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Abstract

Our world is full of varied actions and moves across specialized domains that we,
as humans, strive to identify and understand. Within any single domain, actions
can often appear quite similar, making it challenging for deep models to distinguish
them accurately. To evaluate the effectiveness of multimodal foundation models in
helping us recognize such actions, we present ActionAtlas v1.0, a multiple-choice
video question-answering benchmark featuring short videos across various sports.
Each video in the dataset is paired with a question and four or five choices. The
question pinpoints specific individuals, asking which choice “best” describes their
action within a certain temporal context. Overall, the dataset includes 934 videos
showcasing 580 unique actions across 56 sports, with a total of 1896 actions within
choices. Unlike most existing video question answering benchmarks that only
cover simplistic actions, often identifiable from a single frame, ActionAtlas focuses
on intricate movements and rigorously tests the model’s capability to discern subtle
differences between moves that look similar within each domain. We evaluate
open and proprietary foundation models on this benchmark, finding that the best
model, GPT-4o, achieves a maximum accuracy of 45.52%. Meanwhile, Non-
expert crowd workers, provided with action description for each choice, achieve
61.64% accuracy, where random chance is approximately 21%. Our findings
with state-of-the-art models indicate that having a high frame sampling rate is
important for accurately recognizing actions in ActionAtlas, a feature that some
leading proprietary video models, such as Gemini, do not include in their default
configurations.

1 Introduction

Multiple institutions have remarked on a striking finding: In many standard video benchmarks [59, 29,
77, 76, 74], a single frame without any modeling of temporal dynamics was enough to perform well
[33, 38]. The phenomenon, known as static appearance bias [33], allowed models to easily discern
the action depicted in the video. For example, simply recognizing presence of a pool was sufficient to
identify the action as “diving” from a single frame [43, 69]. In reaction, later action classification
datasets were designed to capture a richer distribution of temporal understanding [17, 58, 57] and
model architectures also evolved to incorporate the now “necessary” temporal dynamics [40, 13,
12, 73]. However, such datasets and models still do not cover all the complexities of real-world
video understanding and are only limited to traditional classification setups. The issue is even more
pronounced in video-language tasks; with the rise of foundation Vision-Language models (VLMs),
we find ourselves back at square one: Tasks such as video question answering [75, 37, 77] and
video-language retrieval [77, 21, 28] can be solved easily yet again by training on just a single or
sparsely sampled set of frames from videos [4, 33].



Recognizing activities in many real-world videos requires an accurate identification of subtle changes
in movements, posture, and interaction with the environment. This is particularly evident in numerous
domain-specific videos as demonstrated in Figure 1. Actions within a specific domain may appear
identical in a single frame but become identifiable across multiple frames that capture the sequence
of movements, as shown by cross through and body twist motion in the Rose move example, or the
continuous rotations in the water in the Cartwheel move. In certain instances, actions are so subtle
that they remain challenging to distinguish even when presenting multiple frames, as shown in the
Stutter step and 360 pressure flip examples in skateboarding. Action recognition in real-world videos
becomes even more complex with multiple actors present, each engaged in distinct or relevant and
often overlapping actions. The video of the soccer game exemplifies this, with players from both
teams simultaneously performing different actions. A robust video-language model must be able to
track individuals and activities amidst such multifaceted and busy videos.

To investigate whether current Vision-Language Models (VLMs) can address these challenges, we
present Action Atlas v1.0, a multiple choice video question answering (VideoQA) benchmark. This
preliminary version of the benchmark focuses on sports, a domain characterized by intricate actions
which can stress test models with the challenges identified above. Each video in the dataset is paired
with a question and four or five choices. The questions pinpoint specific individuals within, asking
which choice "best" describes their action within a certain temporal context. Overall, the dataset
includes 934 videos showcasing 580 unique actions across 56 sports, with a total of 1896 actions
within choices. The videos in this dataset have an average duration of 6.07 seconds and an average
frame rate of 32.18 frames per second (FPS).

To collect ActionAtlas, we develop a novel pipeline. In contrast to prior work that sourced action
names from a single website [11, 48], we rely on GPT4’s vast domain-specific knowledge and
compile a comprehensive list of actions within each domain by prompting the model. Having this list,
we crawl videos about those actions on YouTube. To further filter the obtained search results, we
rely on numerous automatic filtering tools and techniques, such as exact and soft lexical search, and
CLIP [53] filtering. Additionally, we show how LLMs and speech transcriptions can be used to faster
find segments containing a specific action within long videos. To further ensure high quality of our
benchmark, we incorporate multiple rounds of manual filtering carried out by both crowd-workers
and the authors, who spent a month familiarizing themselves with the actions.

We evaluate open and proprietary VLMs, such as GPT-4o [50] and Gemini-Pro [63] on ActionAtlas.
For all models except for Gemini models in video mode–which directly take input video files–, we
follow the standard methodology from previous work [4]; we uniformly sample frames and feed
them as image inputs concatenated with the question and the choices. For Gemini, we show how one
can easily recover the exact frames that the model samples in video mode which makes it not much
different from other VLMs. The random chance accuracy on our dataset is 20.91%, whereas the
best open-weight model, Qwen2-VL-7B, performs only ∼30.24% accurately. Meanwhile, GPT-4o
reaches up to 45.52%. our results with both of these models show that increasing frame sampling
rate helps significantly in recognizing actions in ActionAtlas, a feature that current top proprietary
video models like Gemini lack in their default settings. Moreover, we show that providing action
descriptions does not significantly improve model performance, while non-expert crowd workers
achieve an overall accuracy of 61.6% with those descriptions. This underscores the gap between AI
models and human’s visual recognition capabilities when it comes to actions with fine motions.

Taken together, our benchmark provides a new testing ground to evaluate foundation models on action
recognition within specialized domains that have practical, real-world applications. The results on our
benchmarks showcases that despite the improvements in image-understanding and long-form video
understanding, true video-understanding is still lacking. Moreover, as demonstrated by previous
work like Dall-E 3 [3], captions generated by AI models that understand nuanced moves–such as
those in ActionAtlas–can enhance training of video generation models to better capture such nuances.
Therefore, we believe ActionAtlas can help accelerate various aspects of video research.

2 Collection

Our goal is to create a high quality benchmark of actions within specialized domains. Since sports
encompass a wide array of such actions, in ActionAtlas v1.0 we focus on actions within various
sports. Nevertheless, we would like the collection process to be scalable, allowing expansion to many

2



What best describes the move made by the player wearing a black jersey with number 10 after their 
teammate wearing number 13 passes the ball?

 Bicycle kick             2. Rainbow flick            3. Elastico             4. Cruyff Turn            5 . Dummy

What best describes the move made by the man  in the kayak?



 Bow stall               2. Cartwheel                   3. Space Godzilla                4. Mcnasty                 5. Blunt

What best describes the move made by the only player wearing a basketball jersey after they 

start running towards the basket and before making a jump shot?

 Pull-up jump shot   2. Behind-the-back dribble  3. Stutter step           4. In-and-out dribble  5. Crossver dribble

What best describes the action performed by the man in black shorts?



 Bracing              2. Reverse stroke           3. Side slip               4. Forward stroke             5. Nose draw

What best describes the move made by the person?



 Rose move               2. Toe hook                   3. Mantle              4. Gaston                 5. Heel hook

What best describes the move made by the skateboarder?



 Inward heelflip            2. Hard flip             3. Laser flip             4. 360 flip           5. 360 pressure flip

Figure 1: Examples from ActionAtlas. To answer ActionAtlas’s questions, models have to be able
to recognize fine movements and nuances that differentiate actions belonging to the same domain
(examples 2, 3, 4, 5, 6 from top), correctly localize and track the individual performing the action if
there are many (example 1). [Video links from top to bottom: 1, 2, 3, 4, 5, 6].

more domains in the future. Toward this, we develop a robust pipeline that incorporates automatic
filtering using various tools and AI models, followed by multiple rounds of manual filtering by
crowd-workers and the authors. Figure 2 illustrates the pipeline for collecting ActionAtlas. As we
move forward to the latter stages of this pipeline, the need for manual verification and expertise
increases, making it more and more expensive. In the final and most costly stage, the goal is for
trained annotators to only verify the already vetted annotations from previous stages and refine them
if needed–instead of asking them to directly search for videos on YouTube. Our data collection also
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Figure 2: Data collection pipeline consisting of Automatic and Manual parts. First a com-
prehensive list of actions is compiled (§2.1) which are then used for searching metadata of videos
on YouTube relevant to each action (§2.2). Then with lexical search a subset of videos are selected
(§2.3). If a video is shorter than 30 seconds, it will be used in crowd-sourcing. Otherwise, the video
is transcribed, and GPT4 selects potential 30 second segments that contain the actions based on the
transcription (§2.4). Mechanical Turkers will then verify the presence of actions in the segments
(§2.5) and localize it (§2.6). If all videos of an action were rejected, we repeat the process to source
new videos. Finally, GPT4 generates Multiple-choice QAs which are checked by the authors (§2.7).

relies on one fundamental assumption: By starting from a very large initial set of videos for each
action, we ensure that even after an intensive automatic filtering, a large enough number of videos
remain for humans to check. Note that whenever we mention “GPT4” or “GPT4-text” in our pipeline
it specifically refers to gpt4-1106-preview without using vision capability.

2.1 Compiling A List of Actions

To generate the action list, we first collected the names of 150 most popular sports through prompting
GPT4. To gather the actions within each sport, previous work [39, 79] asked experts to write the name
of the moves. However, we witnessed that those lists were incomplete as humans tend to overlook
actions in the far tail of the distribution. We therefore decided to ask GPT4 to list the moves for us.
We found that using GPT4 with a prompting strategy which we call expansion and squeeze prompting
resulted in the best coverage. In this approach, GPT4 is prompted to generate an action list for any
domain given few-shot examples in an example domain (e.g., golf). As we found that the model may
still omit some major actions, we iteratively expanded this list by using the model’s previous outputs
as new few-shot examples. After two rounds of expansion, we squeezed the list by having GPT4
identify and remove false positives, i.e. phrases that were added during expansion and considered to
be physical actions but in reality are not. In total, The expansion process resulted in 19.5k actions
which were reduced to 10.5k after squeezing. It is worth noting that before solely relying on GPT4 to
get the action list, we tried to compile a list by crawling data from available knowledge-bases, such
as DBPedia and Wikipedia. However, we found that many actions are missing in those knowledge
bases. Please refer to Appendix H for GPT4 prompts used in this section.

2.2 Searching for Metadata of Videos

Searching for videos of a large list of actions and downloading both the audio and video streams of
the results would be impractical due to the high storage and computational costs involved. Instead,
we initially queried and downloaded metadata of videos on YouTube, which includes the titles,
descriptions, and subtitles. This enabled us to carry out text-based filtering as our next step to
eliminate any irrelevant videos from the search results, leaving us with videos that are highly likely
to contain the desired actions which will then be downloaded. We formed queries by concatenating
the name of action to its domain (e.g. "knuckleball shot soccer") and searched for YouTube metadata
for each query. This yielded a total of approximately 4.5 million unique and valid metadata files, or
about 450 valid metadata files per action. We will describe the text-based filtering process next.

2.3 Lexical Search

Our extensive metadata search for each action yielded a high recall of YouTube videos associated
with that action. However, we also encountered false positives in our results–videos not sufficiently
relevant to the specific action and domain of our search. To narrow down our selection to videos
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“... t’-∆t: I wanna wrap the ball around them where now I’m feeding my teammate.  
t’+∆t: The defense is here, and as I’m dribbling the basketball or I have it in triple threat, I’m gonna come from this 

motion,  I’m handling the ball step around and pass...”

t’: Ok, so I’ll do that one more time. 
 

“... t-∆t: getting in here, can regain the lead.       t+∆t: it looked impossible...”t: oh, what an incredible goal line clearance.

t - 15 t + 1530 second candidate segment localized by GPT4-Text

t’ - 15 t’ + 15

Figure 3: Given transcription of a long video, GPT4-Text can be prompted to output timestamps
where the action is likely to occur, without having access to frames. The model has found instances
where the speaker comments on the great quality of the action (top) or indicates that a demonstration
of the action is going to happen shortly (bottom). More details in §2.4. [Video links: top, bottom].

more likely to contain the targeted action, we used lexical matching on video titles via Elasticsearch
[8]. Specifically, we searched for videos with the action name appearing exactly within the title.
Additionally, we restricted our search to videos with more than 1000 views as of the collection date.
Moreover, the BM25 engine in Elasticsearch provided a soft search feature, enabling us to detect
whether video titles included synonyms of the action query (e.g., "knuckleball shot" and "knuckleball
kick" in soccer) that exact matching might have missed. In the lexical search process, we limited the
number of hits to 100 videos per each action.

2.4 Finding Potential Segments in Long Videos via Whisper and GPT4-text

The primary goal of the automatic filtering pipeline is to identify videos that are highly likely to
contain the desired actions. These videos are subsequently forwarded to crowd workers to confirm the
presence of these actions. Many high quality action demonstrations happen in long videos, specially
in the form of tutorials. As watching long videos can be tedious and costly in terms of annotation,
we decided to extract potential 30-second clips that are highly likely to contain the target actions
within longer videos. Videos shorter than 30 seconds directly proceeded to the validation stage done
by crowd-workers. To extract potential segments, we focused on videos with speech data and first
transcribed them using OpenAI’s Whisper model [54]. The transcripts, which included timestamps
provided by Whisper, as well as the action name, served as context for GPT4. The model was then
prompted to output timestamps where the action is most likely to occur, focusing specifically on
instances where the speaker comments on the great quality of the action (Figure 3 top) or indicates
that a demonstration of the action is going to happen shortly (Figure 3 bottom). We then extracted 15
seconds before and after the suggested timestamp as the candidate segment. These segments were
further filtered using CLIP similarity score [53] with their corresponding domain name and video
domain pairs with a cosine similarity of lower than 0.1 were discarded. In total, we transcribed and
localized 57k videos with Whisper and GPT4-text, and collected 49k videos that were shorter than 30
seconds and did not need localization. All these videos are downloaded at end of this stage. Please
refer to Appendix H for the prompts used with GPT4.

2.5 Validation via Crowd-sourcing

After collecting candidate 30 second segments likely to contain actions, we further validated the
presence of actions with the help of crowd-workers on Amazon Mechanical Turk. To do so, we
sorted the actions based on the number of videos filtered from previous stages and performed the
validation process in batches, starting from the actions with highest number of videos and proceeding
in descending order. A potential challenge here was the workers’ unfamiliarity with actions in
different domains which might introduce errors in the annotation. To mitigate such errors, we
employed multiple safeguards in our pipeline: 1. We prompted GPT4-text to provide descriptions
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Half-Volley Drop Shot: In tennis, a half-volley drop shot is a delicate and skillful maneuver that involves the player hitting the tennis 
ball just after it has bounced, without allowing it to rise to its full height. The player aims to barely touch the ball with a gentle tap, 
causing it to cross just over the net and land softly on the other side, making it difficult for the opponent to reach and return.



Simple Steps to Identify a Half-Volley Drop Shot:



1. Identify the Player Hitting the Ball: Focus on the player who is about to hit the tennis ball or has just hit it. It's important because you 
need to watch their movements closely.



2. Look at the Ball Bounce: Wait for the moment when the ball bounces on the side of the player you’re watching. A half-volley drop shot 
is executed right after the bounce.



3. Observe the Stroke: Pay attention to how the player hits the ball. In a half-volley drop shot, the racket will gently tap the ball near the 
ground level instead of swinging through it. The action is subtle and controlled.



4. Watch the Ball’s Trajectory: The key to identifying a half-volley drop shot is the trajectory of the ball after it's hit. The ball should 
barely clear the net and then fall quickly to the ground, with minimal bounce on the opponent’s side.

Figure 4: Definition of Half-Volley Drop Shot generated by GPT4-text to be used by crowd-
workers for validation and localization. The workers match the key elements listed in the definition
with what they see in the video to identify if the action happens. For more details see §2.5.

that highlight the key elements required to recognize an action. An example definition is shown in
Figure 4. 2. We presented five potential 30 second segments per each action to workers instead of
one. This allowed the worker to compare the videos against each other and against the description
which further helps in identifying the action. Workers were instructed to watch each video and
determine if the action happens or not. If the worker noticed any discrepancy between the videos and
the description provided by GPT4, they could search on video platforms to watch more videos and
educate themselves on the action. 3. Each set of videos was reviewed by three workers, and only
videos for which at least two workers confirmed the presence of the action proceeded to the next
step. If all videos of an action were rejected by crowd-workers, we repeated the earlier stages of the
pipeline to source new videos for that action (see the arrow from step 5 to step 3 in Figure 2). For
more details on verification via crowd-sourcing and Mechanical Turk layout see Appendix M.

2.6 Localization via Crowd-sourcing

As many events and actions can happen in a 30 second video clip, we sought to find a smaller segment
that better isolates the target action. However, isolating a single action in a video clip can be quite
challenging. This complexity arises because some actions last only briefly (e.g., stutter step, as shown
in Figure 1), while some are only defined based on what happens before or after them (e.g., a dummy,
as shown in Figure 1). To address these challenges, we asked crowd workers to specify three key
details if necessary: 1. Some attributes that uniquely identify the action actor; they were instructed
to use any distinguishing feature (e.g., number or name on jersey, clothing or hair color), as long as
it uniquely identifies the individual(s) performing the action. 2. The events that occur immediately
before and after the action. We then asked them to propose a start and end time stamp within the
30 second segment that encapsulates these two pieces of information. This data were then used to
extract the final video segments in the benchmark and write questions about them. For more details
on localization via crowd-sourcing and Mechanical Turk layout see Appendix M.

2.7 Multiple-choice QA Generation and Quality Check

We prompted GPT4-text with specific question templates and the two pieces of information obtained
in §2.6 and asked it to write a question about what the action is (see Figure 1 for example questions).
We also prompted the model to write 9 hard negatives for each action. Subsequently, for the quality
check, a team of three individuals including two of the authors, trained themselves on recognizing
the actions and checked the questions, videos, and the hard negatives over the span of a month.
For the hard negatives, we kept only the three or four most plausible ones. Videos for which we
were uncertain about the presence of the ground truth action were discarded. To eliminate questions
answerable solely by text, we passed them through GPT4-Text model three times. We noticed that in
9% of the samples the model consistently predicted the correct answer. This was often due to the
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Table 1: Evaluation results on ActionAtlas for open models. Open models perform no better than
random chance. The efficiency metrics are averaged across the benchmark. ∗a single video frame and
24 frames of motion vectors are used, consistent with the video tokenizer described in [24].
Model #Input frames #Input video tokens #Inference TFLOPs Accuracy(%)
Random chance - - - 20.91 ±2.49
Non-expert human - - - 61.64 ±3.29

CLIP ViT-L-14-336 [53] 16 16× 576 - 23.71 ±2.62

mPLUG-Owl-video [80] 16 16× 256 2.94 19.49 ±2.68

Video-LLaMA [85] 16 16× 256 6.12 22.71 ±2.69

Video-LaVIT [24] 24∗ 24× 135 3.38 19.37 ±2.46

16 16× 196 3.23 20.86 ±2.34
VideoChat2 [36] 32 32× 196 4.69 20.77 ±2.67

64 64× 196 7.51 21.27 ±2.75

16 16× 144 22.0 20.77 ±2.67
LLaVA-Next-Video-7B [86] 32 32× 144 43.0 21.06 ±2.64

64 64× 144 83.2 22.90 ±2.56

2 1× 576 2.45 24.07 ±2.66
Qwen2-VL-7B [64] 4 2× 576 4.31 26.71 ±2.83

8 4× 576 8.31 27.75 ±2.81
16 8× 576 13.38 30.24 ±2.94
32 16× 576 29.87 29.33 ±3.10

questions inadvertently revealing information about the answers. To address this, we rewrote the
questions and choices. Moreover, to manage instances where text within video frames might leak
information about the ground truth action, we used the Google Cloud Vision API [1] to detect such
text, and blurred it using Gaussian noise. Appendix H provides more details on the prompts used in
this section.

3 Evaluation

3.1 Models and Baselines

CLIP. We evaluated OpenAI’s CLIP ViT-L-14-336 [53] as a foundation VLM without any large
language models in it. To form the prompts, we asked GPT4-Text to rewrite each question as a
sentence and embed each choice into the sentence. This gave us four or five plausible class prompts
which we used to do classification with the model.

Proprietary large VLMs. We evaluated multiple proprietary VLMs on ActionAtlas: Gemini 1.5
Flash and Gemini 1.5 Pro using the Gen AI API [16] (model versions gemini-1.5-flash-latest
and gemini-1.5-pro-latest), GPT4-o [50], GPT-4 Turbo, and GPT-4o-mini using the Open AI
API1. The GPT-4 family cannot directly process video inputs. Therefore, we uniformly sampled
different numbers of frames–1, 4, 8, 16, and 32–and reported the results for each configuration. For
Gemini models, as detailed in §3.3, we discovered that the video mode always samples a specific set
of frames at a rate of one FPS, making it not much different from other models. With such sampling
rate, to make the model use all the frames in a video as input, we converted our videos to 1 FPS
videos (e.g., a 3-second, 30 FPS video would become a 90-second, 1 FPS video) and evaluated the
Pro variant on these converted videos as well.

Open large VLMs. We evaluated the following open models on ActionAtlas with uniformly
sampled frames: Qwen2-VL-7B [70], mPLUG-Owl [80], Video-LLaMA [85], Video-LaVIT [24],
VideoChat v2 [36], and LLaVA-Next-Video [86]. Frames were down-scaled to 336× 336 for models

1All the Gemini and OpenAI models were their latest versions as of July 31, 2024.
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whose image encoders supported this resolution; If not, frames were scaled to the maximum supported
resolution (e.g., 224× 224). For Qwen2-VL-7B, we down-scaled the frames while maintaining the
aspect ratio so that each frame does not have more than 336 ∗ 336 pixels in total. All evaluations
with open models were done on a single H100 GPU. Further details about the setup can be found in
Appendix C.

Non-expert humans. To get non-expert human’s performance as a baseline, we asked crowd-
workers on Amazon Mechanical Turk to respond to ActionAtlas’s questions. As the workers might
not be familiar with the action names, we generated two to three sentence descriptions of each action
choice using GPT-4o, which were then provided to the workers along with the available choices.
The workers were asked to answer the questions without using YouTube, but they were allowed to
perform text search on Google or use AI chatbots, provided the chatbots’ vision capabilities were not
used. Note that in the ablation experiments described in §3.3, we also evaluated AI models when
these descriptions are provided.

3.2 Results

Table 2: Evaluation results for proprietary mod-
els.. For Gemini in video mode we either provide
the original video or transform it into a video with
1fps and then evaluate the model. See §3.3 for
more details on how Gemini processes inputs.

Model #Input frames Accuracy(%)
Gemini 1.5 Flash (video) 1 fps 30.49 ±2.86
Gemini 1.5 Pro (video) 1 fps 32.37 ±3.04
Gemini 1.5 Pro (video) all frames 35.59 ±3.04

1 28.97 ±3.06
GPT-4 Turbo 4 33.17 ±2.98

8 34.25 ±3.09
16 33.99 ±3.05
32 32.24 ±2.80

1 30.15 ±2.74
GPT-4o-mini 4 33.42 ±2.70

8 30.20 ±2.89
16 32.20 ±2.76
32 31.17 ±2.90

1 33.08 ±2.89
GPT-4o 4 39.50 ±3.10

8 41.55 ±3.01
16 42.95 ±2.91
32 41.44 ±3.11

We benchmark all models using only the video
data, discarding any audio, transcriptions, or
captions. For open models, frames are uni-
formly sampled throughout the video and the
models are evaluated based on the following
metrics: the number of input frames sampled
by the model, the number of tokens to which
the video is compressed before being fed to any
transformer model, average inference FLOPs
on the benchmark (calculated using fvcore [26]
package), and top-1 accuracy (for more infor-
mation on the significance of these metrics, see
Appendix B). Following [10], we report 95%
confidence intervals via bootstrap sampling. For
the results based on sampling fixed number of
frames per second see Appendix D.

The results in Table 1 indicate that, except for
Qwen2-VL-7B, open models often perform no
better than, or only slightly better than random
chance. This suggests that open models struggle
to capture the nuances of complex actions in
specialized domains, likely due to the absence
of such data in their pretraining corpora. For
Qwen2-VL-7B, increasing the number of frames
from 2 to 16 increases accuracy statistically sig-
nificantly. However, the performance declines
or plateaus upon reaching 32 frames. This indicates that while sampling more frames provides
valuable information for understanding complex domain-specialized actions, there is also a downside
of handling longer video sequences that open video models might struggle with. Regarding number
of video tokens and inference FLOPs, for all models except for Qwen2-VL-7B, we do not see a
straightforward relationship with the performance, suggesting that increasing computational complex-
ity does not necessarily lead to better results for these models. However, for Qwen2-VL-7B, there
is a notable positive correlation up to 16 frames. Additionally, Qwen2-VL-7B compresses frames
into fewer tokens compared to models processing them at the same spatial and temporal resolution.
For instance, with 16 frames, Qwen2-VL-7B uses half the tokens that CLIP uses, while delivering
significantly better performance.

For the GPT-4 family, increasing the number of sampled frames does not lead to statistically significant
improvements for GPT-4 Turbo and GPT-4o-mini. However, for GPT-4o, sampling more frames
results in statistically significant improvements, rising from 33.08% to 42.95%. For video mode of

8



Table 3: The accuracy improvements from providing action choices’ descriptions is not statisti-
cally significant.

Model Acc. without Description (%) Acc. with Description (%)
mPlug-owl 19.49 ±2.68 20.92 ±2.51
Video-Llama 22.71 ±2.69 21.85 ±2.68
LLaVA-Next-video 20.77 ±2.67 22.20 ±2.50
Qwen2-VL 30.24 ±2.94 33.13 ±3.04
Gemini Pro 1.5 32.37 ±3.04 37.00 ±3.06
GPT-4o 42.95 ±2.91 44.05 ±2.94

the Gemini family, both Pro and Flash variants achieve comparable accuracies given the confidence
intervals. Furthermore, there is no statistically significant improvement when increasing the number
of frames from default 1 fps to all video frames (see §3.1 for how we evaluate in that mode) with the
Gemini 1.5 Pro model. Nonetheless, as discussed in the ablation studies in §3.3, sampling a single
frame from the video results in the Pro model achieving an accuracy of 28.73%, which is significantly
lower than the 35.59% when using all frames of the video.

3.3 Ablations

Providing description of actions. Correctly answering the questions in ActionAtlas requires two
capabilities: 1. Having knowledge about the action choices, specifically recognizing the action names,
and 2. Visually recognize the action in the video. To show that model failures are primarily due
to poor visual recognition, we provided descriptions of the action choices to the models. These
descriptions were created by prompting GPT-4o to summarize the key elements needed to recognize
each action in 2-3 sentences. As shown in Table 3, adding these descriptions did not yield statistically
significant improvements on our dataset. However, using the same descriptions, humans outperformed
the best proprietary model, GPT-4o, by 18%. This suggests that the model struggles on our dataset not
due to a lack of knowledge about the action names, but because of limitations in visual recognition.

Chain-of-thought reasoning. Chain-of-thought (CoT) reasoning or generating intermediate rea-
soning steps [72, 27] has shown to be effective in improving performance across different language
and vision-and-language tasks [7, 22, 83]. To test this on our dataset, we instruct models to reason
step by step and provide their rationale when making a choice. We choose not to include few-shot
examples to avoid occupying a significant portion of the models’ available context length. Table 4
shows the results when using CoT reasoning with or without choice descriptions. Surprisingly, for
all models there is a significant drop in performance when using only CoT. Although adding choice
descriptions improves performance in the case of GPT-4o, the improvements are not statistically
significant compared to the original results. This suggests that enhanced reasoning alone does not
improve performance on ActionAtlas and the low performance of models is mainly due to poor visual
recognition. We also experimented with prompting models to reason step by step across frames, by
describing differences between each pair of consecutive frames, as done in previous studies [5]. Yet,
this strategy does not enhance performance. It is also worth noting that with Gemini Pro 1.5, there is
a dramatic increase in the number of refusals, which might contribute to the drop in performance;
Table 8 in Appendix G shows that with the chain-of-thought setup, the refusal rate of Gemini 1.5 Pro
model increases to more than 5%.

Changing frame sampling rate with Gemini Pro 1.5 In our evaluation of proprietary API models,
the Gemini family were the only ones at the time that could directly take video input files2. While
investigating how these models process videos by inserting random noise images at different frame
positions, we noticed that the these models always and only process the middle frame in each second
of a video, resulting in a processing rate of 1 FPS. This finding aligns with the Gemini technical
report [63], wherein all the evaluations are done at 1 fps. Processing a preselected set of frames, not

2We noticed ChatGPT web app could directly take video input files. However, the model reports that it
extracts key frames from the video via tools such as a Python program and packages like OpenCV and Matplotlib.
Furthermore, we found the resulting output to be of poor quality and sometimes unrelated to the original video
content.
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Table 4: Improvements from Chain-of-thought
reasoning are not statistically significant on
ActionAtlas. See §3.3 fore more details on the
setup.

Model Acc. (%)

GPT-4o 42.95 ±2.91

+ CoT 36.24 ±3.05

+ CoT + Choice Description 45.52 ±3.02

Qwen2-VL 32.49 ±3.05

+ CoT 26.23 ±2.79

+ CoT + Choice Description 26.54 ±2.88

Gemini Pro 1.5 32.37 ±3.04

+ CoT 24.36 ±2.73

+ CoT + Choice Description 27.68 ±2.84
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Figure 5: Effect of changing frame sam-
pling rate for GPT-4o and Gemini Pro 1.5
models on accuracy on ActionAtlas. See
§3.3 for more details.

only exposes the model to potential frame injection attacks but also limit its ability to detect motions
occurring more frequently than this sampling rate (for more details on the frame injection attack and
jail-breaking Multi-modal Gemini models, see Appendix F). To test the model at a higher sampling
rate in video mode, we converted all the videos in ActionAtlas to 1 FPS videos–meaning each video
has only one frame per second–and re-evaluated the model. As shown in Table 2 and discussed in
§3, no significant improvements were observed. This suggests that Gemini models might not be
trained to handle all the frames within a video. Furthermore, For a better comparison with other
models, including GPT-4o, we also sampled a fixed number of frames from the videos and evaluated
Gemini Pro 1.5 in image mode. Figure 5 indicates that with Gemini 1.5 Pro, increasing the number
of sampled frames does not yield as substantial improvements as it did with GPT-4o. It is worth
mentioning that as Table 8 in Appendix G shows, we noticed a much higher refusal rate with the
models when input frames were used (from 1.39% to 5.14%), similar to the findings from the CoT
experiments in §3.3. This refusal rate also slightly increased with the addition of more frames.

4 Conclusion

We introduced ActionAtlas v1.0 a new VideoQA benchmark for evaluating VLMs on action recogni-
tion in real-world specialized domains. To perform well on ActionAtlas, a model must be able to
understand motions that span across many frames and track the individual(s) performing the action
both temporally and spatially. We collected ActionAtlas using a robust and scalable pipeline that
included both automatic filtering tools and techniques, such as lexical search, LLMs, and CLIP
filtering, in addition to manual filtering via crowd-workers and the authors. Results showed that
many open models perform at best close to random chance, implying that while these models excel in
existing video language downstream tasks, they fall short in accurately understanding complex actions
and nuanced movements in videos. Proprietary models such as GPT-4o showed better performance,
improving with higher frame sampling rate, but still far from achieving high accuracy on our task.

While ActionAtlas is a challenging benchmark, it does have its limitations. First, the current version
is only limited to sports. The sports domain is known for its intricate and subtle movements that
non-experts can often describe and recognize in video, but this poses a challenge for models, which
struggle to capture such nuances. This difficulty is shared by other domains using similar actions,
including cooking, arts and crafts, dance, and medicine. The current version of ActionAtlas lacks a
taxonomy for actions, which is essential for creating a comprehensive dataset; future updates aim to
integrate input from large language models and domain experts to develop this taxonomy. Collecting
video data for these expert-driven domains is challenging, resulting in a smaller dataset compared to
benchmarks like MMMU. However, the introduction of a scalable collection pipeline promises to
expand the dataset with the assistance of domain experts, enhancing and refining the final output.
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A Related work

A.1 Action Recognition

The seminal work by Schuldt et al. [56], which collected data on six basic human actions, set the
stage for many subsequent work focused on action recognition, such as UCF101[60], HMDB51[68],
ActivityNet [11], AVA [19], Kinetics [25], and Moments in time [48]. These studies have primarily
focused on coarse-grained everyday human actions that are sourced from a single website [67] and
are relatively easy for image models to recognize [53]. The Something-something v2 [17] benchmark
has also introduced 174 diagnostic commonsense actions to assess models’ understanding of world
physics. Breakfast [30] and MPII Cooking [55] datasets have collected 10 and 67 fine-grained
actions in cooking, and Diving48 [38] and Finegym [57] collected fine-grained actions in only diving
and gymnastics respectively with just a single action actor in each video. In domains with many
individuals in the video, Multisports [39] is the biggest dataset which spans 67 fine-grained actions
in four sports. Other work [79, 42, 78, 39, 20, 15, 31, 46, 88] have created datasets for fine-grained
action recognition in different sports such as soccer, basketball, figure skating, diving, fencing, table
tennis, etc. Our work differs from all these work in the following aspects: 1. Larger number of
domain-specialized actions. There are 580 ground truth actions depicted in videos in ActionAtlas.
Moreover, as there are 1896 total actions in choices, the dataset effectively tests the model’s capability
to discern 1896 actions which is more than 3 times larger than previous datasets, such as Finegym.
2. The actions in ActionAtlas represent knowledge-driven, real-world actions, In contrast to
datasets like Something-something v2 [17], our work focuses on evaluating foundation models on
action recognition within specialized domains that have practical real-world applications. This is
analogous to the recent trend on evaluating foundation models on specialized domains with datasets
like MMLU [22] and MMMU [83] in the text and image space. 3. The use of language and QA
in ActionAtlas. Previous work [39] have used bounding boxes to refer to individuals engaged in a
particular action in a video with many people in it. However, we follow works like refCOCO [81]
and use natural language to refer to individuals (see how questions refer to action actors in Figure
1). This aligns more closely with how humans naturally refer to an object or person and also better
fits evaluating VLMs. 4. Faster discovery of actions using LLMs. We show how the extensive
knowledge of LLMs can be used to identify a broad range of actions, including rarer actions that
experts may overlook. Furthermore, we show how LLMs such as GPT4-text can be used along
with speech transcription to find candidate segments within longer videos that are likely to contain a
specific action (see §2.4 and Figure 3). This approach relies solely on text and can help making the
collection pipeline more scalable.

A.2 Video QA

Most Video-QA datasets, such as NextQA [74], ActivityNet-QA[82], VATEX [71], MSRVTT-QA
and MSVD-QA[76] are designed for general purpose video understanding, with most questions about
visual appearance of the scenes or basic actions in the video which fall under the category of common
sense understanding. These do not pose a significant challenge to current state-of-the-art VLMs.
Other datasets like MVBench [36] and Video-Bench [49] have attempted to standardize existing
datasets into a multiple-choice QA format but still primarily cover simplistic actions. Ego4D [18] and
Ego-Exo4D [9] have annotated various actions performed by crowd workers, but these do not include
many expert-level actions in the domains they cover as performing such actions is extremely hard for
non-expert crowd-workers. While Youcook2 [87] contains densely annotated cooking videos, most
of the actions (e.g., pouring water into a cup) are extremely simple with more expert-level actions
overlooked as the collection pipeline is not designed for capturing them. Additionally, Perception
test [52] is another diagnostic benchmark for evaluating basic world understanding of models. In
contrast, ActionAtlas’s focus is on real-world actions in specialized domains.

A.3 Long-form Video Understanding

Video, as a form of streaming data, can get infinitely long, making it challenging for deep models to
understand them. Recently, there has been growing interest in creating long-form video understanding
datasets from various sources. Several studies have used long movies to curate such datasets
[62, 32, 2]. A common limitation is that models can often answer the questions based on just the
story-line–which they might have seen in their pretraining data–without the need to attend to the
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visual content. Other works such as EgoSchema [45] have used crowd-sourced Ego4D videos to
create QA datasets with long (180 seconds) ego-centric videos; however, the actions in these datasets
tend to be coarse-grained and simplistic. Furthermore, as noted in prior work [47, 63], it is still
uncertain whether viewing the full video is necessary to answer the questions. This uncertainty
arises because the questions generated by LLMs are not carefully filtered for language biases
which helps models answer solely based on text. In contrast to studies focused on long-form video
understanding, ActionAtlas specifically targets short videos about domain-specific actions, many
of which characterized by rapid changes and movements within the scene. Furthermore, recent
studies such as [84, 47] have shown that it is possible to use a video captioner to summarize smaller
chunks of a long video and pass them to an LLM for reasoning over the entire video. Therefore,
understanding short video clips and the potentially complex actions they depict could be a precursor
to solving long-form video understanding.

B Discussion

Why do the reported metrics matter? The quantitative and qualitative results with models like
GPT-4o have shown that accurately detecting subtle movements in actions within ActionAtlas requires
denser video signal sampling–which in its simplest form means sampling more frames. While a higher
sampling rate could lead to a greater number of tokens and thus higher FLOPs if tokenized naively,
much of the additional data from increased sampling is often redundant. Better tokenizers could
potentially leverage this redundancy and compress the sampled data to maintain the same number
of tokens as would be achieved with a lower frame sampling rate, without sacrificing downstream
performance. We need further research on tokenizers to find the optimal balance between video
sampling rates and token compression, while ensuring high downstream accuracy on vision-and-
language tasks. Simple strategies such as masking spatiotemporal patches [14], or more innovative
tokenization schemes that go beyond mere frame sampling, could help maintain a stable token count
even with higher sampling rates. An example of such progress is Video-LaVIT [24], which encodes
frames following a key frame into more compact representations using motion vectors.

With its complex actions and intricate movements, ActionAtlas can be a test-bed for all these ideas in
video-language modeling. Moreover, reporting metrics such as the number of tokens and sampled
frames can further shed light on the density of sampling from the video data and the amount of
compression that is happening in tokenization.

The videos on the web as training set. As noted in previous work, such as the MMLU benchmark
[22], modern benchmarks for foundation models assume that these models acquire the knowledge
to solve various tasks by training on vast amounts of web data. Similarly, the knowledge needed
to recognize actions in ActionAtlas v1.0 is readily available on video platforms like YouTube. We
hypothesize that if a human were to watch all 4.5 million videos we collected, they would likely be
able to recognize most of the actions in ActionAtlas v1.0. Thus, ideally, training on this massive
dataset would enable the model to learn this knowledge, which we leave for future work. We will
also be releasing the YouTube IDs of the 4.5 million videos we crawled for large-scale pre-training.

B.1 Qualitative Error Analysis

To understand why VLMs struggle on our benchmark, we investigate the nature of the errors made
by the Gemini and GPT-4 family. We sample 20 erroneous test cases at random, and analyzed
models’ reasoning. We conduct this analysis within two setups: one where descriptions of the choices
are provided, and one where only the action names are provided. We prompt the model to use
chain-of-thought reasoning in both setups.

We find that most errors fall into at least one of two broad categories and four subcategories. Namely,
visual hallucinations, visual oversights, and visual tracking failure are subcategories within the visual
recognition errors category, while the remaining errors are classified under the QA reasoning failure
category. Figure 6 shows examples of these errors.

Visual hallucinations occur when a model misidentifies an item or action in a video clip and halluci-
nates another action. For instance, in the netball example shown in Figure 6a, GPT-4o hallucinates
that the ball bounces on the ground during a pass, whereas the video clearly shows a direct chest
pass. Visual oversights happen when a model correctly identifies most elements of a clip but misses a
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(a) Visual hallucination in netball. The clip shows a chest pass, with the player with a black-and-white C on
their jersey holding the ball at their chest and using both hands to throw it to their teammate. GPT-4o mistakenly
thinks that the “the pass is directed downwards to the floor before it reaches the teammate,” but it is clear from
the clip that the pass is directed straight to the teammate. This video failure causes GPT-4o to make the incorrect
prediction of “bounce pass.” [Video link]

(b) Visual oversight in golf. This trimmed clip shows a double hit, where the first hit is a chip shot. Both
GPT-4o and Gemini Pro 1.5 identify chip shot as the option that “best describes the action” in the clip. However,
double hit is the more favorable option as the way the golfer hits the ball twice is illegal. Both GPT-4o and
Gemini Pro 1.5 focus purely on the initial swing and overlook what happens after it (namely, that the club hits
the ball again), causing the incorrect prediction. [Video link]

(c) QA reasoning failure in rugby. This trimmed clip shows a crash ball, where the player charges directly at
the defense. GPT-4o concludes that “this move is characteristic of a crash ball," but confusingly outputs “offload
pass" as its prediction. It is unclear why a model would arrive at one option in its chain-of-thought, and then
decide on another option for its final answer. [Video link]

(d) Visual tracking failure in soccer. The clip shows a player crossing the ball and player #7 performing a
diving header. GPT-4o concludes that “subsequent frames show player #7 crossing the ball into the penalty area
towards the goal” and chooses “cross” as the answer. This shows that the model has failed to track player #7 and
confused it with the other player. [Video link]

Figure 6: Examples of prediction errors by proprietary models on ActionAtlas.

crucial detail or movement in the clip. An example is the golf clip of a double hit shown in Figure 6b,
where the first of the two hits is a chip shot. Both GPT-4o and Gemini 1.5 Pro focus on the swing but
overlook the obvious second hit. This causes the models to incorrectly predict chip shot, which is not
the “best” choice that describes the video as asked by the question. Visual tracking happens when
the model fails to localize and track the individual performing the action which is depicted in 6d.
Lastly, QA reasoning failures, shown in Figure 6c happen when the model describes the correct action
but ultimately selects the wrong choice. Overall, visual hallucinations are the most common error
across-the-board, making up about 60% of errors. The remaining errors are divided among visual
oversights, tracking and reasoning failures, with visual oversights being slightly more prevalent.

C Open Model Details

• mPLUG-Owl [80]: is one of the first to align both image and video modalities into large language
model. This is achieved with the Qformer-based module [34] that summarizes long and dense
visual information with learnable tokens, which are then combined with the text queries as input
to the language model.

• Video-LLaMA: Unlike the above work that does not integrate audio, Video-LLaMA [85] inte-
grates two QFormers, one for video and audio branch, and aligns the output of both visual &
audio encoders with LLM’s embedding space. However, as discussed in §3 we don’t use any
audio and text signal when evaluating the model.

• Video-LaVIT [24] efficiently captures the dense sequence of video by representing each video
as key frames along with motion vectors. Specifically, the spatio-temporal motion encoder
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captures the time-varying contextual information contained in extracted motion vectors, thereby
significantly enhancing LLMs’ ability to comprehend the intricate actions in video. The key frame
and motion tokens are then adapted to the LLMs.

• VideoChat2 [36] adopts a progressive training approach, refining the visual encoder and Qformer
for LLMS using an extensive instruction tuning dataset. Setting itself apart from previous
efforts, this study enhances the performance significantly across various downstream tasks by
incorporating multiple instruction tuning datasets. These datasets are compiled from both public
sources and new instructions generated by ChatGPT, providing a substantial boost in performance.

• LLaVA-Next-Video [86] efficiently adapts LLaVA [41] to efficiently pass in long sequence of
videos with high resolution with their AnyRes algorithm. supporting evidence.

• Qwen2-VL-7B [64] Following the official instructions for running the model, we set a limit on the
total number of pixels per frame. We began with (28× i)× (28× i), where i = 12, to establish
the maximum pixel count for each frame. If the video exceeded the model’s context length after
selecting frames at this resolution, we gradually decreased the value of i, one at a time, until the
total length was compatible with the model’s context capacity.

Table 7 further includes the architecture details and the input question prompt used for the open
models during evaluation. We use the following system prompt for the models: “Carefully watch the
video and pay attention to the cause and sequence of events, the detail and movement of objects, and
the action and pose of persons. Based on your observations, select the best option that accurately
addresses the question." The input question and multiple choice options are formulated as “Question:
{question} Choices: {choices}", and the output response is parsed to acquire the correct letter
choice.

D Frames Per Second (FPS) Based Results

We assessed the models using FPS-based sampling, where a consistent number of frames is extracted
from each second of the video. The results of this evaluation are presented in Table 5. During this
process, we observed failures with numerous models when the number of frames were extremely
large. Consequently, when the sampling exceeded 100 frames, we sub-sampled 100 evenly spaced
frames from the sampled set.

Table 5: Results when sampling a fixed number of frames per second from the video.
Model FPS Accuracy

1 26.09 ±2.75
Qwen2-VL-7B 2 28.91 ±3.00

4 28.66 ±2.75

1 40.00 ±2.85
GPT-4o 2 43.54 ±3.18

4 42.83 ±3.11

1 32.26 ±2.92
Gemini Pro 1.5 2 33.43 ±2.81

4 32.20 ±3.08

1 30.79 ±3.06
GPT-4o-mini 2 32.14 ±2.91

4 30.16 ±2.86

E Higher Frame Detail with GPT-4o.

GPT-4 Vision API can process images (or a sequence of images) in two modes: 1. detail: low
wherein each image is encoded into 85 tokens. 2. detail: high in which images are first rescaled
and split into tiles where each tile is encoded into 170 tokens. [51]. Table 6 shows the results of
running GPT-4 family of models with the high detail setup. The improvements are more notable
when sampling only one or two frames per second.
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Table 6: Processing images with higher details using GPT4 suite of models.
Model # Input frames Low detail Acc. (%) High detail Acc. (%)

1 33.08 ±2.89 37.96 ±3.06
GPT-4o 2 31.49 ±3.02 36.37 ±3.08

4 39.50 ±3.10 39.53 ±3.13
8 41.55 ±3.01 42.41 ±3.12
16 42.95 ±2.91 43.90 ±3.21
32 41.44 ±3.11 43.33 ±3.07

1 30.15 ±2.74 28.83 ±2.71
GPT-4o-mini 2 27.84 ±2.90 29.69 ±2.92

4 33.42 ±2.70 30.71 ±2.98
8 30.20 ±2.89 31.19 ±3.14
16 32.20 ±2.76 29.02 ±2.68
32 31.17 ±2.90 29.38 ±2.94

Table 7: Architecture and prompt details of open models.

Model LLM Visual Encoder Image Size Question Prompt
mPLUG-Owl [80] LLAMA-7B [65] CLIP ViT-L/14 [53] 224 Only give the best option.
VideoChatGPT [44] Vicuna-7B-v1.1 [6] CLIP ViT-L/14 [53] 224 Answer with the option’s letter from the given choices directly.
VideoLLaMA [85] LLAMA2-7B [66] EVA ViT-G/14 [61] 224 Only give the best option.
Video-LaVIT [24] LLAMA2-7B [66] EVA ViT-G/14 [61] 224 Only give the best option.
VideoChat2 [36] Vicuna-7B-v0 [6] UMT-L [35] 224 Only give the best option.
LLaVA-Next-Video [86] Vicuna-7B-v1.5 [6] CLIP ViT-L/14-336 [53] 336 Answer with the option’s letter from the given choices directly.
Qwen2-VL-7B [70] Qwen2-7B [64] OpenCLIP ViT-bigG [23] 336 Answer the given question according to the video. Only output the choice number and nothing else.

F What does Gemini API Leak about the Model?

When investigating Gemini models exposed as Gemini API and the Vertex AI web application, we
noticed that they might leak some information about how Gemini processes multi-modal inputs:

1. Figure 7 shows a screenshot of Google’s Vertex web app. When feeding an image the token count
is always 258, regardless of resolution. Therefore, if the number of tokens shown is accurate
(which might not be) this could imply all images are resized to a certain size before feeding to
the model. One hypothesis could be that there are 16× 16 patches that are fed to the model with
two indicator tokens such as "<IMAGE>" and "</IMAGE>".

2. With videos, we observed that the only factors affecting the token count were the video duration
and frame rate. If a video had N frames, the token count shown was always ⌊N/FPS⌋ × 265.
Therefore, according to the web app, each still image takes 258 tokens and each video frame
takes 265 tokens. Those extra tokens in videos might be the timestamp tokens accompanying
each frame.

3. An unusual observation was made when we uploaded a video with fewer frames than the
designated FPS: the token count displayed was zero. Despite this, the model was still able to
process and somewhat accurately describe the video’s content. This might suggest that the web
application calculates the token count offline using a predetermined formula, rather than counting
the actual tokens provided to the model.

4. One possible implication of the above findings is that the video model consistently samples one
frame per second when processing videos. We investigated further and were able to recover the
exact frames that model samples from videos. If video’s frame rate is N , then Gemini models
select the middle frame from each second. Therefore the indices of sampled frame numbers will
be N/2, N/2 +N , N/2 + 2N , N/2 + 3N and so forth.

5. To verify the above claim, one approach is to insert random still images into a regular video
at those frame positions. When this modified video is given to the model with a prompt such
as "Exactly describe what’s happening in this video without omitting any details" the model
only describes the inserted still images, ignoring the rest of the video. Alternatively, the model
might respond with something like "The provided video is a still image and doesn’t contain any
motion to describe." This pattern was consistently observed every time we tested the input in this
manner.

21



6. Even if the original video contains inappropriate content (e.g., NSFW material), replacing frames
at those positions with random images results in the model only describing the inserted images.
However, should one of these frames be replaced with an inappropriate image, the model refrains
from providing any output.

Figure 7: Screenshot of Google’s Vertex AI web app.

G Gemini refusals

Table 8 shows Gemini Pro 1.5 refusals on ActionAtlas with different types of inputs. In general, we
notice much lower refusal rate with video inputs. The refusal rate increases noticeably when the
model uses chain-of-thought reasoning or sampled frames as inputs. It also increases when more
number of frames are fed as the input to the model. The majority of refusals were due to dangerous
content, primarily because of wrestling moves in the dataset. However, since videos of wrestling
actions are readily accessible on YouTube, it’s unclear why the AI model deems these videos harmful.

Table 8: Gemini 1.5 Pro latest refusals on ActionAtlas with different setups.
Input Sexually explicit Hate speech Harrassment Dangerous content Other Total
Video (1 fps) 0 0 0 9 4 13 (1.39%)
Video (all frames) 0 0 0 1 25 26 (2.78%)

1 frame 4 0 0 44 0 48 (5.14%)
2 frames 4 1 0 41 3 49 (5.25%)
4 frames 4 0 0 46 4 54 (5.78%)
8 frames 4 0 1 47 6 58 (6.21%)
16 frames 4 0 0 50 14 68 (7.28%)
32 frames 4 0 1 48 15 68 (7.28%)

Video + Choice description 2 0 0 5 4 11 (1.18%)
Video + CoT 1 2 3 43 10 59 (6.32%)
Video + CoT + Choice description 1 0 3 47 5 56 (5.99%)
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H Prompts

I'll give you a sport name and you have to generate a list of physical 
actions that are commonly associated with that sport.

1. Only list actions that are well-known but the list should be as 
exhaustive as possible.

2. If an action has multiple types list all of them. For instance in soccer 
there are different types of shoots such as Standard Shot (Instep Drive), 
Chip Shot, Curve Shot, Knuckleball Shot etc. Output all of them and 
each type should be in a new line.



EXAMPLE:

---

SPORT: golf

RESPONSE:

Drive/tee shot

Fairway shot

Approach shot

Chip shot

Putt

Bunker shot

Pitch shot

Flop shot

Punch shot

Recovery shot

---

SPORT: {sport}

RESPONSE:\n

"""

Figure 8: GPT4 Prompt used for finding initial actions in different sports.

I give you an initial list of actions in {sport}. YOU HAVE TO EXPAND 
THIS LIST AND GIVE A COMPREHENSIVE LIST OF ALL KNOWN 
ACTIONS, SHOTS, MOVES, ETC. IN THIS SPORT. 

It's crucial that you include all the well known physical actions, shots, 
and moves specially those that might have a Wikipedia page. 

Rules:

1. Give a list without description, without bullets and numbers, and just 
the action names line by line.

2. Optimize the list for Youtube search, so don't make the action name 
too long.

3. do not use parentheses, or slashes in your lines. For instance, if the 
action has multiple names such as "Standard Shot (Instep Drive)" then 
write "Standard Shot" and "Instep Drive" in two separate lines. Also do 
not write more description about an action in parentheses, just the 
action name.

4. Do not categorize the actions, just give a simple plain list of action 
names nothing else.

Here is my list, rewrite and expand it:

{actions}

Figure 9: GPT4 Prompt used for expanding the action list.
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I  give you a list of possible actions in {sport}. Your task is to specify 
which one of them are PHYSICAL actions that require MOVEMENT that 
can be captured in a video. Also the action has to be specific and not a 
general term in that sport.

Here are some examples for the kinds of actions I am looking for in a few 
example sports:

Alley-oop dunk in basketball

Around the world in soccer

Cross in soccer

Cruyff turn in soccer

Offensive rebound in basketball

Panenka in soccer

---

I give you 10 possible actions in {sport} and only write the name of those 
that are physical with movement in separate lines. Only output the exact 
name of actions nothing else. If none of the actions met the criteria 
output "".

{actions}

Figure 10: GPT4 Prompt used for shrinking the list and removing non-physical actions.

Write some hard negatives for move {action} in sport 
{domain}.

The negatives should be plausible and EXTREMELY hard to 
distinguish from the correct answer. However, THEY MUST 
BE WRONG AND DIFFERENT from the correct one. Also, the 
hard negatives must be well-known {domain} moves.

for each action, write 9 hard negatives. and write one hard 
negative in a line without any bullet points or numbers.

----

EXAMPLE:

ACTION: windshield wiper forehand

VERY HARD NEGATIVES:

Inside-out forehand

Topspin lob

Slice backhand

Flat serve

Kick serve

Reverse forehand

Volley at the net

Drop shot

Two-handed backhand

----

ACTION: {action}

VERY HARD NEGATIVES:

Figure 11: GPT4 Prompt used for writing hard negatives for an action.

Answer the given question according to the video. Only 
output the choice number and nothing else. When 
answering the question consider all legal and illegal moves 
and drills.\n{question}\n{options}

Figure 12: Final prompt used for evaluating proprietary models.
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I will give you some information about a sport video, and you should generate a question based on the 
info.

The information:

1. an action.

1. description of the person performing the action.

3. what happens before the action.

4. what happens after the action.

Note that 3 and 4 could be "none". If both are "none", then just focus on the action and the person 
performing the action.

NOTE THAT YOU MUST NOT REFER TO THE ACTION NAME IN YOUR QUESTION!!

---

Example1:

ACTION: alley-oop dunk

PLAYER: player number 34 wearing white jersey

BEFORE: player number 34 runs towards the basket

AFTER: none

QUESTION: What best describes the move made by player wearing white jersey with number 34 after 
they run towards the basket?

---

Example2:

ACTION: Throwing

PLAYER: the man in the camo shirt and black pants

BEFORE: none

AFTER: none

QUESTION: What best describes the action that the man in the camo shirt and black pants performs?

---

Example3:

ACTION: Hedge

PLAYER: It is a man with a white headband and the number 34 on his jersey

BEFORE: He was guarding number 32 on the opponent team

AFTER: The opponent loses the ball

QUESTION: What best describes the action that the man with a white headband and the number 34 
on his jersey performs after he was guarding number 32 on the opponent team and before the 
opponent loses the ball?

---

Example

ACTION: {action}

PLAYER: {player}

BEFORE: {before}

AFTER: {after}

QUESTION:

Figure 13: GPT4 Prompt used for writing questions about the video segments.

I Link to Dataset

Google Drive The link to the jsonl file containing the metadata: https://drive.google.com/
file/d/1ueh5gqYg0WqQ_CFxjxsjcn8rx9wwN9Gi/view?usp=drive_link

HuggingFace https://huggingface.co/datasets/mrsalehi/ActionAtlas-v1.0
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J Datasheet

J.1 Motivation

• For what purpose was the dataset created? The main purpose of creating ActionAtlas was
to evaluate state-of-the-art VLMs on identifying domain-specialized actions. Correctly
recognizing such actions necessitates the following capabilities which we believe were
missing in previous video datasets, especially action recognition datasets: 1. High frame
sample rate to catch fine motions in the action. 2. Correctly tracking the action actor in both
time and space across the frames.

• Who created the dataset (e.g., which team, research group) and on behalf of which
entity (e.g., company, institution, organization)? The dataset is created by RAIVN lab at
the University of Washington.

• Who funded the creation of the dataset? The project was funded by Microsoft Acceler-
ate Foundation Models Research program, Google, University of Washington, and Allen
Institute for Artificial Intelligence.

J.2 Composition

• What do the instances that comprise the dataset represent (e.g., documents, photos,
people, countries)? Each instance represents a fine-grained action in some sports which
consists of a video, a question, and four or five multiple choice choices from which only one
is correct.

• How many instances are there in total (of each type, if appropriate)? There are 934
video-MCQ pairs in the dataset.

• Does the dataset contain all possible instances or is it a sample (not necessarily random)
of instances from a larger set? No, the dataset is not a sample of a larger datset.

• What data does each instance consist of? Each instance consists of a video, a question,
five multiple choice options, and a ground truth answer which is the option number of the
ground truth action.

• Is there a label or target associated with each instance? Yes, the label for each instance
is the correct choice for the question.

• Is any information missing from individual instances? No.

• Are relationships between individual instances made explicit (e.g., users’ movie ratings,
social network links)? No, the videos are sourced from different authors and creators on
YouTube.

• Are there recommended data splits (e.g., training, development/validation, testing)?
The dataset only consists of a test set.

• Are there any errors, sources of noise, or redundancies in the dataset? We employed
extensive filtering mechanisms including automatic and AI tools and filtering by crowd-
workers and authors to eliminate any potential errors and noise in the data. Some videos in
the dataset might be different segments from the same original YouTube video.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g., websites, tweets, other datasets)? The metadata is self-contained with the links to
videos on YouTube.

• Does the dataset contain data that might be considered confidential (e.g., data that is
protected by legal privilege or by doctor–patient confidentiality, data that includes the
content of individuals’ non-public communications)? No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No, all the videos are segments of already
available and public YouTube videos and they are already filtered by YouTube to remove
harmful content.

• Does the dataset identify any subpopulations (e.g., by age, gender)? No.
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• Is it possible to identify individuals (i.e., one or more natural persons), either directly
or indirectly (i.e., in combination with other data) from the dataset? As the videos are
sport videos sourced from YouTube, there is a possibility of recognizing famous athletes in
the videos. However, when writing questions, we did not use the name of individuals in the
videos; instead, we refer to them by general attributes, such as color or number of the jersey.
For more details refer to §2.

• Does the dataset contain data that might be considered sensitive in any way (e.g.,
data that reveals race or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? No.

J.3 Collection Process

• How was the data associated with each instance acquired? The data was sourced from
YouTube.

• What mechanisms or procedures were used to collect the data (e.g., hardware appa-
ratuses or sensors, manual human curation, software programs, software APIs)? We
used softwares such as Elasticsearch, GPT4, Whisper, Amazon Mechanical Turk to collect
the data.

• Who was involved in the data collection process (e.g., students, crowd-workers, con-
tractors) and how were they compensated (e.g., how much were crowd-workers paid)?
The student authors and crows-workers. We adjusted the price per task so that the workers
could make $15 per hour as the minumum wage.

• Over what timeframe was the data collected? The data was collected mainly between
January 2024 and June 2024.

• Were any ethical review processes conducted (e.g., by an institutional review board)?
Yes, we got IRB approval for crowd-sourcing on Amazon Mechanical Turk from University
of Washington.

• Did you collect the data from the individuals in question directly, or obtain it via third
parties or other sources (e.g., websites)? We requested crowd-workers to write questions
about the given videos and we do not collect any personal data from them.

• Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.,
a data protection impact analysis) been conducted? The dataset is unlikely to affect the
crowd-workers. Moreover, for the individuals featured in the videos, we refrained from
using any personally identifiable information (PII) like names in the questions. Instead, we
referred to them using general attributes such as jersey numbers and clothing colors.

J.4 Preprocessing/cleaning/labeling

• Was any preprocessing/cleaning/labeling of the data done (e.g., discretization or bucket-
ing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of instances,
processing of missing values)? We did many rounds of filtering and cleaning which are
discussed in Section 3 of the paper to make sure the data is of high quality. The final videos
used in the dataset are raw mp4 videos.

• Was the “raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.,
to support unanticipated future uses)? The raw videos are available on YouTube as an
external source.

• Is the software that was used to preprocess/clean/label the data available? Yes. For a
thorough description of software used refer to section 3 of the paper.

J.5 Uses

• Has the dataset been used for any tasks already? No.

• Is there a repository that links to any or all papers or systems that use the dataset? No.

27



• What (other) tasks could the dataset be used for? The dataset could be used for video
tasks such as Video Understanding, Video Question Answering, and Video Compression.

• Is there anything about the composition of the dataset or the way it was collected and
preprocessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? No.

J.6 Distribution

• Will the dataset be distributed to third parties outside of the entity (e.g., company,
institution, organization) on behalf of which the dataset was created? No.

• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? On the
dataset’s website, Huggingface datasets, and Github.

• When will the dataset be distributed? We plan to release the dataset publicly by the end
of October 2024.

• Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? The current version of the dataset is
licensed under Creative Commons Attribution 4.0.

• Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? No.

• Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? No.

J.7 Maintenance

• Who will be supporting/hosting/maintaining the dataset? The dataset will be hosted on
our website, GitHub repository, Huggingface, and Google drive.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)?
Email address.

• Is there an erratum? No.
• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete

instances)? Yes, we plan to update the data for any potential errors that will be discovered
in the future.

• If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g., were the individuals in question told that their data
would be retained for a fixed period of time and then deleted)? No.

• Will older versions of the dataset continue to be supported/hosted/maintained? Most
likely yes.

• If others want to extend/augment/build on/contribute to the dataset, is there a mecha-
nism for them to do so? Yes, we plan to implement such mechanisms on the website of our
dataset.

K License

The current version of the dataset is licensed under Creative Commons Attribution 4.0.

L Author Statement

The authors bear all responsibility in case of violation of rights and confirmation of the data license.

M Mechanical Turk HITs

Figures 14 and 15 shows the templates and the instructions used for verification and localization of
actions with the help of crowd-workers on Amazon Mechanical Turk. For both tasks we calibrated
the price per hit so that the workers could earn $15 per hour which is the minimum wage.
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Figure 14: Template used for Verifying presence of actions by crowd-workers.
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Figure 15: Template used for localizing actions in 30 second segments.
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Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] Yes, the limitations are included

in Section 4
(c) Did you discuss any potential negative societal impacts of your work? [N/A] Our work

most likely does not have any negative societal impact. We have discussed the general
societal impact in Section 1

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] We will include
the links to the dataset in supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [N/A] As we are not training any models random seeds are
not used in this study. Furthermore repeating experiments with proprietary models is
costly.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] The are provided in Section 3

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] The only assets we

use are open-source models which we have cited.
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [Yes]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] Our dataset does not contain any PIIs other
than what is shown in the video and is publicly available.

5. If you used crowd-sourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [Yes] See Appendix M. The instructions are available in the screen shots
of the task HTML template we used.

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [Yes] Yes, the study is approved as STUDY00020473.
The approval document will be shared upon request.

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [Yes] Yes, we calibrated the price per task in a way
that workers could earn $15 per hour which is the minumum wage.
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