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OMNICLEAR: SOFT EFFECTS REMOVAL FROM IMAGES
WITHIN A VERSATILE MODEL

Anonymous authors
Paper under double-blind review

(a) Versatile Effects Removal

(c) Mask Control

Remove lens flare. Remove shadow. Remove reflections. Remove haze. Remove effects.

(d) Removal Strength Control

0.0 1.0Removal Strength

(b) Removing Undefined Effects

Remove effects.

(e) Adding effects

Figure 1: Our OmniClear eliminates multiple challenging (a) and even undefined (b) soft effects
from in-the-wild images while preserving background identities. Besides, OmniClear supports pre-
cise pixel mask control (c), and removal strength control (d), allowing for intuitive and fine-grained
restoration tailored to specific user needs. The framework is also capable of adding effects in the
given region (e). Masks are global by default if not shown. A demo video is included in the sup-
plementary materials.

ABSTRACT

Digital images are often degraded by soft effects such as lens flare, haze, shad-
ows, and reflections, which reduce aesthetics even though the underlying pixels
remain partially visible. The prevailing works address these degradations in isola-
tion, developing highly specialized, specialist models that lack scalability and fail
to exploit the shared underlying essences of these restoration problems. While
specialist models are limited, recent large-scale pretrained generalist models of-
fer powerful, text-driven image editing capabilities. while recent general-purpose
systems (e.g., GPT-4o, Flux Kontext, Nano Banana) require detailed prompts and
often fail to achieve robust removal on these fine-grained tasks or preserve identity
of the scene. Leveraging the common essence of soft effects, i.e., semi-transparent
occlusions, we introduce a foundational versatile model, capable of addressing
diverse degradations caused by soft effects within a single framework. Our ap-
proach centers on fine-tuning a potent inpainting model on a large-scale, curated
dataset of paired images, enabling it to learn robust restoration priors. Our method
provides simple and intuitive user control, either global removal or mask-based
removal with strength control, making interaction easier while ensuring higher re-
liability. Extensive experiments demonstrate that our unified model outperforms
both prior specialist methods and popular general-purpose models, achieving ro-
bust and stable performance on in-the-wild scenarios.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

1 INTRODUCTION

Images captured in real-world environments inevitably suffer from degradations. A common class of
such “soft” effects includes optical phenomena (e.g., lens flare, reflections) and atmospheric condi-
tions (e.g., haze, fog). These effects corrupt scene radiance additively or multiplicatively, degrading
contrast, color fidelity, and fine details (Le & Samaras, 2019; Wan et al., 2017). Consequently,
image quality and visibility are compromised, and in severe cases, occlusions cause irreversible in-
formation loss, rendering recovery fundamentally ill-posed (He et al., 2010; Wu et al., 2021; Le &
Samaras, 2019).

To restore image structures, most existing works address each degradation type separately. For
instance, dehazing has progressed from prior-based methods such as the Dark Channel Prior
(DCP) (He et al., 2010) to deep networks estimating scattering parameters or directly predicting
clean images (Li et al., 2017; Song et al., 2023; Chen et al., 2021; Engin et al., 2018; Chen et al.,
2019). Similarly, shadow, flare, and reflection removal adopt task-specific designs (Le & Samaras,
2019; Dong et al., 2024; Wu et al., 2021; Xue et al., 2025; Zhu et al., 2024; Wan et al., 2017), rely-
ing on physical modeling, layer decomposition, or elaborate data and network strategies to mitigate
ill-posedness. While such methods achieve strong task-specific performance, recent works (Chen
et al., 2025a; Li et al., 2020b; Potlapalli et al., 2023) attempt to unify multiple degradations within
one framework. Yet these models remain limited in scalability and robustness when facing extreme,
diverse real-world conditions. This motivates the development of foundation models trained on
large-scale data to achieve stronger generalization and resilience in the wild.

Concurrently, the rise of powerful foundation models like GPT-4o (Hurst et al., 2024) and Nano
Banana (Gemini 2.5 Flash Image) (Comanici et al., 2025; Google, 2025) has introduced general-
purpose, text-driven image generation/editing based on Multi-modal Large Language Models
(MLLMs). These models can interpret complex prompts and perform realistic edits. However, for
fine-grained tasks like soft effect removal, they exhibit significant limitations. Their performance is
often unstable and heavily reliant on meticulously crafted text prompts. More critically, they lack the
precise, pixel-wise control required for high-fidelity restoration and identity preservation. Treating
soft effect removal as a general inpainting task can lead to the alteration of local image structures or
the identity of objects within the scene, which makes them unreliable for professional photo editing
and critical computer vision pipelines.

Despite their diverse appearances, effects such as lens flare, haze, reflections, and shadows share
the same intrinsic property: they are all semi-transparent occlusions that preserve the identity of
the underlying scenes. To this end, we define a unified and extensible task, termed Soft Effects
Removal (SER). This task is highly challenging. First, these effects are typically entangled with the
scene itself, rather than merely superimposed as simple overlays. Second, the local image structures,
and even pixel-level identities, should be precisely preserved. Third, regions that are fully occluded
or invisible (e.g., overexposed areas in lens flare or areas covered by extremely dense haze) must be
plausibly reconstructed.

To effectively tackle these challenges, we introduce OmniClear (Fig. 1 (a) & (b)), a data-centric
versatile model for Soft Effects Removal. Our method is built upon two key points. First, we cu-
rated a large-scale dataset of approximately 3.8M balanced, high-quality, pixel-aligned image pairs.
By unifying existing open-source datasets and augmenting them with extra real-world and synthetic
data, we provide the precise supervision our model needs to learn content invariance. Second, as
shown in Fig. 1 (c) & (d), we implemented fine-grained user controls, including pixel-level masks
to define the removal area and strength levels to modulate the removal strength, making the process
highly controllable. Beyond restoration, OmniClear can also perform aesthetic edits, such as en-
hancing existing effects or generating new, realistic ones on clean images (Fig. 1 (e)). Our method
achieves state-of-the-art results on multiple public benchmarks and demonstrates significantly better
generalization on in-the-wild testing data.

In summary, our main contributions can be summarized as follows:
• A Versatile SER Model: Proposed a single, versatile model OminClear for removing diverse soft

effects in the wild. Our model achieves state-of-the-art performance on each task and surpasses
much larger general-purpose models such as Nano Banana.

• A Large-Scale Dataset for Generalization: Curated a large-scale dataset of∼3.8M image pairs,
providing vast data distribution for strong generalization on challenging in-the-wild data.
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• Controllable Editing: Developed fine-grained user controls for SER tasks, including spatial
masks and strength levels, to enable precise and controllable effect removal.

2 RELATED WORK

2.1 ISOLATED EFFECTS REMOVAL

Lens flare removal. Previous learning-based methods improved data synthesis by considering cam-
era ISP to enhance realism and generalization (Zhou et al., 2023; 2025). Concurrently, architectural
innovations emerged, including self-supervised methods to disentangle co-occurring flares (He et al.,
2025), while others explicitly separated light source preservation from flare removal using dedicated
detection modules (Ghodesawar et al., 2023), and networks leveraging both spatial and frequency
domains (Vasluianu et al., 2024). More recently, large pretrained Latent Diffusion Models (LDMs)
are adpated to leverage their powerful generative priors (Zhou et al., 2024). The development of
these methods has also been heavily reliant on specialized datasets, from semi-synthetic ones (Wu
et al., 2021), Flare7K (Dai et al., 2022), to real-world paired datasets (Dai et al., 2024).
Reflection removal. Early methods for single-image reflection removal (SIRR) focused on iterative
refinement using edge maps (Fan et al., 2017) or recurrent networks (Yang et al., 2018; Li et al.,
2020a). Subsequent research shifted towards improving training data realism by learning non-linear
blending (Wen et al., 2019), employing physically-based rendering (Kim et al., 2020), and modeling
glass absorption (Zheng et al., 2021). Architectural innovations followed, introducing location-
aware modules (Dong et al., 2021) and advanced attention mechanisms (Huang et al., 2025; Zhang
et al., 2025) to better distinguish between layers. More recent paradigms reduce reliance on paired
data through unsupervised deep image priors (RahmaniKhezri et al., 2022) or by using Diffusion
Models to generate guiding prompts (Wang et al., 2024a). This progress has been underpinned by
the creation of key real-world benchmarks like SIR2 (Wan et al., 2017) and the large-scale RRW
dataset (Zhu et al., 2024).
Shadow removal. Initial approaches to shadow removal relied on traditional physical priors and op-
timization frameworks (Guo et al., 2011; Zhang et al., 2015). The advent of deep learning introduced
end-to-end models like DeshadowNet (Qu et al., 2017) and methods that decomposed images into
shadow-free and matte layers (Le & Samaras, 2019). Subsequent architectural advancements in-
cluded using Generative Adversarial Networks (GANs) for joint detection and removal (Wang et al.,
2018), fusing synthetic exposure pairs (Fu et al., 2021), and learning via shadow generation (Liu
et al., 2021). More recent trends focus on eliminating the dependency on explicit shadow masks, uti-
lizing mask-free transformers (Dong et al., 2024) or reformulating the problem as a dense prediction
task (Lin et al., 2025). The progress in this field has been propelled by benchmarks like SRD (Qu
et al., 2017), ISTD (Wang et al., 2018), and the newer high-resolution WSRD dataset (Vasluianu
et al., 2023).
Haze removal. Single-image dehazing evolved from early methods based on statistical priors like
the Dark Channel Prior (DCP) (He et al., 2010) to data-driven deep learning. Initial deep learning
works included lightweight end-to-end networks (Li et al., 2017), hybrid models that learned priors
for traditional optimization (Yang & Sun, 2018), and unpaired training with GANs to address data
scarcity (Engin et al., 2018). Architectural innovations, such as gated context aggregation (Chen
et al., 2019) and Vision Transformers (Song et al., 2023), were later introduced to better handle non-
uniform haze. Recent efforts focus on closing the synthetic-to-real domain gap by generating more
physically plausible training data (Chen et al., 2021) or leveraging diffusion models for realistic
haze synthesis (Wang et al., 2025). This progress has been consistently driven by the development
of comprehensive benchmarks (Li et al., 2018; Zhang et al., 2024; Islam et al., 2024).
Apart from them, some works delve into unified methods to restore image quality from multiple
degradations caused by bad weathers (Li et al., 2020b; Potlapalli et al., 2023; Chen et al., 2025a).
Despite the achievements from all these methods, key challenges persist including the domain gaps
of synthetic datasets and limited diversity in real-world datasets, while current methods still strug-
gle with scalable training with robust generalization abilities, as well as handling various types of
challenging soft effects simultaneously.

2.2 PROMPT-BASED IMAGE EDITING

Prompt-based image editing originated from diffusion models, enabled by deterministic inversion
techniques like DDIM (Song et al., 2020) that map real images to an editable latent space. Initial
methods controlled edits by manipulating internal model structures, such as altering cross-attention

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

maps to preserve layout (Hertz et al., 2022) or fine-tuning the entire model on a single image for
complex, non-rigid changes (Kawar et al., 2023). The field has since evolved towards more direct
user control, with models trained to follow natural language instructions (Brooks et al., 2023) or
allow for interactive, point-based spatial adjustments (Shi et al., 2024). This shift towards more
precise, semantic editing is increasingly powered by the advanced contextual understanding of Mul-
timodal Large Language Models (MLLMs) (Hurst et al., 2024; Comanici et al., 2025; Bai et al.,
2025). However, current approaches still often lack fine-grained pixel control and can struggle to
perfectly preserve the subject’s identity during transformation.

3 METHODOLOGY

3.1 DATA CURATION

A powerful foundation model requires large-scale, high-quality, and diverse training data. To equip
OmniClear with robust generalization, we curated a comprehensive dataset by unifying pixel-aligned
image pairs from four representative tasks: lens flare, shadow, haze, and reflection removal. This
integration enables the model to learn a broad restoration representation while preserving content
identity.

Public datasets. We incorporate multiple benchmark datasets spanning the four domains (see Ta-
ble 1 and supplementary materials for details). Despite their usefulness, these datasets exhibit im-
balance, such as the scarcity of large-scale flare removal data and limited diversity in haze scenarios.

Data expansion. To remedy these gaps and increase data volume, we expand training data through
three complementary sources: real-world captures, 2D synthesis, and 3D rendering.
• Lens flare. The key bottleneck lies in insufficient data. We therefore construct 78 indoor and

outdoor 3D scenes in Blender (Blender Online Community, 2018), rendering about 70K paired
images, named HALO dataset. Unlike Flare7K (Dai et al., 2022), which overlays flare layers
on clean images, our rendered data produce physically consistent and realistic flare effects. The
dataset covers diverse flare patterns, including reflective flare, glare, shimmer, and streaks.

• Shadow. While public datasets cover both indoor and outdoor scenes, they contain only ∼5K
pairs. To scale up, we add an additional 26K photo pairs. Specifically, we repurpose internal
object-effect removal data: by stitching objects without shadows into background images, we
synthesize corresponding shadow-free versions to form the Large Real-world Shadow Removal
Dataset (LR-SRD).

• Haze. Existing synthetic datasets (RESIDE, HAZESPACE) often appear uniform or algorithmi-
cally simplistic. To generate more realistic and challenging cases, we use their clean ground-truth
images with monocular depth (Ke et al., 2025), and apply a physically motivated atmospheric ren-
dering pipeline. This allows precise control of parameters such as visibility, airlight color, scatter,
and optical thickness. To simulate non-homogeneous haze or fog, we introduce procedural noise
fields and path blurring, yielding realistic textures of haze, smoke, and fog. More synthesis details
are provided in the supplementary material.

These expanded datasets extend coverage to underrepresented scenarios and complement public
benchmarks, enhancing OmniClear’s robustness in the wild. A detailed breakdown is given in Ta-
ble 1, with representative samples in Fig. 2.

3.2 FRAMEWORK

As shown in Fig. 3, OmniClear is a unified framework designed to tackle multiple soft effect re-
moval tasks. Inspired by UniReal (Chen et al., 2025b), the core architecture reformulates these
diverse tasks as a problem of discontinuous frame generation within a latent diffusion model. The
process begins with a Variational Autoencoder (VAE) (Kingma & Welling, 2013) encoding the input
image into a compact latent space, while a text encoder processes a task-specific prompt (e.g., “re-
move haze”) to generate instructive embeddings. These conditional inputs (image latent and textual
embeddings) are then concatenated with the noisy target latent and fed as a sequence to a Diffusion
Transformer (DiT). The DiT’s full attention mechanism operates on this sequence, allowing it to
iteratively predict and remove noise from the target latent by conditioning on both the visual context
and the textual instructions. Finally, the fully denoised latent is passed through the VAE decoder
to reconstruct the final, effect-free image. The model is trained using a mean squared error (MSE)
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Table 1: Summary of datasets curated for OmniClear training. “†” represents the datasets curated
by us, “*” represents the datasets which we re-synthesis effects with our own algorithm.

Task Dataset Type Description Pairs

Lens flare FlareReal600 (Dai et al., 2024) Real-World Nighttime flares, Streetview, Cityscapes, Outdoor 0.6k
HALO† 3D Synthetic Rendered, Various flares and scenes, Indoor & Outdoor 70k

Shadow

WSRD+ (Vasluianu et al., 2023) Real-World Object-level, Close-view, Rich texture, Complex shadows 1k
ISTD+ (Wang et al., 2018) Real-World Simple-shaped shadows, Monotonous scenes, Outdoor 1.3k
SRD (Qu et al., 2017) Real-World Various scenes, Outdoor 2.6k
LR-SRD† Real-World Object-level, Close-view, Hard & Soft

shadow, Indoor & Outdoor
26k

Haze

Haze-R (Ancuti et al.,
2018b;a; 2019; 2020; 2021;
2023; 2024)

Real-World Collection includng: I-HAZE, O-HAZE, Dense-Haze,
NH-Haze, etc., Homogeneous & Non-Homogeneous, In-
door & Outdoor

0.3k

REVIDE (Zhang et al., 2021) Real-World Video Frames, Indoor 1.9k
LM-Haze (Zhang et al., 2024) Real-World Multi-level haze, Homogeneous, Indoor 5k
HAZESPACE* (Islam et al., 2024) 2D Synthetic Multi-level haze, Vast range of scenes, Outdoor 24×70k
RESIDE* (Li et al., 2018) 2D Synthetic Multi-level haze, Indoor & Outdoor 290k
SYN-HAZE* 2D Synthetic Multi-level haze, Synthetic scenes, Include

extremely dense haze, Indoor & Outdoor
24×70k

Reflection

RRW (Zhu et al., 2024) Real-World Various scenes, Diverse glass and reflection types 14.9k
POLAR-RR (Lei et al., 2020) Real-World Polarization-based, Indoor 0.8k
RFC (Lei & Chen, 2021) Real-World Flash-induced reflections 5k
BDN (Yang et al., 2018) 2D Synthetic Linearly Blended, Public Image Sources 50k

Figure 2: Visualization of our curated data samples and synthetic haze by our method.

loss between the predicted noise and the ground truth noise, with a timestep-dependent weighting
scheme to balance the contributions of different noise levels.
Random Masking Strategy. As established in the framework, a mask can be supplied as a condition
to guide the denoising process toward a specific spatial region. However, most of the training sets
do not contain the mask of effects. To ensure the model can robustly handle any user-provided mask
shape, we adopt a random masking strategy. During training, following (Suvorov et al., 2022; Zheng
et al., 2022) we synthesize a wide variety of binary masks M by randomly combining geometric
primitives like rectangles with free-form, stroke-like patterns that simulate user brush strokes. Af-
terwards, providing pairs {Iinput, Igt}, we generate the corresponding training supervision Itarget
where the effect is removed only within the masked region via simply compositing Iinput and Igt
with the mask, as shown in Equation 1. Note that the regions of effects in the input image are un-
available, hence the masks do not necessarily cover them. In this way the behaviors the model to
learn is summarized as following:
• Region inside the mask w/ effects: remove effects based on the strength;
• Region inside the mask w/o effects: keep identical;
• Region outside the mask: keep identical.
Additionally, to make the supervision natural-looking, we blur the mask boundary via dilation and
Gaussian blur. This strategy exposes the model to a vast distribution of possible mask shapes, en-
hancing its generalization capability for arbitrary user edits, and removing the sepcific effect regions.
Removal Strength Control. Beyond specifying where to remove an effect, OmniClear allows users
to control how much of the effect is removed. This is achieved by training the model to interpret
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Remove haze.
Input Random mask
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Prediction /      
Supervision

Original 
ground truth

𝛼 ∈ [0, 1]

𝐼𝑡𝑎𝑟𝑔𝑒𝑡 =  𝛼𝑀𝑏𝑙𝑢𝑟 ∙ 𝐼𝑔𝑡 + (1 − 𝛼𝑀𝑏𝑙𝑢𝑟)  ∙ 𝐼𝑖𝑛𝑝𝑢𝑡

Strength

Gaussian 
blur

Figure 3: The architecture of OmniClear. During training, the mask is randomly synthesized along
with a scalar strength, and the supervision is composed by the input image and the original ground
truth via the mask and the strength.

continuous values in the conditional mask as an indicator of removal intensity. During the training
process, for each sample, we uniformly sample a floating-point scalar value to represent “strength”,
denoted as α ∈ [0, 1]. Instead of conditioning the model on a binary mask M , we provide a soft
value mask αM . The model thus learns to associate a mask value of 1.0 with complete removal,
0.0 with no change, and intermediate values with partial removal. On the other hand, along with the
aforementioned blurred mask, the training target is generated by linearly interpolating between the
clean ground truth (Igt) and the input with effects (Iinput) using the randomly sampled α. Formally,
the supervision during training is computed as following:

Itarget = αMblur · Igt + (1− αMblur) · Iinput (1)

This joint strategy of conditioning on a soft mask while generating a correspondingly blended target
enables the model to learn a continuous and intuitive mapping from the control signal to the desired
degree of effect removal.
Handling Undefined Effects. Our framework also extends to zero-shot generalization on unseen
soft effects through two complementary fine-tuning strategies. First, we randomly replace task-
specific prompts with a generic prompt “remove effects”, encouraging the model to capture a shared
notion of removal across tasks. Second, we introduce an auxiliary task using clean images: random
masks are generated and overlaid with semi-transparent or opaque regions to synthesize degraded
inputs, which are trained exclusively with the generic prompt. This prevents overfitting to prede-
fined effect categories and compels the model to learn the broader concept of removing arbitrary
occlusions, thereby enabling generalized restoration.
Adding & Enhancing Effects. We can easily invert the removal task to adding or enhancing effects
by swapping the roles of the input and the target. Similarly, the adding or enhancing ability is
controlled by the mask and strength given by users. We demonstrate this ability in Fig. 5.

4 EXPERIMENTS

4.1 BENCHMARKS AND BASELINES

Benchmarks. We evaluate OmniClear across four soft-effect tasks on widely used benchmarks.
For lens flare removal, we adopt the Flare7K real-world test set (Dai et al., 2022). For shadow
removal, we test on SRD (Qu et al., 2017), ISTD+ (Wang et al., 2018), and the high-resolution
WSRD+ (Vasluianu et al., 2023). For haze removal, we use the SOTS and HSTS subsets of RE-
SIDE (Li et al., 2018). For reflection removal, we employ SIR2 (Wan et al., 2017) and the Nature
test set (Li et al., 2020a). OmniClear is fine-tuned on the training splits of these datasets for domain
adaptation. Evaluation uses standard full-reference metrics: PSNR and SSIM.

To assess real-world robustness, we collected 39 in-the-wild images containing haze, fog, flare, re-
flection, and shadow. As no ground truth is available, we report reference-free metrics (LIQE (Zhang
et al., 2023), contrast gain (Wang et al., 2024b)), and a reference-based evaluation with Qwen2.5-
VL-72B (Bai et al., 2025), a vision-language model instructed to judge the percentage of effect
removal. We will further discuss these metrics in the supplementary material.
Baselines. We compare against both generalist and specialist methods. Generalist baselines include
GPT-4o (Hurst et al., 2024), FLUX Kontext (Labs et al., 2025), Nano Banana (Google, 2025), and
Seedream 4.0 (ByteDance, 2024). Specialist baselines cover:
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Figure 4: Comparisons with state-of-the-art specialist and generalist models on in-the-wild testing
data. For effect removal, our method significantly outperforms these baselines. Moreover, generalist
models fail to preserve the identity of background objects, some of the discrepancies are circled.

Lens flare: (Zhang et al., 2020; Zhou et al., 2023; Dai et al., 2022), BracketFlare (Dai et al., 2023),
Difflare (Zhou et al., 2024);
Dehazing: DCP (He et al., 2010), AOD-Net (Li et al., 2017), GCANett (Chen et al., 2019),
PSD (Chen et al., 2021), Dehazeformer (Song et al., 2023), MSF-Net (Zhu et al., 2021), UCL-
Dehazet (Wang et al., 2024b), DiffDehaze (Wang et al., 2025);
Shadow removal: ShadowFormer (Guo et al., 2023a), ShadowRefiner (Dong et al., 2024), DCShad-
owNet (Jin et al., 2021), ShadowDiffusion (Guo et al., 2023b), StableShadowDiff (Xu et al., 2025);
Reflection removal: (Zhang et al., 2018), YTMT (Hu & Guo, 2021), DSRNet (Hu & Guo, 2023),
PromptRR (Wang et al., 2024a), L-DiffER (Hong et al., 2024).

4.2 COMPARISONS WITH STATE-OF-THE-ART

Qualitative Comparisons. Fig. 4 visually compares OmniClear with state-of-the-art models on
challenging in-the-wild images. Specialist models generalize poorly to out-of-domain data, often
resulting in incomplete removal or new artifacts. Meanwhile, powerful generalist models like Nano
Banana and FLUX Kontext suffer from instability and fail to preserve scene details, leading to
significant content drift (highlighted by red circles). In contrast, OmniClear effectively removes a
wide range of soft effects while remaining highly faithful to the original image content, producing
clean and content-consistent results.
Quantitative Comparisons. To assess real-world generalization,we first conduct a comparison on
a challenging in-the-wild test set using no-reference metrics, shown in Table 2. In this more diffi-
cult setting, OmniClear significantly outperforms both specialist and generalist baselines in terms of
perceptual quality and removal efficacy, achieving the highest LIQE, Contrast gain, and QwenQA
scores across nearly all tasks, which highlights its robust generalization. We then evaluate Omni-
Clear against specialists on eight standard benchmarks using full-reference metrics (Table 3). The
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Table 2: No-reference quantitative comparison on in-the-wild images for four SER tasks. We report
results from multiple image quality assessment metrics.

Haze Shadow
Method LIQE↑ Contrast↑ QwenQA↑ Method LIQE↑ Contrast↑ QwenQA↑
Dehazeformer 1.9999 +0.74 0.0 ShadowFormer 3.3704 +3.09 18.8
DiffDehaze 1.5624 +0.03 9.1 ShadowRefiner 3.5179 -2.30 26.3
Flux Kontext 2.2584 +3.85 22.7 Flux Kontext 3.3184 +0.73 36.3
Nano Banana 2.6864 +0.26 27.3 Nano Banana 3.6399 -4.93 35.0
Seedream 4.0 2.1253 +2.60 52.7 Seedream 4.0 2.7640 -3.58 36.3
Ours 2.8225 +5.57 60.0 Ours 3.7764 +3.61 65.0

Lens Flares Reflections
Method LIQE↑ Contrast↑ QwenQA↑ Method LIQE↑ Contrast↑ QwenQA↑
Uformer 1.3832 -4.39 30.9 YTMT 1.1187 -2.30 14.4
BracketFlare 3.3377 -10.72 13.6 DSRNet 1.6975 -4.17 17.8
Flux Kontext 3.0574 -0.31 62.7 Flux Kontext 1.7009 +0.71 8.9
Nano Banana 3.0358 -4.05 71.8 Nano Banana 2.0935 -1.25 56.7
Seedream 4.0 2.1643 -4.41 73.6 Seedream 4.0 1.6145 -0.96 53.5
Ours 3.5186 +2.33 92.7 Ours 2.2257 +1.83 75.6

Table 3: Quantitative comparison with state-of-the-art methods across four soft effect removal tasks.
We report PSNR (↑) and SSIM (↑) on eight benchmarks. Our unified model is compared against
specialist methods in each respective category.

Lens Flares Haze
Method Flare7k Method HSTS SOTS

PSNR SSIM PSNR SSIM PSNR SSIM

Zhang et al. (2020) 21.02 0.784 DCP 17.01 0.803 18.38 0.819
Zhou et al. (2023) 25.18 0.872 AOD-Net 19.68 0.835 20.08 0.861
UNet (Dai et al., 2022) 26.11 0.879 GCANet 21.37 0.874 21.66 0.867
Restormer (Dai et al., 2022) 26.28 0.883 PSD 19.37 0.824 20.49 0.844
Uformer (Dai et al., 2022) 26.98 0.890 MSFNet 31.03 0.931 30.07 0.939
Difflare 26.06 0.898 UCL-Dehaze 26.87 0.933 25.21 0.927

Ours 27.34 0.891 Ours 32.17 0.962 29.52 0.955

Shadow Reflections
Method WSRD+ ISTD+ SRD Method SIR2 Nature20

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

ShadowFormer 25.44 0.820 32.78 0.934 30.58 0.958 Zhang et al. (2018) 22.45 0.872 20.37 0.772
ShadowRefiner 26.04 0.827 31.03 0.928 - - YTMT 23.05 0.886 21.03 0.802
DCShadowNet 21.62 0.593 25.50 0.694 - - DSRNet 24.97 0.907 21.70 0.820
ShadowDiffusion - - 31.08 0.950 31.91 0.968 PromptRR 24.22 0.876 21.00 0.814
StableShadowDiff 26.26 0.827 35.19 0.970 33.63 0.968 L-DiffER 25.18 0.911 23.95 0.831
Ours 26.91 0.829 35.59 0.964 34.16 0.971 Ours 25.98 0.911 24.17 0.812

results show our unified model achieves state-of-the-art performance, consistently outperforming or
matching specialist models by obtaining top scores across all four tasks, including the highest PSNR
on multiple benchmarks.

4.3 DISCUSSIONS AND APPLICATIONS

Ablation studies. We conduct an ablation study to validate the effectiveness of our joint-task learn-
ing strategy. As shown in Table 4, we compare our full model, trained with Joint-Task Learning
(JTL), against four same models trained independently using Single-Task Learning (STL). The re-
sults clearly indicate that the JTL model consistently outperforms the STL models across all four
tasks on their respective benchmarks. This superiority suggests that by learning a unified represen-
tation from diverse soft effects, OmniClear develops a more robust and generalizable feature space
that benefits all individual tasks.
Strength control. As illustrated in Figure 5(a), OmniClear provides fine-grained control over the
intensity of the effect removal. Users can specify a continuous strength value, allowing for a smooth
transition from partial reduction to complete removal of the artifact. This feature offers greater
flexibility for users to achieve their desired level of restoration.
Mask control. OmniClear supports precise, localized editing through mask-based control, as shown
in Figure 5(b). By providing a binary mask, users can designate specific spatial regions for effect
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Table 4: Ablation study on training strategies. JTL (Joint-Task Learning) represents our full Omni-
Clear, while STL (Single-Task Learning) denotes models trained separately for each task.

Lens Flares Haze Shadow Reflections
Method Flare7k HSTS ISTD+ SIR2-wild

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
STL 27.18 0.890 31.91 0.963 35.43 0.963 26.40 0.876
JTL 27.34 0.891 32.17 0.962 35.59 0.964 27.44 0.918

Figure 5: (a) Illustration of Strength Control for effect removal. (b) Illustration of Mask Control for
accurate user regional editing. (c) Adding realistic effects to clean image, or enhance current effects
for flexible editing purpose. (d) Zero-shot generalization ability on multiple unseen degradations
like rain, stain, etc.

removal while leaving the rest of the image untouched. This allows for targeted and accurate edits
tailored to user needs.
Effects addition and enhancement. Beyond removal, the OmniClear framework is also capable
of generative tasks. As demonstrated in Figure 5(c), by inverting the process, our model can real-
istically add new soft effects to clean images or enhance existing ones. This versatility makes it a
valuable tool for creative photo editing and data augmentation.
Zero-shot removal. OmniClear exhibits strong generalization capabilities to novel degradations not
seen during training. As shown in Figure 5(d), the model can perform zero-shot removal of unseen
artifacts such as rain and stains. This ability underscores the robustness of the learned features and
the model’s potential to handle a wide array of real-world image restoration challenges beyond its
core training tasks.
Reproducibility Statement The portion of our method that relies on public datasets is reproducible,
as our implementation is based on the open-source DiT codebase.

5 CONCLUSION AND LIMITATIONS

In this work, we introduced OmniClear, a unified foundation model for Soft Effects Removal (SER)
that effectively handles diverse degradations including lens flare, haze, shadows, and reflections.
Built upon a Diffusion Transformer trained on a large-scale pair-wise dataset, OmniClear overcomes
the poor generalization of specialist models and the content inconsistency of generalist approaches.
Extensive experiments demonstrate that our model achieves state-of-the-art performance on standard
benchmarks and superior perceptual quality on in-the-wild images. Beyond high-quality removal,
the framework provides fine-grained user controls, supports creative effect generation, and shows
strong zero-shot capabilities on unseen degradations. Key limitations include its significant compu-
tational cost and the extensive resources required for training. Nevertheless, OmniClear represents
a significant step towards a universal and controllable solution for high-fidelity image restoration.
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