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Abstract

The correlation complexity introduced by Seipp et al. (2016)
is a measure of a planning task indicating how hard it is. In
their work, they introduced sufficient criterions to detect a
correlation complexity of 2 on a planning task. They also in-
troduced an example of a planning task with correlation com-5

plexity 3. In this work, we introduce a criterion to detect an ar-
bitrary correlation complexity and extend the mentioned ex-
ample to show with the new criterion that planning tasks with
arbitrary correlation complexity exist.

Introduction10

In classical planning, we try to find a plan, a sequence of ac-
tions to transition from an initial state to a goal state. We
consider satisficing planning, which looks for a plan that
leads us to a goal state. In contrast, optimal planning looks
for the plan with the lowest cost. Both satisficing planning15

and optimal planning are PSPACE-complete in general (By-
lander 1994) but for some domains, it is drastically easier to
find a satisficing plan than to find an optimal one.

Some satisficing planning tasks are easier to solve than
others even though they have the same amount of variables20

and operators. This difference is hidden somewhere in the
structure of the task. The correlation complexity is one mea-
sures for the difficulty of a satisficing planning task.

This measure is based on potential heuristics (Pommeren-
ing et al. 2015), which looks at the features of a given state25

and sums their corresponding weight to compute a heuristic
value.

The correlation complexity of a task1 Π describes the
minimal dimension of a potential heuristic hpot such that
hpot is descending and dead-end avoiding. This can be in-30

terpreted as a measure of how many facts the agent has to
consider at once to find the next best successor. Unless all
alive states are goal states the correlation complexity is at
least 1 (the agent has to consider at least something).

Finding the actual weights for such a potential heuris-35

tic is a hard problem and not the scope of this paper. It is
PSPACE-complete in general and Σp

2-complete (that is the
second level of the polynomial hierarchy) for heuristics with
similar characteristics (Helmert et al. 2022).

1In this work we assume that each task is solvable.

In this work, we will introduce new criterions to detect a 40

lower bound for arbitrary correlation complexity. Addition-
ally, we prove the existence of planning tasks with arbitrary
correlation complexity by applying the new criterion to gray
counter tasks with an arbitrary number of bits.

Background 45

We consider classical planning in the SAS+formalism. A
task Π = ⟨V, I,O, γ⟩ is a tuple, where V is the finite set
of state variables in finite domain representation with the
domain dom(v) for each v ∈ V . We call v 7→ d with v ∈ V
and d ∈ dom(v) a fact. A partial state p is a set of facts 50

with pairwise different variables. We denote the variables
mentioned by p as vars(p) := {v | v 7→ d ∈ p}. A state s
is a partial state containing all state variables (i.e. vars(s) =
V ), we use the notation s ∈ Π to indicate that s is a state
of the task Π. I is the initial state, and γ is a partial state 55

indicating the goal of the task.
The projection of a partial state s to the state variables

W ⊆ vars(s) is denoted as sW := {v 7→ d ∈ s | v ∈W}.
Each operator o = ⟨pre(o), eff(o)⟩ in O contains a pre-

condition and an effect. Both of them are partial states. An 60

operator o is applicable in state s if pre(o) ⊆ s. The suc-
cessor of a state s and an applicable operator o is the state
sJoK with sJoKvars(eff(o)) = eff(o) and sJoKV \vars(eff(o)) =
sV \vars(eff(o)). We use the notation sJo!K to forcefully apply
operator o to state s, with sJo!K := sJ⟨∅, eff(o)⟩K. We as- 65

sume tasks to be in normal form, meaning vars(eff(o)) ⊆
vars(pre(o)) and eff(o) ∩ pre(o) = ∅ for each operator
o ∈ O.

We say two operators o, o′ are inverse of each other if
vars(eff(o)) = vars(eff(o′)), eff(o) ⊆ pre(o′) and eff(o′) ⊆ 70

pre(o). Intuitively, everything changed by applying o to a
state where it is applicable changes back by (forcefully) ap-
plying o′ to that successor.

A list of operators m = [o1, . . . , on] is called a macro,
we treat them the same as operators with pre([o1, o2]) = 75

(pre(o2)eff(o1))∪pre(o1) and eff([o1, o2]) = eff(o2)∪{v 7→
d ∈ eff(o1) | v /∈ vars(eff(o2))}\pre([o1, o2]). Additionally,
[o1, o2, o3, . . . , on] = [[o1, o2], o3 . . . , on] is a macro, too.

We can recompose a macro by representing it as
a different but equivalent list of macros and/or opera- 80

tors that keeps the same underlying list of operators.



For example [[o1, o2, o3], o4, [o5]] can be recomposed into
[[o1, o2], [o3, o4], [o5]]. We call the macros and operators in
the outermost list the base macros.

Applying a singleton macro [o] is the same as85

applying the underlying operator. Applying a macro
[m1,m2, . . . ,mn] to state s is the same as applying the
base macros m1,m2, . . . ,mn in succession to s, meaning
sJ[m1,m2, . . . ,mn]K = sJm1KJ[m2, . . . ,mn]K.

The set pre([o1, o2]) might be no partial state. Unless ex-90

plicitly mentioned we only talk about non-empty macros.
If a macro m is applicable in s and γ ⊆ sJmK, then m is

called an s-plan (such marcos might be empty).
We call a state s solvable if an s-plan exists. A state

is called alive if a macro m exists that is applicable in I ,95

IJmK = s and s is solvable.
A heuristic h(s) maps each state s to a value in R∪{∞},

indicating how ”good” the state is for the search (the lower
the better).

A heuristic h is descending if each non-goal alive state s100

has a successor s′ with h(s) > h(s′). A heuristic h is dead-
end avoiding if it holds for each non-goal alive state s that
each successor s′ of s with h(s) > h(s′) is solvable (Seipp
et al. 2016).

With [n,m] we denote the set {x | x ∈ N, n ≤ x ≤ m}.105

Potential Heuristic
Potential heuristics are a class of heuristics introduced by
Pommerening et al. (2015). A potential heuristic is a func-
tion hpot : P → R∪ {∞} that is computed with a weighted
count of the partial assignments that agree with the given110

partial assignments.

hpot(s) =
∑
p∈P

(w(p) · [p ⊆ s])

where P is the set of all possible partial assignments for the
task, [p ⊆ s] is in the Iverson bracket notation, and w(p) is
the weight for the partial assignment p. In practice, most of
the weights are 0. The dimension of a potential heuristic is115

maxp∈P,w(p) ̸=0|p|.

Correlation Complexity
Correlation complexity is a measure of the complexity of
planning tasks introduced by Seipp et al. (2016) which
is based on potential heuristics. They looked for poten-120

tial heuristics that are descending and dead-end avoiding
(DDA).
Definition 1 (Correlation Complexity). The correlation
complexity of a planning task Π is defined as the minimal
dimension of all descending, dead-end avoiding potential125

heuristics for Π. The correlation complexity of a domain is
the maximal correlation complexity over all tasks in that do-
main.

Finding a plan with the use of a DDA heuristic is eas-
ily done with simple hill-climbing. This algorithm works by130

starting at the initial state and repeatedly updating the cur-
rent state with a successor that has a lower heuristic value
until a goal state is found. This can be interpreted as wan-
dering downwards in the state space. The number of state

expansions is bounded by hpot(I) − mins∈S hpot(s) if all 135

weights are integers (Seipp et al. 2016).
Seipp et al. investigated multiple IPC planning domains

and showed that all of them had a correlation complexity of
2, but it is possible to construct planning tasks with correla-
tion complexity of 3. 140

Lower Bounds of the Correlation Complexity
We want to understand better what causes a large correlation
complexity. Seipp et al. (2016) introduced two criterions to
identify that a task has correlation complexity of at least 2.
They are based on critical and dangerous operators. 145

Definition 2. Let Π = ⟨V, I,O, γ⟩. An operator o is critical
in task Π if there is an alive state s ∈ Π such that ⟨V, s,O \
{o}, γ⟩ is unsolvable. An operator o is dangerous in task
Π = ⟨V, I,O, γ⟩ if there is an alive state s ∈ Π with o
applicable in s, such that ⟨V, sJoK, O, γ⟩ is unsolvable. 150

Theorem 1. Let Π be a planning task in normal form, and
let o and o′ be critical operators of Π that are inverses of
each other. Then Π has correlation complexity of at least 2
Theorem 2. Let Π be a planning task in normal form, and
let o be an operator that is critical and dangerous in Π. Then 155

Π has correlation complexity of at least 2
These criterions focus on the operators in the task. We

want to add criterions that look from a different angle and
focus on the states instead.

Quadruple Criterion 160

We introduce the quadruple criterion. Roughly speaking it
checks if a given potential heuristic can be represented as
a 2-dimensional heuristic. Note that any heuristic can be
translated into a potential heuristic if the dimension is large
enough. 165

Theorem 3 (Quadruple Criterion). Let Π = ⟨V, I,O, γ⟩ be
a planning task, and let hpot be a potential heuristic. If there
exist states a, b, c, d in Π and a partition {W,M} of V such
that:

hpot(a) > hpot(b), aW = bW , aM = dM ,
170

hpot(c) ≥ hpot(d), cW = dW , bM = cM ,

then the dimension of hpot is at least 2.
For the proof we use the fact that we can split one (finite)

sum over all x ∈ X with a partition {Y, Z} of X into two
sums where one iterates over y ∈ Y and the other over z ∈
Z. 175∑

x∈X

f(x) =
∑
y∈Y

f(y) +
∑
z∈Z

f(z),

with f an arbitrary function.

Proof. Let hpot be a heuristic and a, b, c, d states in Π and
{W,M} a partition of V such that:

hpot(a) > hpot(b) and hpot(c) ≥ hpot(d) and aW = bW

and cW = dW and aM = dM and bM = cM . 180

Assume that the dimension of the potential heuristic
hpot is at most 1. The assumption implies that hpot(s) =∑

p∈P,|p|≤1 w(p) · [p ⊆ s] =
∑

p∈P,|p|=1,vars(p)⊆W w(p) ·



[p ⊆ sW ]+
∑

p∈P,|p|=1,vars(p)⊆M w(p) · [p ⊆ sM ]+w(∅) =
hpot(sW ) + hpot(sM ) − w(∅) for each state s. The weight185

w(∅) is subtracted because ∅ ⊆ sW and ∅ ⊆ sM . This pro-
vides us with the two inequalities

hpot(aW )+hpot(aM )−w(∅) > hpot(bW )+hpot(bM )−w(∅)

hpot(cW )+hpot(cM )−w(∅) ≥ hpot(dW )+hpot(dM )−w(∅).
Since aW = bW and cW = dW we can simplify the in-

equalities to190

hpot(aM ) > hpot(bM )

hpot(cM ) ≥ hpot(dM ).

We know that aM = dM and bM = cM so we replace
these values in the latest inequality and end up with

hpot(aM ) > hpot(bM )

hpot(bM ) ≥ hpot(aM ).

which is a contradiction. So the assumption is not true and195

therefore the dimension of the potential heuristic hpot is at
least 2.

The conditions of the quadruple criterion are sufficient to
detect a dimension of at least 2. Is it also a necessary condi-
tion? The answer is no.200

Consider the two heuristics on a task with two variables
of binary domain (with ′XY ′ we denote the state {v1 7→
X, v2 7→ Y }): h1(

′00′) = 0, h1(
′10′) = 40, h1(

′01′) =
2, h1(

′11′) = 42 and h2 which is equal to h1 except for
h2(

′11′) > 42. It is easy to see that h1 is of dimension 1205

with w1(v1) = 40, w1(v2) = 2 but h2 is not. However,
the order relations (>,≥) are the same. Meaning, that if we
could find an assignment of a, b, c, d,W,M for h2 to detect
its larger dimension by Theorem 4 we could use the same
for h1, but that is not possible as h1 is of dimension 1.210

We can use the quadruple criterion to argue about the cor-
relation complexity.

Theorem 4. Let Π = ⟨V, I,O, γ⟩ be a planning task. If for
each potential heuristic hpot that is DDA on Π there exist
states a, b, c, d in Π and a partition {W,M} of V such that:215

hpot(a) > hpot(b), aW = bW , aM = dM ,

hpot(c) ≥ hpot(d), cW = dW , bM = cM ,

then the correlation complexity of Π is at least 2.

Note that these states and the partition do not have to be
the same for all DDA potential heuristics.

Proof. We know that the correlation complexity of a task Π220

is the minimal dimension over all potential heuristics that
are DDA on Π. The condition of Theorem 4 implies that
the quadruple criterion is applicable on each DDA poten-
tial heuristic on Π. Therefore, we can apply the quadruple
criterion on each potential heuristic that is DDA on Π. We225

conclude that the dimension of each potential heuristic that
is DDA on Π is at least 2. Therefore, the correlation com-
plexity of Π is at least 2.

Theorem 4 is a generalization of the criterion from The-
orem 2 that Seipp et al. (2016) used to detect correlation 230

complexity of at least 2 (proof in Appendix A). Theorem 3
is equivalent to the first (non-trivial) instance of a pattern,
which we will call the 2n states criterion. Here we formu-
late and prove it. Later, we will use the 2n states criterion
as a stepping stone to construct the macro folding criterion, 235

a generalization of the criterion from Theorem 1. We then
apply it to the family of Gray counter tasks and show that a
Gray counter task has a correlation complexity equal to its
number of bits.

2n states criterion 240

We first state some definitions, notations, and lemma.
Thereby we will introduce the Π≤k construction to formu-
late the 2n states criterion. The Π≤k construction is similar
to the Pm construction (Haslum 2009), to the ΠC compila-
tion (Steinmetz and Hoffmann 2018), and to fluent merging 245

(van den Briel, Kambhampati, and Vossen 2007). We discuss
the similarities and differences in the related work section.

The Π≤k construction assumes an arbitrary order of the
state variables.
Definition 3 (Π≤k construction). Let Π = ⟨V, I,O, γ⟩ 250

a planning task. Let V be arbitrarily ordered, V =
{v1, . . . , v|V |}. Let s be a state and k ≤ |V |.

Let p ⊇ {⟨vi1 , di1⟩, . . . , ⟨vik , dik⟩} be a partial state with
ia < ib for each 0 < a < b ≤ k.

We call meta{i1,...,ik}(p) = ⟨v⟨i1,...,ik⟩, ⟨di1 , . . . , dik⟩⟩ a 255

metafact with the metavariable v⟨i1,...,ik⟩. The domain of
the metavariable is "k

j=1dom(vij ). The size of the metafac-
t/metavariable is k.

We say metavariable vl is created from variable vt if t ∈ l,
we refer to these variables with creators(vl). 260

With meta≤k(s) =
⋃

S⊆V,|S|≤k{metaS(s)} we denote the
set of all metafacts from s of size up to k. We call meta≤k(s)
the metastate of size k of s and use the shorthand notation
s≤k and the set of its metavariables as V ≤k. The Π≤k con-
struction is the set {meta≤k(s)|s ∈ Π}. 265

Let us look at an example. In the Termes domain a robot
has to build towers out of blocks on a 2D grid map. These
blocks are also used to build stairs to reach the top of the
towers. The robot can move to neighboring cells that con-
tain a tower at most one level apart from the level the robot 270

is at. It can change the height of a neighboring tower by
placing/removing a block. A block can only be placed if the
robot carries one and the neighboring tower is on the same
level as the robot. Removing a block is only possible if the
neighboring tower is one level above the robot and it is not 275

carrying anything. Additionally, the robot can create/destroy
blocks if it is at the deposit cell. It is not allowed to place
blocks on this cell.

Consider a task with 4 cells, one of them the deposit, and
a maximal tower height of 3. The state variables (without the 280

constants, ordered as written) is

V = {vheight2, vheight3, vheight4, vrobotAt, vrobotHand},
with domain {0, 1, 2, 3} for vheight2, vheight3 and
vheight4, dom(vrobotAt) = {cell1, cell2, cell3, cell4},



and dom(vrobotHand) = {free, full}. Let initial state be

I ={vheight2 7→ 1, vheight3 7→ 1, vheight4 7→ 3,

vrobotAt 7→ cell2, vrobotHand 7→ free}.

The corresponding metastate IV
≤2

contains 31 metafacts
and is a superset of

{v⟨⟩ 7→ ⟨⟩, v⟨height2⟩ 7→ ⟨1⟩, v⟨robotHand⟩ 7→ ⟨free⟩,
v⟨robotAt,robotHand⟩ 7→ ⟨cell2, free⟩,
v⟨height2,height4⟩ 7→ ⟨1, 3⟩}.

We have facts in the metastate that encode multiple facts
at once. With the metastates, we can artificially reduce the
dimension of a potential heuristic.

Definition 4 (k-synchronized heuristic). Let k ∈ N0, Π285

a planning task. A function h′ : Π≤k → R is a k-
synchronized heuristic of the heuristic h on Π if h′(s≤k) =
h(s) for each state s in Π.

Lemma 1. Let Π = ⟨V, I,O, γ⟩ be a planning task. If there
exists a potential heuristic hpot of dimension k on Π then290

there exists a k-synchronized potential heuristic h′pot of di-
mension 1.

Proof. We remember that hpot(s) =
∑

p∈P(w(p) · [p ⊆ s]).
For each partial assignment p = {vi1 7→ di1 , . . . , vim 7→
dim} with |p| ≤ k and p ⊆ s there exists a corresponding295

metafact fp = (v⟨i1,...,im⟩ 7→ ⟨di1 , . . . , dim⟩) in the metas-
tate s≤k and therefore a partial assignment p∗ = {fp} of size
1. LetP∗ be the set of all possible partial assignments of size
1 in Π≤k. By choosing w′(p∗) = w(p) for each p we see that
hpot(s) =

∑
p∈P(w(p) · [p ⊆ s]) =

∑
p∗∈P∗(w′(p∗) · [p∗ ⊆300

s≤k]) = h′pot(s≤k).

Looking at the contrapositive of Lemma 1 we see that we
can use the metastates of size k to check if it is impossible to
represent a given heuristic as a potential heuristic of dimen-305

sion k. We will use this to prove the 2n states criterion.
In the following, we always use the metastates to be pro-

jected. If a subset D ⊆ V ≤k is used for the mapping of a
state s to a different set of metavariables D we mean with sD

the metastate s≤k projected to D, denoted as sD := (s≤k)D.310

Theorem 5 (2n States Criterion). Let n ∈ N1, Π =
⟨V, I,O, γ⟩ be a planning task, h be a potential heuristic
on Π. If there exist states s0, . . . , s2n−1 in Π and a partition
{D0, . . . , Dn−1} of V ≤n−1 and j∗ ∈ [0, 2n−1 − 1] such
that:315

h(s2·j∗) > h(s2·j∗+1)

h(s2·j) ≥ h(s2·j+1) for all j ∈ [0, 2n−1 − 1] \ {j∗}
and

∀d ∈ [0, n− 1]∀g ∈ [0,2n−1−d − 1]∀i ∈ [0, 2d − 1] :

sDd

g·2d+1+i
= sDd

(g+1)·2d+1−1−i

(1)

then the dimension of h is at least n.

d
=

3

g 0
i 0 1 2 3 4 5 6 7

sLHS 0 1 2 3 4 5 6 7
sRHS 15 14 13 12 11 10 9 8

d
=

2

g 0 1
i 0 1 2 3 0 1 2 3

sLHS 0 1 2 3 8 9 10 11
sRHS 7 6 5 4 15 14 13 12

d
=

1

g 0 1 2 3
i 0 1 0 1 0 1 0 1

sLHS 0 1 4 5 8 9 12 13
sRHS 3 2 7 6 11 10 15 14

d
=

0

g 0 1 2 3 0 1 2 3
i 0 0 0 0 0 0 0 0

sLHS 0 2 4 6 8 10 12 14
sRHS 1 3 5 7 9 11 13 15

Table 1: Example values for n = 4 of condition (1).

Before we prove the 2n states criterion we want to shed
light on the interpretation of condition (1). For a fixed d = 320

n − 1 one can consider the states s0, . . . , s2n−1 split into 2
parts. The first part contains s0, . . . , s2n−1−1 and the second
part contains s2n−1 , . . . , s2n−1. Variable g stays 0, only i
iterates. The left-hand side of the equation iterates through
the first part forwards and the right-hand side through the 325

second part backward.
For d = n− 2, one can consider the two parts split again

in the middle resulting in 4 parts. With g = 0, the left-hand
side of the equation iterates through the first part forward
and the second part backward. For g = 1, the left-hand side 330

of the equation iterates through the third part forward and
the fourth part backward.

For decreasing d the number of such parts doubles and the
left-hand side iterates through the odd parts forward and the
right-hand side iterates through the even parts backwards. 335

Until d = 0, there we produce half as many parts as states.
Variable i does not iterate, only g does. The left-hand side of
the equation iterates through the states with even index and
the right-hand side through the states with odd index.

Table 1 shows the example values for n = 4. Looking 340

at the red indicated numbers we see that state s6 has to be
equal to: (i) s9 under projection to D3, (ii) s1 under projec-
tion to D2, (iii) s5 under projection to D1, and (iv) s7 under
projection to D0.

Proof. Assume there exists a potential heuristic h′ of di- 345

mension 1 on the task Π≤n−1, with h′ being an n − 1-
synchronized heuristic to h, and a partition {D0, . . . , Dn−1}
of V ≤n−1 and j∗ ∈ [0, 2n−1 − 1] such that:

h(s2·j∗) > h(s2·j∗+1),

h(s2·j) ≥ h(s2·j+1) for all j ∈ [0, 2n−1 − 1] \ {j∗}
(2)

and

∀d ∈ [0, n− 1]∀g ∈ [0, 2n−1−d − 1]∀i ∈ [0, 2d − 1] :

sDd

g·2d+1+i
= sDd

(g+1)·2d+1−1−i



We consider the sum of all the inequalities from (2):350

2n−1−1∑
j=0

h(s2·j) >

2n−1−1∑
j=0

h(s2·j+1)

We see that the left-hand side only contains states with
an even index and the right-hand side contains only states
with an odd index. With h′ being of dimension 1 and n− 1-
synchronized to h we can split h(st) =

∑n−1
d=0 h

′(sDd
t ) −∑n−2

d=0 w(∅) and obtain355

2n−1−1∑
j=0

n−1∑
d=0

h′(sDd
2·j ) >

2n−1−1∑
j=0

n−1∑
d=0

h′(sDd
2·j+1) (3)

Consider sDd

g·2d+1+i
= sDd

(g+1)·2d+1−1−i
for an arbitrary d.

The index on the left-hand side is even iff i is even. The
index on the right-hand side is odd iff i is even.

We conclude that for every fixed d and for every odd x
with x ∈ [0, 2n−1] there exists one even y with y ∈ [0, 2n−360

1] such that
sDd
x = sDd

y (4)
With equation (4) we can iterate through all d with d ∈

[0, n − 1] and all even numbers p with p ∈ [0, 2n − 1]. We
find a corresponding odd q with q ∈ [0, 2n − 1] such that
sDd
p = sDd

q and reduce (3) by removing h′(sDd
p ) on the left-365

hand side and h′(sDd
q ) on the right-hand side. This change

does not affect the inequality. However, all summands are
removed and we get the inequality 0 > 0 which is a contra-
diction.

We conclude that there exists no n − 1-synchronized po-370

tential heuristic to h of dimension 1. With the contrapositive
of Lemma 1, we conclude that no potential heuristic h on Π
with dimension n − 1 exists. Therefore, the dimension of h
is at least n.

The 22 states criterion is equivalent to the quadruple cri-375

terion with the minor detail that {D0, D1} is a partition of
V ≤1, unlike {W,M}, which is a partition of V . The differ-
ence is minor as V ≤1 only contains meta variables of size 1
and v⟨⟩, which is constant.

The 21 states criterion projects the 2 states to the set {v⟨⟩}.380

There, all states are the same, trivially. What remains is the
condition that there are 2 states with different heuristic val-
ues.
Theorem 6. Let n ∈ N1, Π = ⟨V, I,O, γ⟩ be a plan-
ning task. If for each potential heuristic hpot that is DDA385

on Π there exist states s0, . . . , s2n−1 in Π, a partition
{D0, . . . , Dn−1} of V ≤n−1 and j∗ ∈ [0, 2n−1 − 1] such
that:

h(s2·j∗) > h(s2·j∗+1),

h(s2·j) ≥ h(s2·j+1) for all j ∈ [0, 2n−1 − 1] \ {j∗},
and

∀d ∈ [0, n− 1]∀g ∈ [0,2n−1−d − 1]∀i ∈ [0, 2d − 1] :

sDd

g·2d+1+i
= sDd

(g+1)·2d+1−1−i

then the correlation complexity of Π is at least n.390

Note that these states and the partition do not have to be
the same for all DDA potential heuristics.

Proof. We know that the correlation complexity of a task Π
is the minimal dimension over all potential heuristics that
are DDA on Π. The condition of Theorem 6 implies that 395

any DDA potential heuristic fulfills the condition for the 2n

states criterion. Therefore, we conclude that each potential
heuristic that is DDA on Π is of dimension at least n. There-
fore, the correlation complexity of Π is at least n.

Folded Macro Criterion 400

With the shifted view from operators to states we were able
to construct a family of criterions to detect arbitrary corre-
lation complexity. Now we want to shift the view back to
operators and macros as they are in some sense more acces-
sible for higher-level arguments. We create a generalization 405

of the criterion from Theorem 1.
Definition 5 (Macro Folding). The macros −→m,←−m are n-
matching if we can decompose both into n base macros,
where the i-th base macro of−→m is the inverse of the n−i+1-
th base macro of←−m for each i ∈ [1, n]. 410

We say a macro m is folded one time on crease ↷
m1

if we can decompose it into 3 macros [−→m0,
↷
m1,
←−m0]

with −→m0 1-matching ←−m0. Here we call ↷
m1 the first

crease and −→m0 the 0-th crease. We say a macro m is
folded n > 1 times if it is folded once on crease ↷

mn 415

(the n-th crease of m) and we can decompose it into
7 macros [−→mn−1,

↷
mn−1,

←−mn−1,
↷
mn,
−→m′

n−1,
↶
mn−1,

←−m′
n−1]

where [−→mn−1,
↷
mn−1,

←−mn−1] and [−→m′
n−1,

↶
mn−1,

←−m′
n−1]

are 2n−1-matching, folded n−1 times on crease ↷
mn−1 and

↶
mn−1 respectively. Both, ↷

mn−1 and ↶
mn−1 are the n− 1-th 420

creases of m, with creases(m,n − 1) we refer to the set of
n− 1-th creases of m.

Note that if a macro m is folded n times it is also folded
k times for all 0 ≤ k ≤ n. Asking for the k-th creases
is therefore ill-defined, without specifying how many total 425

creases are considered. In the following, we implicitly mean
the largest possible value we established for the considered
macro.

An intuitive interpretation of a folded macro [−→m,
↷
m,←−m]

is to view −→m as the set-up and ←−m as the tear-down. The 430

crease ↷
m is the actually desired action. If the macro is folded

multiple times there are recursive occurrences of this set-up
and tear-down behavior.

The Termes task described earlier with goal {vheight2 7→
1, vheight3 7→ 1, vheight4 7→ 2, } is an example for that. 435

The task is to remove the 3rd block from cell 4 (and keep
the other towers the same). Note that the encoding does not
distinguish the individual blocks.

The set-up for that is to carry a block to cell 2. From there
the robot can place that block on cell 3, climb on it, pick up 440

the block from cell 4, and carry it to cell 2. We view this
macro of 4 operators as the crease. Afterward, the tear-down
is to get rid of the auxiliary block.

To execute the set-up a secondary set-up is needed. The
robot has to move to the deposit first (secondary set-up), cre- 445

ate a block (crease of the primary set-up), and move back up
with it (secondary tear-down).



Similarly, for the tear-down. A secondary set-up is needed
there, as well. The robot has to carry the block it holds to
the deposit (secondary set-up), destroy the block (crease of450

the primary tear-down), and move back up (secondary tear-
down).

The robot is required to come back to cell 2 after destroy-
ing the carried block, to pick up the auxiliary block. The
described order of operators is the only one solving the task455

(without cycles or transitions after reaching the goal). There-
fore, the macro of the primary set-up and primary tear-down
are critical.

We provided this task in PDDL in Appendix B together
with the plan and a visualization of the folded macro.460

Lemma 2 (Orthogonality Lemma). For any state
s and applicable, 1 time folded macro m =
[−→mn, . . . ,

−→m0,
↷
m,←−m0, . . . ,

←−mn] with crease ↷
m it holds

for all i ∈ [0, n]:

• sJ−→mi!KJ
↷
m!K = sJ↷

m!KJ−→mi!K,465

• vars(eff(−→mi)) ∩ vars(eff(↷
m)) = ∅, and

• sJmK = sJ↷
m!K.

Proof. Case (i) i = 0: Assume sJ−→mi!KJ
↷
m!K ̸= sJ↷

m!KJ−→mi!K,
therefore there is a v ∈ vars(eff(−→mi)) ∩ vars(eff(↷

m)), and
v 7→ dA is an effect of −→mi and v 7→ dB is an effect of ↷

m.470

We know dA ̸= dB , due to our assumption. Then←−mi is not
applicable in state sJ−→miKJ

↷
mK as it has v 7→ dA as precon-

dition, because it is in normal form and inverse to −→mi. This
provides a contradiction to m being an applicable macro.
This also provides us that sJ−→m0!KJ

↷
m!KJ←−m0!K = sJ↷

m!K.475

Case (ii) i > 0: Consider the macro
[−→mi−1, . . . ,

−→m0,
↷
m,←−m0, . . . ,

←−mi−1] as the crease of m
and relabel the indices to match case (i).

A variable v might appear in the effects of o ∈ ↷
m and

o′ ∈ −→mi. The effect just has to be undone again in one of the480

base macros ↷
m or −→mi, resulting in a ’defacto’ effect of the

macro where v does not appear.

Lemma 3 (Matching Lemma). Let n ∈ N, s0 be a state
where the macro m := [−→m,

↷
m,←−m] is applicable and −→m,←−m

are n− 1-matching. Let si := si−1J−→miK with −→mi being the485

i-th base macro of−→m for i ∈ [1, n−1], sn := sn−1J
↷
mK, and

sn+i := sn+i−1J←−miK with←−mi being the i-th base macro of←−m for i ∈ [1, n− 1]. Then for all j ∈ [0, n− 1]

sn−1−jJ
↷
m!K = sn+j .

Proof. Let j ∈ [0, n − 1]. Since m is folded on crease
↷
m we conclude with Lemma 2 that sn−1−jJ

↷
m!K =490

sn−1−jJ[−→mn−j+1, . . . ,
−→mn,

↷
m,←−mn . . .

←−mn−j+1]K = sn+j

by construction.

With that, we introduce the new criterion.

Theorem 7 (Folded Macro Criterion). Let Π be a planning
task in normal form, and let −→m and←−m be critical macros of495

Π that are 2n − 1-matching and folded n− 1 times, then Π
has correlation complexity of at least n+ 1.

Proof. Since −→m and ←−m are critical each plan for Π is of
the form [mI ,−→m,

↷
m,←−m,mγ ] (or −→m,←−m swapped but with-

out loss of generality we assume the former; mI and/or mγ 500

might be empty) and therefore contains the macro m :=
[−→m,

↷
m,←−m]. This macro is folded n times, with the n-th

crease at ↷
m.

Let us consider the 2n+1 states s0, . . . , s2n+1−1 we can
extract from this n times folded macro. With s0 = IJmIK 505

and si = si−1JbiK, where bi is the i-th base macro of m.
Obviously, for each DDA heuristic h on Π there exists a

choice of mI ,
↷
m,mγ such that it holds:

h(s2·j) > h(s2·j+1) for all j ∈ [0, 2n − 1]

Matching the first condition of the 2n+1 state criterion.
For the second condition we have to find a fitting partition 510

of V ≤n.
We consider Dm:n = {Dm:n

0 , . . . , Dm:n
n } with Dm:n

n−i :=

{v ∈ V ≤n \
⋃n

j=n−i+1 D
m:n
j | creators(v) ∩

vars(eff(↷
mn−i)) = ∅} with ↷

mn−i ∈ creases(m,n −
i). These sets are obviously not intersecting. None of 515

them is empty because the meta-variable vn−i with
creators(vn−i) = {v1, . . . , vi−1, vi+1, . . . , vn} and vk ∈
vars(eff(↷

mk)) (where ↷
mk ∈ creases(m, k)) is an element

of Dm:n
n−i for each i ∈ [0, n]. Therefore, Dm:n is a partition

of V ≤n. 520

Looking at a sub-sequence of the base
macros of m, focusing on the base macros
[bg·2d+1+1, . . . , bg·2d+1+2d , . . . , bg·,2d+1−1] =: md,g

for an arbitrary d ∈ [0, n] and an arbitrary g ∈ [0, 2n−d−1].
Since m is folded n times, the macro md,g is folded d 525

times with bg·2d+1+2d as d-th crease.
With the Matching Lemma we conclude

sg·2d+1+2d−1−jJbg·2d+1+2d !K = s(g+1)·2d+1+2d+j

for all j ∈ [0, 2d − 1]. With index shift we get
sg·2d+1+iJbg·2d+1+2d !K = s(g+1)·2d+1−1−i for all 530

i ∈ [0, 2d − 1]. Since d and g were arbitrarily chosen
it holds for all g ∈ [0, 2n−d−1] and for all d ∈ [0, n].

With the Orthogonality Lemma we see, that Dm:n
d

does not contain any meta-variable created by a variable
from vars(eff(bg·2d+1+2d)) and projects the difference away.
Therefore

∀d ∈ [0, n]∀g ∈ [0,2n−d − 1]∀i ∈ [0, 2d − 1] :

s
Dm:n

d

g·2d+1+i
= s

Dm:n
d

(g+1)·2d+1−1−i

We finally conclude that we can apply the 2n+1 states crite-
rion to reveal a correlation complexity of at least n+ 1.

The folded macro criterion with n = 1 is equivalent to the 535

criterion from Theorem 1.

Arbitrary Correlation Complexity
The 2n states criterion and the folded macro criterion show
sufficient conditions to detect a lower bound of the dimen-
sion of a potential heuristic. They do not answer the ques- 540

tion if a planning task with arbitrary correlation complexity
exists. In the following, we show that the answer is yes by
applying the macro folding criterion on a Gray counter task
with an arbitrary number n of bits.



Gray Counter Task545

The Gray Counter Task with 3 bits is the example Seipp
et al. (2016) provided with correlation complexity 3. It it-
erates through all binary numbers of a given length in an
order such that consecutive numbers differ on only one bit,
this is known as the Gray code (Gray 1953).550

Definition 6 (Gray Counter Task). The gray counter task of
n bits is a planning task Πn = ⟨Vn, In, On, γn⟩ with the
state variables Vn = {v0, . . . , vn−1} with domain {0, 1},
the initial state In = {vi 7→ 0|i ∈ [0, n− 1]}, the operators

On = {⟨{vj 7→ 0, vj−1 7→ 1}
∪ {vi 7→ 0 | 0 ≤ i < j − 1}, {vj 7→ 1}⟩,
⟨{vj 7→ 1, vj−1 7→ 1}
∪ {vi 7→ 0 | 0 ≤ i < j − 1}, {vj 7→ 0}⟩
| 0 < j < n}

∪{⟨{v0 7→ 0}, {v0 7→ 1}⟩, ⟨{v0 7→ 1}, {v0 7→ 0}⟩}

and the goal γn = {vn−1 7→ 1}∪ {vi 7→ 0 | i ∈ [0, n− 2]}.
The task ⟨V, γ,O, I⟩ is a reverse gray counter task if

⟨V, I,O, γ⟩ is a gray counter task.
We can also view it as a recursive construction. The gray

counter task of 1 bit is a planning task Π = ⟨V, I,O, γ⟩ with555

the state variables V = {v0} with domain {0, 1}, the initial
state I = {v0 7→ 0}, the operators O = {⟨{v0 7→ 0}, {v0 7→
1}⟩, ⟨{v0 7→ 1}, {v0 7→ 0}⟩} and the goal γ = {v0 7→ 1}.

The gray counter task of n bits is a planning task Π with
the state variables V = {v0, . . . , vn−1} (each with domain560

{0, 1}) that consists of two tasks Π1/2, a gray counter task of
size n−1 on the variables {v0, . . . , vn−2}with an additional
constant state variable vn−1 7→ 0 and Π2/2, a reverse gray
counter task of size n − 1 on the variables {v0, . . . , vn−2}
with an additional constant state variable vn−1 7→ 1. The565

initial state of Π is the initial state of Π1/2, the single goal
state of Π is the single goal state of Π2/2 and the operators
of Π is the set containing:
• each operator of Π1/2 and Π2/2,
• the operator with the goal state from Π1/2 as precondi-570

tion and the initial state from Π2/2 as effect and
• the operator with the initial state from Π2/2 as precondi-

tion and the goal state from Π1/2 as effect.
By looking at the Gray counter task through the lens of

recursion it is clear what our macros have to be. We choose575 −→m to be the macro that solves Π1/2 and ←−m the macro that
solves Π2/2, both have 2n−1 − 1 base macros, namely the
original operators. They are obviously 2n−1−1-matching as
they solve inverse problems. By the recursive construction of
the gray counter task−→m,←−m are both folded n−2 times. This580

fits the condition of the folded macro criterion and reveals a
correlation complexity of n for the gray counter task on n
bits.

This shows that planning tasks of arbitrary correlation
complexity do exist. Seipp et al. (2016) left an open ques-585

tion whether or not examples of “naturally occurring” plan-
ning domains that are tractable and contain tasks with high
correlation complexity exist.

Turing Machine
If one ignores the tractable part the question can be answered 590

with yes. Each domain that can directly encode a Turing Ma-
chine (TM) of arbitrary memory size has unbounded corre-
lation complexity.

What do we mean by encoding a finite tape Turing ma-
chine directly? 595

Definition 7 (direct TM encoding). A TM is defined as
⟨Z, z0, z∗,Γ, δ⟩ with Z the set of internal states, z0, z∗ ∈ Z
where z0 is the initial state and z∗ is the accepting state,
Γ the set of tape symbols, and δ : (Z \ z∗) × Γ →
Z × Γ× {−1,+1} the transition function. 600

A planning task Π encodes a TM directly if it is solvable
and

• for each configuration c that TM traverses there is a cor-
responding landmark state sc,

• if TM traverses c1 before c2 then each plan traverses sc1 605

before sc2 , and
• there is a subset V tape of V such that:

– s
V \V tape

c1 = s
V \V tape

c2 for each configuration c1, c2
that TM traverses and the internal state and the head
position of c1 and c2 are the same. 610

– Each variable in vti ∈ V tape corresponds to a cell ti
of the tape and for each c traversed by TM with symbol
a in cell ti the state sc contains the fact vti 7→ dti,a.

Only TMs that halt can be encoded directly. The entry of
a single cell could be encoded by multiple state variables in 615

V tape but each v ∈ V tape encodes only one cell. Since V
is finite the tape has to be finite, too. The initial state of the
planning task encodes the initial configuration of the TM,
including the input on the tape.

Bylander (1994) described (in Theorem 3.1) a way to 620

transform a TM into a planning task. This planning task en-
codes said TM directly.

Consider a Turing machine that reads the input string,
changes it to the next string according to the gray code, and
sets the head back to the initial position. The machine re- 625

peats this until the final value of the gray code is represented
by the tape. With an initial input of n-many 0’s the corre-
lation complexity of the task simulating such a Turing ma-
chine is at least n. This can be shown with the 2n states
criterion with the states that represent the Turing machine at 630

the beginning of the described loop.
Many domains of the International Planning Competition

(IPC) enforce each task to have a correlation complexity of
at most 2 (Seipp et al. 2016). Culberson (1997) showed how
to encode TMs into Sokoban tasks. This corresponds to a 635

direct encoding, too.
Helmert (2006) showed an encoding of TMs into Promela

tasks. However, this encoding does not fit our definition.
There the content of the cell at the position of the head and
the position of the head is encoded in one variable and is 640

therefore not a direct encoding. The partition of V is not
possible. This is not the relevant hurdle, as we can still ap-
ply the Macro Folding Criterion on a Promela task that rep-
resents the described TM in Helmert’s encoding. The two
macros are putting the Promela-message that represents the 645



TM symbol 1/0 into the Promela-queue that represents the
cell which represents the second most significant bit on/off.
The relevant hurdle is the PDDL encoding (Edelkamp 2003)
as it allows to activate multiple Promela-transitions without
executing them directly. This provides too much freedom to650

easily detect critical, matching macros.
In the 1st Combinatorial Reconfiguration Challenge

(CoRe Challenge 2022) Christen et al. (2023) encoded the
independent set reconfiguration (ISR) problem as a planning
task. The graph track asked for an instance with a long so-655

lution. They provided one that encodes a Gray counter. We
can apply the macro folding criterion on this instance, too.
This reveals a correlation complexity of at least n/5 for their
graph track submissions, where n is the number of nodes in
the instance graph.660

The earlier described Termes task has correlation com-
plexity of at least 3. We discussed that the primary set-up
and the primary tear-down are critical macros. They are
3-matching and folded once. With that, we can apply the
macro folding criterion to confirm a correlation complexity665

of at least 3.
This shows that we have occurrences of such domains

(how natural these occurrences are is up to debate). Promela
occurred in IPC4, Sokoban occurred in IPC6, ISR in the 1st
CoRe Challenge, and Termes in IPC9.670

The original question about tractable domains remains
open but with the Folded Macro criterion, we have a tool
to show that a task has high correlation complexity.

Discussion
We were not able to find further IPC domains that allow675

tasks with a correlation complexity larger than 2. The way
we found the ones we did was by constructing a task with
only one (cycle free) solution. Without that, there is often
some freedom (similar to the Promela domain) which hin-
ders us from finding matching pairs of critical, folded macro.680

Lacking further examples of IPC domains where we can
apply our new criterions might be a downside for their rel-
evance, on the one hand. On the other hand, it indicates
that potential heuristics are often sufficiently expressive even
with low dimensions. The criterion gave further insight into685

what is challenging for potential heuristics but also provides
a possible approach to tackle such challenges, namely with
macros. Investigating planning based on macros (Jonsson
2009) seems to be a good candidate to accompany low di-
mensional potential heuristics. Planning based on macros690

is strong in the shortcomings of low dimensional potential
heuristics.

We found a generalization of the criterion from Theorem
1 for arbitrary correlation complexity. There might be a gen-
eralization to detect arbitrary correlation complexity for the695

criterion from Theorem 2, which incorporates dangerous op-
erators. Such a criterion could provide further insight.

Related Work
The most significant difference between the Π≤k construc-
tion and the Pm construction by Haslum (2009), the ΠC700

compilation by Steinmetz and Hoffmann (2018), or fluent

merging by van den Briel, Kambhampati, and Vossen (2007)
is that the ΠC construction does not describe a valid plan-
ning task. The operators are not fitting to the resulting state
space (it would be possible to extend the definition in a way 705

that we construct matching operators with metavariables in
the precondition and effects. However, this would be rather
cumbersome and unnecessary since we do not need the op-
erators for our arguments).

The additional variables in a ΠC compilation have a bi- 710

nary domain and each additional variable represents a par-
tial assignment. In other words, a conjunction of facts. The
metafacts in the Π≤k construction represent a combination
of facts. The domain of such a metavariable is the cartesian
product of the corresponding domains. The set of partial as- 715

signments that are considered by a ΠC compilation, is not
further specified. If C contains all partial assignments of size
≤ k, then we can interpret the additional facts from the ΠC

compilation as the translation into STRIPS of the additional
facts from Π≤k. 720

Fluent merging is defined on a finite domain representa-
tion and merging two variables combines their domains by
a cartesian product like the Π≤k construction. However, flu-
ent merging replaces the variables it merges with the new
one. Fluent merging reduces the number of state variables 725

while the Π≤k construction increases the number of state
variables.

The Pm construction is defined on propositional STRIPS
tasks, while the Π≤k construction and the ΠC compilation
are defined on tasks in finite domain representation. How- 730

ever, the Pm construction considers all partial assignments
of size ≤ m and is in this regard similar to the Π≤k con-
struction.

Conclusion
We have shown that the correlation complexity of a plan- 735

ning task can be arbitrarily large. This means no fixed di-
mension for potential heuristics, in combination with simple
hill climbing, will be sufficient for satisficing planning on ar-
bitrary domains. It is in some cases possible to detect a large
correlation complexity with the newly introduced 2n states 740

criterion and Folded Macro criterion. We also showed that
if a domain can encode a Turing machine in a certain way,
then we can create tasks of arbitrary correlation complexity
in this domain.

With the new criterions, we gained a deeper understand- 745

ing of what structure causes a large correlation complexity.
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Appendix A 805

Corollary 1. The quadruple criterion is a generalization of the
criterion from Theorem 2.

We show that the condition of the criterion from Theorem 2
implies the condition of the quadruple criterion.

Proof. The correlation complexity requires by definition a de- 810

scending, dead-end avoiding heuristic.
If Π = ⟨V, I,O, γ⟩ is a planning task in normal form with the

operator o that is dangerous and critical in Π then for each DDA
heuristic h there exist reachable states s, sJoK, s′, s′JoK with s,
sJoK, s′ alive and s′JoK unsolvable and o applicable in s and s′ 815

and h(s) > h(sJoK) and h(s′JoK) ≥ h(s′).
Let M := vars(pre(o)) and W := V \M . With Π is in normal

form we conclude sM = s′M and sJoKM = s′JoKM . Because
of eff(o) ⊆ pre(o), applying the operator o does not affect any
variable in W . Therefore, sW = sJoKW and s′W = s′JoKW . 820

It remains to show that {M,W} is a partition of V . There-
fore, we assume vars(pre(o)) = V . This implies that pre(o) is
the only state where o is applicable and therefore sJoK = s′JoK
but the one is solvable while the other is unsolvable. We con-
clude that the assumption is wrong and that vars(pre(o)) ⊊ V . 825

Considering that o is critical. This implies that ∅ ̸= eff(o). Since
o is in normal form we know that vars(eff(o)) ⊆ vars(pre(o))
and therefore ∅ ⊊ vars(pre(o)). So with M = vars(pre(o)) we
conclude ∅ ⊊ M ⊊ V . Therefore, {M,W} is a partition of V .

This shows that we can use the quadruple criterion, be- 830

cause for each heuristic h that is DDA there exists states
s, sJoK, s′JoK, s′ in Π and a partition {W,M} = V such that:

h(s) > h(sJoK) and h(s′JoK) ≥ h(s′) and sW = sJoKW and
s′JoKW = s′W and sM = s′M and sJoKM = s′JoKM


