights publicly 840

available. 841
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A.2 LLM Metrics Table842

Dataset GPT AUC GPT ECE LLaMA AUC LLaMA ECE

taxiuio 0.8794 0.0971 0.7929 0.3087
mushroom 0.8881 0.2900 0.6931 0.1676
acsincome 0.8655 0.1939 0.8481 0.2812
support2 0.8904 0.1369 0.8644 0.2953
telescope 0.4322 0.6490 0.4900 0.3038
nursery 0.8368 0.2425 0.7776 0.1163
diabetes 0.4979 0.0960 0.5235 0.1940
brfssdiabetes 0.6497 0.1540 0.7144 0.0706
airline 0.4768 0.0697 0.4779 0.1867
bank 0.6805 0.1115 0.5507 0.0854
acspubcov 0.7232 0.2211 0.6963 0.0723
ucistatloggerman 0.4499 0.4677 0.4589 0.4457
brfsshbp 0.7249 0.4550 0.7052 0.1633
usaccidents 0.5974 0.1980 0.7300 0.1535
uciheart 0.8756 0.2504 0.8117 0.1348
IndianDiabetes 0.7882 0.4330 0.7971 0.0877
taxibog 0.8730 0.0770 0.8202 0.1923
ucispambase 0.8921 0.2954 0.7491 0.1632
ucidiabetes 0.6624 0.3149 0.7133 0.4992
glioma 0.8837 0.2426 0.3511 0.2808
rice 0.4907 0.3090 0.6011 0.2925
acstraveltime 0.6599 0.3724 0.6556 0.0357
acsmobility 0.5803 0.1427 0.5779 0.1153
car 0.9121 0.1308 0.8564 0.1067
acsunemployment 0.8880 0.4190 0.8711 0.2171
houses 0.4935 0.4083 0.4659 0.1077
sepsis 0.5936 0.0273 0.5950 0.2442
brfsshighcholesterol 0.6977 0.4171 0.6846 0.1722
ucibreastcancer 0.8115 0.5732 0.9436 0.4302
taximex 0.8859 0.0494 0.8180 0.2640
ipums 0.6970 0.3519 0.7080 0.1563
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A.3 Correlation between Metrics and AUC, Llama 843
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Figure 11: Correlation between aggregate metrics derived from our experiments on the unlabeled datasets and the
AUC scores of Llama-3.1-8b-Instruct on each of the datasets, where each point represents one dataset. We plot the
best-fit line with its corresponding R2 value for each metric.
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A.4 Normalized AUC Scores, Masking Experiment844
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Figure 12: Box plots of AUC scores over masked-out columns in the Masking experiment, for all datasets, where
each AUC is divided by the AUC achieved by an XGBoost classifier on the same prediction task. Results shown for
GPT (a) and Llama (b).
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A.5 Raw AUC Scores, Masking Experiment 845
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Figure 13: Box plots of AUC scores over masked-out columns in the Masking experiment, for all datasets. Results
shown for Llama.
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A.6 Prompting Templates846

We provide the templates used to generate each of our dataset-level metrics below.847

Context Content

Risk Scores "Please respond with a single
letter."

$DESCRIPTION OF DATASET$\n\n
Information: $SERIALIZED
ROW$\n\n Question: $QUESTION$\n
A. $POSITIVE LABEL TEXT$\n B.
$NEGATIVE LABEL TEXT$

Verb. Confidence $DESCRIPTION OF DATASET$ $SERIALIZED ROW$ Provide your
best guess and the probability
that it is correct (0.0
to 1.0) for\n the following
question. Give ONLY the
guess and probability, no
other words or\n explanation.
For example:\n\n Guess: <most
likely guess, as short as
possible; not\n a complete
sentence, just the guess!>\n
Probability: <the probability
between 0.0\n and 1.0 that
your guess is correct, without
any extra commentary whatsoever;
just\n the probability!>\n \n
The question is: $QUESTION$

A.7 AI Assistants In Research Or Writing848

As our paper centers around the zero-shot capabilities of LLMs for tabular data, all of our experiments849

necessarily deal with AI assistants (GPT-4o-Mini, Llama-3.1-8b-Instruct) to generate core research results.850

We also utilize AI assistants (Copilot, GPT) for assistance with rewording and clarity during the paper851

writing process, along with providing starter code for generating plots.852

A.8 Risks853

One risk with our findings is the potential misuse of our proposed metrics. While we identify metrics, such854

as the standard deviation of risk scores, that correlate with LLM performance, these signals should not be855

interpreted as guarantees of success. Practitioners may be tempted to rely upon our metrics as substitutes856

for evaluation on labeled data, leading to over-confidence in model outputs. This is particularly of concern857

in high-stakes domains (e.g., healthcare or finance), where systematically inaccurate predictions carry858

serious consequences. We emphasize that our metrics are diagnostic tools or guides to which tasks are859

more promising as opposed to actionable decision rules. They should be used in conjunction with domain860

knowledge and do not substitute for eventual labeled-data evaluation in high-stakes settings.861

A.9 Hardware Details.862

For GPT-4o-mini, we conduct all inference via the OpenAI API, and so we do not require any GPU863

assistance. However, we run Llama-3.1-8b-Instruct locally with Huggingface. To do this, we utilize a864

single NVIDIA Tesla V100 GPU, and require 60 GPU hours to run all experiments.865
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