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Abstract

Reservoir Computing (RC) is a machine learning method based on neural networks that
efficiently process information generated by dynamical systems. It has been successful in solving
various tasks including time series forecasting, language processing or voice processing. RC
is implemented in Python and Julia but not in R. This article introduces reservoirnet, an
R package providing access to the Python API ReservoirPy, allowing R users to harness the
power of reservoir computing. This article provides an introduction to the fundamentals of RC
and showcases its real-world applicability through three distinct sections. First, we cover the
foundational concepts of RC, setting the stage for understanding its capabilities. Next, we delve
into the practical usage of reservoirnet through two illustrative examples. These examples
demonstrate how it can be applied to real-world problems, specifically, regression of COVID-19
hospitalizations and classification of Japanese vowels. Finally, we present a comprehensive
analysis of a real-world application of reservoirnet, where it was used to forecast COVID-19
hospitalizations at Bordeaux University Hospital using public data and electronic health records.
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1 Introduction32

Reservoir Computing (RC) is a prominent machine learning method, proposed by Jaeger (2001), Maass,33

Natschläger, and Markram (2002) and Lukoševičius and Jaeger (2009) that has gained significant34

attention in recent years for its ability to efficiently process information generated by dynamical35

systems. This innovative approach leverages the dynamics of a high-dimensional “reservoir” (we36

define it below) to perform complex computations and solve various tasks based on the response37

of this dynamical system to input signals. RC has demonstrated its efficacy in tackling various38

challenges, encompassing pattern classification and time series forecasting in applications ranging39

from electrocardiogram analysis to bird calls (Trouvain and Hinaut 2021), language processing40

(Hinaut and Dominey 2013), power plants, internet traffic, stock prices, and beyond (Lukoševičius41
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and Jaeger 2009; Tanaka et al. 2019).42

Originally, the RC paradigm was implemented in artificial firing-rate neurons (“Echo State Networks”,43

Jaeger (2001)) and spiking neurons (“Liquid State Machine”, Maass, Natschläger, and Markram (2002))44

as a recurrent neural network (RNN) where the internal recurrent connections, denoted as the45

reservoir, are randomly generated and only the output layer (named “read-out”) is trained. The46

reservoir projects temporal input signals onto a high-dimensional feature space, facilitating the47

learning of non-linear and temporal interactions. Thus, this recurrent layer contains high-dimensional48

non-linear recombination of the inputs and past states: it is a “reservoir of computations” from49

which useful information can be linearly extracted (or “read-out”) to provide the desired outputs.50

This offers the advantage of decreasing the computing time compared to conventional RNNs while51

consistently maintaining performance (Vlachas et al. 2020). Besides, this RC paradigm fostered52

increasing interest thanks to its ability to be implemented on classical computers, as the hidden53

recurrent layer can be kept untrained. A wide range of physical media can be also used to replace54

it and Tanaka et al. (2019) recently reviewed this prolific field: from FPGA hardware (Penkovsky,55

Larger, and Brunner 2018), to spin waves using magnetic properties (Nakane, Tanaka, and Hirose56

2018), skrymions (Prychynenko et al. 2018) or optical implementations (Rafayelyan et al. 2020).57

This provides interesting and potentially more efficient alternative to traditional machine learning58

computing and might play an important role in the coming years (Yan et al. 2024).59

RC leverages various hyperparameters to introduce prior knowledge about the relationship between60

input variables and output targets. But because the connections within the reservoir are randomly61

initialized, the same set of hyperparameters may exhibit diverse behaviors across different instances62

of the reservoir connections. This unpredictability makes it challenging to anticipate the performance63

of a particular hyperparameter setting, as identical settings may produce varying outcomes when64

applied to distinct instances of the reservoir. Moreover, selecting the most suitable hyperparameters65

often requires researchers to experiment with multiple combinations on a training dataset and66

evaluate their performance on a separate test set2. Although this approach can be resource-intensive67

and time-consuming, it is a compromise that is acceptable considering the rapid simulation capabilities68

offered by RC. Furthermore, there is a current absence of implementation in R, rendering the method69

challenging for users unfamiliar with Python (Trouvain and Hinaut 2022) or Julia (Martinuzzi et al.70

2022).71

Here, we offer comprehensive guidance to assist new users in maximizing the benefits of RC. Initially,72

a broad introduction to reservoir computing is presented in Section 2, followed in Section 3 by a73

tutorial on its application using reservoirnet, an R package built upon the ReservoirPy Python74

module (Trouvain, Rougier, and Hinaut 2022; Trouvain and Hinaut 2022; Trouvain et al. 2020).75

Section 3 then introduces the workflow usage on reservoirnet for RC with two basic use-cases,76

and finally, in Section 4 we investigate the various challenges associated with an advanced case-77

study leveraging RC for forecasting COVID-19 hospitalizations. This case-study exploration includes78

detailed guidance on the modeling strategy, the selection of hyperparameters, and the implementation79

process.80

2 RC presentation81

RC is a machine learning paradigm which is most often implemented as Echo State Networks (ESNs),82

i.e. the firing-rate neuron version (Jaeger 2001). An ESN is described by three matrices of connectivity:83

an input layer 𝑊𝑖𝑛, a recurrent layer 𝑊 and an output layer 𝑊𝑜𝑢𝑡. At each time step, the input vector84

𝑢𝑡 is projected into the reservoir which is also combined with reservoir past state 𝑥(𝑡 − 1) through85

2In this article, we employ the term “train set” to refer to the combined dataset consisting of both the training and
validation sets, which are cycled through in a cross-validation manner.
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the recurrent connections. The output 𝑦(𝑡) is linearly read-out from the reservoir. Input 𝑊𝑖𝑛 and86

recurrent 𝑊 matrices are kept random; only the output matrix 𝑊𝑜𝑢𝑡 is trained in an offline or online87

method. Often a ridge regression (i.e. a regularized linear regression) is used to obtain the desired88

outputs 𝑦(𝑡) from the reservoir states 𝑥(𝑡). Figure 1 depicts the architecture. For simplicity, we will89

use the term “reservoir computing” for “Echo State Network” in the remainder of the paper.90

Figure 1: Reservoir computing is composed of an input layer, a reservoir and an output layer.
Connection between input layer and reservoir and inside reservoir are random. Only the output
layer is optimized based on a ridge regression. Adapted from Trouvain et al. (2020)

The input layer 𝑢(𝑡) is an 𝑀-dimension vector, where 𝑀 is the number of input time series, which91

corresponds to the values of the input time series at time 𝑡 where 𝑡 = 1, … , 𝑇. The reservoir layer 𝑥(𝑡)92

is an 𝑁𝑟𝑒𝑠-dimensional vector where 𝑁𝑟𝑒𝑠 is the number of nodes in the reservoir. The value 𝑥(𝑡) is93

defined as follow:94

𝑥(𝑡 + 1) = (1 − 𝛼)𝑥(𝑡) + 𝛼 𝑡𝑎𝑛ℎ (𝑊𝑥(𝑡) + 𝑊𝑖𝑛𝑢(𝑡 + 1)) . (1)

The leaking rate 𝛼 ∈ [0, 1] defines the update rate of the nodes. The closer 𝛼 is to 1, the more the95

reservoir is sensitive to new inputs 𝑢(𝑡). Therefore, the reservoir state at time 𝑡 + 1 denoted 𝑥(𝑡 + 1)96

depends on the reservoir state at the previous time 𝑥(𝑡) and the new inputs 𝑢(𝑡 + 1). The function97

𝑡𝑎𝑛ℎ() represents the activation function, applied element-wise to each component of the vector,98

ensuring that each node’s activation is scaled between −1 and 1. Both𝑊𝑖𝑛 and𝑊 are random matrices99

of size 𝑁𝑟𝑒𝑠 × 𝑀 and 𝑁𝑟𝑒𝑠 × 𝑁𝑟𝑒𝑠 respectively.100

The input-reservoir connection matrix (𝑊𝑖𝑛) and the intra-reservoir connection matrix (𝑊) are101

generated in three steps. 𝑊𝑖𝑛 is generated using a Bernoulli (bimodal) distribution where each value102

can be either −𝐼𝑠𝑐𝑎𝑙𝑒(𝑚) or 𝐼𝑠𝑐𝑎𝑙𝑒(𝑚) with an equal probability where 𝑚 = 1,… ,𝑀 corresponds to a103

given feature in the input layer. The input scaling, denoted 𝐼𝑠𝑐𝑎𝑙𝑒, is a hyperparameter coefficient104

common to all features from the input layer or specific to each feature 𝑚. In that case, the more105

important the feature is, the greater should be its input scaling. 𝑊 is generated from a Gaussian106

distribution 𝒩 (0, 1). Both 𝑊𝑖𝑛 and 𝑊 then undergo sparsification, where a connectivity mask is107

applied to retain only 10% of the connections, enforcing sparsity. In a third step, the 𝑊 matrix is108
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scaled according to the defined spectral radius, a hyperparameter defining the highest eigen value of109

𝑊.110

The final layer is a linear regression with ridge penalization where the explanatory features are the111

reservoir state and the variable to be explained is the outcome to predict such that:112

𝑊𝑜𝑢𝑡 = 𝑌𝑋 𝑇(𝑋𝑋 𝑇 + 𝜆𝐼 )−1.

Where x(t) and y(t) are accumulated in X and Y respectively such that:113

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑥(1)
𝑥(2)
...

𝑥(𝑇 )

⎤
⎥
⎥
⎥
⎦

and 𝑌 =
⎡
⎢
⎢
⎢
⎣

𝑦(1)
𝑦(2)
...

𝑦(𝑇 )

⎤
⎥
⎥
⎥
⎦

.

The parameter 𝜆 is the ridge penalization which aims to prevent overfitting. Additionally, one can also114

connect the input layer to the output layer to the reservoir nodes. In that case, 𝑋 is the accumulation115

of both such that :116

𝑋 =
⎡
⎢
⎢
⎢
⎣

𝑥(1), 𝑢(1)
𝑥(2), 𝑢(2)

...
𝑥(𝑇 ), 𝑢(𝑇 )

⎤
⎥
⎥
⎥
⎦

and 𝑌 =
⎡
⎢
⎢
⎢
⎣

𝑦(1)
𝑦(2)
...

𝑦(𝑇 )

⎤
⎥
⎥
⎥
⎦

.

Overall, there are four main hyperparameters to be chosen by the user: i) the leaking rate which117

defines the memory of the RC, ii) the input scaling which defines the relative importance of the118

features, iii) the spectral radius which defines the connections of the neurons inside the reservoir119

which in turn defines the degree of non-linear combination of features, and iv) the ridge penalization120

which controls the degree of overfitting. The choice of hyperparameters often requires the user to121

evaluate the performance of different combinations of hyperparameters on a validation set before122

selecting the optimal combination to forecast on the test set.123

3 Usage workflow124

In this section, we will cover the basics of reservoirnet use including installation, classification and125

regression. A more in depth description is provided in Section 4 with the covid-19 forecast use case.126

3.1 Installation127

reservoirnet is an R package making the Python module ReservoirPy easily callable from R using128

reticulate R package Ushey, Allaire, and Tang (2024). It is available on CRAN (see https://cran.r-129

project.org/package=reservoirnet) and can be installed using:130

# Install reservoirnet package from CRAN
install.packages("reservoirnet")

Alternatively, it can also be installed from GitHub:131

# Install reservoirnet package from GitHub
devtools::install_github(repo = "reservoirpy/reservoirR")

For reservoirnet to work, it will require Python version 3.8 or higher, along with the reservoirpy132

module which can be installed with the install_reservoirpy() function:133

reservoirnet::install_reservoirpy()

Reservoir Computing (RC) is well suited to both regression and classification tasks. We will introduce134

a simple example for both task.135
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3.2 Package workflow overview136

Theworkflow of reservoirnet is described in Figure 2. A reservoirmodel is created by the association137

of an input layer (a matrix), a reservoir, and an output layer. Both the reservoir and the output layer138

are created using the function reservoirnet::createNode() by specifying the node type (i.e., either139

Reservoir or Ridge).140

This function accepts several arguments to specify the hyperparameters of the reservoir and will be141

detailed in future sections. After the reservoir and output layer are created, they can be connected142

using the %>>% operator, a specific pipe operator dedicated to reservoirnet. The model can then be143

fitted using reservoirR_fit() and used to make predictions on a new dataset using predict_seq().144

3.3 Basic regression use-case145

3.3.1 Covid-19 data146

In this first use-case, we will introduce the fundamental usage of the reservoirnet package. This147

demonstration will be conducted using the COVID-19 dataset that is included within the package.148

These data encompass hospitalization, positive RT-PCR (Reverse Transcription Polymerase Chain149

Reaction) results, and overall RT-PCR data sourced from Santé Publique France, which are publicly150

available on data.gouv.fr (for further details, refer to help(dfCovid)). Our primary objective is to151

predict the number of hospitalized patients 14 days into the future. To accomplish this, we will152

initially train our model on data preceding the date of January 1, 2022, and then apply it to forecast153

values using the following dataset.154

We can proceed by loading useful packages - namely ggplot2 Wickham, Navarro, and Pedersen155

(2018) and dplyr Wickham et al. (2023), data and define the task:156

# Load usefull packages
library(dplyr)
library(ggplot2)
library(reservoirnet)
# load dfCovid data from the reservoirnet package which contains Covid data
data("dfCovid")
# Set the forecast horizon to 14 days
dist_forecast = 14
# Set the train-test split to 2022-01-01
traintest_date = as.Date("2022-01-01")

Due to the substantial fluctuations observed in both RT-PCRmetrics, our initial step involves applying157

a moving average computation over the most recent 7-day periods for these features. Additionally,158

we augment the dataset by introducing an outcome column and an outcomeDate column, which159

will serve as valuable inputs for model training. Moreover, we calculate the outcome_deriv as the160

difference between the outcome and the number of hospitalized patients (hosp), representing the161

variation in hospitalization in relation to the current count of hospitalized individuals. The resulting162

smoothed data is visualized in Figure 3.163

dfOutcome <- dfCovid %>%
# outcome at 14 days
mutate(outcome = lead(x = hosp, n = dist_forecast),

# Create a new column 'outcome' which contains the number of
# hospitalizations ('hosp') shifted forward by 'dist_forecast' days
# (14 days). This represents the outcome we want to predict.

6
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Figure 2: Worflow of reservoirnet.
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outcomeDate = date + dist_forecast,
# Create a new column 'outcomeDate' which is the current date plus the
# forecast period (14 days).

outcome_deriv = outcome - hosp) %>%
# Create a new column 'outcome_deriv' which is the difference between
# the predicted outcome and current hospitalizations.
# This represents the change in hospitalizations over the forecast
# period.

# rolling average for tested and positive_pcr
mutate_at(.vars = c("Positive", "Tested"),

.funs = function(x) slider::slide_dbl(.x = x,
.before = 6,
.f = mean))

# Apply a rolling mean (7-day average) to the 'Positive' and
# 'Tested' columns.
# The 'slider::slide_dbl' function is used to calculate the mean
# over a window of 7 days (current day + 6 days before). This
# smooths out daily fluctuations and provides a better trend
# indicator.

hosp
P

ositive
Tested

2021 2022 2023

0

500

1000

1500

2000

0

10000

20000

30000

0

30000

60000

90000

date

va
lu

e

Figure 3: Hospitalizations, number of positive RT-PCR and number of RT-PCR of Bordeaux University
Hospital.

3.3.2 First reservoir164

The objective of this task is to train a RC model using the input features to forecast the number of165

hospitalized patients 14 days ahead, as illustrated in Figure Figure 4.166

Setting a reservoir is done with the createNode() function. The important hyperparameters are the167

following :168

8
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Figure 4: Regression use case: Forecasting the number of hospitalized patients 14 days ahead.

• Number of nodes (units) : it corresponds to the number of nodes inside the reservoir. Usually,169

the more the better, but more nodes increases the computation time.170

• Leaking rate (lr) : the leaking rate corresponds to the balance between the new inputs and the171

previous state. A leaking rate of 1 only consider information from new inputs.172

• Spectral radius (sr): the spectral radius is the largest eigenvalue in modulus of the reservoir173

connectivity matrix. A small spectral radius induces stable dynamics inside the reservoir, a174

high spectral radius induces a chaotic regime inside the reservoir.175

• Input scaling (input_scaling): the input scaling is a gain applied to the input features of the176

reservoir.177

• Warmup (warmup) : it corresponds to the number of time step during which the data are178

propagating into the reservoir but not used to fit the output layer. This hyperparameter is set179

in the reservoirR_fit() function.180

In addition, we can set the seed (seed). Because the reservoir connections are set at random, setting181

the seed is a good approach to ensure reproducibility.182

For this part of the tutorial, we will set the hyperparameter at a given value. Hyperparameter183

optimization will be detailed at Section 4.184

# Create a reservoir computing node using the 'createNode' function from the
# reservoirnet package.
# Arguments:
# - nodeType = "Reservoir": Specify the type of node to be a reservoir.
# - seed = 1: Set the seed for reproducibility, ensuring consistent results
# when the model is run multiple times.
# - units = 500: Set the number of reservoir units (neurons) to 500.
# - lr = 0.7: Set the leakage rate (lr) of the reservoir, which controls how
# quickly the reservoir state decays over time.
# - sr = 1: Set the spectral radius (sr) of the reservoir, which influences the
# stability and memory capacity of the reservoir.

9
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# - input_scaling = 1: Set the input scaling factor, which scales the input
# signal before it is fed into the reservoir.

reservoir <- reservoirnet::createNode(nodeType = "Reservoir",
seed = 1,
units = 500,
lr = 0.7,
sr = 1,
input_scaling = 1)

Then we can feed the data to the reservoir and see the activation state of the reservoir 𝑥(𝑡). To do so,185

we first prepare the data and transform it to a matrix.186

## select explanatory features of the train set and transform it to an array
X <- dfOutcome %>%
filter(outcomeDate < traintest_date) %>%
select(hosp, Positive, Tested) %>%
as.matrix()

Then we run the predict_seq() function. It takes as input a node (i.e a reservoir or a reservoir187

associated with an output layer) and the feature matrix.188

# Generate the state of the reservoir using the 'predict_seq' function from the
# reservoirnet package.
# Arguments:
# - node = reservoir: The reservoir computing node created earlier.
# - X = X: The input data matrix containing the features 'hosp', 'Positive',
# and 'Tested'.
# The function computes the state of the reservoir for each time step in the
# input sequence, effectively transforming the input data into the reservoir's
# high-dimensional state space.

reservoir_state <- predict_seq(node = reservoir, X = X)

Now we can visualize node activation using the plot() function presented at Figure 5 .189

# Plot the reservoir state activation over time
plot(reservoir_state)

10
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Figure 5: 20 random nodes activation over time.

Numerous nodes within the system exhibit a consistent equilibrium state. The challenge arises when190

the output layer attempts to extract knowledge from these nodes, as they do not convey meaningful191

information. This issue can be attributed to the disparate scales of the features. To address this192

concern, a practical approach involves normalizing the features by dividing each of them by their193

respective maximum values, thereby scaling them within the range of −1 to 1 by dividing by the194

maximum of the absolute value. Of note, here the features will be scaled between 0 and 1 because all195

features are positive.196

# Standardise features by dividing by the maximum value can improve performance
# After standardisation, all features are on a similar scale which helps RC
stand_max <- function(x) return(x/max(abs(x)))
# scaled features
Xstand <- dfOutcome %>%
filter(date < traintest_date) %>%
select(hosp, Positive, Tested) %>%
mutate_all(.funs = stand_max) %>%
as.matrix() %>%
as.array()

We then feed them to the reservoir and plot the node activation again. Compared to Figure 5, the197

obtained node activation at Figure 6 shows interesting trend outputs as no node seems saturated.198

# feed the scaled features to the reservoir
reservoir_state_stand <- predict_seq(node = reservoir,

X = Xstand,
reset = TRUE)

# plot the output
plot(reservoir_state_stand)
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Figure 6: 20 random node activation over time. Scaled features.

3.3.3 Forecast199

In order to train the reservoir, we should train the last layer which linearly combines the neuron’s200

output.201

3.3.3.1 Set the ESN202

Initially, we establish the output layer with the createNode() function, incorporating a ridge penalty203

set at 1e3. It’s important to note that this hyperparameter can be subject to optimization, a topic204

that will be explored in Section 4. This parameter plays a pivotal role in fine-tuning the model’s205

conformity to the data. When set excessively high, the risk of underfitting arises, whereas setting it206

too low can lead to overfitting. We connect the output layer to the reservoir, with the %>>% operator,207

making the model ready to be trained.208

readout <- reservoirnet::createNode(nodeType = "Ridge",
ridge = 1e3)

# Create a readout node using ridge regression with the 'createNode' function
# from the reservoirnet package.
# Arguments:
# - nodeType = "Ridge": Specify the type of node to be a ridge regression
# readout.
# - ridge = 1e3: Set the regularization parameter (ridge) for the ridge
# regression to 1000.
# Ridge regression is used to prevent overfitting by adding a penalty on the
# size of the coefficients.

model <- reservoir %>>% readout
# Link the reservoir and readout nodes to form a complete reservoir computing
# model. The '%>>%' operator connects the high-dimensional state generated by

12
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# the reservoir to the readout layer, allowing the model to learn the mapping
# from the reservoir states to the target outputs.

3.3.3.2 Set the data209

First we separate the train set on which we will learn the ridge coefficients and the test set on which210

we will make the forecast. We define the train set to be all the data before 2022-01-01 and the test211

data to be all the data to have forecast both on train and test sets.212

# Perform some data management to isolate train and test sets
# train set
dftrain <- dfOutcome %>% filter(outcomeDate <= traintest_date)
yTrain <- dftrain %>% select(outcome)
yTrain_variation <- dftrain %>% select(outcome_deriv)
xTrain <- dftrain %>% select(hosp, Positive, Tested)
# test set
xTest <- dfOutcome %>% select(hosp, Positive, Tested)

We standardize with the same formula as seen before. We learn the standardization on the training213

set and apply it on the test set. Then we convert the dataframe to matrix.214

# copy train and test sets
xTrainstand <- xTrain
xTeststand <- xTest
# standardise based on training set values
ls_fct_stand <- apply(xTrain,

MARGIN = 2,
FUN = function(x) function(feature) feature/(max(x)))

lapply(X = names(ls_fct_stand),
FUN = function(x){

xTrainstand[,x] <<- ls_fct_stand[[x]](feature = xTrain[,x])
xTeststand[,x] <<- ls_fct_stand[[x]](feature = xTest[,x])
return()

})
# convert to array
lsdf <- lapply(list(yTrain = yTrain,

yTrain_variation = yTrain_variation,
xTrain = xTrainstand,
xTest = xTeststand),

function(x) as.matrix(x))

3.3.3.3 Train the model and predict215

We then feed the reservoir with the train set using the reservoirR_fit() function. To do so, we set216

a warmup of 30 days during which the data are propagating into the reservoir but not used to fit the217

output layer.218

### train the reservoir ridge output
fit <- reservoirnet::reservoirR_fit(node = model,

X = lsdf$xTrain,
Y = lsdf$yTrain,
warmup = 30,
reset = TRUE)
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Now that the ridge layer is trained, we can forecast using the predict_seq() function. We set the219

parameter reset to TRUE in order to clean the reservoir from the data used by the training set.220

# Forecast with the trained reservoir on the test data
vec_pred <- reservoirnet::predict_seq(node = fit$fit,

X = lsdf$xTest,
reset = TRUE)

# Make figure to represent forecast on the train and test sets.

dfOutcome %>%
mutate(pred = vec_pred) %>%
na.omit() %>%
ggplot(mapping = aes(x = outcomeDate)) +
geom_line(mapping = aes(y = outcome,

color = "observed")) +
geom_line(mapping = aes(y = pred,

color = "forecast")) +
annotate("rect",

xmin = traintest_date,
xmax = max(dfOutcome$outcomeDate, na.rm = T),
ymin = 0,
ymax = max(dfOutcome$outcome, na.rm = T)*1.1,
alpha = .2) +

annotate("text", label = "Test set",
x = as.Date("2022-08-01"), y = 2200, size = 7) +

annotate("text", label = "Train set",
x = as.Date("2021-03-01"), y = 2200, size = 7) +

scale_color_manual(values = c("#3772ff", "#080708")) +
theme_minimal() +
labs(color = "", x = "Date", y = "Hospitalizations")
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Figure 7: Forecast

We observe that the model forecast at Figure 7 is not fully accurate, both on the test set and the221

train set. In that case, one option could be to reduce ridge penalization to fit more closely the data,222

the optimization of ridge hyperparameter will be discussed at Section 4. Another possibility is to223

ease the learning of the algorithm by forecasting the variation of the hospitalization instead of224

the number of hospitalized patients. For that step, we will learn on the outcome_deriv contained225

in yTrain_variation data which is defined outcome as outcome_deriv = outcome - hosp. As226

depicted at Figure 8, this strategy improved the model forecast.227

## Fit reservoir on outcome variation instead of raw outcome
fit2 <- reservoirnet::reservoirR_fit(node = model,

X = lsdf$xTrain,
Y = lsdf$yTrain_variation,
warmup = 30,
reset = TRUE)

## Get the forecast on the test set
vec_pred2_variation <- reservoirnet::predict_seq(node = fit2$fit,

X = lsdf$xTest,
reset = TRUE)

## Transform the outcome variation forecast into hospitalization forecast
vec_pred2 <- vec_pred2_variation + xTest$hosp

## Plot the results
dfOutcome %>%
mutate(Raw = vec_pred,

Variation = vec_pred2) %>%
tidyr::pivot_longer(cols = c(Raw, Variation),

names_to = "Outcome_type",
values_to = "Forecast") %>%

na.omit() %>%
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ggplot(mapping = aes(x = outcomeDate)) +
geom_line(mapping = aes(y = outcome,

color = "observed")) +
geom_line(mapping = aes(y = Forecast,

color = "Forecast")) +
annotate("rect",

xmin = traintest_date,
xmax = max(dfOutcome$outcomeDate, na.rm = T),
ymin = 0,
ymax = max(dfOutcome$outcome, na.rm = T)*1.1,
alpha = .2) +

annotate("text", label = "Test set",
x = as.Date("2022-08-01"), y = 2200, size = 5) +

annotate("text", label = "Train set",
x = as.Date("2021-03-01"), y = 2200, size = 5) +

facet_wrap(Outcome_type ~ .,
labeller = label_bquote(cols = "Outcome" : .(Outcome_type))) +

scale_color_manual(values = c("#3772ff", "#080708")) +
theme_minimal() +
theme(legend.position = "bottom") +
labs(color = "", x = "Date", y = "Hospitalizations")
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Figure 8: Covid-19 hospitalizations forecast. The model is either trained to forecast the number of
hospitalizations (denoted Raw) or the variation of the hospitalizations compared to current level of
hospitalisation (denoted Variation)
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3.4 Classification228

3.4.1 The Japanese vowel dataset229

This example is largely inspired from the classification tutorial of reservoirpy. To illustrate the230

classification task, we will use the Japanese vowel dataset (Kudo, Toyama, and Shimbo (1999)). The231

data can be loaded from reservoirnet as follow :232

# Get the Japanese vowels dataset using the 'generate_data' function from the
# reservoirnet package.
# The dataset contains preprocessed features and labels for classification.
# Then we isolate train and test sets
japanese_vowels <- reservoirnet::generate_data(dataset = "japanese_vowels")[[1]]
X_train <- japanese_vowels$X_train
Y_train <- japanese_vowels$Y_train
X_test <- japanese_vowels$X_test
Y_test <- japanese_vowels$Y_test

The dataset comprises 640 vocalizations of the Japanese vowel æ, contributed by nine distinct233

speakers. Each vocalization represents a time series spanning between 7 and 29 time steps, encoded234

as a 12-dimensional vector denoting the Linear Prediction Coefficients (LPC). A visual representation235

of six distinct utterances from the test set, originating from three different speakers, is depicted in236

Figure 9.237
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Figure 9: Vowel dataset, sample with 3 speakers and 2 utterance each.

The primary objective involves the attribution of each utterance to its respective speaker, this is238

denoted as classification or sequence-to-vector encoding. The secondary objective involves the239

attribution of each time step of each utterance to its speaker, this is denoted as transduction or240

sequence-to-sequence encoding. While this second approach may seem somewhat superfluous in241

this context, it could be useful, for example, in cases where multiple speakers take turns speaking,242

allowing us to identify which sequence belongs to each individual speaker. Figure Figure 4 illustrates243

this task.244
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Figure 10: Classification use-case, identifying the speaker from an utterance.

3.4.2 Classification (sequence-to-vector model)245

The first approach is the sequence-to-vector encoding. For this task we aim to predict the speaker of246

the whole utterance (i.e the label is assigned to the whole sequence). We first start by creating the247

reservoir and the output layer using createNode() function.248

reservoir <- reservoirnet::createNode("Reservoir", units = 500,
lr=0.1, sr=0.9,
seed = 1)

# Create a reservoir computing node with 500 units using the 'createNode'
# function from the reservoirnet package.
# Arguments:
# - units = 500: Set the number of reservoir units (neurons) to 500.
# - lr = 0.1: Set the leakage rate (lr) of the reservoir to 0.1, controlling
# how quickly the reservoir state decays over time.
# - sr = 0.9: Set the spectral radius (sr) of the reservoir to 0.9, influencing
# the stability and memory capacity of the reservoir.
# - seed = 1: Set the seed for reproducibility, ensuring consistent results
# when the model is run multiple times.
readout <- reservoirnet::createNode("Ridge",ridge=1e-6)
# Create a readout node using ridge regression with the 'createNode' function
# from the reservoirnet package.
# Arguments:
# - ridge = 1e-6: Set the regularization parameter (ridge) for the ridge
# regression to 1e-6.
# Ridge regression is used to prevent overfitting by adding a penalty on the
# size of the coefficients.

To perform this task, we need to modify the training and testing processes. Leveraging the inherent249

inertia of the reservoir, information from preceding time steps is preserved, effectively endowing the250
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RC with a form of memory. Consequently, the final state vector encapsulates insights gathered from251

all antecedent states. In the context of the sequence-to-vector encoding task, only the final state is252

used. To simplify this process, we introduce the last_reservoir_state() function, which extracts253

the final reservoir state. This process is executed as follows:254

states_train <- reservoirnet::last_reservoir_state(node = reservoir, X = X_train)

Then, we use only the final state for prediction. We first extract the final state using the255

last_reservoir_state() function and then use the trained readout to predict the vowel using the256

predict_seq() function with the seq_to_vec parameter set to TRUE:257

# Fit the reservoir using the last state vector (each observation is the whole
# vowel sequence)
res <- reservoirnet::reservoirR_fit(node = readout, X = states_train, Y = Y_train)

Then we can perform the prediction using only the final state. We first get the final state using258

the last_reservoir_state() function and use the trained readout to predict the vowel using the259

predict_seq() function with the seq_to_vec parameter set to TRUE.260

# The operation is repeated for the test set :
states_test <- reservoirnet::last_reservoir_state(node = reservoir, X = X_test)
Y_pred <- reservoirnet::predict_seq(node = readout, X = states_test, seq_to_vec = TRUE)

Figure 11 shows the prediction for the 6 utterances depicted at Figure 9 where the model correctly261

identifies the speaker.262

# A figure represents the performance on the test set
dfplotseqtovec <- lapply(vec_sample,

FUN = function(i){
speaker <- which(Y_test[[i]][1,] == 1)
Y_pred[[i]] %>%
as.data.frame() %>%
tidyr::pivot_longer(cols = everything(),

names_to = "pred_speaker",
values_to = "prediction") %>%

mutate(pred_speaker = gsub(x = pred_speaker,
pattern = "V", "")) %>%

mutate(speaker = speaker, .before = 1,
uterrance = i,
target = speaker == pred_speaker) %>%

return()
}) %>%

bind_rows()

ggplot(dfplotseqtovec,
mapping = aes(x = pred_speaker,

y = prediction,
fill = target)) +

geom_bar(stat = "identity") +
facet_wrap(uterrance ~ speaker,

labeller = label_bquote(cols = "speaker" : .(speaker)),
ncol = 2) +

scale_fill_manual(values = c("#BDBDBD", "#A3CEF1")) +
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theme_minimal() +
theme(legend.position = "none") +
labs(y = 'Score',

x = "Speaker")
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Figure 11: Prediction in a sequence-to-sequence approach 6 samples with 3 speakers and 2 utterance
each. The speaker to predict is depicted in blue. For each of the 6 utterance, the model correctly
identifies the speaker.

Then, we can also compute the overall accuracy :263

# The overall accuracy is evaluated
accuracy <- function(pred, truth) mean(pred == truth)

Y_pred_class <- sapply(Y_pred,
FUN = function(x) apply(as.matrix(x),1,which.max))

Y_test_class <- sapply(Y_test,
FUN = function(x) apply(as.matrix(x),1,which.max))

score <- accuracy(pred = Y_test_class, truth = Y_pred_class)

print(paste0("Accuracy: ", round(score * 100,3) ,"%"))

[1] "Accuracy: 92.703%"264

3.4.3 Transduction (sequence-to-sequence model)265

For this task, the goal is to predict the speaker for each time step of each utterance. The first266

step is to get the data where the label is repeated for each time step. This is easily done with the267

repeat_targets argument as follow :268
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# For this new task where we want to forecast for each time step (instead of each utterance)
# we start by getting the data in the appropriate format
# Then we split the train and test data
japanese_vowels <- reservoirnet::generate_data(

dataset = "japanese_vowels",
repeat_targets=TRUE)$japanese_vowels

X_train <- japanese_vowels$X_train
Y_train <- japanese_vowels$Y_train
X_test <- japanese_vowels$X_test
Y_test <- japanese_vowels$Y_test

Then we can train a simple Echo State Network to solve this task. For this example, we will connect269

both the input layer and the reservoir layer to the readout layer, which is performed by the %>>%270

operator. This direct connection between the input layer and the output layer can be particularly271

useful when the relationship between the input sequences and the output is partially linear, potentially272

improving performance. Section 4 will explore this aspect in more detail through the SARS-CoV-2273

prediction task.274

# Create an input, a reservoir and an output layers
source <- createNode("Input")
readout <- createNode("Ridge",ridge=1e-6)
reservoir <- createNode("Reservoir",units = 500,lr=0.1, sr=0.9, seed = 1)
# Connect the input layer to the reservoir and connect both the input layer and
# the reservoir to the output layer
model <- list(source %>>% reservoir, source) %>>% readout

We can then fit the model and predict the labels for the test data. The reset parameter is set to TRUE275

to remove information from the reservoir from the training process.276

# Fit the RC model
model_fit <- reservoirnet::reservoirR_fit(node = model,

X = X_train,
Y = Y_train,
warmup = 2)

# Predict with the fitted model
Y_pred <- reservoirnet::predict_seq(node = model_fit$fit,

X = X_test,
reset = TRUE)

From the Y_pred and Y_test we represent at Figure 12 the predictions for the same patients as in277

Figure 9.278

# Make a graph with a label for each time of each utterance
dfplotseqtoseq <- lapply(vec_sample,

FUN = function(i){
speaker <- which(Y_test[[i]][1,] == 1)
Y_pred[[i]] %>%
as.data.frame() %>%
tibble::rowid_to_column(var = "Time") %>%
tidyr::pivot_longer(cols = -Time,

names_to = "pred_speaker",
values_to = "prediction") %>%

mutate(pred_speaker = gsub(x = pred_speaker,
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pattern = "V", ""),
speaker = speaker,
uterrance = i,
.before = 1) %>%

return()
}) %>%

bind_rows()

ggplot(dfplotseqtoseq, mapping = aes(x = Time,
y = pred_speaker,
fill = prediction)) +

geom_tile() +
facet_wrap(uterrance ~ speaker,

labeller = label_bquote(cols = "speaker" : .(speaker)),
ncol = 2) +

scale_fill_gradient2(low = "#8ECAE6", high = "#FB8500", mid = "#023047",
midpoint = 0) +

theme_minimal() +
labs(y = 'Predicted speaker',

fill = "Prediction score")
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Figure 12: Prediction in a sequence-to-sequence approach 6 samples with 3 speakers and 2 utterance
each. The higher the score of the speaker, the lighter the color.

For those 6 utterances, the model correctly identify the speaker for most of the time steps. We can279

then evaluate the overall accuracy of the model :280

# Compute the accuracy
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Y_pred_class <- sapply(Y_pred, FUN = function(x) apply(as.matrix(x),
1,
which.max))

Y_test_class <- sapply(Y_test, FUN = function(x) apply(as.matrix(x),
1,
which.max))

score <- accuracy(array(unlist(Y_pred_class)), array(unlist(Y_test_class)))

print(paste0("Accuracy: ", round(score * 100,3) ,"%"))

[1] "Accuracy: 92.456%"281

4 Avanced case-study: Covid-19 hospitalizations forecast282

4.1 Introduction283

Since late 2020, millions of cases of SARS-CoV-2 infection have been documented across the globe284

(World Health Organisation 2020; COVID-19 Cumulative Infection Collaborators 2022; Carrat et al.285

2021). This ongoing pandemic has exerted significant strain on healthcare systems, resulting in a surge286

in hospitalizations. This surge, in turn, necessitated modifications to the healthcare infrastructure and287

gave rise to population-wide lockdown measures aimed at preventing the saturation of healthcare288

facilities (Simões et al. 2021; Hübner et al. 2020; Kim et al. 2020). The capacity to predict the289

trajectory of the epidemic on a regional scale is of paramount importance for effective healthcare290

system management.291

Numerous COVID-19 forecasting algorithms have been proposed using different methods (e.g en-292

semble, deep learning, mechanistic), yet none has proven entirely satisfactory (Cramer et al. 2022;293

Rahimi, Chen, and Gandomi 2021). In France, short-term forecasts with different methods have294

been evaluated with similar results (Paireau et al. 2022; Carvalho et al. 2021; Mohimont et al. 2021;295

Pottier 2021). In this context a machine learning algorithm based on linear regression with elastic-net296

penalization, leveraging both Electronic Health Records (EHRs) and public data, was implemented at297

Bordeaux University Hospital (Ferté et al. 2022). This model, which aimed at forecasting the number298

of hospitalized patients at 14 days, showed good performance but struggled to accurately anticipate299

dynamic shifts of the epidemic.300

RC has been used in the context of covid-19 epidemic forecast (Kmet and Kmetova 2019; Liu et301

al. 2023; Ray, Chakraborty, and Ghosh 2021; Zhang et al. 2023; Ghosh et al. 2021). Among them,302

Ghosh et al. (2021), Liu et al. (2023) and Ray, Chakraborty, and Ghosh (2021) used it to forecast303

epidemic, Zhang et al. (2023) performed sentiment analysis and Kmet and Kmetova (2019) used304

it to solve optimal control related to vaccine. The evaluation of RC for epidemic forecast showed305

promising results in all approaches, being competitive with Long-Short Term Memory (LSTM) and306

Feed-Forward Neural Network (FFNN) in Ray, Chakraborty, and Ghosh (2021). However, the test307

period was short for Ghosh et al. (2021)} (21 and 14 days) and Ray, Chakraborty, and Ghosh (2021)308

(86 days) making it difficult to evaluate the behavior of the methods during epidemic dynamic shift.309

This was not the case for Liu et al. (2023) (6 months) but they implemented daily ahead forecast310

which would be difficult to use to manage a hospital. Finally, all three implementations used only311

one time series as input whereas it has been shown that using different data sources could improve312

forecast Ferté et al. (2022). Therefore, it is still difficult to assess the usefulness of RC over a large313

period and using many time series as inputs.314

RC can be viewed as an extension of penalized linear regression, where inputs undergo processing by a315

reservoir, introducing the capacity for memory and non-linear combinations. Given the effectiveness316
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of penalized linear regression in COVID-19 forecasting, as highlighted in Ferté et al. (2022), and the317

promising results exhibited by RC in epidemic forecasting, as demonstrated in studies such as Ghosh318

et al. (2021), Liu et al. (2023), and Ray, Chakraborty, and Ghosh (2021), we have opted to employ RC319

for the prediction of hospitalizations at 14 days at the University Hospital of Bordeaux.320

The aim of this study is to showcase the use of reservoirnet for an advanced use case in forecasting321

the SARS-CoV-2 pandemic in R. Several architectural choices will be evaluated, such as the connection322

between the input layer and the output layer, and the use of either individual input scaling per feature323

or a common input scaling. The performance of Reservoir Computing (RC) will be compared with324

elastic-net penalized regression (identified as the optimal model in Ferté et al. (2022)), while a more325

in-depth comparison of performance against other methods can be found in Ferté, Dutartre, Hejblum,326

Griffier, Jouhet, Thiébaut, Legrand, et al. (2024).327

4.2 Methods328

4.2.1 Data329

The study utilized aggregated data spanning from May 16, 2020, to January 17, 2022, regarding330

the COVID-19 epidemic in France, drawing from various sources to enhance forecasting accuracy.331

These sources encompassed epidemiological statistics from Santé Publique France, weather data332

from the National Oceanic and Atmospheric Administration (NOAA), both providing department-333

level data (Smith, Lott, and Vose 2011; Etalab 2020) and Electronic Health Record (EHR) data from334

the Bordeaux Hospital providing hospital-level data. All data were daily updated. Santé Publique335

France data included information on hospitalizations, RT-PCR tests, positive RT-PCR results, variant336

prevalence, and vaccination data, categorized by age groups. NOAA data contributed temperature,337

wind speed, humidity, and dew point data, allowing for the computation of the COVID-19 Climate338

Transmissibility Predict Index (Roumagnac et al. 2021). EHRs data included hospitalizations, ICU339

admissions, ambulance service records, and emergency unit notes, with relevant COVID-19-related340

concepts extracted from the notes. Data are discussed more in depth in Ferté et al. (2022).341

First derivative over the last 7 days were computed to enrich model information. To take into account342

measurement error and daily noise variation, data were smoothed using a local polynomial regression343

with a span of 21 days. As previously described, input features were scaled between -1 and 1 by344

dividing the observed value by the maximum of the absolute value of the given input feature.345

All data are publicly available. Weather data can be obtained from Smith, Lott, and Vose (2011) using346

R package worldmet (Carslaw 2023). Vaccine data can be downloaded from Etalab (2020). EHRs data347

can be downloaded on dryad (Ferté et al. 2023). For privacy issues, publicly available EHRs data348

below 10 patients were obfuscated to 0. For convenience, all data were downloaded, merged and349

provided as replication material.350

4.2.2 Evaluation framework351

The task was to forecast 14 days ahead the number of hospitalized patients. As seen at Section 3.3,352

we will train the model to predict the variation of hospitalization, denoted as ℎ𝑜𝑠𝑝, defined as353

𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡+14 = ℎ𝑜𝑠𝑝𝑡+14 − ℎ𝑜𝑠𝑝𝑡 with 𝑡 = 1, ..., 𝑇. Metrics computation and visualizations will be354

performed on the predicted number of hospitalizations denoted as ̂ℎ𝑜𝑠𝑝𝑡+14 = ̂𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑡+14 + ℎ𝑜𝑠𝑝𝑡.355

The dataset was separated into two periods. First period from May 16, 2020 to March 1, 2021 served356

to identify relevant hyperparameters. Remaining data was used to evaluate the model performance.357

The performance of the model was evaluated according to several metrics:358

• the mean absolute error : MAE = 1
𝑇 ∑

𝑇
𝑡=1 | ̂ℎ𝑜𝑠𝑝𝑡+14 − ℎ𝑜𝑠𝑝𝑡+14|.359
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• the median relative error : MRE = median (|
̂ℎ𝑜𝑠𝑝𝑡+14−ℎ𝑜𝑠𝑝𝑡+14
ℎ𝑜𝑠𝑝𝑡+14

|).360

• themean absolute error to baseline : MAEB = 1
𝑇 ∑

𝑇
𝑡=1 (| ̂ℎ𝑜𝑠𝑝𝑡+14 − ℎ𝑜𝑠𝑝𝑡+14| − |ℎ𝑜𝑠𝑝𝑡 − ℎ𝑜𝑠𝑝𝑡+14|).361

• the median relative error to baseline : MREB = median (|
̂ℎ𝑜𝑠𝑝𝑡+14−ℎ𝑜𝑠𝑝𝑡+14
ℎ𝑜𝑠𝑝𝑡−ℎ𝑜𝑠𝑝𝑡+14

|))362

Median was chosen over mean for 𝑀𝑅𝐸 and 𝑀𝑅𝐸𝐵 because those metrics tend to have extremely363

high values when the denominator is close to 0 (i.e when the number of hospitalized patients is close364

to 0 or the number of patients hospitalized at 14 days is close to the current number of hospitalized365

patients respectively). 𝑀𝐴𝐸𝐵 and 𝑀𝑅𝐸𝐵 compare model performance to a baseline model which366

predicts the current number of hospitalized patients at 14 days. Those metrics help to determine the367

information added by the model and is a good baseline as covid-19 forecast model do not always368

outperform this basic forecast (Cramer et al. (2022)).369

Because the outcome is obfuscated below 10 hospitalizations for privacy reason, we set both the370

outcome and the forecast to 10 when the observed value was 0 or the forecasted value was below 10371

when evaluating the model performance.372

4.2.3 Models373

We compared RC to elastic-net penalized regression (denoted as Enet). Furthermore we evaluated374

RC based on several architectures. First we compared RC with a single input scaling common to all375

features and a RC with a specific input scaling per feature. Second we compared RC where the input376

layer is connected to the output layer in addition to the connection between reservoir and output377

layer. Therefore, five models were evaluated :378

• Elastic-net penalized regression denoted Enet379

• RC with a single input scaling and no connection between input and ouput layers denoted380

Common IS R %»% O381

• RCwith a single input scaling and connection between input and ouput layers denoted Common382

IS I+R %»% O383

• RC with multiple input scaling and no connection between input and ouput layers denoted384

Multiple IS R %»% O385

• RCwithmultiple input scaling and connection between input and ouput layers denotedMultiple386

IS I+R %»% O387

Because of the randomness of the reservoir, we took the median forecast of 10 reservoir on the train388

set to evaluate the performance of a given hyperparameter set. On the test set we aggregated the389

forecast of 40 reservoirs, each of them having one of the 40 best hyperparameter sets found on the390

train set. In addition, because covid-19 hospitalization is a non-stationary process, models were391

re-trained everyday using all previous days. To ease computation burden, only one day over two392

was used to find hyperparameters on the training set.393

4.2.4 Hyperparameter optimisation using random search394

RC relies mainly on 4 hyperparameters including the leaking rate (i.e “memory” parameter), spectral395

radius (i.e “chaoticity” parameter), input scaling (i.e “feature gain” parameter) and ridge (i.e penaliza-396

tion parameter). Input scaling can be either, common to all features or specific to each feature which397

increases the number of hyperparameter by the number of features.398

Following the notation from glmnet package (Friedman, Hastie, and Tibshirani 2010), elastic-net399

penalized linear regression relies on two hyperparameters, lambda (i.e the penalization parameter)400

and alpha (i.e the compromise between lasso and ridge penalty)401

26



su
bm
itte
d

Hyperparameter were selected in the training set (i.e before March 1, 2021) using a wrapper approach402

and a random search sampler using 2000 samples for each model. The sampling distribution were403

defined as follow :404

• (RC) ridge and (Enet) lambda : log-uniform law defined between 1e-10 and 1e5405

• (RC) input scaling and spectral radius : log-uniform law defined between 1e-5 and 1e5406

• (RC) leaking rate : log-uniform law defined between 1e-3 and 1407

• (Enet) alpha : uniform defined between 0 and 1408

We provided large search space for all hyper-parameters. Search space was slightly reduced for409

leaking rate based on previous results and because a leaking rate of 1e-3 already imply that new410

inputs make the reservoir change really slowly which is not inline with the dynamic of covid-19 but411

would be appropriate for an application where the phenomena to forecast has a slow dynamic.412

Finally, we provided an additional Enet model similar to the one in Ferté et al. (2022) where alpha413

was set to 0.5 and lambda was re-evaluated everyday in the test set based on previous data using the414

cross-validation procedure provided by glmnet.415

4.3 Results416

The goal of this task is to predict 14 days ahead the hospitalization. Figure 13 shows both the training417

set (i.e before 2021-03-01) and the test set where the blue curve correspond to the input features (first418

derivatives are not shown) and the orange curves correspond to the outcome the model is trained419

on (i.e the hospitalization variation) and the hospitalizations at 14 days on which the performance420

metrics are computed. The figures outline that the relation between the input features and the421

outcome evolve over time and that the time series is not stationary. For instance IPTCC (Index422

PREDICT de Transmissivité Climatique de la COVID-19) seems correlated to the outcome except that423

it completely miss the summer 2021 increase.424

4.3.1 Hyperparameter selection425

Figure 14 shows the hyperparameter optimisation using random search for the different RC architec-426

tures. We observe that model with multiple input scaling achieved better performance on the train427

set compared to model with single input scaling which is expected as they can adapt more closely to428

the data thanks to specific input scaling for each feature.429

As expected, we observe that the optimal leaking rate is above 1e-2 for all RC which is coherent with430

the short term dynamic of covid-19 epidemic. Trends for other hyperparameters are less clear even431

though best hyperparameters sets were close for RC with common input scaling and for RC with432

multiple input scaling.433

Figure 15 shows the hyperparameter search for RC with multiple input scaling and connected input434

layer. We observe that the random search tends to favor high importance given to derivative of435

positive RT-PCR (including the elderly) and the derivative of IPTCC. The remaining features do not436

exhibit a clear pattern.437

4.3.2 Forecast performance438
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Figure 13: Covid-19 epidemic at BUH. Outcome of interest is presented in orange. Model is trained to
forecast Outcome curve which corresonds to the difference between Hospitalisatiosn at 14 days and
current hospitalisations. Other features are scaled (divide by the maximum of the feature) represented
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Figure 15: Hyperparameter evaluation on training set by random search of the model with multiple
input scaling and no connection between input layer and output layer. Hp sets with MAE above 30
were removed for clarity of visualisation.
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Table 1: Model performance with several reservoir configuration. For each setting, 40 reservoirs
are computed and the forecast is the median of the 40 forecasts. Results show the performance
metrics : MAE = Mean Absolute Error, MRE = Median Relative Error, MAEB = Mean Absolute Error
to Baseline, MREB = Median Relative Error to Baseline.

Table 1: Model Performance
Model MAE MRE MAEB MREB

Common IS: R %»% O 15.23 0.26 -3.50 0.85
Common IS: I + R %»% O 14.84 0.26 -3.89 0.83
Multiple IS: R %»% O 15.38 0.28 -3.35 0.82
Multiple IS: I + R %»% O 15.25 0.28 -3.49 0.83
Elastic-net 16.40 0.29 -2.34 0.93

Table 1 shows the performance on the test set. Best model according to all metrics was RC with439

common input scaling and connection between input and output layers. Having one input scaling per440

feature did not improve the model which might be due to low generalisability of the hyperparameter441

of the training set to the test set due to non-stationarity. Additionaly, connecting input layer to442

output layer improved the model forecast. All RC models performed better than the elastic-net443

model.444

Figure 16 shows the forecast of the different models. We note that models struggle to accurately445

forecast slope shifts. For instance, summer 2021 initial increase is partially predicted by all models446

but its decrease is not well predicted. Winter 2021 increase is anticipated by all models but they tend447

to overestimate it because of the rise of vaccine effect.448

4.3.3 Number of model to aggregate449

Figure 17 show the individual forecast for the 40 best sets of hyperparameters of each RC architecture.450

Due to the internal random connection of the reservoir, we observe forecast stochasticity and relying451

on only one forecast is unreliable. We explored the number of model needed at Figure 18 which452

shows that after 10 models, forecast is stable and even 5 models for the simpler model with common453

input scaling which rely on less hyperparamters.454

4.3.4 Input feature importance455

We compared the coefficients of the output layer estimated for the input layer and the reservoir456

nodes. Additionally, we compared the coefficient given to the input layer by the output layer in the457

reservoir and the coefficient estimated by the elastic-net model.458

Figure 19 illustrates the ranking of input layer compared to all connections to the output layer,459

including the 500 reservoir nodes and the 16 features of the input layer (excluding bias). The figure460

shows that the model with common input scaling tends to assign less weight to input layer compared461

to the model with multiple input scaling. This suggests that the reservoir with common input scaling462

provides more information than the reservoir with multiple input scaling, which aligns with its better463

performance, as shown in Table Table 1.464

Furthermore, Figure 20 compares the coefficients assigned to input features by the elastic-net model465

and the RC models. While the coefficients are generally consistent across RC models, there are466

some notable differences with elastic-net. Specifically, certain features deemed important by the467

elastic-net model, such as the derivative of RT-PCR, and the derivative of Vaccine, are less important468
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Figure 16: Reservoir computing forecast depending on the setting with and without monthly update.
Red line is the median forecast of 40 reservoirs. Grey lines are individual forecast of each of the 40
reservoirs.
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Figure 19: Mean feature importance of the 40 best hyperparameter sets by model, focus on the
connection between the input and output layers. Models with direct connection between input and
output layer are included. The rank is obtained by comparing the feature input layer and all other
connection coefficients (both input and reservoir corresponding coefficients) attributed by the output
layer at each date for each hyperparameter set. The higher the output layer’s coefficient for the input
layer, the closer its rank will be to 1 and the more important the feature is.
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for the reservoir computing model. This may indicate that these features predictive ability is better469

conveyed by their relationship with other features, which is captured by the reservoir computing470

model but might not be by the elastic-net model. Conversely, emergency, IPTCC, proportion of471

positive RT-PCR, and hospitalizations are more important for the reservoir computing model than472

for the elastic-net model.473

4.4 Discussion474

In this specific application, we have demonstrated that RC exhibits commendable performance in475

comparison to Elastic-net, which serves as the reference model. Furthermore, we highlight the476

inherent challenges in forecasting within this context, primarily stemming from the non-stationarity477

of the time series.478

All computations in this study were conducted using the reservoirnet package, and the entire479

codebase is accessible on Zenodo (Ferté, Ba, et al. 2024). This R package demonstrates its efficacy in480

implementing various reservoir architectures, including connection between the input layer and the481

output layer, as well as the utilization of several input scaling, all within the context of a real-world482

use case.483

Given the substantial number of hyperparameters involved, we acknowledge that random search484

may not be the most efficient optimization algorithm. We have retained this approach for the sake485

of simplicity in this tutorial paper; however, meta-heuristic approaches, particularly those utilizing486

evolutionary algorithms, may prove more efficient, especially when employing multiple input scaling487

(Bala et al. 2018; Ferté, Dutartre, Hejblum, Griffier, Jouhet, Thiébaut, Hinaut, et al. 2024).488

This study represents a novel contribution to epidemic forecasting utilizing RC. Notably, previous489

literature predominantly focused on simpler problems characterized by fewer input features or490

shorter evaluation periods (Liu et al. 2023; Ray, Chakraborty, and Ghosh 2021; Ghosh et al. 2021).491

Our findings underscore the potential of this approach for future epidemics, suggesting its potential492

to surpass more traditional epidemiological tools while maintaining a lightweight model structure493

compared to other RNNs.494

It is worth noting that all models, including those presented in Ferté et al. (2022), face challenges495

in accurately predicting slope shifts, highlighting the need for further investigation. Specifically,496

additional work is required to extend the application of Reservoir Computing (RC) to high-dimensional497

settings, building upon insights gained from models that use a more extensive feature set. While RC498

has demonstrated promising performance for epidemic forecasting in high-dimensional settings, this499

task remains challenging (Ferté, Dutartre, Hejblum, Griffier, Jouhet, Thiébaut, Legrand, et al. 2024).500

5 Discussion and conclusion501

In this paper, we introduce the R package reservoirnet, which serves as a versatile tool for imple-502

menting reservoir computing based on ReservoirPy’s Python library. It offers flexibility in defining503

the reservoir architecture, including options for specifying connections between the input layer and504

the output layer, as well as variations in input scaling as demonstrated on a real-world use case.505

We provided a comprehensive overview of the basic usage of the reservoirnet package through506

illustrative examples in regression and classification tasks. This introductory section serves as507

a foundation for R users, offering step-by-step guidance on constructing and training reservoir508

computing models using the package. By demonstrating the application of RC in both regression509

and classification scenarios, we aim to equip users with the essential knowledge and skills needed to510

harness the capabilities of reservoir computing for diverse tasks.511
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Drawing on the robust foundation of the ReservoirPy structure, a well-maintained Python library,512

this package inherits its reliability and longevity. We have focused on providing access to the513

fundamental features, building upon the strong base provided by ReservoirPy. Therefore, this initial514

version of reservoirnet must evolve in tandem with the growing understanding and adoption of515

RC within the R community.516
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