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Abstract

Motion capture technologies have transformed numerous fields, from the film and gaming
industries to sports science and healthcare, by providing a tool to capture and analyze human
movement in great detail. The holy grail in the topic of monocular global human mesh and
motion reconstruction (GHMR) is to achieve accuracy on par with traditional multi-view
capture on any monocular videos captured with a dynamic camera, in-the-wild. This is
a challenging task as the monocular input has inherent depth ambiguity, and the moving
camera adds additional complexity as the rendered human motion is now a product of both
human and camera movement. Not accounting for this confusion, existing GHMR methods
often output motions that are unrealistic, e.g. unaccounted root translation of the human
causes foot sliding. We present DiffOpt, a novel 3D global HMR method using Diffusion
Optimization. Our key insight is that recent advances in human motion generation, such as
the motion diffusion model (MDM), contain a strong prior of coherent human motion. The
core of our method is to optimize the initial motion reconstruction using the MDM prior.
This step can lead to more globally coherent human motion. Our optimization jointly
optimizes the motion prior loss and reprojection loss to correctly disentangle the human
and camera motions. We validate DiffOpt with video sequences from the Electromagnetic
Database of Global 3D Human Pose and Shape in the Wild (EMDB) and Egobody, and
demonstrate superior global human motion recovery capability over other state-of-the-art
global HMR methods most prominently in long video settings.

1 Introduction

3D human mesh recovery (HMR) refers to the task of computing a mesh of a human body in 3D given an
input image or a video. HMR has various applications such as augmented/virtual reality, motion capture
(MoCap), sports, and healthcare. Particularly, in terms of MoCap, HMR holds the advantage in terms
of accessibility and cost over traditional marker-based MoCap systems that require costly equipments and
human subjects to wear specialized marker suits. In light of this demand for more accessible methods of
MoCap, numerous optimization-based HMR algorithms have been developed in recent times Mündermann
et al. (2006); Nagymáté & Kiss (2018); Hamill et al. (2021); Colyer et al. (2018). Moreover, HMR methods
that not only predict the pose of the human body but also the global root trajectory have garnered significant
attention. We refer to this task as global HMR (GHMR). Though several GHMR algorithms have been
developed recently Yuan et al. (2022); Ye et al. (2023), the ability for these methods to recover accurate
human motion in the global frame leaves much to be desired.

GHMR is a much more challenging task than regular HMR, as we need to simultaneously constrain and
predict the states of both major actors in HMR: 1.) the moving human and 2.) the camera capturing
this moving human. Jointly optimizing the human-camera pair in predicting global motion requires great
temporal understanding for both that allows the model to not just reason about the plausibility of its
predictions on a per-frame basis, but rather the plausibility of the sequential progression of predictions
across time. The lack of temporal understanding of the human-camera pair could yield a multitude of failure
modes: for example, failing to ensure consistency between pose transitions and its corresponding global
translation, hence resulting in highly inaccurate global root trajectory as well as foot sliding, and wrongfully
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attributing the camera’s jitters to the human, hence forcing the predicted human to jitter instead Ye et al.
(2023); Li et al. (2022).

We propose a novel monocular GHMR framework that systematically optimizes both the human motion and
camera movement with enhanced temporal understanding to recover a more accurate and plausible global
human motion. More specifically, we introduce a framework that represents global human motion through
a neural motion field Wang et al. (2022) supervised by a motion diffusion model (MDM) Tevet et al. (2022)
serving as a motion prior and dynamic camera predictions initialized by DROID-SLAM Teed & Deng (2022).

MDM is used to constrain the predicted motion by penalizing implausible pose sequences outputted by the
neural motion field. This motion prior is crucial as it leverages its knowledge on the inherent characteristics
of human motion learned through training with a large-scale 3D human motion dataset et al. (2019), and thus
possesses a strong prior for coherent human motion. Our multi-stage optimization framework ensures that
the motion prior instills temporal understanding for the human and the dynamic camera without wrongfully
tangling the two. We hereby refer to this motion diffusion-guided GHMR framework as DiffOpt.

We validate DiffOpt’s GHMR capability through evaluating its performance on videos from the Electro-
magnetic Database of Global 3D Human Pose and Shape in the Wild (EMDB) dataset Kaufmann et al.
(2023) and comparing its performance alongside four other GHMR algorithms: GLAMR Yuan et al. (2022),
SLAHMR Ye et al. (2023), WHAM Shin et al. (2024), and TRACE Sun et al. (2023). We verify that DiffOpt
demonstrates the best performance in recovering global motion.

To summarize, our contributions to the field of global HMR through this work are threefold:

• We present DiffOpt, a motion diffusion and neural motion field-based GHMR framework for single
human monocular videos that jointly optimize human motion and camera through leveraging a
motion prior module and dynamic camera prediction module.

• We incorporate a motion diffusion-based Tevet et al. (2022) motion prior to guide the motion field’s
pose and global trajectory predictions towards realistic and plausible motions. Also, we successfully
guide the global trajectory predictions using dynamic camera parameters from DROID-SLAM Teed
& Deng (2022), demonstrating that neural motion field-based models are capable of handling videos
captured by moving cameras.

• We validate our framework on video sequences from the EMDB dataset Kaufmann et al. (2023) and
Egobody dataset Zhang et al. (2022b) and demonstrate superior global motion recovery capability
against state-of-the-art global HMR methods particularly on long videos.

2 Related Works

2.1 HMR methods

Our method, DiffOpt, is an optimization-based global HMR framework on monocular videos (Cho et al.,
2022; Zhang et al., 2022a; Guan et al., 2021; Iqbal et al., 2021; Sengupta et al., 2021; Kanazawa et al.,
2018a;b; 2019), but it could also be seen as a test-time-optimization system that fine-tunes predictions
from off-the-shelf methods. NeMo Wang et al. (2022) is another neural motion field-based TTO framework
that jointly optimizes multiple video instances of the same action, which is a loosened form of multi-view
data. NeMo aims to tackle spatial ambiguities of monocular videos such as occlusions through leveraging
information gained from videos of alternative viewpoints. NeMo fine-tunes predictions from VIBE Kocabas
et al. (2020). VIBE, which stands for Video Inference for Human Body Pose and Shape Estimation, is a
3D HMR system for monocular video sequences. VIBE has a temporal module that allows the system to
leverage the temporal information available in videos, which helps in achieving more accurate and consistent
3D pose and shape estimations. SMPLify Pavlakos et al. (2019a) fits a 3D body model parameterized by
the the Skinned Multi-Person Linear (SMPL) Loper et al. (2015) model to the 2D body joints predicted by
DeepCut Pishchulin et al., a CNN-based model. SMPLify Pavlakos et al. (2019a) makes predictions based on
monocular images, but an extension to the framework, named SMPLify-X Pavlakos et al. (2019b) estimates
consistent 3D human poses across video frames by taking into account the temporal sequence of images.
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2.2 GHMR methods

Recently, GHMR have also garnered attention, due to their ability to recover the global motion of humans,
thus allowing us to analyze motion beyond the camera frame. Global occlusion-aware human mesh recovery
with dynamic cameras (GLAMR) Yuan et al. (2022) fine-tunes pose predictions from HyBrik Li et al. (2021;
2023) through the use generative modeling to combat occlusions and recover the global trajectory of the
human subject. Simultaneous Localization And Human Mesh Recovery (SLAHMR) Ye et al. (2023) recovers
the global root trajectory of multiple humans by fine-tuning tracklets from PHALP Rajasegaran et al.
(2021) through leveraging the transitional motion prior HuMoR Rempe et al. (2021) and dynamic camera
parameters from DROID-SLAM Teed & Deng (2022).

2.3 Human motion priors

Human motion priors can be used to guide and constrain the estimation of human poses and motions in order
to make them more physically plausible and consistent with our knowledge of how humans move. Arnab
et al. (2019) use 3D joint predictions to compute a temporal error term that pushes the predictions to mimic
the smoothness of natural human motion. Zhang et al. (2021) use a motion smoothness prior by training an
autoencoder on AMASS data et al. (2019) to learn a latent space of motion that could be deemed as smooth.
Rempe et al. (2020) utilize regression techniques on body joints and the contact points between the foot
and the ground obtained from the input video to carry out a trajectory optimization, which could also be
seen as a physics-based prior. Rempe et al. (2021) presents the 3D Human Motion Model for Robust Pose
Estimation (HuMoR), an expressive generative model implemented as a conditional variational autoencoder
that models a probability distribution of pose transitions. HuMoR is presented as a generative model, but
its potential to serve as a motion prior for optimization-based HMR methods is also explored. SLAHMR
Ye et al. (2023), a state-of-the-art global HMR algorithm, leverages HuMoR as a motion to constrain its
predicted motion.

3 Method

In this section, we formulate the task of 3D GHMR (Sec. 3.1), discuss the mechanism of our motion diffusion
prior (Sec. 3.2), and delineate the multi-stage optimization of DiffOpt (Sec. 3.3).

3.1 Problem set-up

Our objective is to recover the 3D global human motion, i.e. root trajectory included, given a video captured
by a dynamic camera. We follow the paradigm of model-based HMR which uses the SMPL Loper et al.
(2015) body model, which we refer to as fm. Given an input video with T frames, the global human motion
is then represented by a sequence of articulation (a.k.a joint angles) θ1:T ∈ R24×3×T , global root orientation
φ1:T ∈ R3×T , along with root translations x1:T ∈ R3×T .

DiffOpt is an optimization-based HMR method Pavlakos et al. (2019a); Kocabas et al. (2020). Specifically,
we build on three types of models: (i) a 3D HMR regression method (e.g. HMR2.0 Goel et al. (2023))
that outputs only the articulation θ̃ for each frame, (ii) a 2D keypoint detection method (e.g. ViTPose Xu
et al. (2022)) that outputs 2D joint keypoints j̃ ∈ R2, and (iii) a SLAM Teed & Deng (2022) method that
estimates the extrinsic and intrinsic camera parameters per-frame. We represent the final, optimized, human
motion using the recently proposed neural motion (NeMo) field Wang et al. (2022) for additional smoothness
over the sequence and to seamlessly incorporate various loss terms including the MDM-SDS loss described
in section 3.2. In other words, instead of optimizing the global motion {θ, φ, x} directly, the variables are
now represented using multi-layer perceptrons (MLPs) {fθ, fφ, fx} respectively. The articulation at frame t
is produced by NeMo as fθ(t), and similarly for the root motion. The full system architecture for the global
motion prediction pipeline is in Figure 1.
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Figure 1: (top) DiffOpt system architecture. Given an input video with T (n) frames, DiffOpt uses
neural motion fields to predict the pose, root orientation, and global root translation for each frame. We
regress these parameters using the SMPL Loper et al. (2015) body model to get the 3D joint and vertex
positions. Our predicted motion is then constrained by 3D loss against initial predictions from off-the-shelf
HMR models Goel et al. (2023), 2D re-projection loss against predictions from 2D keypoint detection models
Xu et al. (2022), and motion prior loss from the motion diffusion model Tevet et al. (2022). (bottom)
The MDM-SDS loss Poole et al. (2022) is computed by transforming the neural motion fields’ predicted
parameters to MDM’s input format, running the noising and de-noising steps to compute the posterior, and
using this to compute the SDS guidance Poole et al. (2022). This guidance term is back-propagated to the
neural motion fields.

3.2 Motion Diffusion Prior

Motion priors Arnab et al. (2019); Rempe et al. (2021; 2020) is commonly utilized in the context of HMR
optimization. In the context of GHMR with a dynamic camera, the human movement in the video is
confounded by the movement of the camera. In addition, while one might expect that the camera movement
can be well estimated using existing SLAM methods, and be factored out, we found that SLAM methods
perform less robustly in these dynamic human-centric videos. Thus, utilizing motion prior is even more
crucial in inferring the global root trajectory. DiffOpt utilizes the state-of-the-art motion prior, a motion
diffusion model (MDM) Tevet et al. (2022). The key idea is to recover the accurate global human motion
through leveraging MDM’s strong prior of coherent human motion. To utilize MDM as a prior, we use the
well-established technique of score distillation sampling (SDS) loss presented in DreamFusion Poole et al.
(2022), which has been a major driving force in using image prior for 3D content generation.

Motion diffusion model. The core component of a MDM is a denoising network ϵϕ whose inputs are some
noised motion and outputs are the denoised motion, denoted using x0. The forward Markov noising process
follows:

q(xt|x0) = N (αtx0, σ2I), (1)

where t is the diffusion timestep and αt ∈ (0, 1) decrease monotonically. Commonly, the σ is chosen to
satisfy this constraint, α2

t = 1 − σ2
t . In other words, the MDM denoising network is trained with the

following optimization:
min

ϵϕ

Ex0∼D,t∼U(0,1)[∥x0 − ϵϕ(xt, t)∥2
2], (2)

where D is a training set of real motion.

Score distillation sampling. Given a pretrained MDM, the SDS prior is formulated as:

LDiff(ϕ, x) = Et,ϵ

[
w(t) ∥ϵϕ(αtx + σtϵ, t) − ϵ∥2

2

]
, (3)
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where t ∼ U(0, 1), ϵ ∼ N (0, I) and w(t) is a weighting function (see Poole et al. (2022)). Lastly, to use the
MDM-SDS prior in the HMR pipeline, the data representation has to match. Since MDMs are typically
trained with auxiliary losses where the data includes the forward kinematic results (i.e. joint locations) and
contact labels, we use the same (differentiable) transformation function on the HMR motion.

3.3 DiffOpt

We perform a 3-stage optimization, as delineated in Table 1. Intuitively, stage one warms up the neural field
to mimic the articulation from the initial 3D HMR estimate from an off-the-shelf model Goel et al. (2023).
In stage two, given the warmed-up articulation, we utilize the motion diffusion prior to complete a plausible
global trajectory while updating the camera trajectory to keep the target human in view. In the final stage,
we fine-tune both the human and camera motion using the 2D key-points using an ensemble of objectives.

3.3.1 Stage 1: Articulation Warm-Up

In the warm-up stage, all 3 modules (pose, orientation, translation) are optimized through L2 loss with
respect to initial predictions from HMR2.0 Goel et al. (2023). The warm-up optimization could be expressed
as the following:

min
fθ,fφ,fx

Lwarmup(fθ, fφ, fx, θinit, φinit, xinit) (4)

Lwarmup = 1
T

T −1∑
t=0

(
∥fθ(τt) − θinit∥2

2

+ ∥fφ(τt) − φinit∥2
2

+ ∥fx(τt) − xinit∥2
2

)
, (5)

where θinit is the pose parameter, φinit is the orientation predicted by HMR2.0 Goel et al. (2023). The
initial translation xinit is estimated using a simple heuristic that keeps the human in the frustum of the
estimated camera (see Supplementary Material). All three modules take τt, an element at index t of τ , a
self-normalized, monotonically increasing phase vector of length T where τ0 = 0 and τT −1 = 1.

3.3.2 Stage 2: MDM Guidance

The second stage, MDM guidance, is our key optimization step. Given the warmed-up articulation, our goal
in this step is to first find a plausible global root trajectory coherent with the articulation. As we update the
human trajectory, the rendered human will deviate from the original video. Hence, as we update the human
trajectory, we also update the camera motion by making sure the reprojection loss stays low. Intuitively, this
last step can be thought of as optimizing camera motion by human motion prior. In practice, we alternative
between the steps of human motion update (Equation 6) and camera motion update (Equation 7).

Learnable camera parameters. In refining the camera motion, we learn four distinct parameters:

• Camera Rotation Bias (bR ∈ R6×T ): added to the camera rotation matrix in 6d rotation repre-
sentation. Hence, the resulting camera rotation parameter is Rcam = RSLAM + bR, where RSLAM

is the camera rotation predicted by DROID-SLAM Teed & Deng (2022).

• Camera Translation Scale (st ∈ R1×T ): scales the camera translation vector.

• Camera Translation Bias (bt ∈ R3×T ): added to the scaled camera translation vector. Hence,
the resulting camera translation parameter is tcam = tSLAM ∗ st + bt, where tSLAM is the camera
translation predicted by DROID-SLAM Teed & Deng (2022).
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• Camera Focal Length Scale (sf ∈ R1×T ): scales the focal length. Hence, the resulting camera
focal length is fcam = fSLAM ∗ sf , where fSLAM is the focal length predicted by DROID-SLAM
Teed & Deng (2022).

Human motion update. For optimizing human motion, we use a combination of the MDM-SDS loss and only
the articulation loss from the warmup:

min
fθ,fφ,fx

(
LDiff(fθ, fφ, fx) + ∥fθ(τt) − θinit∥2

2

)
, (6)

Camera motion update. The optimization of camera motion can be written as:

min
bR,st,bt,sf

L2D , where (7)

L2D =
(

1
T

T∑
t=1

ρ(jt, j̃t)
)

, (8)

jt = P
(

Rcamf3d

(
pt

)
− tcam

)
, (9)

pt = W
(

fm

(
fθ(τt)

)
+ fx(τt)

)
. (10)

We use P to denote the perspective projection and ρ(·) the error function for 2D points. W is a linear
regressor fitted to get the major body joints in 3D through applying a linear transformation to the SMPL
outputs. We use the Geman-McClure error function Barron (2019), which is more robust to outliers than
the mean squared errors. T indicates the length of the video.

Optimized params Losses used

1. Warm-up fθfφfx Lwarmup

2a. Human fθfφfx

LDiff,

∥θpred − θinit∥

2b. Camera bRstbtsf L2D

3. Fine-tuning fθfφfx bRstbtsf LDiff, L2D, Lwarmup

Table 1: Optimization parameters and loss functions used in different stages. DiffOpt utilizes a
multi-stage optimization scheme comprised of three distinct stages. In the warm-up stage, we optimize the
neural motion fields with respect to initial predictions from off-the-shelf HMR methods. The second stage,
named MDM-guidance step, is comprised of alternating between two sub-stages: 2a) Human optimization
and 2b) Camera optimization stages. In the final fine-tuning stage, we optimize both human and camera
with a compilation of losses.

3.3.3 Stage 3: Fine-tuning

In the final stage of DiffOpt’s optimization scheme, we fine-tune the human motion and camera motion
jointly using LDiff, Lwarmup, and L2D. The fine-tuning optimization stage can be expressed as the following:

min
fθ,fφ,fx,bR,st,bt,sf

(LDiff + Lwarmup + L2D) (11)

The neural motion field is constrained simultaneously by LDiff, Lwarmup, and L2D, and the dynamic camera
parameters are constrained through L2D. Intuitively, the Lwarmup serves to regularize the neural motion field
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to prevent it from further deviating too much from the initial predictions from off-the-shelf predictors Goel
et al. (2023), and L2D is used to make fine-grained adjustments to our motion field for our predicted motion
to better fit to pseudo-ground truth 2D keypoints Xu et al. (2022).

To summarize DiffOpt’s multi-stage optimization framework, stage 1 aims to initialize the neural motion
field to mimic the initial predictions from HMR2.0 Goel et al. (2023), stage 2 grants the MDM module the
ability to aggressively push the neural motion field to implicitly represent a more realistic and plausible
motion when appropriate, and stage 3 finalizes our predicted motion through making minute adjustments
for the motion field to have both the realism demanded by MDM and accuracy/faithfulness with respect to
the original video sequence demanded by initial predictions and 2D keypoint supervision.

4 Experiments

In this section, we validate DiffOpt’s GHMR capability through recovering the global human motion in
the EMDB dataset Kaufmann et al. (2023) and Egobody dataset Zhang et al. (2022b) video sequences.
We conduct three primary GHMR experiments: first experiment evaluates DiffOpt’s performance on short
100-frame EMDB video sequences, second experiment assesses its robustness on lengthy, untrimmed EMDB
sequences with varying lengths (averaging approximately 1,300 frames), and the final experiment evaluates
on untrimmed Egobody sequences.

Baselines To assess DiffOpt’s performance relative to pre-existing HMR methods, we compared it to the
following baseline models:

• GLAMR Yuan et al. (2022) – a global HMR method that optimizes initial SMPL predictions from
HybriK Li et al. (2021) and is robust to long-term occlusions and tracks human bodies outside the
camera’s field of view.

• SLAHMR Ye et al. (2023) – a global HMR method that optimizes initial SMPL predictions from
PHALP Rajasegaran et al. (2021) and recovers the global trajectories of all humans in a moving
camera video leveraging the HuMoR Rempe et al. (2021) motion prior and camera parameters from
DROID-SLAM Teed & Deng (2022).

• WHAM Shin et al. (2024) – a global HMR method that learns to lift 2D keypoints to 3D mesh
using motion capture data and video features to effectively integrate motion context and visual
information.

• TRACE Sun et al. (2023) – a global HMR method that leverages a one-stage method to recover
and track multiple 3D humans.

Metrics We used four independent metrics to evaluate DiffOpt and the baselines.

• MPJPE / MPVPE – Mean per joint/vertex position error assess the accuracy of 3D HMR methods
by determining the mean distance between predicted and actual joint or vertex positions in 3D space.
Measured in millimeters (mm), MPJPE pertains to SMPL joints, whereas MPVPE considers SMPL
vertices.

• Global-MPJPE / MPVPE – These metrics are global counterparts of MPJPE/MPVPE, factor-
ing in predicted global root translation and orientation.

EMDB Dataset We evaluate DiffOpt alongside the baselines with the EMDB dataset Kaufmann et al.
(2023). The EMDB dataset includes 58 minutes of complex 3D human motion, totaling approximately
105,000 frames across 81 distinct sequences, captured in a variety of in-the-wild settings. We utilize the
EMDB dataset slightly differently for our two experiments. For the first experiment involving 100 frame
sequences, we evaluate DiffOpt on seven distinct sequences that contain motion that is characterized by both
1.) intricate and dynamic pose transitions and 2.) significant global root trajectory throughout the entire
duration of the video sequence. The selected videos that suit both these criteria are: ‘09_outdoor_walk’,
‘14_outdoor_climb’, ‘16_outdoor_warmup’, ‘32_outdoor_soccer_warmup_a’, ‘37_outdoor_run_circle’,
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‘41_indoor_jogging_workout’, and ‘58_outdoor_parcours’. For simplicity, we refer to them as ‘outdoor
walk’ ‘outdoor climb’, ‘outdoor warmup’, ‘soccer warmup’, ‘outdoor run’, ‘indoor workout’, and ‘outdoor
parcour’ from this point and onwards. For each of the selected sequences, we divide each sequence to 100
frame segments. We do this because we observe that the performance of pre-existing baseline GHMR models
degrade rapidly as the length of the input motion sequence increases. Hence, this experiment provides the
baseline models the opportunity to demonstrate optimal performance. For the second experiment, we use
the entirety of the EMDB dataset without trimming any sequences.

Egobody Dataset We also evaluate DiffOpt alongside a subset of baselines with the Egobody dataset
Zhang et al. (2022b). Egobody is a large-scale dataset containing 125 distinct video sequences across 36
different scenes, and is intended to capture ground-truth 3D human motions during social interactions. We
use the Egobody test set comprised of 17 distinct video sequences in an untrimmed manner.

4.1 Quantitative Results on EMDB

DiffOpt achieves the most robust overall performance compared to state-of-the-art baselines. Specifically,
DiffOpt consistently outperforms most other methods in key global metrics (G-MPJPE & G-MPVPE),
showing substantial improvements of 17% in G-MPJPE and 18% in G-MPVPE for trimmed sequences
(more detailed discussion in section 4.1.1) from the third-best GHMR framework while marginally trailing
behind WHAM’s average global metrics. Note however, the average G-MPJPE and G-MPVPE of WHAM
were computed excluding one sequence where WHAM optimization fails completely. More importantly,
DiffOpt demonstrates 16% improvements in G-MPJPE and 16% in G-MPVPE compared to the second
best framework for untrimmed sequences (more detailed discussion in section 4.1.2). Despite maintaining
comparable performance in local metrics, DiffOpt’s superior global performance against long video sequences
is crucial for applications requiring accurate global trajectory estimation. On the other hand, other methods
that show smaller improvements in some local metrics have much less consistent and worse performance
in some settings, in addition to the poorer global MPJPE / MPVPE performance in experiments on both
trimmed and untrimmed EMDB sequences.

4.1.1 Trimmed EMDB Sequence Results:

We now offer a more in-depth discussion of the quantitative results of the first experiment shown in Table 2.

While the camera-frame MPJPE and MPVPE metrics are comparable for all five models, the G-MPJPE
and G-MPVPE metrics indicate that DiffOpt outperforms GLAMR Yuan et al. (2022), SLAHMR Ye et al.
(2023), and TRACE Sun et al. (2023) in terms of global human motion recovery. On average, WHAM
Shin et al. (2024) achieves the best global metrics but fails completely for possibly the most difficult motion
sequence of ’soccer warmup’, hence demonstrating poor robustness even within this trimmed video setting.
DiffOpt outperforms SLAHMR, GLAMR, and TRACE on ‘outdoor climb’, ‘outdoor run’, ‘outdoor walk’,
and ‘indoor workout’, and also outperforms the aforementioned three baselines on average. DiffOpt’s supe-
rior ability to recover the global motion on the aforementioned sequences can be attributed to MDM’s Tevet
et al. (2022) ability to promote greater consistency between pose and global translation particularly in flat
surfaces where the only external force is gravity. On the other hand, DiffOpt’s struggles in ‘outdoor warmup’
could be attributed to the fact that the human makes prolonged contact with rigid objects throughout the
sequence. As MDM has been pre-trained on the AMASS dataset et al. (2019) comprised of motion where
the human is only making contact with the ground plane, the sequence represents a challenging distribution
shift.

4.1.2 Untrimmed EMDB Sequence Results:

On the second experiment, we run GLAMR, SLAHMR and DiffOpt on lengthy untrimmed EMDB se-
quences. We find that DiffOpt exhibits the best performance on the global metrics G-MPJPE and G-
MPVPE, as shown in Table 4. Notably, DiffOpt scores 1776.2 in G-MPJPE, which is significantly better
than GLAMR’s score of 2113.5 and SLAHMR’s score of 5595.8. This suggests that DiffOpt, compared to
existing baselines, is the most robust GHMR framework against longer motion sequences. GLAMR yields
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Method Outdoor Outdoor Soccer Outdoor Outdoor Outdoor Indoor
Climb Warmup Warmup Run Walk Parcour Workout Mean

MPJPE / G-MPJPE (mm)
GLAMR 102.8 / 477.3 91.0 / 391.2 77.8 / 554.8 82.8 / 462.8 73.9 / 745.3 196.8 / 963.2 56.6 / 515.3 97.4 / 587.1
SLAHMR 69.5 / 247.6 95.5 / 299.7 77.4 / 345.7 76.6 / 169.4 64.6 / 425.4 90.3 / 697.4 57.0 / 536.8 75.8 / 388.9
WHAM 65.4 / 380.6 61.9 / 159.4 NaN / NaN 44.6 / 480.2 49.2 / 67.2 52.9 / 133.0 45.8 / 78.6 53.3 / 216.5
TRACE 97.4 / 676.9 79.9 / 378.2 72.4 / 1017.2 67.9 / 297.4 75.2 / 275.8 104.6 / 133.0 55.5 / 895.6 79.0 / 524.9
DiffOpt 90.7 / 241.4 94.0 / 364.0 74.1 / 357.8 82.6 / 130.8 82.0 / 288.4 82.5 / 662.5 91.6 / 213.4 85.4 / 322.6

MPVPE / G-MPVPE (mm)
GLAMR 124.2 / 496.8 116.0 / 439.4 98.0 / 553.4 106.9 / 479.2 93.0 / 687.3 270.1 / 962.6 73.1 / 501.5 125.9 / 588.6
SLAHMR 90.6 / 253.5 123.9 / 315.8 94.8 / 356.4 99.4 / 186.6 86.9 / 439.5 103.2 / 705.6 69.3 / 558.6 95.4 / 402.3
WHAM 79.2 / 392.4 83.4 / 183.6 NaN / NaN 55.2 / 467.1 63.9 / 79.4 68.6 / 141.3 63.0 / 82.5 68.9 / 224.4
TRACE 120.3 / 686.8 105.0 / 375.2 90.8 / 1041.4 81.5 / 300.4 99.3 / 352.5 120.8 / 141.3 71.0 / 897.5 98.4 / 542.2
DiffOpt 108.9 / 256.0 112.8 / 374.7 91.6 / 367.6 100.9 / 145.7 109.2 / 307.5 93.4 / 617.4 118.7 / 220.0 105.1 / 327.0

Table 2: Quantitative results on the trimmed EMDB dataset. We validate DiffOpt’s GHMR ca-
pability by comparing its performance against GLAMR and SLAHMR on a subset of the EMDB dataset
containing motions of outdoor climb, warmup, soccer warmup, outdoor run, walk, parcour, and indoor
workout. While local MPJPE and MPVPE metrics are comparable across all methods, DiffOpt clearly
stands superior in global metrics, with DiffOpt showing superior performance in five out of seven evalu-
ation sequences. This result highlights DiffOpt’s robustness in recovering accurate global human motion,
particularly in scenarios with significant global root trajectory.

the best local MPJPE and MPVPE metrics but trails against DiffOpt in its ability to recover global hu-
man motion. Lastly, SLAHMR optimization invariably breaks down when attempting to optimize the full
untrimmed EMDB sequences, resulting in considerably worse metrics compared to GLAMR and DiffOpt.
Validating DiffOpt to be the most robust GHMR method amongst state-of-the-art models holds an impor-
tant implication that DiffOpt is the least constrained in terms of potential mocap applications scenarios.

Method MPJPE/G-MPJPE MPVPE/G-MPVPE

GLAMR 90.4 / 2113.5 114.1 / 2131.3

SLAHMR 234.8 / 5595.8 280.9 / 5596.6

DiffOpt 102.5 / 1776.2 130.2 / 1790.7

Table 3: Metrics for original (untrimmed) EMDB sequences. DiffOpt was evaluated alongside
GLAMR and SLAHMR on original (untrimmed) EMDB sequences. DiffOpt achieves global metrics that
are significantly better than both baselines, thus proving that DiffOpt is the most robust GHMR framework
against lengthy sequences.

In conclusion, the quantitative metrics strongly indicate that DiffOpt outperforms existing state-of-the-
art GHMR methods, particularly in global metrics, which is crucial for not only accurate global trajectory
recovery but also recovery of motion with coherent root translation. DiffOpt not only demonstrates superior
accuracy in these metrics across multiple challenging sequences but also maintains a significantly more robust
optimization framework towards longer motion sequences than its closest competitor, SLAHMR Ye et al.
(2023), as shown in table 4. These results underscore DiffOpt’s potential as the preferred solution for
applications requiring robust GHMR in dynamic, real-world environments for prolonged motion sequences.

4.2 Quantitative Results on Egobody

DiffOptachieves the best global HMR performance on the Egobody dataset comprised of 17 lengthy video
sequences with an average of approximately 1,390 frames. More specifically, DiffOpt boasts an improve-
ment of 24.6% in G-MPJPE metrics and 26.7% in G-MPVPE relative to the second-best method WHAM.
SLAHMR’s optimization framework encounters numerical instability and fails for all 17 sequences, hinting at
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its poor robustness towards lengthy videos with over 100 frames. Moreover, we also evaluate DiffOptafter
replacing our off-the-shelf DROID-SLAM camera predictions with masked-SLAM camera predictions pro-
posed in TRAM Wang et al. (2024). In this revised setting, DiffOpt still demonstrates the best global HMR
metrics relative to other state-of-the-art baselines.

Method MPJPE/G-MPJPE MPVPE/G-MPVPE

SLAHMR NaN / NaN NaN / NaN

WHAM 94.1 / 572.7 112.1 / 596.9

DiffOpt(TRAM cam) 117.9 / 502.0 150.9 / 545.6

DiffOpt 129.2 / 459.8 160.6 / 471.1

Table 4: Metrics for Egobody test sequences. DiffOpt was evaluated alongside SLAHMR and WHAM
on the Egobody test sequences. While SLAHMR’s optimization framework completely fails to handle long
video sequences and WHAM optimization shows poor robustness, DiffOpt achieves global metrics that are
significantly better than both baselines, thus proving that DiffOpt is the most robust GHMR framework
against lengthy sequences.

4.3 Qualitative Results on EMDB

We render DiffOpt’s estimated global human motion on both the original input video as well as a static
world frame to assess whether DiffOpt has recovered human motion that is realistic, plausible, and faithful
to the motion depicted in the video sequence.

On the original video renderings shown in Figure 2, DiffOpt’s human mesh perfectly encapsulates the
human body at all time intervals, and the rendered limbs and feet position are faithful to the human’s
action. GLAMR renderings occasionally fail to fully cover the human body, while SLAHMR renderings
have minor inaccuracies in feet position. The global root trajectory plots indicate that DiffOpt clearly
recovers the most accurate global root trajectory. DiffOpt’s global root trajectory not only adheres to the
ground-truth trajectory throughout the entire duration of the sequence but also has the most accurate final
position, which indicates that DiffOpt most accurately estimates both the incremental translation along
the way and the net translation.

Hence, the qualitative results demonstrate DiffOpt’s superior ability to recover realistic, plausible, and
accurate human motion as well as global root trajectory for the whole duration of the motion.

In conclusion, the experimental results provide strong evidence that DiffOpt outperforms existing state-
of-the-art GHMR methods both quantitatively and qualitatively. Quantitatively, DiffOpt achieves superior
accuracy in key global metrics, consistently outperforming baselines across multiple challenging sequences
in both EMDB untrimmed dataset and Egobody test set. This is particularly important for applications
that require the precise global trajectory estimation for complex pose sequences. Qualitatively, DiffOpt
demonstrates its ability to produce highly realistic and plausible human motion, with visually accurate and
natural limb positioning and adherence to the ground-truth global trajectory. The rendered outputs show
that DiffOpt effectively captures the intricate dynamics of human motion, even in sequences with complex
movements.

4.4 Ablations

For ablation studies, we test the contribution of DiffOpt’s two primary design components: 1. neural motion
field, and 2. multi-stage optimization on all sequences of the trimmed EMDB dataset. We also include the
metrics on the full DiffOpt model for comparison. The results of these ablation experiments are provided
in table 5.
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Figure 2: Qualitative results on a trimmed segment in the ‘soccer warmup’ EMDB sequence
Kaufmann et al. (2023). This is a challenging motion sequence, as the human subject continuously twists
his hips while making quick side-steps. 3D human meshes have been rendered on the original video sequences
for GLAMR Yuan et al. (2022) on the top row, SLAHMR Ye et al. (2023) on the middle row and DiffOpt
on the bottom row. Moreover, the ground-truth global root trajectory and each model’s predicted global
root trajectory have been visualized next to the original video renderings.

In the ablation for neural motion field, we replace the motion representation with learnable parameters
initialized with HMR2.0 values. Replacing the neural motion field MLPs with learnable tensors initialized
with HMR2.0 values for pose, root orientation, and global translation maintained local MPJPE and MPVPE
metrics but significantly worsened global metrics (G-MPJPE and G-MPVPE), highlighting the importance
of implicit neural representations in the successful integration of the MDM motion prior for temporal con-
sistency.

In the ablation for the multi-stage optimization scheme, we try two things: 1. replace the multi-stage
scheme with a single-stage scheme that includes all loss terms, and 2. remove each of the three stages. For
the first experiment, combining all loss terms into a single stage severely deteriorates performance, thereby
demonstrating that the multi-stage optimization framework is essential for leveraging the MDM-SDS loss
term. Next, bypassing each optimization stage independently revealed that the warm-up and MDM stage
significantly impacts global metrics, and the fine-tuning step, though beneficial, is less critical.

5 Limitations and Future Work

Our current approach to 3D global human mesh recovery utilizing a motion diffusion model (MDM) has
highlighted several areas for improvement that are crucial for enhancing the model’s robustness and gener-
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Full Model Metrics

MPJPE G-MPJPE MPVPE G-MPVPE
DiffOpt 85.4 322.6 105.1 327.0

Motion Representation

Learnable params 88.3 (+2.9) 640.8 (+318.2) 108.9 (+3.8) 641.6 (+314.6)

Optimization Scheme

Single Stage 229.6 (+144.2) 947.7 (+625.1) 300.5 (+195.4) 952.7 (+625.7)

Bypassed Stage

No warm-up 143.2 (+57.8) 584.7 (+262.1) 181.7 (+76.6) 610.0 (+283.0)

No MDM step 154.8 (+69.4) 467.8 (+145.2) 184.2 (+79.1) 474.1 (+147.1)

No fine-tuning 89.0 (+3.6) 527.6 (+205.0) 109.9 (+4.8) 536.2 (+209.2)

Table 5: Ablation experiment results. We explore the importance of DiffOpt’s implicit neural repre-
sentation of motion and multi-stage optimization framework. The topmost row contains the metrics for the
full DiffOpt model. Each ablation metrics are accompanied by its difference from the metrics of the full
DiffOpt model in parenthesis.

alizability across various motion scenarios. We identified two main limitations within our MDM framework.
Firstly, the model exhibits a decrease in performance when subjects maintain static leg postures over time,
resulting in minimal translational movement of the human body. Secondly, the model struggles with interac-
tions where the human body is subject to external forces beyond gravity and contact force from the ground,
such as push-and-pull dynamics with external objects. Addressing these deficiencies is imperative for the
model to reliably generalize across diverse scenarios.

6 Conclusion

We proposed DiffOpt a novel GHMR framework for recovering realistic and accurate global human mo-
tion given a monocular video captured under dynamic camera settings. DiffOpt jointly optimizes human
motion and camera dynamics. It achieves this by integrating a motion diffusion-based prior with a dynamic
camera prediction module in our multi-stage optimization scheme, which significantly improves the temporal
coordination between the human subject and the camera.

We conduct extensive evaluations of our framework on the EMDB dataset, where it demonstrates enhanced
capabilities in global motion recovery. Our method outperforms leading-edge global HMR techniques, in-
cluding GLAMR and SLAHMR, showcasing its effectiveness in accurate human motion capture.

DiffOpt’s main contributions are not only in successfully integrating a motion diffusion model as a motion
prior but also in proposing a multi-stage optimization scheme that enables the joint optimization of hu-
man and camera motion to disentangle the two motions and yield more realistic and accurate motions for
each. Therefore, we believe that DiffOpt’s GHMR ability can continue to challenge the limits of GHMR
model performance through seamlessly integrating better motion priors and camera parameter estimation
algorithms into the optimization framework in the future.

Broader Impact Statement

DiffOpt offers several positive impacts by providing an accessible and cost-effective alternative to traditional
marker-based motion capture systems, which require expensive equipment and specialized setups that are
infeasible for everyday use. This heightened accessibility could benefit fields like sports science, healthcare,
film, and gaming by enabling broader applications. However, there are potential negative impacts to consider:
DiffOpt’s performance may vary across demographic groups if the training data lacks diversity, leading to
biased outcomes in applications such as healthcare and sports analysis. Moreover, the method’s reliance on
initial predictions from existing pose estimation models and camera algorithms could also propagate any
inherent biases or limitations in those models.
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A Appendix

We have provided qualitative results in the form of body mesh rendering videos on several distinct EMDB
sequences and can be viewed on our project page: https://sites.google.com/view/diffopt-tmlr
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