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Towards Distortion-Debiased Blind ImageQuality Assessment
Anonymous Authors

ABSTRACT
Existing blind image quality assessment (BIQA) models are suscep-
tible to biases related to distortion intensity and domain. Intensity
bias manifests as an over-sensitivity to severe distortions and under-
estimation of minor ones, while domain bias stems from the dis-
crepancies between synthetic and authentic distortion properties.
This work introduces a unified learning framework to address these
distortion biases. We integrate distortion perception and restoration
modules to address intensity bias. The restoration module uses a
combined image-level and feature-level denoising method to re-
store distorted images, where easily restorable minor distortions
serve as references for mildly distorted images, and severe distor-
tions benefit directly from distortion perception. Finally, calculating
a distortion intensity matrix via intensity-aware cross-attention
for adaptive handling of intensity bias. To tackle domain bias, we
introduce a distortion domain recognition task, leveraging inherent
differences between synthetic and authentic distortions for adap-
tive quality score weighting. Experimental results show that our
proposed method achieves state-of-the-art performance on a multi-
tude of synthetic and authentic IQA benchmark datasets. The code
and models will be available.

CCS CONCEPTS
•Computingmethodologies→Computer vision tasks; Image
processing.

KEYWORDS
Blind image quality assessment, Distortion bias, Pseudo reference,
Distortion domain recognition

1 INTRODUCTION
The digital age has witnessed an exponential proliferation of visual
information across diverse domains. However, this burgeoning vol-
ume of image data is susceptible to degradation during transmission
and compression processes, necessitating the deployment of robust
image quality assessment (IQA) algorithms. Blind IQA (BIQA) plays
a crucial role in real-world scenarios by developing objective met-
rics that closely mimic human perception of distorted images in the
absence of pristine reference images. With the advent of deep neu-
ral networks, deep learning-based BIQA approaches have achieved
remarkable success by leveraging the powerful representational
capabilities of these models to automatically extract informative
features from distorted images. These approaches circumvent the
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need for handcrafted feature engineering and facilitate accurate
quality score prediction through learned mappings between the
extracted features and subjective quality ratings.

In establishing deep learning-based BIQA models, two primary
distortion domains are typically considered: synthetic distortions
and authentic distortions. Synthetic distortions are artificially in-
troduced under controlled conditions and encompass a range of
common flaws with varying degrees and types, such as noise, blur,
compression artifacts, and color shifts. Previous methods have pri-
marily aimed to enhance model effectiveness in perceiving these
types of distortions by identifying different distortion levels and
categories. Distortion classification-based approaches [14, 25] build
the model’s capability to discern distinct distortion patterns by cre-
ating samples with various distortion types. Ranking-based meth-
ods enable models to learn the relative quality ordering of images
with different distortion intensities [12, 15], while reference-based
methods [2, 11, 16] attempt to reconstruct the pristine reference
information of distorted images for subsequent quality regression.
On the other hand, authentic distortions encompass a diverse array
of intricate and often unpredictable degradation patterns that im-
ages may encounter in real-world scenarios, stemming from factors
such as camera sensor noise, environmental interferences, or post-
processing effects. To effectively handle the diversity of authen-
tic distortions, semantic-aware BIQA models have demonstrated
promising results, such as exploiting the rich statistical proper-
ties of semantic features [9], incorporating multi-scale semantic
features [4, 21], and semantic representation of multi-aspect ratio
images [6] to model the complex nature of authentic distortions.

Existing BIQAmodels are susceptible to distortion bias including
distortion domain and intensity, rendering it difficult to effectively
handle the diverse degradation in practical situations. Distortion-
domain bias refers to the domain dichotomy between synthetic and
authentic distortions, which originate from diverse image degrada-
tion scenarios exhibiting distinct distortion characteristics [25, 26].
This poses a considerable challenge for BIQA models to jointly
characterize both forms of degradation. However, current research
mostly focuses on constructing BIQA models tailored to specific
distortion scenarios. For instance, BIQAmodels trained in extensive
collections of synthetic distortion samples often struggle to achieve
comparable performance on authentic distortion images [12, 23].
Conversely, semantic-aware BIQA models designed for authentic
distortions may exhibit limited robustness to synthetic distortions.
Hence, there remains a lack of integrated studies that consider both
synthetic and authentic distortions in image quality assessment.

Furthermore, distortion-intensity bias refers to the phenomenon
observed in BIQA models, wherein they exhibit reduced sensitiv-
ity toward subtle distortions while demonstrating proficiency in
perceiving severe distortions. This bias arises from the inherent
nature of deep learning architectures and their optimization objec-
tives. The model’s structural design emphasizes the extraction of
high-level, global features from images, making it challenging to

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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capture features associated with minor distortions accurately. In ad-
dition, semantic-aware-based BIQA models, designed primarily for
semantic recognition tasks, are required inherently less sensitive
to distortions. These factors collectively contribute to inaccurate
quality evaluations, especially for subtly distorted images.

This paper tackles the challenges of distortion domain and inten-
sity bias to improve model performance. For distortion-domain bias,
a domain classification task is employed for effective recognition
between synthetic and authentic domain. By leveraging domain
information, the model can automatically classify distortion do-
mains and subsequently weight the quality evaluation results of the
distorted image across domains based on their inter-domain simi-
larity. For distortion intensity bias, prior studies have investigated
corrective techniques, such as image-level restoration [11, 16] and
feature-level restoration [2], for restoring mildly distorted images
to a level approximating the original image. These methods demon-
strate particular effectiveness in addressing subtle distortions. In
contrast, severely distorted images are challenging to fully recover,
yet exhibit prominent distortion that the model can readily iden-
tify. Consequently, to address distortion-intensity bias, a combined
strategy of direct evaluation and restored reference information is
employed for assessing both mildly and severely distorted images.
To mitigate the issues of distortion domain and intensity bias, this
work develops a novel blind image quality assessment framework.
The main contributions of this work are as follows:

• We proposed a BIQA model for adaptive image quality eval-
uation across diverse distortion domains, effectively charac-
terizing varying degradation severities for practical applica-
tions.

• To address distortion intensity bias, a combined approach
using single image and restored reference image evaluation
is employed for adaptive distortion intensity assessment.
To provide effective reference information, we propose a
denoising module that integrates image-level and feature-
level methods.

• To mitigate distortion domain bias, a distortion domain dis-
crimination task is incorporated to adaptively weight evalu-
ation results based on inter-domain similarity.

• Experiments conducted on multiple IQA benchmark datasets
including synthetic and authentic datasets demonstrate that
the proposed model achieves state-of-the-art performance,
yielding superior results on both domains of datasets.

2 RELATEDWORKS
2.1 BIQA methods with recovered information
By comparing the differences between Full-Reference IQA (FRIQA)
and BIQA, the reference-based BIQA method was proposed, which
attempts to reconstruct the original reference information of the
distorted image for quality assessment. Lin and Wang [11] used
a stacked hourglass model to generate illusion images under the
constraints of distorted images, and used an IQA discriminator to
judge the quality of the illusion images. Finally, they fused the dif-
ference information between the illusion image and the distorted
image with high-level semantics to guide the learning of the quality
regression network. Chen et al. [2] proposed a pseudo-reference
BIQA method based on the feature layer. They learned to obtain

pseudo-reference features from distorted images through a mutual
learning scheme between distorted images and reference images,
and finally obtained the final quality score through quality aggre-
gation. Pan et al. [16] used a non-adversarial model to handle the
task of restoring distorted images. They employed multiple visual
compensation modules, composed of convolutional layers and pool-
ing layers, and asymmetric residual blocks to manage the quality
reconstruction relationship between distorted images and restored
images. Finally, they fused multi-level restoration features with dis-
torted image features to perform quality estimation. This approach
allows for effective quality assessment and restoration of distorted
images.

2.2 BIQA methods with single distorted image
When constructing BIQA models, two main domains of distortions
are usually considered: synthetic distortion and authentic distor-
tion. Some methods are designed for single distorted image. For
synthetic distortions with clear distortion types and levels, BIQA
models mainly use methods based on distortion classification or
distortion ranking. Zhang et al. [25] use a method based on distor-
tion classification, using convolutional neural networks to classify
distortion levels and types, and then using bilinear merging to form
a unified representation for quality evaluation. Liu et al. [12] use
a method based on distortion ranking. They manually generate
sequence images of different qualities, pre-train them through a
twin network, and then extract image features. When dealing with
complex authentic distortions, BIQA models mostly use semantic
perception methods. Golestaneh et al. [4] use a mixture of convo-
lutional neural networks and Transformer models based on self-
attention, simultaneously extracting local features and non-local
features of the image, and integrating multi-scale semantic features.
Su et al. [21] use a local distortion-aware module to capture image
quality, integrating local distortion features and global semantic
features to aggregate fine-grained details and global information,
and finally predict quality through multi-scale representation.

3 MOTIVATION
The performance of BIQAmodels is often hampered by the presence
of distortion bias. This bias arises from various factors andmanifests
in two primary forms: distortion type bias and distortion intensity
bias. These biases have distinct root causes and exert differing
effects on IQA model performance. A detailed analysis of these
biases is provided in the subsequent sections.

3.1 Distortion-intensity bias
Distortion-intensity bias is typically caused by the varying sensi-
tivity of IQA models to distortion intensities. Current BIQA mod-
els primarily leverage pre-trained semantic models on large-scale
datasets, which exhibit robust deep semantic representation capa-
bilities that are insensitive to minor noise, thereby hindering the
accurate detection of subtle distortion variations. As illustrated
in Figure 1 (a), we visualize the absolute prediction errors of two
BIQAmodels, namely DB-CNN (utilizing a CNN backbone) [25] and
DEIQT (utilizing a ViT backbone) [19], across varying distortion
levels on the KAdid10k dataset, with five random experimental runs
and an average result. In Figure 1 (a), it is evident that when the
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(a) Mean absolute error of BIQA model predictions
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(b) Quality metrics for restored images

Figure 1: An analysis of prediction bias at different distortion intensities. (a) The average absolute error of BIQA model
predictions across different distortion levels decreases as the distortion level increases, indicating the existence of an intensity
bias where the models are insensitive to minor distortions. (b) The lower the distortion level, the better the quality of the
restored images, suggesting that low distortion levels are more amenable to restoration compared to higher levels.

distortion intensity is low, the models with pre-trained semantic
model exhibit a larger average absolute error between their scores
and the ground truth. As the distortion level increases, the models’
prediction errors tend to diminish. It is worth noting that although
DEIQT outperforms DB-CNN, it still exhibits the phenomenon
caused by the intensity bias.

However, mild distortions can be effectively mitigated through
image restoration techniques, achieving quality levels close to the
original images , and reference information can help the model
learn the details of slight distortions. Figure 1 (b) showcases the
PSNR and SSIM values of the distorted images and the images re-
stored by the proposed image restoration model. The lower the
distortion level, the closer the restored image quality approximates
the original, resulting in superior PSNR and SSIM values. As the
distortion intensity increases, the distortion features become more
prominent, posing a challenge for the model to recover the origi-
nal quality, leading to inaccurate reference information from the
restoration process. With the results from Figure 1 (a), the eval-
uation of highly distorted images should benefit from individual
distorted images, while mildly distorted images can be effectively
restored and further utilized as reference information to enhance
the accuracy of the evaluation.

3.2 Distortion-domain bias
Distortion-domain bias stems from inherent discrepancies between
distortion domains encountered in BIQA tasks, commonly com-
prising synthesized and authentic distortions with fundamentally
distinct statistical profiles. BIQAmodels trained exclusively on a sin-
gle distortion dataset lack generalizability and exhibit precipitous
performance drops when evaluated on other distortion datasets
due to domain shifts. As evidenced in Figure 2, we visualize the
cross-dataset testing results of two BIQA models (DB-CNN [25]
and PQR [24]). The left plot shows models trained on the authentic
dataset (LIVEC [3]) achieving markedly better results on the siz-
able authentic KonIQ-10k [5] dataset compared to three synthetic
datasets, highlighting sensitivity to the training domain.Meanwhile,
the right plot indicates models trained on TID2013 [18] experience
severe accuracy degradation when tested on the authentic LIVEC
relative to synthetic datasets (LIVE [20] and CSIQ [8]). This indi-
cates that image quality assessment models trained on datasets
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Figure 2: An analysis of distortion domains bias in BIQA
model. Left: BIQA models trained on the authentic dataset
(LIVEC) excel on the authentic dataset KonIQ-10k but strug-
gle with synthetic datasets (LIVE, CSIQ, and TID2013). Right:
BIQA models trained on the synthetic dataset (TID2013) per-
formwell on synthetic datasets (LIVE and CSIQ) but degrades
significantly on the authentic dataset (LIVEC).

of the same distortion domain struggle to generalize well when
confronted with datasets from different domains. These findings un-
derscore the necessity of accounting for diverse distortion domains
in BIQA modeling to formulate domain-aware quality assessment
strategies attenuating such biases.

4 THE PROPOSED METHOD
The proposed framework is illustrated in Figure 3. To address
distortion-intensity bias, an image restoration module is first devel-
oped to infer the latent pristine reference form. Then, feature-level
reference information is constructed by extracting the pixel-wise
discrepancy features between the restored and distorted images
to represent distortion intensity, with further supervision from
the ground-truth to precisely represent the distortion variations.
Intensity-aware cross-attention exploits discrepancy features to
achieve interaction between distorted features and reference in-
formation. Regarding distortion domain bias, a distortion domain
recognition task is introduced to adaptively weight evaluation out-
comes across domains according to measured inter-domain similar-
ity. Furthermore, multi-scale feature extraction and enhancement
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of the feature spatial layout and channels are conducted to en-
hance representational capacity. The detailed method is outlined
as follows.

4.1 Debiased modeling of distortion intensity
We first employ image restoration techniques to recover distorted
images to a quality level approximating the original images, further
utilizing them as references to enhance the model’s robustness
against mild distortions. We integrate image-level and feature-level
restoration methods.
Image Restoration Module (IRM): In the initial stage, we con-
struct an image eestoration module (IRM). The IRM utilizes a Swin-
Transformer-based U-Net architecture. Details regarding Swin-
UNet can be found in the cited reference [1]. The IRM is trained
for image denoising using a combination of ℓ1 loss and structural
similarity index (SSIM) loss. The pixel-wise ℓ1 loss is defined as the
mean absolute difference between the processed image x and the
ground truth y over the entire image domain,

ℓ1 (p) =
1
|p|

∑︁
(𝑖, 𝑗 ) ∈p

| |x(𝑖, 𝑗) − y(𝑖, 𝑗) | |, (1)

where x(𝑖, 𝑗) and y(𝑖, 𝑗) correspond to the pixel values of the pro-
cessed image and the ground truth at location (𝑖, 𝑗) respectively,
and |p| signifies the total number of pixels within the image patch
p. The SSIM is computed as follows,

ℓ𝑠𝑠𝑖𝑚 (p) =
(2𝜇x𝜇y +𝐶1)
(𝜇2

x + 𝜇2
y +𝐶1)

·
(2𝜎xy +𝐶2)

(𝜎2
x + 𝜎2

y +𝐶2)
, (2)

where 𝜇x(p)and 𝜇y(p) denote the local means of the processed
image x and ground truth image y, respectively, computed over the
image patch p. ℓ𝑠𝑠𝑖𝑚 (p) quantifies the structural similarity between
x and y including luminance, contrast, and structural information.
The IRM is optimized by jointly minimizing the ℓ1 and SSIM losses
by,

ℓ𝑟𝑒𝑠 = 𝛼 · (1 − ℓ𝑠𝑠𝑖𝑚 (p)) + (1 − 𝛼) · ℓ1 (p) (3)

Subsequently, the distorted image x, the restored image 𝑦, and
the original image y are jointly fed into a feature extraction mod-
ule (FEM), represented by a parametric function 𝑓 with parameters
𝜃𝑒 , to obtain their respective embedding representations as follows,

E𝑑𝑖𝑠 = 𝑓 (x;𝜃𝑒 ); E𝑟𝑒𝑠 = 𝑓 (ŷ;𝜃𝑒 ); E𝑟𝑒 𝑓 = 𝑓 (y;𝜃𝑒 ) (4)

Discrepancy Perception Module (DPM): Then, we quantify the
intensity of image distortion by measuring the discrepancy be-
tween the restored image and the distorted image, where a larger
discrepancy indicates a more severe level of distortion. We intro-
duce a DPM, represented by a function𝜓 with parameters 𝜃𝑑 . The
extracted features are further enhanced through multi-scale feature
enhancement (MSFE), which will be elaborated in the next section,
to optimize the spatial and channel information. The discrepancy
representations are formulated as,

𝑑𝑟𝑒𝑠 = 𝜓 (E𝑟𝑒𝑠 − E𝑑𝑖𝑠 ;𝜃𝑑 ); 𝑑𝑟𝑒 𝑓 = 𝜓 (E𝑟𝑒 𝑓 − E𝑑𝑖𝑠 ;𝜃𝑑 ), (5)

where 𝑑𝑟𝑒𝑠 and 𝑑𝑟𝑒 𝑓 represent the distortion levels of the restored
and original images, respectively. The function𝜓 learns to charac-
terize the distortion discrepancy guided by the original image by
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Figure 3: An overview of the proposed distortion-debiased
BIQA model.

the following loss,

ℓmse (𝑖, 𝑗) =
1
|Ω |

∑︁
(𝑖, 𝑗 ) ∈Ω

| |𝑑𝑟𝑒𝑠 (𝑖, 𝑗) − 𝑑𝑟𝑒 𝑓 (𝑖, 𝑗) | |22, (6)

where (𝑖, 𝑗) are value coordinates in the feature domain Ω. This
loss encourages consistency between 𝑑𝑟𝑒𝑠 and 𝑑𝑟𝑒 𝑓 , enabling the
DPM to effectively capture distortion levels.
Intensity-aware Cross-attention (ICA): To adaptively weight
the distortion features and restoration features according to the
distortion intensity, we employ a cross-attention mechanism to
generate feature weight matrices. Specifically, we use the intensity
representation 𝑑𝑟𝑒𝑠 as the query𝑄 , and the distortion features F𝑠𝑒𝑚
as the keys 𝐾 and values 𝑉 , computing the attention weights via,

Q = 𝑑𝑟𝑒𝑠 ·𝑊Q; K = F𝑠𝑒𝑚 ·𝑊K; V = F𝑠𝑒𝑚 ·𝑊V, (7)

Attention(Q,K,V) = softmax

(
QK𝑇√︁
𝑑𝑘

)
V, (8)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 are linear projection weight matrices, and 𝑑𝑘 is
a scaling factor. The attention weight matrix is obtained via softmax
and multiplied with V to yield the weighted feature representation.
Finally, the ICA output features are passed through an MLP with
two linear layers to output the predicted quality score 𝑆𝑖𝑐𝑎 .

4.2 Debiased modeling of distortion domain
The bias in distortion domains is often attributed to the inherent
distribution discrepancy between authentic distortions and syn-
thetic distortions. To address this issue, we first aim to identify
the distortion domain of the image and then devise appropriate
evaluation strategies accordingly.
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Distortion Domain Classifier (DDC): Then, we propose a DDC
in our model, represented by a function 𝜑 with parameters 𝜃𝑐 .
The DDC takes E𝑑𝑖𝑠 as input and outputs two values representing
the class probabilities for the synthetic distortion domain and the
authentic distortion domain, respectively, formulated as,

[𝑝𝑠 , 𝑝𝑎] = softmax (𝜑 (E𝑑𝑖𝑠 ;𝜃𝑐 )) , (9)

where 𝑝𝑠 and 𝑝𝑎 denote the probabilities of the input belonging to
the synthetic and authentic distortion domains, respectively. The
DDC is optimized using the following cross-entropy loss,

ℓ𝑐𝑙𝑠 = −Ex∼D𝑠
log𝑝𝑠 (x) − Ex∼D𝑎

log𝑝𝑎 (x), (10)

where D𝑠 and D𝑎 represent the synthetic and authentic distortion
domains, respectively. By minimizing ℓ𝑐𝑙𝑠 , the DDC is trained to
accurately classify the distortion domain of the input image.
Semantic-aware Perception Module (SPM): The quality as-
sessment of authentic distorted images benefits from pre-trained
semantic-aware models trained on authentic distortion datasets
(e.g., ImageNet), enabling precise capture of the complexities in
authentic distortions and content. We introduce a semantic-aware
perception module to handle authentic distortion scenarios, out-
putting F𝑠𝑒𝑚 through MFSE, which is further processed by an MLP
to produce a quality score 𝑆𝑠𝑒𝑚 .

However, for mild distortions, the semantic-oriented perceptual
models are not sufficiently sensitive. In addition, synthetic distor-
tions, generated through specific distortion algorithms with diverse
domains and levels, typically exhibit advantages in quality predic-
tion for distortion restoration and distortion intensity awareness.
To leverage the strengths of both assessment approaches, we dy-
namically weight the evaluation results from the two distortion
domains based on their distortion domain similarity, computed as
the following,

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑝𝑎 · 𝑆𝑠𝑒𝑚 + 𝑝𝑠 · 𝑆𝑖𝑐𝑎 , (11)

where 𝑝𝑎 and 𝑝𝑠 are adaptive weighting factors determined by the
distortion domain similarity.

4.3 Feature extraction and enhancement
The FEM employs the first six transformer blocks of the VIT-S/16
architecture [7]. The remaining modules, SPM, DPM, and DDC,
are primarily composed of transformer blocks as well. The SPM
and DPM have the same network structure, each consisting of six
transformer blocks, while DDC comprises three transformer blocks.
All modules are initialized with pre-trained weights from ImageNet.
denoted as 𝑧1, 𝑧2, and 𝑧3. These features are first concatenated:
𝑧 = 𝑧1 + 𝑧2 + 𝑧3, where + represents the concatenation operation.
To enhance the representational capacity, we apply feature channel
self-attention (FCSA) and spatial convolution on 𝑧. The calculation
process is as follows,

𝑧 = F(Conv(R(FCSA(𝑧⊤ ·𝑊Q, 𝑧
⊤ ·𝑊K, 𝑧

⊤ ·𝑊V)⊤))), (12)

where𝑊Q,𝑊K, and𝑊V are linear projection parameters. where
F(·) denotes the operation of flattening the feature maps into a
feature sequence, R(·) represents the operation of reshaping the
feature sequence into feature maps, and ⊤ denotes the transpose
operation. The convolution projects the concatenated features to
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Figure 4: The process of multi-scale feature enhancement.
It involves utilizing feature channel self-attention (FCSA)
and spatial convolution on the multi-scale features. In the
figure, F(·) signifies the operation of flattening the feature
maps into a feature sequence, R(·) indicates the operation
of reshaping the feature sequence back into feature maps,
the symbol + represents the concatenation operation, and ⊤

represents the transpose operation.

the model dimension. Followed by a second FCSA and convolution
layer to obtain an enhanced feature representation,

𝑧𝑒𝑛ℎ = F(Conv(R(FCSA(𝑧⊤ ·𝑊𝑄 , 𝑧⊤ ·𝑊𝐾 , 𝑧⊤ ·𝑊𝑉 )⊤))) (13)

The IRM module is separately trained while other modules are
optimized end-to-end on IQA datasets using mean squared error
(MSE) loss, with frozen IRM parameters.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setups
Datasets and Protocols: Our experiments will be conducted on
six IQA benchmark databases, LIVE [20], CSIQ [8], TID2013 [18],
and KADID-10K [10] are synthetic distortion databases, and LIVEC
[3] and KonIQ-10K [5] are authentic distortion databases. These
databases provide subjective quality scores as a reference. In IQA,
in order to compare the performance of models, two correlation
criteria are often used, namely the Spearman rank correlation co-
efficient (SROCC) and the Pearson linear correlation coefficient
(PLCC), and they are defined as,

PLCC =

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)√︃∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)2 ∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)2

, (14)

SROCC = 1 −
6
∑
𝑑2
𝑖

𝑛(𝑛2 − 1)
, (15)

where 𝑥𝑖 and 𝑦𝑖 are the individual sample points indexed with 𝑖 , 𝑥
and 𝑦 are the means of the sample points, 𝑛 is the total number of
samples. 𝑑𝑖 is the difference between the ranks of the 𝑖-th pair of
data, 𝑛 is the total number of samples.
Implementation Details: The framework we used is pytorch, and
the GPU used for training is NVIDIA Tesla A800. For model training,
we use the AdamWoptimizer with the batch size and initial learning
rate set to 8 and 1e-5, using the LambdaLR learning rate regulator.
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Table 1: Performance comparison with the state-of-the-art BIQA methods on six benchmark databases.

Methods LIVE[20] CSIQ[8] TID2013[18] KADID-10k[10] LIVEC[3] KonIQ-10k[5]
SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

BIQA methods with recovered information:
AIGQA [13] 0.960 0.957 0.927 0.952 0.871 0.893 0.864 0.863 0.751 0.761 - -
FPR [2] 0.967 0.968 0.948 0.956 0.872 0.887 0.901 0.899 - - - -
VCRNet [16] 0.973 0.974 0.943 0.955 0.846 0.875 - - 0.856 0.865 0.894 0.909
DACNN [17] 0.978 0.980 0.943 0.957 0.871 0.889 0.905 0.905 0.866 0.884 0.901 0.912
CDINet [28] 0.977 0.975 0.952 0.960 0.898 0.908 0.920 0.919 0.865 0.880 0.916 0.928

BIQA methods with single distorted image:
DB-CNN [25] 0.968 0.971 0.946 0.959 0.816 0.865 0.851 0.856 0.851 0.869 0.875 0.884
CLRIQA [15] 0.977 0.980 0.915 0.938 0.837 0.863 0.837 0.843 0.832 0.866 0.831 0.846
HyperIQA [21] 0.962 0.966 0.923 0.942 0.804 0.839 0.852 0.844 0.859 0.882 0.906 0.917
TReS [4] 0.969 0.968 0.922 0.942 0.863 0.883 0.859 0.858 0.846 0.877 0.915 0.928
DEIQT [19] 0.980 0.982 0.946 0.963 0.892 0.908 0.889 0.887 0.875 0.894 0.921 0.934
Ours 0.981 0.984 0.969 0.976 0.927 0.940 0.956 0.957 0.873 0.895 0.923 0.938

Each training image was cropped to a size of 224×224 and trained
for a total of 300 epochs. For the BIQA methods compared in the
paper, we directly use the performance in the original paper, and
the untested datasets in the original paper we will derive from the
source code replication provided by the authors.
Training IRM: To pre-train the IRM for synthetic distortions, we
randomly selected 50,000 original images from KADIS-700K [10]
and generated distorted images using the same 25 domains of dis-
tortions and 5 levels of distortion intensity as KADID-10K [10].
Each original image can yield 125 distorted samples. We used the
AdamW optimizer, with the batch size and the initial learning rate
set to 10 and 1e-4, respectively, and the cosine annealing learning
rate regulator. Each training image was cropped to a size of 384×384
and trained for a total of 40 epochs. 50,000 images were randomly
selected as the test set .
Training DDC: To pre-train the DDC, we selected 125000 images
from the previously synthesized dataset as synthetic distortions
and 125000 images from the COCO dataset as authentic distortions
to compose our classification dataset. We use the pre-trained ViT-
S model as our feature extraction module. We used the AdamW
optimizer, with the batch size and the initial learning rate set to
10 and 1e-4, respectively, and the cosine annealing learning rate
regulator. Each training image was cropped to a size of 384×384
and trained for a total of 40 epochs. 50,000 images were randomly
selected as the test set .

5.2 Performance on Individual Databases
Based on the experimental setup of previous BIQA methods, we
divided the dataset according to the ratio of 80% for training and
20% for testing. Among them, we divided the synthetic distortion
dataset according to the reference image and divided the authentic
distortion dataset directly. Ten random divisions are used for each
experiment and the median result is selected.

To validate our model, we selected 10 state-of-the-art BIQAmeth-
ods for comparison. They are mainly divided into two types of meth-
ods: BIQA methods with recovery information and BIQA methods
with single distorted image. Table 1 shows the overall performance

Table 2: SROCC evaluation on cross-datasets with different
dataset domains.

Training LIVEC [3]
Testing LIVE [20] CSIQ [8]
TReS [4] 0.531 0.562

HyperIQA [21] 0.570 0.581
CLRIQA [15] 0.624 0.652
DB-CNN [25] 0.746 0.679
VIPNet [22] 0.734 0.635

Ours 0.876 0.709

comparison on six benchmark databases, where the higher the
SROCC and PLCC values, the better the performance.

Ourmodel achieved state-of-the-art performance on five datasets,
including LIVE, CSIQ, KADID-10K, TID2013, and KonIQ-10K. Al-
though it did not achieve the most advanced performance on the
LIVEC dataset, it is on par with the current state-of-the-art BIQA
methods, showing highly competitive results. On KADID-10K, our
SROCC and PLCC reached 0.956 and 0.957, respectively, which are
3.9% and 4.1% higher than the second-ranked CDINet. On TID2013,
our SROCC and PLCC reached 0.927 and 0.940, respectively, an
increase of 3.2% and 3.5% compared to CDINet, indicating that our
method has a good effect in solving the distortion intensity bias
commonly present in synthetic distortions. Compared with other
BIQA methods with recovery information, it can be proven that our
proposed recovery method combining image-level and feature-level
has superiority. Compared with BIQAmethods with single distorted
image that cannot achieve good performance simultaneously on
synthetic distortion and authentic distortion datasets, our proposed
method of using a distortion domain classifier to adaptively weight
quality scores achieves good results on both synthetic distortion
datasets and authentic distortion datasets. In addition, the results
in the table can also prove that regardless of the size of the data,
the model can achieve good results, indicating that the model has



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Towards Distortion-Debiased Blind ImageQuality Assessment ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Performance results on mixed-dataset evaluations

Training TID2013 [18] & LIVEC [3]
Testing LIVE[20] KADID-10K[10] KonIQ-10K[5] Average
Methods SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
DB-CNN [25] 0.900 0.883 0.544 0.544 0.620 0.606 0.688 0.678
UNIQUE [27] 0.899 0.872 0.514 0.466 0.663 0.625 0.692 0.654
VCRNet [16] 0.884 0.864 0.614 0.592 0.606 0.570 0.701 0.675
SAWAR [29] 0.903 0.890 0.657 0.647 0.665 0.634 0.742 0.724
(Ours) 0.949 0.942 0.781 0.774 0.765 0.822 0.832 0.846

Table 4: Ablation studies on quality weighting strategy

Datasets LIVE[20] CSIQ[8] TID2013 [18] LIVEC [3] Average
Methods SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC
𝑆𝑠𝑒𝑚 0.978 0.980 0.957 0.969 0.920 0.934 0.871 0.894 0.932 0.944
𝑆𝑖𝑐𝑎 0.979 0.981 0.959 0.969 0.929 0.942 0.857 0.883 0.931 0.944
Intensity-based weighting 0.968 0.970 0.926 0.923 0.920 0.930 0.860 0.882 0.919 0.926
Domain-based weighting 0.981 0.984 0.969 0.976 0.927 0.940 0.873 0.895 0.938 0.949

high data efficiency. In summary, our model achieves the best per-
formance or highly competitive performance on all six benchmark
datasets.

Table 5: Ablation studies on Multi-scale Feature Enhance-
ment.

Datasets MSFE SROCC PLCC

LIVE [20] × 0.979 0.981
✓ 0.981 0.984

CSIQ [8] × 0.966 0.971
✓ 0.969 0.976

TID2013 [18] × 0.918 0.932
✓ 0.927 0.940

Average × 0.954 0.961
✓ 0.959 0.967

5.3 Performance on cross-datasets
To validate whether the impact of distortion domain bias has been
reduced, we conducted two cross-dataset tests. The first cross-
datasets experiment was to verify the generalization ability of a
model trained on one domain of distortion dataset on another do-
main of distortion dataset. We trained the model on the authentic
distortion dataset LIVEC, and then tested it on the synthetic distor-
tion datasets LIVE and CSIQ. The results are shown in Table 2, with
only SROCC reported. The results of TReS, HyperIQA, CLRIQA,
and DBCNN come from VIPNet [22]. As can be seen from the ta-
ble, our model achieved the best performance, leading the second
place by 17.4% and 4.4% on the LIVE and CSIQ datasets respec-
tively. This result indicates that our model has good generalization
performance in cross-distortion domain experiments.

In the second cross-datasets experiment, to validate whether
our adaptive scoring weighting method using a distortion domain

classifier can achieve excellent performance for both authentic and
synthetic distortions, we mixed the authentic distortion dataset
LIVEC with the synthetic distortion dataset TID2013 for training.
We then tested the performance on CSIQ, KADID-10K, Koniq-10K,
and LIVE. The results are shown in Table 3 3. The results of DB-CNN,
UNIQUE [27], VCRNet, and SAWAR [29] come from SAWAR. As can
be seen from the table, our model achieved the best performance,
with improvements of 10%-30% on the KADID-10K and Koniq-10K
datasets, and improvements of 5.1% and 5.8% in SROCC and PLCC
on the LIVE , respectively. This result indicates that our model can
handle the mixed situation of authentic and synthetic distortions
well, and our proposed adaptive scoring weighting method is very
effective. These two experiment results have proven that we have
effectively solved the problem of distortion domain bias.

5.4 Ablation Studies
This section presents a series of ablation experiments designed to
validate the effectiveness of individual model components. For all
ablation experiments, the model is run ten times randomly, and the
median results are reported. Below is the analysis of the ablation
effects for each component:
Distortion Domain Classifier (DDC): To validate the effective-
ness of DDC, we tested the results using only the distortion score
and only the fusion score, respectively. Furthermore, to validate the
effectiveness of the weights provided by the DDC module, we uti-
lize 𝑑𝑟𝑒𝑠 , representing the intensity of distortion, as input to obtain
the weighted sum of the two scores, denoted as "Intensity-based
weighting" in Table 4.

As shown in Table 4, the experimental results show that the
fusion scores of most synthetic distortion datasets have achieved
impressive results, and their performance is better than the distor-
tion scores, indicating that we have effectively solved the problem
of distortion intensity bias. For the authentic distortion dataset
LIVEC, which is not greatly affected by distortion intensity bias,
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the distortion score is better than the fusion score. The average
results indicate that our weighted scores outperform the single
scores, and our weighting effect is superior to diff weights. This
validates the effectiveness of our method. This suggests that our
approach of using a weighted combination of different scores and
our specific weighting method can provide a more accurate and
robust assessment.
Multi-scale Feature Enhancement (MSFE): As illustrated in
Table 5, we conduct ablation experiments on MSFE. On the three
datasets LIVE, CSIQ, and TID2013, incorporating MSFE results in
an improvement of 0.52% and 0.62% in SROCC and PLCC in the
average results, respectively, demonstrating the effectiveness of our
proposed module.

6 CONCLUSION
Existing BIQA models are susceptible to intensity bias and distor-
tion domain bias, where intensity bias refers to models being overly
sensitive to severe distortions while underestimating mild distor-
tions, and distortion domain bias indicates the inability of models
to effectively generalize across different distortion domains. In this
work, we design a distortion-debiased BIQA method to address
both biases. To mitigate intensity bias, we integrate semantic per-
ception and restoration modules that jointly perform image-level
and feature-level denoising. We leverage the discrepancy between
the restored features and the distorted features as a representation
of distortion intensity. Subsequently, we employ intensity-aware
cross-attention to adaptively weight the distorted features and dis-
crepancy features for evaluating images with varying distortion
levels. To address domain bias, we introduce a distortion domain
recognition task and utilize the domain-wise similarity between
synthetic and real distortions to weight the evaluation results from
the two domains. Experiments on single datasets and cross-dataset
tests demonstrate that our proposed method can better handle di-
verse distortion scenarios, achieving state-of-the-art performance.
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