
A benchmark with decomposed distribution shifts for
360 monocular depth estimation

Georgios Albanis1∗ Nikolaos Zioulis1,2∗ Petros Drakoulis1∗ Federico Alvarez2
Dimitrios Zarpalas1 Petros Daras1

1 Centre for Research and Technology Hellas, Thessaloniki, Greece
2 Universidad Politécnica de Madrid, Madrid, Spain

{galbanis, nzioulis, petros.drakoulis, zarpalas, daras}@iti.gr
fag@gatv.ssr.upm.es

vcl3d.github.io/Pano3D

Abstract

In this work we contribute a distribution shift benchmark for a computer vision
task; monocular depth estimation. Our differentiation is the decomposition of
the wider distribution shift of uncontrolled testing on in-the-wild data, to three
distinct distribution shifts. Specifically, we generate data via synthesis and analyze
them to produce covariate (color input), prior (depth output) and concept (their
relationship) distribution shifts. We also synthesize combinations and show how
each one is indeed a different challenge to address, as stacking them produces
increased performance drops and cannot be addressed horizontally using standard
approaches.

1 Introduction

Data-driven methods are conditioned on the data which are available during the model development
but are to be applied on real world data. Considering that the former data distribution is Ps = σ(Pr),
which is the result of applying a sampling function σ(·) to the real world distribution Pr. Typically,
Ps is separated into different splits Ptrn and Pval, used to train the model and validate its behaviour
respectively, with the latter process driving model selection. A data distribution shift can be described
as the condition where the joint distribution P of inputs and outputs differs between the training and
test stages [1].

This is an actual problem that many practical applications face, affecting their overall performance,
robustness and reliability. The phenomenon is more prominent in tasks where annotated data
collection is difficult and has been generally addressed in the literature as the domain shift [2] or
the generalization of data-driven models [3, 4], or otherwise as out-of-distribution robustness [5].
More information about out-of-distribution (OOD) learning and generalization can be found in recent
surveys [6, 7, 8].

Up to now, most works approach this problem in its general setting via zero-shot cross-dataset transfer
experiments that aim at assessing model performance under a general distribution shift, considering
two different samplings Ps1 = σ1(Pr) and Ps2 = σ2(Pr), as seen in Figure 1. A recent benchmark
[9] provided simultaneously data for sub-population shift, a special case of distribution shifts, and a
generic domain generalization shift across a number of datasets and tasks.
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Figure 1: Typical training setting vs. zero-shot cross-dataset transfer. Each light blue disk represents
a distinct sampling of R, a dataset. Red/green represent the typical train/test splits and dark blue a
zero-shot cross-dataset transfer test split. For simplicity, we omit the validation splits, considering
them part of the train splits.

In this work, we contribute a novel benchmark for distribution shift performance assessment, in the
context of a computer vision task notorious for its complex data collection processes; monocular
depth estimation. The novelty of our benchmark lies in the decomposition of generalized shift into
components, expressed separately or in combination, via targeted test splits.

2 The Pano3D Dataset

Our benchmark relies on two recent 3D building scan datasets, Matterport3D (M3D) [10] and
GibsonV2 (GV2) [11], using modern synthesis to produce high quality spherical panoramas coupled
with depth maps. Sample images can be found in Figure 2. Specifically, we use M3D as a traditional
in-distribution model development dataset and GV2 as a zero-shot cross-dataset transfer, out-of-
distribution benchmark dataset.

Figure 2: Rendered panoramic images of Matterport3D (top) and GibsonV2 (bottom).

For M3D, we consider its standard partitioning into train PM3D
trn , validation PM3D

val and test PM3D
tst

splits. The GV2 splits represent another sampling of the real world domain, or otherwise a zero-shot
cross-dataset transfer experiment. Nonetheless, GV2 itself is partitioned into different splits, the tiny
PGV 2
tiny , medium PGV 2

med , full PGV 2
full and fullplus PGV 2

fullplus splits2. After synthesizing coupled color
and depth panoramas for all splits of both datasets, we analyze them and observe that it is possible to
decompose them into three core distribution shifts. More on the characterization and decomposition
of distribution shift can be seen on [12, 13, 14]:

A covariate distribution shift represents a shift of the input domain, which in our case is the color
image’s domain. As we rely on a synthesis approach (i.e. raytracing) to generate our data, we are
also in control of the camera color transfer function. Consequently, we can generate a shifted input
distribution Pcov using the M3D test split PM3D

tst , where only the color domain has been shifted.

2For the remainder of the document we ignore the full split, which is kept aside for future training purposes.
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After examining the different splits’ statistics we also observe a prior probability distribution shift
manifesting at the tiny, PGV 2

tiny , and medium, PGV 2
med , splits which corresponds to Pprior, meaning

that the output depth distribution has shifted from the training one PM3D
trn . Yet, the input (color)

distribution is similar as the color camera transfer function is the same, and the context is also
preserved to residential scenes.

Finally, analysing the fullplus split, we observe a concept distribution shift, which is the shifted con-
text of the depicted scenes. While Matterport3D (i.e. PM3D

trn ) only contains indoor residential scenes,
the fullplus split PGV 2

fullplus presents varying scenes like supermarkets, garages, under construction
buildings, etc., corresponding to Pconc. At the same time though, the input (color) and output (depth)
distributions are preserved between PM3D

trn and Pconc.

Notably, our benchmark decomposes the wider domain shift into three distinct distribution shifts. But
since we rely on synthesis processes, it is straightforward to combine distribution shifts, producing
P cov
prior and P cov

conc by re-rendering the corresponding splits with a shifted color transfer function,
essentially adding a covariant shift to the prior and concept ones. This provides two extra combined
distribution shift splits, with only the simultaneous prior and concept shifts missing.

Details can be seen in Figure 3. All of our data are publicly available at: vcl3d.github.io/Pano3D.

Figure 3: Disentangled distribution shifts. The left column represents the three singular shifts, namely
covariate, prior and concept. In the middle, details regarding the composition and characteristics of
the shifts can be found. The right column illustrates two stacked shift combinations.

3 Analysis

We support our benchmark with a set of zero-shot cross-dataset transfer experiments across the
different distribution shifts. We use a standard UNet [15] architecture training a supervised model
with a complex objective similar to [16]:

L = λL1LL1 + λcosLcos + λgradLgrad + λvnlLvnl, (1)

where LL1 is an L1 loss, Lcos is an angular loss defined on the surface normals, Lgrad is the multi-
scale gradient matching loss from [17], and Lvnl is the virtual normal loss [18]. All the independent
term weights are equally weighted, i.e. λi = 1.0 ∀ i We initialize our model using [19] and optimize
it using a batch size of 4 and the Adam optimizer [20], using a learning rate of 0.0002 and its default
momentum parameter values.
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When training we only use PM3D
trn and for all experiments we calculate standard metrics for depth

estimation [21], as well as boundary [22, 23] and normals RMSE and accuracies [24]. We aggregate
performance across the different traits (direct depth, boundary and smoothness) them using a set of
indicators:

id = ((1− δ1.25)RMSE)−1, (2)

ib = ((1− (F0.25 + F0.5 + F1.0)

3
)dbeacc)−1, (3)

is = ((1− (α11.25o + α22.5o + α30o)

3
)RMSEo)−1, (4)

where RMSE and RMSEo are the depth and normal angular errors respectively, dbeacc is the
accuracy boundary error from [22], Ft is the F1-score for different edge thresholds from [23], and
δd and αa are the accuracy under thresholds for the depth and surface normals from [21] and [24]
respectively.

Through these indicators we present an holistic view of how task performance is affected from the
different distribution shifts. In the following subsections, we examine isolated distribution shifts as
well as some of their combinations.

Decomposed Shifts: Varying the input, output and combined domains. After training a super-
vised model on M3D’s train split, we examine its performance on the different distribution shifts we
have generated compared to that of the in-distribution test set. Figure 4 illustrates the results using the
indicators from Eq. (2). We observe a performance drop for all distribution shifts, with the covariate
(magenta box) and prior (orange box) being at about the same level, while the concept shift (cyan
box) presents the largest performance loss. At the same time, combining two distribution shifts hurts
performance even more, as shown by the combined distribution shifts (violet box).

PM3D
tst

Pcov Pprior Pconc P cov
prior P cov

conc

id

Direct Depth Performance

PM3D
tst

Pcov Pprior Pconc P cov
prior P cov

conc

ib

Boundary Preservation Performance

PM3D
tst

Pcov Pprior Pconc P cov
prior P cov

conc

is

Smoothness Performance

Figure 4: The effect of each distribution shift and their combinations.

Photometric augmentations for covariate shift. Next, we examine the effect of training with
photometric augmentations (i.e. brightness, contrast, hue shifts, and gamma corrections) and testing
on the different (combined or not) distribution shifts. Figure 5 presents the results comparing training
with and without augmentations. It is generally acknowledged that photometric augmentations address
camera domain or color transfer function shifts, and our experiments verify this, as performance
gains are only observed in the splits where covariate shifts manifests.

Pretraining for generalization boost. Another common assumption is that pretraining on large
image datasets like ImageNet [25] helps address domain shifts. We perform another experiment, this
time using the PNAS model [26] with all hyperparameters preserved, and train one model initialized
with pretrained weights and another one initialized using [19]. Figure 6 presents the results when
tested on our benchmark’s different shifts. Interestingly, we observe a performance boost in the
splits where only a single distribution shift is present, where in contrast, the ones with two stacked
distribution shifts show minimal gains. This indicates that pretraining does not necessarily improve
generalization – in the form of more transferable initial features – but, instead, only provides a better
parameter initialization leading to higher quality parameters’ optimization.

The full array of the conducted experiments and their detailed results can be found in Table 1.
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Figure 5: Photometric augmentations effect on the different distribution shifts.

PM3D
tst

Pcov Pprior Pconc P cov
prior P cov

conc

id

Direct Depth Performance

PM3D
tst

Pcov Pprior Pconc P cov
prior P cov

conc

ib

Boundary Preservation Performance

PM3D
tst

Pcov Pprior Pconc P cov
prior P cov

conc

is

Smoothness Performance

NoPretrained
Pretrained

Figure 6: The effect of pretraining on our benchmark’s different distribution shifts.

4 Conclusion

Distribution shifting is pivotal to the real-world application of data-driven methods. In this work,
we contribute a distribution shift benchmark for an ill-posed dense computer vision task, with
notoriously difficult data collection process. Seeking to facilitate future research towards addressing
this challenging problem, we decompose distribution shift to input (covariate), output (prior) and
their relationship (concept), providing an experimental baseline for further experimentation and
understanding.

Table 1: Three-axis depth performance across models and data-splits. The worst , 2nd worst and

3rd worst performance drops per model are denoted in color respectively.

M
od

el

Split
Direct Depth Depth Discontinuity Depth Smoothness

Error ↓ Accuracy ↑ Error ↓ Accuracy ↑ Error ↓ Accuracy ↑
wRMSE wRMSLE wAbsRel wSqRel δico

6

1.05 δico
6

1.1 δico
6

1.25 δico
6

1.252 δico
6

1.253 dbeacc dbecomp prec0.25 prec0.5 prec1 rec0.25 rec0.5 rec1 RMSEo α11.25o α22.5o α30o

U
N

et

PM3D
tst 0.452 0.130 0.115 0.081 36.68% 60.59% 88.31% 96.96% 98.73% 1.270 3.888 58.97% 57.54% 51.85% 43.96% 36.69% 28.59% 16.021 61.80% 76.58% 81.70%

Pcov 0.546 0.130 0.135 0.113 29.08% 52.44% 83.47% 83.68% 95.28% 1.526 4.404 63.64% 63.33% 57.23% 36.15% 29.03% 20.73% 17.398 59.82% 75.62% 81.10%
Pprior 0.472 0.206 0.173 0.141 21.85% 41.67% 81.49% 81.62% 95.73% 1.473 4.338 61.43% 64.51% 60.21% 46.53% 40.67% 33.08% 17.357 57.01% 74.59% 80.71%
Pconc 0.617 0.266 0.184 0.193 23.41% 42.42% 76.21% 76.44% 92.30% 1.723 5.037 54.45% 56.37% 52.31% 34.61% 29.07% 23.02% 22.059 46.84% 66.09% 73.41%
Pcov

prior 0.545 0.232 0.185 0.185 22.82% 42.82% 79.43% 79.58% 93.73% 1.694 4.844 57.63% 59.49% 53.19% 37.47% 31.28% 23.22% 19.219 53.24% 71.44% 78.00%
Pcov

conc 0.737 0.297 0.220 0.411 20.96% 38.47% 70.20% 70.46% 87.99% 1.948 5.560 50.65% 50.90% 44.46% 26.76% 21.28% 15.46% 23.898 43.54% 63.06% 70.69%

U
N

et
au

g

PM3D
tst 0.433 0.068 0.109 0.073 37.36% 63.11% 89.59% 89.76% 97.42% 1.360 3.876 64.82% 64.94% 60.41% 44.96% 37.02% 27.96% 15.099 63.99% 77.98% 82.83%

Pcov 0.469 0.073 0.117 0.091 35.35% 61.31% 88.20% 88.40% 96.83% 1.443 4.156 64.27% 63.79% 58.79% 42.17% 34.00% 25.21% 15.653 63.92% 78.34% 83.34%
Pprior 0.458 0.084 0.170 0.102 20.43% 39.73% 81.19% 81.32% 96.19% 1.448 4.268 62.69% 66.19% 62.27% 47.56% 41.51% 32.90% 16.307 59.48% 76.41% 82.16%
Pconc 0.601 0.103 0.176 0.152 23.61% 42.70% 76.98% 77.22% 92.78% 1.704 5.006 56.24% 58.18% 53.33% 35.45% 29.78% 23.07% 20.870 49.29% 68.06% 75.09%
Pcov

prior 0.475 0.087 0.174 0.114 20.22% 39.51% 80.39% 80.52% 95.70% 1.533 4.392 60.69% 63.32% 59.43% 44.54% 38.01% 29.63% 16.669 58.74% 75.78% 81.62%
Pcov

conc 0.624 0.108 0.183 0.170 22.78% 41.57% 75.56% 75.80% 92.06% 1.769 5.148 54.64% 55.56% 50.02% 32.85% 26.91% 20.50% 21.234 48.58% 67.49% 74.58%

Pn
as

PM3D
tst 0.561 0.085 0.133 0.120 32.69% 56.94% 96.30% 95.38% 97.95% 2.654 5.730 38.73% 30.26% 23.58% 18.74% 10.48% 8.48% 20.118 53.88% 69.81% 75.65%

Pcov 0.703 0.109 0.160 0.159 23.45% 45.12% 76.27% 77.79% 92.06% 2.869 6.075 36.70% 28.00% 18.99% 12.33% 6.80% 5.32% 21.486 52.07% 68.75% 74.91%
Pprior 0.562 0.098 0.188 0.146 19.67% 38.39% 76.37% 77.53% 94.28% 2.651 5.243 34.12% 29.20% 23.15% 18.43% 11.70% 9.68% 19.929 52.64% 70.83% 77.51%
Pconc 0.693 0.117 0.200 0.196 21.27% 39.37% 72.84% 73.10% 90.80% 3.192 7.277 32.20% 25.87% 19.51% 13.69% 8.32% 6.68% 24.433 44.01% 63.45% 71.07%
Pcov

prior 0.663 0.116 0.192 0.170 21.21% 40.24% 74.54% 74.72% 91.12% 3.266 7.251 29.89% 24.68% 17.70% 11.58% 7.01% 5.58% 22.493 47.89% 66.76% 73.90%
Pcov

conc 0.842 0.145 0.222 0.244 18.50% 34.75% 65.66% 65.93% 85.70% 3.674 7.881 28.13% 21.04% 13.40% 8.15% 4.65% 3.70% 26.583 39.92% 59.69% 67.72%

Pn
as

pr
e

PM3D
tst 0.467 0.070 0.107 0.086 40.90% 64.98% 90.38% 90.56% 97.33% 2.217 5.019 44.35% 37.55% 31.57% 25.78% 15.54% 11.60% 17.785 59.34% 73.58% 78.80%

Pcov 0.492 0.074 0.114 0.094 39.53% 62.86% 88.92% 89.14% 96.92% 2.304 6.118 44.83% 37.46% 31.06% 24.20% 14.55% 10.87% 18.066 60.24% 74.64% 79.93%
Pprior 0.501 0.087 0.172 0.112 18.89% 37.30% 80.83% 80.99% 96.34% 2.307 5.936 40.62% 37.67% 34.14% 26.48% 18.37% 14.72% 18.003 57.90% 74.54% 80.52%
Pconc 0.616 0.103 0.174 0.149 23.20% 41.88% 77.59% 77.87% 93.24% 2.658 6.712 38.10% 32.81% 27.60% 20.23% 13.14% 10.46% 22.060 49.32% 67.63% 74.63%
Pcov

prior 0.531 0.093 0.189 0.130 16.68% 32.96% 78.06% 78.21% 95.67% 2.400 6.094 39.70% 36.16% 32.07% 24.74% 16.74% 13.23% 17.949 58.22% 74.70% 80.59%
Pcov

conc 0.649 0.109 0.184 0.161 21.98% 39.44% 75.48% 75.77% 92.34% 2.790 6.918 37.29% 31.64% 25.48% 18.25% 11.48% 9.10% 22.019 49.63% 67.78% 74.69%
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