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Abstract—Excessive ultraviolet (UV) exposure is the principal
driver of melanoma, yet at-risk individuals seldom receive timely,
context-aware cues to apply protection. Existing wrist-worn UV
monitors often struggle to recognize timely outdoor exposure
because UV readings vary sharply with wrist orientation and
sensor angle. To address this gap, we developed a wrist-watch
form-factor device that embeds an AS7331 UV photodiode
beneath a hemispherical polytetrafluoroethylene (PTFE) dome,
which diffuses incident light and stabilizes the sensor’s angular
response. Ten participants wore the device during routine daily
activities, generating more than 93k datapoints of annotated
indoor-outdoor data. We implemented an on-device logistic-
regression classifier, integrating UVA, UVB, and inertial features
to distinguish indoor from outdoor contexts. Under leave-one-
participant-out cross-validation, the PTFE-dome watch achieved
94% accuracy and a weighted F1 score of 0.95, outperforming
both a flat-window GUVA-S12SD sensor (71% accuracy, F1
= 0.72) and a cylindrical-PTFE enclosure (84% accuracy, F1
= 0.85). By coupling a compact PTFE dome with on-device
machine learning (ML), our system delivers reliable, on-wrist UV
context sensing and paves the way for unobtrusive, personalized
interventions to reduce cumulative UV exposure.

I. INTRODUCTION

Excessive exposure to ultraviolet radiation (UVR) increases
the risk of developing melanomas [1]. In response, many
wearable devices, often on the wrist, have been developed
to track sun exposure in real time [2]. These devices often
output an easily digestible UV Index or UV dose value [3]
and allow users to understand how much radiation they are
exposed to throughout the day. However, more work is needed
to connect UV exposure data to evidence-based behavior
change techniques such as self-monitoring, feedback, and
action planning.

Knowing when an individual is indoors or outdoors is often
critical in informing effective UV-related behavior change
measures. Moreover, automatic detection of an individual’s
“indoor-outdoor” state can be very useful in conducting
longitudinal analyses of outdoor activity patterns over time,
which can guide more effective sun protection planning and
behaviors.
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While indoor-outdoor detection appears to be a simple
problem on its face—UVR is scant indoors and abundant
outdoors during daytime hours—most commercially available
devices and research prototypes still fall short. First, optical
design: flat sensor windows accept light over a narrow solid
angle, so readings collapse to indoor-like levels whenever the
device turns away from the sun or is in shade [4]. Second,
algorithmic oversimplification: existing pipelines often map
raw irradiance directly to exposure dose, ignoring inertial cues
that could disambiguate variations in readings due to variations
in sensor orientation [5]. These limitations undermine reliable
detection of indoor-outdoor state.

To address these gaps, we introduce RayWatch, a wrist-worn
UV sensing platform that utilizes on-device ML for robust
indoor-outdoor detection. A hemispherical polytetrafluoroethy-
lene (PTFE) dome diffuses incident light [6], broadening
angular acceptance and mitigating orientation-induced signal
loss. A logistic-regression model then fuses UVA, UVB and
inertial (pitch, roll) features to infer indoor-outdoor state. Our
ten-participant field study demonstrates that this combined
hardware—software approach maintains a clear irradiance dif-
ferential across natural wrist movement and heterogeneous
lighting. In this paper, we present three main contributions:

1) Optical design: a hemispherical PTFE dome that enables
orientation-robust UV sensing on the wrist.

2) Machine-learning pipeline: a lightweight logistic-
regression classifier, validated with leave-one-participant-
out cross-validation, for real-time indoor-outdoor detec-
tion.

3) Feature analysis: an empirical evaluation showing how
spectral and inertial features jointly drive accurate dis-
crimination among indoor and outdoor conditions.

II. METHODS

This section details the wrist-worn system’s hardware, the
hemispherical PTFE diffuser that stabilizes angular response,
the in-the-wild data-collection protocol, and the machine-
learning pipeline used to train and evaluate a logistic-
regression model for indoor—outdoor detection.
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Fig. 1. System overview. (a) Hardware components: electronics assembly, enclosure with hemispherical PTFE dome, and fully assembled wearable. (b) Device
worn on the wrist. (c) Example time series of UV measurements with corresponding logistic-regression output classification of indoor and outdoor segments.

A. System Design

We developed a wrist-worn wearable that enables unobtru-
sive, real-time monitoring of UV exposure and indoor—outdoor
context. We measured UV irradiance with an ams AS7331
spectral sensor that outputs readings for UVA, UVB, and
UVC (W cm™2). The sensor interfaced with a Seeed Studio
XIAO nRF52840 Sense module with Bluetooth Low Energy
(BLE), a 2MB onboard flash, and an LSM6DS3 six-degree-of-
freedom inertial measurement unit. We mounted a hemispheri-
cal polytetrafluoroethylene (PTFE) dome above the photodiode
to diffuse incident light and stabilise the sensor’s angular
response (Fig. la). We enclosed all components in a 3D-
printed case compatible with standard watch straps, creating
a compact, low-cost platform suitable for everyday use.

The device draws power from a 3.7V, 350 mAh Li-Po
battery. We sampled UV data at 4Hz and transmitted it to a
smartphone application via BLE whenever a connection was
available; otherwise, the firmware buffered the data in the on-
board flash for later retrieval. The firmware uses 19360 bytes
of RAM—38.1% of the nRF52840’s memory capacity. The
device draws an average of 4.3mA of current when connected
and 7.5mA when disconnected and advertising over BLE,
enabling all-day wear with 46.7 hours of continuous operation
in the worst case. The device and enclosure weigh a total of
19g, less than the standard smartwatch.

B. Hemispherical Diffusing Sensor Window

Preliminary tests revealed that the AS7331 (UV sensor)
alone exhibits a pronounced angular dependence: irradiance
readings decrease sharply as the incident angle deviates from
normal. Given the high variability of wrist orientation during
daily activities, this behavior compromises reliable context
(indoor-outdoor) sensing. A common mitigation strategy is
to place an optical diffuser over the detector to randomize
incident angles and improve the cosine response [7]. We
selected PTFE as the diffuser material because it is inex-
pensive, readily machinable, and provides nearly Lambertian
transmission across the UV spectrum [6].

TABLE I
EXAMPLE MINIMUM OUTDOOR AND MAXIMUM INDOOR UVB IN
/.LI/V/CWL2 AT DIFFERENT SOLAR AZIMUTH ANGLE DIFFERENCES.

0° 90° 180°  270° Indoors
Dome (lmm PTFE Plasticc 4.8 351 1.66 4.06 0.92
Flat (0.09mm PTFE Tape) 3.14  0.92 1.1 0.92 0.92

However, experiments with a conventional flat PTFE win-
dow showed that with the sensor plane rotated 90° or more
away from the solar vector—typical for a wrist-worn device—
outdoor irradiance often fell to indoor-like levels (Table I),
especially in shaded environments.

To resolve this limitation, we installed a hemispherical win-
dow fabricated entirely from PTFE over the UV photodiodes.
Hollowed with a wall thickness of 1mm, the dome’s near-
Lambertian scattering admits UV radiation from a broad solid
angle, so outdoor irradiance remains distinctly higher than
indoor levels—even in shade or when the wrist faces away
from the Sun [8].

C. User Study

We conducted an in-the-wild evaluation to assess the im-
pact of a hemispherical PTFE dome on the accuracy of in-
door—outdoor classification. The study protocol was approved
by Northwestern University’s Institutional Review Board (IRB
#STU00224409).

Ten participants (6 urban, 4 suburban) were recruited from
the Chicago and Evanston, IL areas. Each participant wore
three wrist-mounted UV sensing devices on the same wrist: (1)
our custom-built AS7331 spectrometer with a hemispherical
PTFE dome, (2) a commercially available GUVA-S12SD UV
sensor with a flat diffusing window, and (3) a commercial
research grade UV dosimeter developed by Allen et al. [3],
which features a cylindrical PTFE enclosure calibrated against
a spectroradiometer. This arrangement ensured all devices ex-
perienced the same angle of exposure to ambient UV radiation.
Participants were instructed to complete 10 transitions between
indoor and outdoor environments, with each transition defined



as a single switch from indoors to outdoors or vice versa.
The study was designed to reflect natural usage: participants
determined the timing and order of their transitions, with the
only constraints being a minimum total study duration of 15
minutes and a minimum segment duration of 60 seconds in
either context.

While outdoors, participants walked freely in their cho-
sen direction; indoors, they could remain near windows or
move farther away, introducing variation in light exposure
and wrist motion. Participants used a mobile app to annotate
their indoor—outdoor status, providing ground truth labels.
Our device recorded separate UVA and UVB values, while
the GUVA-S12SD and the Allen device each reported a
single UV index value. Data were collected at various times
of day to capture changes in solar angle, across multiple
weather conditions (sunny, partly cloudy, overcast), and in
both shaded and unshaded settings. Recordings were gathered
in urban environments (e.g., downtown Chicago) as well as
suburban areas (e.g., North Chicago, Evanston) to account for
environmental diversity.

TABLE II
STUDY PARAMETERS FOR EACH PARTICIPANT

Participant  Location Weather Start
P1 Downtown Chicago  Sunny 1:57pm
P2 Downtown Chicago ~ Sunny 4:00pm
P3 North Chicago Sunny 9:05am
P4 Evanston Cloudy 1:17pm
P5 Evanston Cloudy 3:22pm
P6 Downtown Chicago  Partly Cloudy  12:56pm
P7 Downtown Chicago  Cloudy 2:43pm
P8 Downtown Chicago  Cloudy 3:30pm
P9 Downtown Chicago ~ Sunny 12:41pm
P10 Evanston Partly Cloudy 4:04pm

D. Indoor-Outdoor Detection Model

We used a logistic regression model for indoor—outdoor
classification due to its low computational cost and suitability
for on-device inference. The model was trained on 93,488
labeled data points collected during our user study. Each point
included four features: UVA, UVB, pitch, and roll, and was
labeled as -1 (indoor) or +1 (outdoor) using ground truth from
a mobile app. To incorporate temporal context, we applied a
non-overlapping sliding window approach. Each window was
consolidated into a single engineered feature vector containing
the min, max, mean, and standard deviation of points in the
window (16 total features) and adopting the window’s last
time point’s label. We evaluated a range of window sizes
from 10 to 40 samples, corresponding to 2.5-10 seconds for
the AS7331 and GUVA-S12SD (sampled at 4 Hz), and 2-
40 samples, or 8-320 seconds for the Martin Allen device
(sampled at 0.125 Hz). Model performance was assessed using
leave-one-participant-out cross-validation. For each device, we
computed weighted averages of accuracy, precision, recall, and
F1 score across all folds. The best-performing window size
for each device was selected based on the highest weighted
F1 score.

III. RESULTS
A. Indoor-Outdoor Classification Results

Table III summarizes the weighted average performance
across all cross-validation folds, using the best-performing
window size for each device. The AS7331 with dome achieved
the highest overall accuracy (0.94 + 0.05), with an Fl-score,
precision, and recall of 0.95.

In contrast, the GUVA-S12SD achieved significantly lower
performance (accuracy: 0.71 £ 0.13, Fl-score: 0.72), likely due
to its flat window restricting incident light angles. The Martin
Allen device performed better than the GUVA-S12SD (accu-
racy: 0.84 + 0.10, Fl-score: 0.85), but was still outperformed
by the AS7331. These results suggest that the hemispherical
dome design enables more consistent detection of ambient UV
signals under varied conditions.

Per-participant results for the AS7331 device are shown in
Table IV. The model maintained high classification perfor-
mance across all participants, with accuracy and Fl-scores
ranging from 0.85 to 1.00.

TABLE III
WEIGHTED AVERAGE CLASSIFICATION METRICS ACROSS
CROSS-VALIDATION FOLDS PER DEVICE

Best Accuracy

Sensor Wileow Mean + StDev Precision Recall F1_score
Size

AS7331 + dome 32 0.94 + 0.05 0.95 0.95 0.95

GUVA-S12SD 37 0.71 + 0.13 0.79 0.74 0.72

Martin Allen 3 0.84 + 0.10 0.88 0.86 0.85

TABLE IV
AS7331 CLASSIFICATION METRICS FOR EACH CROSS-VALIDATION FOLD

Participant Accuracy Precision Recall Fl-score
P1 0.96 0.96 0.96 0.96
P2 0.90 0.90 0.90 0.90
P3 0.98 0.98 0.98 0.98
P4 1.00 1.00 1.00 1.00
P5 0.87 0.89 0.87 0.87
P6 0.92 0.93 0.92 0.92
P7 0.85 0.89 0.85 0.85
P8 0.96 0.96 0.96 0.96
P9 0.96 0.96 0.96 0.96
P10 0.97 0.97 0.97 0.97

B. Visual Data Analysis

To qualitatively assess the separability of indoor and out-
door samples across devices, we applied Principal Component
Analysis (PCA) to the windowed feature data corresponding
to each device’s best-performing window size. As shown in
Figure 2, the AS7331 with the hemispherical PTFE dome ex-
hibits a visibly clearer separation between indoor and outdoor
samples while the GUVA-S12SD and the Martin Allen device
show much more overlap, likely due to their form factors being
more sensitive to wrist orientation and line-of-sight to the Sun.

C. Feature Importance

Model explainability analysis using SHAP (Figure 2) re-
veals that engineered statistical features provide a highly
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Fig. 2. (From Left) Samples for each device mapped to 2 dimensions using PCA (dimensionless), SHAP plot for features in indoor-outdoor prediction.

interpretable framework for classification. The model identifies
the mean UVA radiation (UVA_mean) as the most salient
predictor, where its value demonstrates a strong bipolar in-
fluence, pushing predictions toward “Outdoor” when high and
“Indoor” when low. The model also leverages more subtle cues
from motion sensors. Device orientation, specifically a higher
Roll_mean, correlates negatively with the “Outdoor” class.
As expected, Roll_std_dev illustrates that low device stability
and more movement (high standard deviation) is typically
associated with outdoor environments, with the model cor-
rectly assigning it a positive contribution towards an “Outdoor”
classification.

IV. DISCUSSION

To assess classification performance near state transitions,
we analyzed samples centered around “transition points”—
moments when participants moved from indoor to outdoor en-
vironments or vice versa. For each device, the best-performing
window size was centered on these transitions, resulting in
mixed indoor and outdoor data, and labeled according to the
latter state (i.e., the label reflects the new environment).

As shown in Table V, classification accuracy at these
transition points is substantially lower for the AS7331 with
dome and the Martin Allen device. This highlights a key
limitation: real-time detection of environment changes remains
challenging, even with our hardware improvements. While
more powerful or temporally-aware models (e.g., recurrent
architectures) may improve accuracy during such transitions,
they may also introduce computational and energy costs that
are undesirable for on-device inference.

TABLE V
CLASSIFICATION ACCURACY AT AND AFTER TRANSITIONS

Transition  Post-Transition
Sensor

Accuracy Accuracy
AS7331 + dome 0.77 1.00
GUVA-S12SD 0.74 0.89
Martin Allen 0.78 0.89

Encouragingly, performance improves markedly in the win-
dows immediately after a transition, especially for our device,
shown under “Post-Transition Accuracy” in Table V. This
suggests that our system can reliably detect indoor—outdoor

changes within approximately 12 seconds of a transition when
using 32-point windows. Future work could explore hybrid
model architectures or adaptive windowing strategies to reduce
this latency while maintaining energy efficiency.

V. CONCLUSION

We presented a wrist-worn UV sensing system that com-
bines a compact hemispherical PTFE dome with the AS7331
spectral UV sensor to improve on-body detection of indoor and
outdoor contexts. In a real-world study with ten participants,
our device outperformed two common UV monitor designs—a
flat-window GUVA-S12SD and a commercial research grade
cylindrical-PTFE enclosure—in classification accuracy and
F1 score. The on-device logistic regression model, which
integrates UVA, UVB, and inertial features, achieved reliable
predictions within 12 seconds of transition events, despite
challenges with mixed indoor—outdoor segments. By stabiliz-
ing angle-dependent readings through the dome design and
enabling lightweight, on-wrist inference, our system offers a
practical pathway toward real-time, context-aware sun expo-
sure tracking and intervention.
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